A survey on Voronoï's theorem
Dedicated to Professor Takayuki Oda on his 60th birthday
Takao Watanabe
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0001, Japan
E-mail: twatanabe@math.sci.osaka-u.ac.jp

Abstract

In the last half of 20th century, various generalizations of Hermite's constant and Voronoï's theorem were studied by many authors. In this paper, we give an account of a recent development concerning Voronoï's theorem.

Keywords: Hermite constant, eutactic form, extreme form, perfect form

Let V_{n} be the vector space of real $n \times n$ symmetric matrices and P_{n} the open cone of positive definite symmetric matrices in V_{n}. By $m_{1}(a)$, we denote the arithmetical minimum $\inf _{x \in \mathbf{Z}^{n} \backslash\{0\}}{ }^{t} x a x$ of $a \in P_{n}$. The Hermite invariant is the positive valued function γ on P_{n} defined by $\gamma(a)=m_{1}(a) / \operatorname{det}(a)^{1 / n}$. Its maximum γ_{n} is called Hermite's constant. The determination of γ_{n} is one of main problems in lattice sphere packings or the arithmetic theory of quadratic forms. Voronoi's fundamental theorem [62] gives a characterization of local maxima of γ, i.e., which can be stated that γ attains a local maximum on $a \in P_{n}$ if and only if a is perfect and eutactic. In the last half of 20th century, various generalizations of Hermite's constant and Voronoï's theorem were studied by many authors. In this paper, we give an account of a recent development concerning Voronoï's theorem.

Contents

1. Type one functions and Voronoï's theorem
1.1. Type one functions and semikernels
1.2. Voronoï's theorem of m_{1} / ϕ
1.3. Geometric characterizations of perfect forms
1.4. Hermite like constants
2. Rankin's constant and Voronoi's theorem
2.1. Rankin's constant
2.2. Voronoï's theorem of $m_{k} / \operatorname{det}^{1 / n}$
2.3. Some problems of k-perfect forms
2.4. The Bergé-Martinet constant
3. Generalizations of Voronoï's theorem
3.1. Voronoï's theorem of packing functions on symmetric cones
3.2. Bavard's theory
3.3. Voronoï's theorem over an algebraic number field I
3.4. Voronoï's theorem over an algebraic number field II
4. Generalized Hermite constants of flag varieties
4.1. Generalized Hermite constants
4.2. Generalized Hermite constants of $S p_{n}$
4.3. Variation of the set of minimal points

References

Notation. Throughout this paper, V_{n} denotes the vector space of real $n \times n$ symmetric matrices, P_{n} the open cone of positive definite symmetric matrices in V_{n} and $P_{n}^{\text {semi }}$ the closure of P_{n} in V_{n}. The vector space V_{n} is equipped with the inner product $\left\langle a_{1}, a_{2}\right\rangle=\operatorname{tr}\left(a_{1} a_{2}\right)$ for $a_{1}, a_{2} \in V_{n}$. The unimodular group $G L_{n}(\mathbf{Z})$ acts on V_{n} by $(a, g) \mapsto{ }^{t}$ gag for $a \in V_{n}$ and $g \in G L_{n}(\mathbf{Z})$. In general, for a given ring R, the set of all $m \times n$ matrices with coefficients in R is denoted by $M_{m, n}(R)$. We write $M_{n}(R)$ for $M_{n, n}(R)$ and R^{n} for $M_{n, 1}(R)$. The unit group of the matrix ring $M_{n}(R)$ is denoted by $G L_{n}(R)$. The identity matrix in $G L_{n}(R)$ is denoted by I_{n}.

A Euclidean space \mathbf{R}^{n} is equipped with the inner product $(x, y)={ }^{t} x y$. For $a \in M_{n}(\mathbf{R}),\|a\|$ denotes the operator norm of a, i.e.,

$$
\|a\|=\sup _{x \in \mathbf{R}^{n} \backslash\{0\}}\left(\frac{(a x, a x)}{(x, x)}\right)^{1 / 2} .
$$

For a constant $c \in \mathbf{R}, \mathbf{R}_{>c}$ and $\mathbf{R}_{\geq c}$ stand for the open interval $(c,+\infty)$ and the closed interval $[c,+\infty)$, respectively.

1. Type one functions and Voronoï's theorem

There are several methods to prove Voronoi's theorem [62, Théorème 17], e.g., [6], [51], [54], see also [28, §29], [29, §39], [40, §3.4] and [60, §3.1.7].

Convexity of the domain P_{n} and the concavity of both functions m_{1} and $\operatorname{det}^{1 / n}$ play key roles in some proofs. Poor and Yuen [47] investigated a family of such kind functions as m_{1} and $\operatorname{det}^{1 / n}$. This family is called type one functions. Every type one function ϕ is completely characterized by the corresponding semikernel $K_{1}(\phi)$. In this section, we first discuss type one functions and semikernels, and then formulate Voronoï type theorem in terms of type one functions. The semikernel $K_{1}\left(m_{1}\right)$ associated with m_{1} is called the Ryshkov polyhedron. In the second half of this section, we investigate a description of faces of $K_{1}\left(m_{1}\right)$. This gives a well-known geometric interpretation of perfection.

1.1. Type one functions and semikernels

Definition 1.1. A function $\phi: P_{n}^{\text {semi }} \rightarrow \mathbf{R}_{\geq 0}$ is called a type one function if ϕ satisfies the following conditions:
$\left(\mathrm{TO}_{1}\right) \phi(\theta a)=\theta \phi(a)$ for all $a \in P_{n}^{\text {semi }}$ and $\theta \geq 0$, $\left(\mathrm{TO}_{2}\right) \phi\left(a_{1}+a_{2}\right) \geq \phi\left(a_{1}\right)+\phi\left(a_{2}\right)$ for all $a_{1}, a_{2} \in P_{n}^{\text {semi }}$, $\left(\mathrm{TO}_{3}\right) \phi(a)>0$ for all $a \in P_{n}$.
A type one function ϕ is called a type one class function if $\phi\left({ }^{t} g a g\right)=\phi(a)$ holds for all $a \in P_{n}^{\text {semi }}$ and $g \in G L_{n}(\mathbf{Z})$.

Example 1.1. The trace tr and the smallest eigenvalue λ_{1} are type one functions, but not type one class functions. The reduced determinant det ${ }^{1 / n}$ and the arithmetical minimum

$$
m_{1}(a)=\inf _{x \in \mathbf{Z} \backslash\{0\}}{ }^{t} x a x
$$

are type one class functions.
For a type one function ϕ, the dual type one function $\phi^{\circ}: P_{n}^{\text {semi }} \rightarrow \mathbf{R}_{\geq 0}$ is defined to be

$$
\phi^{\circ}(a)=\inf _{b \in P_{n}} \frac{\langle a, b\rangle}{\phi(b)}
$$

If ϕ is a type one class function, then so is ϕ°. The dual type one class function of m_{1} is denoted by w_{1}, which is called the dyadic trace. The dual type one class function of $\operatorname{det}^{1 / n}$ is $n \operatorname{det}^{1 / n}$.

Any type one function is continuous on P_{n}, but not necessarily continuous on $P_{n}^{\text {semi }}$. For example, w_{1} is not continuous on $P_{n}^{\text {semi }}$; however w_{1} is upper semicontinuous on $P_{n}^{\text {semi }}$. Here a type one function ϕ is said to be upper semicontinuous at $a \in P_{n}^{\text {semi }}$ if

$$
\phi(a)=\limsup _{b \rightarrow a} \phi(b)=\lim _{\epsilon \downarrow 0}\left(\sup \left\{\phi(b):\|a-b\| \leq \epsilon, b \in P_{n}^{\text {semi }}\right\}\right) .
$$

In general, the dual ϕ° of an arbitrary type one function ϕ is necessarily upper semicontinuous on $P_{n}^{\text {semi }}$ ([58, Corollary 2.7]).

Definition 1.2. Let K be a convex subset of $P_{n}^{\text {semi }}$ such that $0 \notin K$, $\mathbf{R}_{\geq 1} \cdot K=K$ and $\mathbf{R}_{>0} \cdot K \supset P_{n}$.
(1) K is called a kernel if K is closed in $P_{n}^{\text {semi }}$.
(2) K is called a semikernel if the following three conditions are satisfied: $\left(\mathrm{SK}_{1}\right) K \cap\left(P_{n} \cup\{0\}\right)$ is closed in $P_{n} \cup\{0\}$,
$\left(\mathrm{SK}_{2}\right)\{\theta \geq 0 \mid \theta a \in K\}$ is closed in $[0, \infty)$ for any $a \in K$,
$\left(\mathrm{SK}_{3}\right) a+b \subset K$ for all $a \in K$ and $b \in P_{n}^{\text {semi }}$.
It is easy to see that a kernel is a semikernel. The dual K^{\sqcup} of a semikernel K is defined to be

$$
K^{\sqcup}=\left\{a \in V_{n}:\langle a, b\rangle \geq 1 \text { for all } b \in K\right\} .
$$

This K^{\sqcup} is a kernel.
There is a natural correspondence between type one functions and semikernels. For a type one function ϕ, we set

$$
K_{1}(\phi)=\left\{a \in P_{n}^{\text {semi }}: \phi(a) \geq 1\right\} .
$$

Conversely, for a semikernel K, define the function $\psi(K, \cdot): P_{n}^{\text {semi }} \rightarrow \mathbf{R}_{\geq 0}$ by

$$
\psi(K, a)=\max (\{\theta>0: a \in \theta \cdot K\} \cup\{0\})
$$

The existence of this maximum follows from the condition $\left(\mathrm{SK}_{2}\right)$. The following results were proved in $[58, \S 1]$

Proposition 1.1. The correspondence $\phi \mapsto K_{1}(\phi)$ gives a bijection between the set of type one functions (resp. upper semicontinuous type one functions) and the set of semikernels (resp. kernels). For any type one function ϕ and any semikernel K, one has

$$
\psi\left(K_{1}(\phi), \cdot\right)=\phi, \quad K_{1}(\psi(K, \cdot))=K
$$

and moreover

$$
\psi(K, \cdot)^{\circ}=\psi\left(K^{\sqcup}, \cdot\right) .
$$

Proposition 1.2. For any type one function ϕ, we have

$$
\left\{\begin{aligned}
\phi^{\circ \circ}(a)=\phi(a) & \text { if } a \in P_{n} \\
\phi^{\circ \circ}(a) \geq \phi(a) & \text { if } a \in P_{n}^{\text {semi }} \backslash P_{n} .
\end{aligned}\right.
$$

If ϕ is upper semicontinuous on $P_{n}^{\text {semi }}$, then $\phi^{\circ 0}=\phi$ on $P_{n}^{\text {semi }}$.

1.2. Voronoï's theorem of m_{1} / ϕ

Voronoï's theorem characterizes local maxima of the Hermite invariant $F_{\operatorname{det}^{1 / n}}=m_{1} / \operatorname{det}^{1 / n}$. A point $a \in P_{n}$ is said to be extreme (resp. strict extreme) if $F_{\text {det }^{1 / n}}$ attains a local maximum (resp. a strict local maximum) on a up to the multiplication by an element of $\mathbf{R}_{>0}$. Indeed, we do not need to distinguish between extreme points and strictly extreme points since any extreme point is strictly extreme ([40, Theorem 3.4.5]). For $a \in P_{n}, S(a)$ denotes the set of minimal integral vectors of a, i.e.,

$$
S(a)=\left\{x \in \mathbf{Z}^{n} \backslash\{0\}:{ }^{t} x a x=m_{1}(a)\right\} .
$$

For any $y \in \mathbf{R}^{n}, \varphi_{y}$ denotes the linear form $v \mapsto^{t} y v y$ on V_{n}.
Definition 1.3. Let $a \in P_{n}$. We fix an element $b \in G L_{n}(\mathbf{R})$ such that $a={ }^{t} b b$. An element a is said to be perfect if the linear forms $\varphi_{b x}(x \in S(a))$ span the dual space V_{n}^{*} of V_{n}. An element a is said to be eutactic (resp. weakly eutactic) if there exist $\rho_{x} \in \mathbf{R}_{>0}$ (resp. $\left.\rho_{x} \in \mathbf{R}\right), x \in S(a)$, such that

$$
\begin{equation*}
\operatorname{tr}=\sum_{x \in S(a)} \rho_{x} \varphi_{b x} \tag{1}
\end{equation*}
$$

We note that these definitions of perfection, eutaxy and weakly eutaxy are independent of a choice of b. It follows from definition that a is perfect if and only if $\left\{x^{t} x: x \in S(a)\right\}$ spans V_{n}. If tr is represented as (1), then we have

$$
\operatorname{tr}=\sum_{x \in S(a)} \rho_{x} \varphi_{h b x}
$$

for any orthogonal matrix h. The coefficients ρ_{x} are independent of h.
Any perfect element a is uniquely determined by $m_{1}(a)$ and $S(a)$, i.e., a is a unique solution of the system of linear equations in the unknown $v={ }^{t} v$: $\left\langle v, x^{t} x\right\rangle=m_{1}(a), x \in S(a)$. If $m_{1}(a) \in \mathbf{Q}$, then its solution is contained in $V_{n} \cap M_{n}(\mathbf{Q})$ by Cramer's formula. This is none other than the rationality of perfect elements ($\left.\left[36, \mathrm{p} .252,5^{\circ}\right]\right)$.

Theorem 1.1 (Korkine-Zorotareff). If $a \in P_{n}$ is perfect and $m_{1}(a) \in$ \mathbf{Q}, then $a \in P_{n} \cap M_{n}(\mathbf{Q})$.

Voronoï's theorem [62, Théorème 17] is stated as follows.
Theorem 1.2 (Voronoï). $a \in P_{n}$ is extreme if and only if a is perfect and eutactic.

We fix a type one function ϕ. It is natural to ask whether the same kind of Voronoï's theorem holds for the function $F_{\phi}=m_{1} / \phi$ on P_{n}. An element $a \in P_{n}$ is said to be ϕ-extreme (resp. strictly ϕ-extreme) if F_{ϕ} attains a local maximum (resp. a strictly local maximum) on a up to the multiplication by an element of $\mathbf{R}_{>0}$. Assume ϕ is differentiable on P_{n}. Then

$$
(\partial \log \phi)_{b}(v)=\lim _{t \rightarrow 0} \frac{\log \phi\left({ }^{t} b\left(\mathrm{I}_{n}+t v\right) b\right)-\log \phi\left({ }^{t} b b\right)}{t}
$$

exists for $b \in G L_{n}(\mathbb{R})$ and $v \in V_{n}$. We define ϕ-eutaxy as follows:
Definition 1.4. Let $a \in P_{n}$, and fix an element $b \in G L_{n}(\mathbf{R})$ such that $a={ }^{t} b b$. An element a is said to be ϕ-eutactic if there exist $\rho_{x}>0(x \in S(a))$ such that $(\partial \log \phi)_{b}=\sum_{x \in S(a)} \rho_{x} \varphi_{b x}$.

In a similar fashion as eutaxy, this definition is independent of a choice of b. If $\phi=\operatorname{det}^{1 / n}$, then $(\partial \log \phi)_{b}=\operatorname{tr}$, and hence $\operatorname{det}^{1 / n}$-eutaxy is the same as Definition 1.3.

It follows from $\left(\mathrm{TO}_{1}\right)$ and $\left(\mathrm{TO}_{2}\right)$ that ϕ is log-concave, i.e,

$$
\left.\log \phi\left((1-\theta) a_{1}+\theta a_{2}\right)\right) \geq(1-\theta) \log \phi\left(a_{1}\right)+\theta \log \phi\left(a_{2}\right)
$$

holds for all $a_{1}, a_{2} \in P_{n}$ and $0<\theta<1$. We say ϕ is strictly log-concave if this inequality is strict for $a_{1} \neq a_{2}$.

In [58, $\S 2$], Voronoï's theorem is generalized as follows.
Theorem 1.3. Let ϕ be a strictly log-concave and differentiable type one function. Then, $a \in P_{n}$ is ϕ-extreme if and only if a is perfect and ϕ eutactic. Moreover, any ϕ-extreme point is strictly ϕ-extreme.

The line of the proof of Theorem 1.3 is the same as Barnes' [6] and Martinet's [40, §3.4] proof of Voronoï's theorem. We give an outline of the proof. We use the following two lemmas: the first is the same as [40, Lemmas 3.4.2 and 3.4.3] and the second is a generalization of [40, Lemma 3.4.4].

Lemma 1.1. Let $a \in P_{n}$, and fix an element $b \in G L_{n}(\mathbb{R})$ such that $a={ }^{t} b b$. (1) There exists a neighborhood \mathcal{U} of I_{n} in $G L_{n}(\mathbb{R})$ such that $S\left(b^{t} t^{t} u b\right) \subset$ $S(a)$ for any $u \in \mathcal{U}$.
(2) There exists a neighborhood \mathcal{V} of 0 in V_{n} such that

$$
m_{1}\left({ }^{t} b\left(\mathrm{I}_{n}+v\right) b\right)=m_{1}(a) \Longleftrightarrow \min _{x \in S(a)} \varphi_{b x}(v)=0
$$

for any $v \in \mathcal{V}$.

Lemma 1.2. Let ϕ be a strictly log-concave and differentiable type one function. Let $a \in P_{n}$, and fix an element $b \in G L_{n}(\mathbb{R})$ such that $a={ }^{t} b b$.
(1) There exists a neighborhood $\mathcal{V} \subset V_{n}$ of 0 such that either $v=0$ or $\phi\left({ }^{t} b\left(\mathrm{I}_{n}+v\right) b\right)<\phi(a)$ holds for any $v \in \mathcal{V}$ with $(\partial \log \phi)_{b}(v) \leq 0$ and $\mathrm{I}_{n}+v \in$ P_{n}.
(2) Let \mathcal{C} be a closed cone in V_{n} such that $(\partial \log \phi)_{b}(v)>0$ for all $v \in \mathcal{C} \backslash\{0\}$. Then there exists $\alpha>0$ such that $\phi\left({ }^{t} b\left(\mathrm{I}_{n}+v\right) b\right)>\phi(a)$ holds for any $v \in \mathcal{C}$ with $0<\|v\|<\alpha$.

We set $\mathcal{D}_{a}=\left\{v \in V_{n}: \min _{x \in S(a)} \varphi_{b x}(v) \geq 0\right.$ and $\left.(\partial \log \phi)_{b}(v) \leq 0\right\}$. By these lemmas, we obtain the following generalization of Korkine and Zolotareff's equivalent condition (cf. [40, Theorem 3.4.5]).

Lemma 1.3. Let ϕ be a strictly log-concave and differentiable type one function. Then $a \in P_{n}$ is ϕ-extreme if and only if $\mathcal{D}_{a}=\{0\}$. Any ϕ-extreme point is strictly ϕ-extreme.

Lemma 1.3 leads us to Theorem 1.3 as follows: Let $a \in P_{n}$ be perfect and ϕ-eutactic. Fix an element $b \in G L_{n}(\mathbb{R})$ such that $a={ }^{\dagger} b b$. For $v \in \mathcal{D}_{a}, \phi$ eutaxy concludes $\varphi_{b x}(v)=0$ for all $x \in S(a)$, and then $v=0$ by perfection. Thus $\mathcal{D}_{a}=\{0\}$ and a is ϕ-extreme. Conversely, let a be ϕ-extreme. If $\varphi_{b x}(v)=0$ for all $x \in S(a)$, then either v or $-v$ is contained in \mathcal{D}_{a}. Since $\mathcal{D}_{a}=\{0\}$, we have $v=0$. This implies that a is perfect. The linear forms $-(\partial \log \phi)_{b}$ and $\varphi_{b x}, x \in S(a)$, satisfy

$$
\begin{gathered}
\left\{v \in V_{n}: \min _{x \in S(a)} \varphi_{b x}(v) \geq 0 \text { and }-(\partial \log \phi)_{b}(v) \geq 0\right\} \\
=\bigcap_{x \in S(a)} \operatorname{Ker}\left(\varphi_{b x}\right) \cap \operatorname{Ker}\left(-(\partial \log \phi)_{b}\right)=\{0\} .
\end{gathered}
$$

Then, by Stiemke's theorem, a must be ϕ-eutactic. Here Stiemke's theorem asserts that, for a family of linear forms $\varphi_{1}, \cdots, \varphi_{r}$ on \mathbf{R}^{N}, there exists $\rho_{1}, \cdots, \rho_{r} \in \mathbf{R}_{>0}$ such that $\rho_{1} \varphi_{1}+\cdots+\rho_{r} \varphi_{r}=0$ if and only if $\left\{v \in \mathbf{R}^{N}\right.$: $\left.\min _{1 \leq i \leq r} \varphi_{i}(v) \geq 0\right\}=\operatorname{Ker}\left(\varphi_{1}\right) \cap \cdots \cap \operatorname{Ker}\left(\varphi_{r}\right)$.

1.3. Geometric characterizations of perfect forms

The kernel $K_{1}\left(m_{1}\right)$ is called the Ryshkov polyhedron. Ryshkov [54], [56, Chapter III] closely investigated polyhedral geometric structure of $K_{1}\left(m_{1}\right)$ and its dual $K_{1}\left(m_{1}\right)^{\sqcup}$. Since m_{1} equals zero on the boundary of $P_{n}^{\text {semi }}$, the Ryshkov polyhedron $K_{1}\left(m_{1}\right)$ is contained in P_{n}. For an integral vector $x \in \mathbf{Z}^{n} \backslash\{0\}$ and a constant $\lambda \in \mathbf{R}, H_{x, \lambda}^{+}$denotes the affine half-space
$\left\{a \in V_{n}:\left\langle a, x^{t} x\right\rangle \geq \lambda\right\}$ in V_{n}. Then $K_{1}\left(m_{1}\right)$ is the intersection of affine half-spaces $H_{x, 1}^{+},\left(x \in \mathbf{Z}^{n} \backslash\{0\}\right)$. It is known that $K_{1}\left(m_{1}\right)$ is a locally finite polyhedron, i.e., the intersection of $K_{1}\left(m_{1}\right)$ and an arbitrary polytope is a polytope, (see e.g., [28, Proposition 29.5], [60, Theorem 3.1]). In particular, $K_{1}\left(m_{1}\right) \cap\left\{a \in V_{n}: \operatorname{tr}(a) \leq \lambda\right\}$ is a polytope for any sufficiently large constant $\lambda>0$. We denote by $\partial K_{1}\left(m_{1}\right)$ the boundary of $K_{1}\left(m_{1}\right)$. In what follows, we give a description of faces of $K_{1}\left(m_{1}\right)$.

Lemma 1.4. Let $a_{1}, \cdots, a_{r} \in \partial K_{1}\left(m_{1}\right)$ and S be a non-empty finite subset of $\mathbf{Z}^{n} \backslash\{0\}$ such that $S \subset S\left(a_{i}\right)$ for $i=1, \cdots, r$. Then, for any $\lambda_{1}, \cdots, \lambda_{r} \in$ $\mathbf{R}_{\geq 0}$ with $\lambda_{1}+\cdots+\lambda_{r}=1$, one has $\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r} \in \partial K_{1}\left(m_{1}\right)$ and $S \subset S\left(\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}\right)$.

Proof. Since $K_{1}\left(m_{1}\right)$ is convex, $\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}$ is contained in $K_{1}\left(m_{1}\right)$. If $x \in S$, then

$$
\left\langle\sum_{i=1}^{r} \lambda_{i} a_{i}, x^{t} x\right\rangle=\sum_{i=1}^{r} \lambda_{i} m_{1}\left(a_{i}\right)=\sum_{i=1}^{r} \lambda_{i}=1 .
$$

This means $m_{1}\left(\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}\right)=1$ and $S \subset S\left(\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}\right)$.
For a non-empty finite subset $S \subset \mathbf{Z}^{n} \backslash\{0\}$, define the subset \mathcal{F}_{S} of $\partial K_{1}\left(m_{1}\right)$ as

$$
\mathcal{F}_{S}=\left\{a \in \partial K_{1}\left(m_{1}\right): S \subset S(a)\right\}
$$

We denote by \mathcal{H}_{S} the affine subspace of V_{n} generated by \mathcal{F}_{S}, i.e.,
$\mathcal{H}_{S}=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}: 1 \leq r \in \mathbf{Z}, a_{i} \in \mathcal{F}_{S}, \lambda_{i} \in \mathbf{R}, \lambda_{1}+\cdots+\lambda_{r}=1\right\}$ if $\mathcal{F}_{S} \neq \emptyset$, or $\mathcal{H}_{S}=\emptyset$ if $\mathcal{F}_{S}=\emptyset$. Since S is non-empty, \mathcal{H}_{S} is a proper affine subspace of V_{n}.

Lemma 1.5. One has $\mathcal{F}_{S}=\partial K_{1}\left(m_{1}\right) \cap \mathcal{H}_{S}$. In particular, \mathcal{F}_{S} is a face of $K_{1}\left(m_{1}\right)$ if $\mathcal{F}_{S} \neq \emptyset$.

Proof. We assume $\mathcal{F}_{S} \neq \emptyset$ and fix an $a_{0} \in \mathcal{F}_{S}$. Let $r=\operatorname{dim} \mathcal{H}_{S}$. There exist r elements $a_{1}, \cdots, a_{r} \in \mathcal{F}_{S}$ such that $\left\{a_{1}-a_{0}, \cdots, a_{r}-a_{0}\right\}$ is a basis of the subspace $\left\{a-a_{0} \quad: a \in \mathcal{H}_{S}\right\}$. Any element $b \in \partial K_{1}\left(m_{1}\right) \cap \mathcal{H}_{S}$ is represented as

$$
b=a_{0}+\lambda_{1}\left(a_{1}-a_{0}\right)+\cdots+\lambda_{r}\left(a_{r}-a_{0}\right), \quad \lambda_{1}, \cdots, \lambda_{r} \in \mathbf{R} .
$$

Since $S \subset S\left(a_{i}\right)$ for $i=0,1, \cdots, r$, we have $\left\langle a_{i}-a_{0}, x^{t} x\right\rangle=0$ for all $x \in S$, and hence $\left\langle b, x^{t} x\right\rangle=\left\langle a_{0}, x^{t} x\right\rangle=1$ for all $x \in S$. This means $S \subset S(b)$. Therefore, $\partial K_{1}\left(m_{1}\right) \cap \mathcal{H}_{S}$ is a subset of \mathcal{F}_{S}.

Lemma 1.6. Any face of $K_{1}\left(m_{1}\right)$ is of the form \mathcal{F}_{S} for some non-empty finite subset $S \subset \mathbf{Z}^{n} \backslash\{0\}$.

Proof. Let \mathcal{F} be a face of $K_{1}\left(m_{1}\right)$ of dimension r. First, we assume \mathcal{F} is a facet, i.e., $r=\operatorname{dim} V_{n}-1$. There exist $r+1$ elements $a_{0}, a_{1}, \cdots, a_{r} \in \mathcal{F}$ such that $a_{1}-a_{0}, \cdots, a_{r}-a_{0}$ are linearly independent. We fix constants $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{r}$ such that $\lambda_{0}+\lambda_{1}+\cdots+\lambda_{r}=1$ and $0<\lambda_{i}<1$ for $i=$ $0,1, \cdots, r$. Since \mathcal{F} is convex, the element $a=\lambda_{0} a_{0}+\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}$ is also contained in \mathcal{F}. For any $x \in S(a)$, we have

$$
1=m_{1}(a)=\left\langle a, x^{t} x\right\rangle=\sum_{i=0}^{r} \lambda_{i}\left\langle a_{i}, x^{t} x\right\rangle \geq \sum_{i=0}^{r} \lambda_{i}=1 .
$$

Thus, $\left\langle a_{i}, x^{t} x\right\rangle$ equals $m_{1}\left(a_{i}\right)=1$ for all $i=0,1, \cdots, r$. This implies $S(a) \subset$ $S\left(a_{i}\right)$ for all $i=0,1, \cdots, r$. Let S be the intersection of $S\left(a_{i}\right), i=0,1, \cdots, r$. Since $S \subset S(a)$ is obvious, one has $S=S(a)$. By definition, the face \mathcal{F}_{S} contains $a_{0}, a_{1}, \cdots, a_{r}$. Therefore, $\partial K_{1}\left(m_{1}\right) \cap \mathcal{H}_{S}=\mathcal{F}_{S}$ contains \mathcal{F}. Since \mathcal{H}_{S} is a proper affine subspace and \mathcal{F} is a facet, we obtain $\mathcal{F}_{S}=\mathcal{F}$.

In general case, \mathcal{F} is an intersection of finite number of facets, say $\mathcal{F}_{S_{1}}, \cdots, \mathcal{F}_{S_{k}}$. By definition, we have

$$
\mathcal{F}=\bigcap_{i=1}^{k} \mathcal{F}_{S_{i}}=\mathcal{F}_{S_{1} \cup \ldots \cup S_{k}}
$$

We denote by $\partial^{0} K_{1}\left(m_{1}\right)$ the set of all vertices ($=0$ dimensional faces) of $K_{1}\left(m_{1}\right)$. The next theorem is well-known.

Theorem 1.4. For $a \in \partial K_{1}\left(m_{1}\right)$, the following three conditions are equivalent each other.
(1) a is perfect.
(2) $a \in \partial^{0} K_{1}\left(m_{1}\right)$.
(3) There exists a neibourhood \mathcal{O} of a in P_{n} such that $S(b) \varsubsetneqq S(a)$ for any $b \in \mathcal{O} \backslash \mathbf{R}_{>0} a$.

Proof. First we show the contraposition of $(1) \Longrightarrow(2)$. Let $a \in \partial K_{1}\left(m_{1}\right) \backslash$ $\partial^{0} K_{1}\left(m_{1}\right)$. Then, there exist $a_{1}, a_{2} \in \partial K_{1}\left(m_{1}\right)$ and $0<\lambda_{0}<1$ such that $a=\lambda_{0} a_{1}+\left(1-\lambda_{0}\right) a_{2}$. Both $S\left(a_{1}\right)$ and $S\left(a_{2}\right)$ contain $S(a)$. Assume a is perfect. By Lemma 1.4, $S\left(\lambda a_{1}+(1-\lambda) a_{2}\right)$ also contains $S(a)$ for all positive $\lambda<1$. Therefore, $\lambda a_{1}+(1-\lambda) a_{2}$ is perfect. This contradicts Theorem 1.1.

Next we show $(2) \Longrightarrow(3)$. Let $a \in \partial^{0} K_{1}\left(m_{1}\right)$. By Lemma 1.6, there exists a finite subset $S \subset \mathbf{Z}^{n} \backslash\{0\}$ such that $\{a\}=\mathcal{F}_{S}$. By Lemma 1.1,
there is a neighbourhood \mathcal{O} of a in P_{n} such that $S(b) \subset S(a)$ for all $b \in \mathcal{O}$. If $b \in \partial K_{1}\left(m_{1}\right) \cap \mathcal{O}$ and $S(b)=S(a)$, then we have $b \in \mathcal{F}_{S}$, and hence $b=a$. This \mathcal{O} satisfies (3).

We show the contraposition of $(3) \Longrightarrow(1)$. Let $a \in \partial K_{1}\left(m_{1}\right)$ be a nonperfect point. Then, there exists $c \in V_{n} \backslash\{0\}$ such that $\left\langle c, x^{t} x\right\rangle=0$ for all $x \in S(a)$. If $\epsilon>0$ is sufficiently small, then $a+\epsilon c$ is contained in P_{n} and $S(a+\epsilon c)$ is a subset of $S(a)$. Since $\left\langle a+\epsilon c, x^{t} x\right\rangle=1$ for all $x \in S(a)$, we have $m_{1}(a+\epsilon c)=1$ and $S(a+\epsilon c)=S(a)$. This means that a does not satisfy the condition (3).

Corollary 1.1. The set of all perfect elements of P_{n} coincides with $\mathbf{R}_{>0}$. $\partial^{0} K_{1}\left(m_{1}\right)$.

In the rest of this section, we show that $K_{1}\left(m_{1}\right)$ is the convex hull of $\partial^{0} K_{1}\left(m_{1}\right)$ in V_{n}. For $a \in \partial^{0} K_{1}\left(m_{1}\right)$, we set

$$
\mathcal{C}_{a}=\left\{b \in V_{n}:\left\langle b, x^{t} x\right\rangle \geq 0 \text { for all } x \in S(a)\right\}=\bigcup_{x \in S(a)} H_{x^{t} x, 0}^{+},
$$

which is a polyhedral cone in V_{n} of finite faces. For a non-zero $b \in \mathcal{C}_{a}$, the ray $\mathbf{R}_{\geq 0} \cdot b$ is called an extreme ray of \mathcal{C}_{a} if for any $b_{1}, b_{2} \in \mathcal{C}_{a}$, whenever $b=\left(b_{1}+b_{2}\right) / 2$, we must have $b_{1}, b_{2} \in \mathbf{R}_{\geq 0} \cdot b$.

Lemma 1.7. Let $a \in \partial^{0} K_{1}\left(m_{1}\right)$. If $\mathbf{R}_{\geq 0} \cdot b$ is an extreme ray of \mathcal{C}_{a}, then $b \notin P_{n}^{\text {semi }}$.

Proof. We prove that $b \in P_{n}^{\text {semi }}$ leads us to a contradiction. Since a is perfect, the set $\left\{x^{t} x: x \in S(a)\right\}$ spans V_{n}. We set

$$
S^{\prime}=\left\{x \in S(a):\left\langle b, x^{t} x\right\rangle=0\right\}
$$

and

$$
W=\left\{c \in V_{n}:\left\langle c, x^{t} x\right\rangle=0 \text { for all } x \in S^{\prime}\right\} .
$$

Since $b \neq 0, S^{\prime}$ is non-empty and W is a subspace of V_{n} containing the line $\mathbf{R} \cdot b$.

First we assume $\operatorname{dim} W \geq 2$. There is a $c \in W$ such that b and c are linearly independent. If we assume $b \in P_{n}^{\text {semi }}$, then we have $\left\langle b, x^{t} x\right\rangle>0$ for all $x \in S(a) \backslash S^{\prime}$. Thus, for sufficiently small $\lambda>0$, we have $\left\langle b \pm \lambda c, x^{t} x\right\rangle>0$ for all $x \in S(a) \backslash S^{\prime}$. From $\left\langle b \pm \lambda c, x^{t} x\right\rangle=0$ for all $x \in S^{\prime}$, it follows $b \pm \lambda c \in \mathcal{C}_{a}$. Then one has

$$
b=\frac{1}{2}(b+\lambda c)+\frac{1}{2}(b-\lambda c)
$$

and $b \pm \lambda c \notin \mathbf{R}_{\geq 0} \cdot b$. This is a contradiction.
Next we assume $\operatorname{dim} W=1$, i.e., $W=\mathbf{R} \cdot b$. Let $N=\operatorname{dim} V_{n}$. Since the subspace spanned by $\left\{x^{t} x: x \in S^{\prime}\right\}$ is the orthogonal complement of W, there are $N-1$ linearly independent vectors $x_{1}{ }^{t} x_{1}, \cdots, x_{N-1}{ }^{t} x_{N-1}$ in $\left\{x^{t} x: x \in S^{\prime}\right\}$. By the perfection of a, there exists $x_{N} \in S(a) \backslash S^{\prime}$ such that $x_{1}{ }^{t} x_{1}, \cdots, x_{N-1}{ }^{t} x_{N-1}, x_{N}{ }^{t} x_{N}$ are linearly independent. If we assume $b \in P_{n}^{\text {semi }}$, then there is a square root $\sqrt{b} \in P_{n}^{\text {semi }}$ such that $(\sqrt{b})^{2}=b$. For each $i=1, \cdots, N-1$, one has

$$
0=\left\langle b, x_{i}{ }^{t} x_{i}\right\rangle={ }^{t}\left(\sqrt{b} x_{i}\right)\left(\sqrt{b} x_{i}\right),
$$

i.e., x_{1}, \cdots, x_{N-1} are contained in the nullspace of \sqrt{b}. Thus there is a nonzero $y \in \mathbf{R}^{n}$ such that ${ }^{t} y x_{i}=0$ for $i=1, \cdots, N-1$. We choose a non-zero $z \in \mathbf{R}^{n}$ which is orthogonal to x_{N}. Then the non-zero symmetric matrix $\left(y^{t} z+z^{t} y\right) / 2 \in V_{n}$ is orthogonal to $x_{1}{ }^{t} x_{1}, \cdots, x_{N}{ }^{t} x_{N}$. This contradicts that $x_{1}{ }^{t} x_{1}, \cdots, x_{N}{ }^{t} x_{N}$ spans V_{n}.

Proposition 1.3. Let L be an edge (= one dimensional face) of $K_{1}\left(m_{1}\right)$. Then there are $a_{1}, a_{2} \in \partial^{0} K_{1}\left(m_{1}\right)$ such that $L=\left\{\lambda a_{1}+(1-\lambda) a_{2}: 0 \leq\right.$ $\lambda \leq 1\}$.

Proof. For a sufficiently large $\theta>0$, we set

$$
K_{1}\left(m_{1}\right)_{\theta}=K_{1}\left(m_{1}\right) \cap\left\{a \in V_{n}:\left\langle a, \mathrm{I}_{n}\right\rangle \leq \theta\right\} \quad \text { and } \quad L_{\theta}=L \cap K_{1}\left(m_{1}\right)_{\theta} .
$$

Since L_{θ} is an edge of the polytope $K_{1}\left(m_{1}\right)_{\theta}$, there are vertices a_{1}, a_{1}^{\prime} of $K_{1}\left(m_{1}\right)_{\theta}$ such that L_{θ} is the line joining a_{1} and a_{1}^{\prime}. Since L_{θ} is not contained in the affine hyperplane $\left\{a \in V_{n}:\left\langle a, \mathrm{I}_{n}\right\rangle=\theta\right\}$, at least one of a_{1} and a_{1}^{\prime} must be a vertex of $K_{1}\left(m_{1}\right)$. Let $a_{1} \in \partial^{0} K_{1}\left(m_{1}\right)$ and $b \in V_{n}$ be a direction of L. Thus, any point of L is of the form $a_{1}+\lambda b$ for some $\lambda \geq 0$.

We show $\mathbf{R}_{\geq 0} \cdot b$ is an extreme ray of $\mathcal{C}_{a_{1}}$. There is an open interval $\left(0, \lambda_{0}\right)$ such that $a_{1}+\lambda b \in L$ for all $\lambda \in\left(0, \lambda_{0}\right)$. Since $a_{1}+\lambda b \in \partial K_{1}\left(m_{1}\right)$ for $\lambda \in\left(0, \lambda_{0}\right)$, we have $m_{1}\left(a_{1}+\lambda b\right)=1$ and

$$
1 \leq\left\langle a_{1}+\lambda b, x^{t} x\right\rangle=1+\lambda\left\langle b, x^{t} x\right\rangle
$$

for all $x \in S\left(a_{1}\right)$. This means $b \in \mathcal{C}_{a_{1}}$. If $\mathbf{R}_{\geq 0} \cdot b$ is not an extreme ray of $\mathcal{C}_{a_{1}}$, then there are $b_{1}, b_{2} \in \mathcal{C}_{a_{1}} \backslash \mathbf{R}_{\geq 0} \cdot b$ such that $b=\left(b_{1}+b_{2}\right) / 2$. For $i=1,2$ and a sufficiently small $\lambda>0$, we have $a_{1}+\lambda b_{i} \in P_{n}$ and $S\left(a_{1}+\lambda b_{i}\right) \subset S\left(a_{1}\right)$. From $b_{i} \in \mathcal{C}_{a_{1}}$, it follows that for $x \in S\left(a_{1}+\lambda b_{i}\right)$,

$$
m_{1}\left(a_{1}+\lambda b_{i}\right)=\left\langle a_{1}+\lambda b_{i}, x^{t} x\right\rangle=1+\lambda\left(b_{i}, x^{t} x\right\rangle \geq 1
$$

Namely, both $a_{1}+\lambda b_{1}$ and $a_{1}+\lambda b_{2}$ are contained in $K_{1}\left(m_{1}\right) \backslash L$ and $a_{1}+\lambda b$ is the middle point of $a_{1}+\lambda b_{1}$ and $a_{1}+\lambda b_{2}$. This is impossible since L is an edge of $K_{1}\left(m_{1}\right)$. Therefore $\mathbf{R}_{\geq 0} \cdot b$ must be an extreme ray of \mathcal{C}_{a}.

Since $b \notin P_{n}^{\text {semi }}$ by Lemma 1.7, the value $\lambda_{1}=\sup \left\{\lambda \geq 0: a_{0}+\lambda b \in\right.$ $\left.K_{1}\left(m_{1}\right)\right\}$ is finite. Thus L is written as $L=\left\{a_{1}+\lambda b: 0 \leq \lambda \leq \lambda_{1}\right\}$. Finally we show the point $a_{2}=a_{1}+\lambda_{1} b$ is a vertex of $K_{1}\left(m_{1}\right)$. If $a_{2} \notin$ $\partial^{0} K_{1}\left(m_{1}\right)$, then there are $c_{1}, c_{2} \in \partial K_{1}\left(m_{1}\right)$ such that $a_{2}=\left(c_{1}+c_{2}\right) / 2$ and $\lambda c_{1}+(1-\lambda) c_{2} \in \partial K_{1}\left(m_{1}\right)$ for $0 \leq \lambda \leq 1$. In this case, the triangle of vertices a_{1}, c_{1} and c_{2} is contained in $\partial K_{1}\left(m_{1}\right)$. This contradicts that L is an edge of $K_{1}\left(m_{1}\right)$.

Corollary 1.2. The Ryshkov domain $K_{1}\left(m_{1}\right)$ is the convex hull of $\partial^{0} K_{1}\left(m_{1}\right)$.

Proof. We fix an arbitrary $a \in K_{1}\left(m_{1}\right)$. If $\theta>\operatorname{tr}(a)$, then $a \in K_{1}\left(m_{1}\right)_{\theta}$. Let $\left\{b_{1}, \cdots, b_{r}\right\}$ be the set of all vertices of the polytope $K_{1}\left(m_{1}\right)_{\theta}$. Since $K_{1}\left(m_{1}\right)_{\theta}$ is the convex hull of $\left\{b_{1}, \cdots, b_{r}\right\}, a$ is of the form $\lambda_{1} b_{1}+\cdots+\lambda_{r} b_{r}$ with $\lambda_{1}+\cdots+\lambda_{r}=1$ and $\lambda_{i} \geq 0, i=1, \cdots, r$. Each b_{i} is either a vertex of $K_{1}\left(m_{1}\right)$ or the intersection of an edge of $K_{1}\left(m_{1}\right)$ and the affine hyperplane $\left\{c \in V_{n}: \operatorname{tr}(c)=\theta\right\}$. In any case b_{i} is a point on an edge of $K_{1}\left(m_{1}\right)$. By Proposition 1.3, all b_{i} are contained in the convex hull of $\partial^{0} K_{1}\left(m_{1}\right)$, and hence a is also contained in the convex hull of $\partial^{0} K_{1}\left(m_{1}\right)$.

Proposition 1.3 is regarded as the dual statement of [56, Theorem 12.1]. From Proposition 1.3, it follows that the convex cone $K_{1}\left(m_{1}\right)$ does not have any extreme direction. Thus, Corollary 1.2 is a consequence of more general theorem [53, Theorem 18.5].

All subsets $K_{1}\left(m_{1}\right), \partial K_{1}\left(m_{1}\right)$ and $\partial^{0} K_{1}\left(m_{1}\right)$ of P_{n} are invariant by the action of $G L_{n}(\mathbf{Z})$. The finiteness of $\partial^{0} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})$ is due to Voronoï [62, §7 Théorèm]).

Theorem 1.5 (Voronoï). The cardinality of $\partial^{0} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})$ is finite.

Proof. We follows the argument of [60, Theorem 3.4]. Let $a \in \partial^{0} K_{1}\left(m_{1}\right)$. By the reduction theory of Hermite or Minkowski, there exists an equivalent $a^{\prime} \in a G L_{n}(\mathbf{Z})$ such that $\lambda_{1} \lambda_{2} \cdots \lambda_{n} \leq c_{n} \operatorname{det} a^{\prime}$, where λ_{i} denotes the i-th diagonal component of a^{\prime} and c_{n} is the constant depending only on n. Since a^{\prime} is perfect, there are n linearly independent minimal vectors x_{1}, \cdots, x_{n} in $S\left(a^{\prime}\right)$. Since $m_{1}\left(a^{\prime}\right)=m_{1}(a)=1$, Hadamard's inequality leads us to
$\operatorname{det} a^{\prime} \leq\left\langle a^{\prime}, x_{1}{ }^{t} x_{1}\right\rangle \cdots\left\langle a^{\prime}, x_{n}{ }^{t} x_{n}\right\rangle=1$. Therefore, we have

$$
\operatorname{tr}\left(a^{\prime}\right)=\lambda_{1}+\cdots+\lambda_{n} \leq n \lambda_{1} \cdots \lambda_{n} \leq n c_{n}
$$

because of $1=m_{1}\left(a^{\prime}\right) \leq \lambda_{i}$ for $i=1, \cdots, n$. This shows that any perfect element of $\partial^{0} K_{1}\left(m_{1}\right)$ is $G L_{n}(\mathbf{Z})$-equivalent to a vertex of polytope $K_{1}\left(m_{1}\right) \cap$ $\left\{a \in V_{n}: \operatorname{tr}(a) \leq n c_{n}\right\}$.

More generally, it is known that the set of all faces of $\partial K_{1}\left(m_{1}\right)$ has only finitely many $G L_{n}(\mathbf{Z})$-orbits ($\left[55\right.$, Theorem $\left.5^{`}\right]$, see Theorem 3.2 below). The actual value of the cardinality $\rho_{n}=\sharp\left(\partial^{0} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})\right)$ is known up to $n=8$ (cf. [59, §3.1]): one has $\rho_{2}=\rho_{3}=1, \rho_{4}=2, \rho_{5}=3, \rho_{6}=7, \rho_{7}=$ $33, \rho_{8}=10916$.

We note that the face \mathcal{F}_{S} may not necessarily be compact in general. It is known that the non-empty face \mathcal{F}_{S} is compact if and only if S spans \mathbf{R}^{n} ([55, Theorem 1], see also [40, Remark 9.1.12]). If $S(a)$ spans \mathbf{R}^{n}, then $a \in P_{n}$ is said to be well-rounded. Any perfect point is obviously well-rounded. Any weakly eutactic point is also well-rounded ([14, Théorème 2.3]). The finiteness and the algebraicity of weakly eutactic classes are verified by Bergé and Martinet [14, Théorèmes 3.5 et 4.1].

Theorem 1.6 (Bergé and Martinet). Let $\partial^{w e} K_{1}\left(m_{1}\right)$ be the set of all weakly eutactic points in $\partial K_{1}\left(m_{1}\right)$. Then the cardinality of $\partial^{w e} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})$ is finite. Any $a \in \partial^{w e} K_{1}\left(m_{1}\right)$ is contained in $G L_{n}(\overline{\mathbf{Q}})$, where $\overline{\mathbf{Q}}$ stands for the algebraic closure of \mathbf{Q}.

Let $\partial^{w r} K_{1}\left(m_{1}\right)$ be the set of all well-rounded points in $\partial K_{1}\left(m_{1}\right)$. The quotient $\partial^{w r} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})$ is compact (cf. [40, Proposition 9.1.6]).

1.4. Hermite like constants

Let ϕ be a type one class function and S_{p} be a complete set of representatives for $\partial^{0} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})$. From $P_{n} \subset \mathbf{R}_{>0} \cdot K_{1}\left(m_{1}\right)$, it follows

$$
\sup _{a \in P_{n}} F_{\phi}(a)=\sup _{a \in K_{1}\left(m_{1}\right)} F_{\phi}(a)=\sup _{a \in K_{1}\left(m_{1}\right)} \frac{1}{\phi(a)} .
$$

By Corollary 1.2 , any $a \in K_{1}\left(m_{1}\right)$ is represented as

$$
a=\lambda_{1} a_{1}+\cdots+\lambda_{r} a_{r}
$$

by some $a_{1}, \cdots, a_{r} \in \partial^{0} K_{1}\left(m_{1}\right)$ and $\lambda_{1}, \cdots, \lambda_{r} \in \mathbf{R}_{\geq 0}$ with $\lambda_{1}+\cdots+\lambda_{r}=$ 1. Then, since $\phi(a) \geq \min \left\{\phi\left(a_{1}\right), \cdots, \phi\left(a_{r}\right)\right\}$, one has

$$
\sup _{a \in K_{1}\left(m_{1}\right)} \frac{1}{\phi(a)}=\sup _{a \in \partial^{0} K_{1}\left(m_{1}\right)} \frac{1}{\phi(a)}=\max _{a \in S_{p}} \frac{1}{\phi(a)} .
$$

Therefore, the Hermite like constant

$$
\delta_{\phi}=\max _{a \in P_{n}} F_{\phi}(a)
$$

of F_{ϕ} is well-defined. In the case of $\phi=\operatorname{det}^{1 / n}, \delta_{\phi}$ coincides with the Hermite constant γ_{n}.

Let ϕ° be the dual type one class function of ϕ. By definition, the inequality $m_{1}(a) \leq \delta_{\phi^{\circ}} \phi^{\circ}(a)$ holds for all $a \in P_{n}$. By passing to the dual, one has $\phi^{\circ \circ}(a) \leq \delta_{\phi^{\circ}} w_{1}(a)$ for $a \in P_{n}$, and by Proposition 1.2,

$$
\sup _{a \in P_{n}} \frac{\phi(a)}{w_{1}(a)} \leq \delta_{\phi^{\circ}} .
$$

Thus, we can define the dual constant

$$
\widehat{\delta}_{\phi}=\sup _{a \in P_{n}} \frac{\phi(a)}{w_{1}(a)} .
$$

Indeed, we can show $\widehat{\delta}_{\phi}=\delta_{\phi^{0}}$ for any type one class function ϕ. In particular, this gives

$$
\gamma_{n}=\delta_{\operatorname{det}^{1 / n}}=\widehat{\delta}_{\left(\operatorname{det}^{1 / n}\right)^{\circ}}=n \sup _{a \in P_{n}} \frac{\operatorname{det}(a)^{1 / n}}{w_{1}(a)} .
$$

We write ξ_{ϕ} for the product $\delta_{\phi} \cdot \widehat{\delta}_{\phi}$. This satisfies the invariance $\xi_{\phi^{\circ}}=$ $\xi_{C \phi}=\xi_{\phi}$ for any constant $C>0$. For example, $\xi_{w_{1}}=\xi_{m_{1}}=\delta_{w_{1}}$ and $\xi_{\operatorname{det}^{1 / n}}=\gamma_{n}^{2} / n$. By definition, we have the following:

Proposition 1.4. The inequality $\xi_{w_{1}} \leq \xi_{\phi}$ holds for any type one class function ϕ.

See [58, Propositions 3.2 and 3.3] for details.

2. Rankin's constant and Voronoï's theorem

Rankin [52] defined the constant $\gamma_{n, k}$ as a generalization of Hermite's constant, and proved Rankin's inequality among $\gamma_{n, k}$. About 40 years later, Coulangeon [22] formulated Voronoi's theorem of this case in terms of k perfection and k-eutaxy. It is an open problem to find a geometric characterization of k-perfect forms. Bergé and Martinet [13] introduced the constant $\gamma_{n, k}^{\prime}$ and proved several inequalities among $\gamma_{n, k}$ and $\gamma_{n, k}^{\prime}$. In this section, we will survey Voronoi's theorem for $\gamma_{n, k}$ and $\gamma_{n, 1}^{\prime}$.

2.1. Rankin's constant

Let k be a positive integer with $1 \leq k \leq n-1$. We denote by $M_{n, k}^{*}(\mathbf{Z})$ the subset $\left\{X=\left(x_{1}, \cdots, x_{k}\right) \in M_{n, k}(\mathbf{Z}): x_{1} \wedge x_{2} \wedge \cdots \wedge x_{k} \neq 0\right\}$ of $M_{n, k}(\mathbf{Z})$. The unimodular group $G L_{k}(\mathbf{Z})\left(\right.$ resp. $\left.G L_{n}(\mathbf{Z})\right)$ acts on $M_{n, k}^{*}(\mathbf{Z})$ by right (resp. left) multiplications. For $X \in M_{n, k}^{*}(\mathbf{Z})$, define the function $D_{X}: P_{n}^{\text {semi }} \longrightarrow \mathbf{R}_{\geq 0}$ by

$$
D_{X}(a)=\operatorname{det}\left({ }^{t} X a X\right)^{1 / k}
$$

for $a \in P_{n}^{\text {semi }}$. It is obvious that D_{X} is a type one function. The function $m_{k}: P_{n}^{\text {semi }} \longrightarrow \mathbf{R}_{\geq 0}$ defined by

$$
m_{k}(a)=\inf _{X \in M_{n, k}^{*}(\mathbf{Z})} D_{X}(a)
$$

is a type one class function. This is regarded as a generalization of the arithmetical minimum function m_{1}. It is obvious that $m_{k}(a)>0$ if $a \in P_{n}$, and $m_{k}(a)=0$ otherwise. Rankin [52] defined the constant

$$
\gamma_{n, k}=\left(\max _{a \in P_{n}} \frac{m_{k}(a)}{\operatorname{det}(a)^{1 / n}}\right)^{k}
$$

and then proved the inequality

$$
\gamma_{n, k} \leq \gamma_{j, k}\left(\gamma_{n, j}\right)^{k / j}
$$

for $1 \leq k<j \leq n-1$ as a generalization of Mordell's inequality. By using this inequality, Rankin determined the value $\gamma_{4,2}=3 / 2$. See $\mathbf{2 . 4}$ for other explicit values of $\gamma_{n, k}$.

2.2. Voronoï's theorem of $m_{k} / \operatorname{det}^{1 / n}$

A point $a \in P_{n}$ is said to be k-extreme (strictly k-extreme) if $m_{k} / \operatorname{det}^{1 / n}$ attains a local maximum (resp. a strict local maximum) on a up to the multiplication by an element of $\mathbf{R}_{>0}$. A Voronoï type characterization of k-extreme points was studied by Coulangeon [22]. The subset

$$
S_{k}^{*}(a)=\left\{X \in M_{n, k}^{*}(\mathbf{Z}): D_{X}(a)=m_{k}(a)\right\}
$$

corresponding to $a \in P_{n}$ plays a key role. Since $D_{X h}(a)=D_{X}(a)$ for all $h \in G L_{k}(\mathbf{Z})$, the set $S_{k}^{*}(a)$ is invariant by the action of $G L_{k}(\mathbf{Z})$, and hence the quotient $S_{k}(a)=S_{k}^{*}(a) / G L_{k}(\mathbf{Z})$ exists. We write $[X]$ for the element $X \cdot G L_{k}(\mathbf{Z})$ in $S_{k}(a)$. The following was proved in [22, Proposition 2.7].

Proposition 2.1 (Coulangeon). The cardinality of $S_{k}(a)$ is finite.

We recall the notion of k-perfection and k-eutaxy. For each $i=$ $1,2, \cdots, k$, we define the map $*_{i}: V_{n} \times M_{n, k}(\mathbf{R}) \longrightarrow M_{n, k}(\mathbf{R})$ by

$$
v *_{i} X=\left(x_{1}, \cdots, x_{i-1}, v x_{i}, x_{i+1}, \cdots, x_{k}\right)
$$

for $v \in V_{n}$ and $X=\left(x_{1}, \cdots, x_{k}\right) \in M_{n, k}(\mathbf{R})$. Note that $*_{i}$ is linear in X but not in v. Then, for each $X \in M_{n, k}^{*}(\mathbf{Z})$, the linear map $\varphi_{X}: V_{n} \longrightarrow \mathbf{R}$ is defined by

$$
\varphi_{X}(v)=\sum_{i=1}^{k} \operatorname{det}\left({ }^{t} X \cdot\left(v *_{i} X\right)\right)
$$

It is obvious that φ_{X} depends only on the class $[X]=X \cdot G L_{k}(\mathbf{Z})$. Another definition of φ_{X} is given by

$$
\varphi_{X}(v)=\operatorname{det}\left({ }^{t} X \cdot X\right) \cdot\left\langle p_{X}, v\right\rangle,
$$

where p_{X} denotes the matrix representation of the orthogonal projection from \mathbf{R}^{n} onto the subspace spanned by $\left\{x_{1}, \cdots, x_{k}\right\}$.

Definition 2.1. Let $a \in P_{n}$. We fix an element $b \in G L_{n}(\mathbf{R})$ such that $a={ }^{t} b b$. An element a is said to be k-perfect if $\left\{\varphi_{b X}\right\}_{[X] \in S_{k}(a)}$ spans the dual space V_{n}^{*} of V_{n}. An element a is said to be k-eutactic if there exist $\rho_{X}>0\left([X] \in S_{k}(a)\right)$ such that

$$
\operatorname{tr}=\sum_{[X] \in S_{k}(a)} \rho_{X} \varphi_{b X} .
$$

These definitions of k-perfection and k-eutaxy do not depend on a choice of b. Now the main theorem of [22] is stated as follows:

Theorem 2.1 (Coulangeon). A point $a \in P_{n}$ is k-extreme if and only if a is k-perfect and k-eutactic. Any k-extreme point is strictly k-extreme.

The line of the proof of Theorem 2.1 is parallel to that of Theorem 1.3. Namely, the following sufficient and necessary condition for k-extremeness is shown: $a={ }^{t} b b \in P_{n}$ is k-extreme if and only if the set

$$
\left\{v \in V_{n}: \min _{X \in S_{k}(a)} \varphi_{b X}(v) \geq 0 \text { and } \operatorname{tr}(v) \leq 0\right\}
$$

is reduced to $\{0\}$ ([22, Théorème 3.2.2]). Theorem 2.1 follows from this and Stiemke's theorem.

The finiteness of k-perfect points was proved in [22, Théorèm 4.5].
Theorem 2.2 (Coulangeon). The number of k-perfect points in P_{n} modulo $\mathbf{R}_{>0} G L_{n}(\mathbf{Z})$ is finite.

Example 2.1. Let $L \subset \mathbf{R}^{n}$ be a full lattice, which means a \mathbf{Z}-module of rank n. The dual lattice L^{*} of L is defined by $L^{*}=\left\{y \in \mathbf{R}^{n}\right.$: ${ }^{t} x y \in \mathbf{Z}$ for all $\left.x \in L\right\}$. If x_{1}, \cdots, x_{n} is a basis of L, then we denote by $[L]$ the class of the Gram matrix $\left({ }^{t} x_{i} x_{j}\right)_{1 \leq i, j \leq n}$ in $\mathbf{R}_{>0} \backslash P_{n} / G L_{n}(\mathbf{Z})$. In dimension 4 , there are at least 5 inequivalent 2-perfect points, i.e., $\left[A_{4}\right],\left[A_{4}^{*}\right],\left[D_{4}\right],\left[W_{4}\right],\left[W_{4}^{*}\right]([22, \S 5.1])$. Here we use standard notations of root lattices. By W_{4}, we denote the Watson lattice of rank 4, i.e.,

$$
\left[W_{4}\right]=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right) \quad \bmod \mathbf{R}_{>0} G L_{4}(\mathbf{Z})
$$

The maximum of $m_{2} / \operatorname{det}^{1 / 4}$ is attained on $\left[D_{4}\right]$. In general $n \geq 4$, the class of any irreducible root lattice of rank n is 2 -extreme and k-eutactic for all $k<n$ ([22, Théorème 5.1.1]).

When $k=1$, Theorem 1.1 shows that the Hermite constant $\gamma_{n}=\gamma_{n, 1}$ is an algebraic number. The algebraicity of k-perfect points and $\gamma_{n, k}$ for $k \geq 2$ was verified by Bavard [9, Théorèm 2.2], [11, $\S 1.5]$. It is based on the following general result [11, Lemme 1.11].

Lemma 2.1. Let $W \subset \mathbf{R}^{N}$ be an algebraic subset defined by polynomials with coefficients in $\overline{\mathbf{Q}} \cap \mathbf{R}$. Then the set of isolated points in W is a finite subset contained in $W \cap(\overline{\mathbf{Q}} \cap \mathbf{R})^{N}$.

If a is k-perfect, then the set

$$
W=\left\{(b, \lambda) \in V_{n} \times \mathbf{R}: D_{X}(b)-\lambda=0 \text { for all } X \in S_{k}^{*}(a)\right\}
$$

satisfies the assumption of Lemma 2.1. Since k-perfect points are isolated in W ([11, Proposition 1.8]), we obtain

Theorem 2.3 (Bavard). Any k-perfect point is contained in $P_{n} \cap M_{n}(\overline{\mathbf{Q}})$. In particular, $\gamma_{n, k}$ is an algebraic number.

2.3. Some problems on \boldsymbol{k}-perfect forms

Since m_{k} is a continuous type one function and vanishes on the boundary of $P_{n}^{\text {semi }}, K_{1}\left(m_{k}\right)$ is a kernel contained in P_{n}. As we have seen in $\S 1.3$, $K_{1}\left(m_{1}\right)$ is a locally finite polyhedral convex cone and perfect points are characterized as vertices of $K_{1}\left(m_{1}\right)$. When $k \geq 2, K_{1}\left(m_{k}\right)$ is not polyhedral, and we have the following problem.

Problem 2.1. Determine locations of k-perfect points in $K_{1}\left(m_{k}\right)$.

Theorem 1.4 (3) gives another characterization of perfect points in P_{n}. On variations of the set $S_{k}(a)$, the next is elementary ([22, Lemme 2.9]).

Proposition 2.2 (Coulangeon). For $a \in P_{n}$, there is a neighborhood \mathcal{U} of a in P_{n} such that $S_{k}\left(a^{\prime}\right) \subset S_{k}(a)$ for $a^{\prime} \in \mathcal{U}$.

We say that $S_{k}(a)$ is locally maximal if there is a neighborhood \mathcal{U} of a in P_{n} such that $S_{k}\left(a^{\prime}\right) \varsubsetneqq S_{k}(a)$ for all $a^{\prime} \in \mathcal{U} \backslash \mathbf{R}_{>0} a$. Let $P_{n}^{(k)}$ be the set of $a \in P_{n}$ such that $S_{k}(a)$ is locally maximal. If $k=1, P_{n}^{(1)}$ coincides with the set of all perfect points in P_{n}.
Problem 2.2. Does $P_{n}^{(k)}$ coincide with the set of all k-perfect points in P_{n} for any $k \geq 2$?

The cardinality $\sharp(S(a))=2 \sharp\left(S_{1}(a)\right)$ is called the kissing number of a. Determination of the maximum $\max _{a \in P_{n}} 2 \sharp\left(S_{1}(a)\right)$ is known as the lattice kissing number problem [20, Chapter 1, §2]. The actual value of $\max _{a \in P_{n}} \sharp\left(S_{1}(a)\right)$ is known for $1 \leq n \leq 9$ and $n=24$ (cf. [67]). One can prove the estimate $\max _{a \in P_{n}} \sharp\left(S_{1}(a)\right) \leq 2^{n}-1$ for all n as follows: Let $a \in P_{n}$ and $x, y \in S(a)$. If $y-x=2 z \in 2 \mathbf{Z}^{n}$, then $m_{1}(a)={ }^{t}(x+2 z) a(x+2 z)=$ ${ }^{t} x a x$, and hence ${ }^{t} z a z=-{ }^{t} x a z$. From ${ }^{t} x a x \leq{ }^{t}(x+z) a(x+z)$, it follows ${ }^{t} z a z \leq 0$, i.e., $z=0$. This means that the natural map $\mathbf{Z}^{n} \longrightarrow \mathbf{Z}^{n} / 2 \mathbf{Z}^{n}$ is injective on $S_{1}(a)$. This proof is due to Voronoï [62, p.107, Lemme], see also $[43, \S 31$, p.80] for more general result. When $n \geq 10$, Watson [66, Theorem 1] proved $\max _{a \in P_{n}} \sharp\left(S_{1}(a)\right) \leq 2^{n-2}+8$. We have a similar problem for $k \geq 2$.

Problem 2.3. Bound the maximum $\max _{a \in P_{n}} \sharp\left(S_{k}(a)\right)$.
If ϕ is a type one function, then one can ask about Voronoil's theorem for m_{k} / ϕ.

Problem 2.4. Prove Voronoï type theorem for m_{k} / ϕ when $k \geq 2$.
Let w_{k} be the dual type one class function of m_{k}. When $k \geq 2$, it is not trivial that the Hermite-Rankin like constant of m_{k} / ϕ exists for a given type one class function ϕ. We set

$$
\delta_{\phi, k}=\sup _{a \in P_{n}} \frac{m_{k}(a)}{\phi(a)}, \quad \widehat{\delta}_{\phi, k}=\sup _{a \in P_{n}} \frac{\phi(a)}{w_{k}(a)}
$$

for a type one class function ϕ.
Problem 2.5. When are both $\delta_{\phi, k}$ and $\widehat{\delta}_{\phi, k}$ finite?

It is easy to see that $\delta_{\phi, k}=\widehat{\delta}_{\phi^{\circ}, k}$ provided that both $\delta_{\phi, k}$ and $\widehat{\delta}_{\phi^{\circ}, k}$ are finite.

2.4. The Bergé-Martinet constant

The constant

$$
\gamma_{n, k}^{\prime}=\left(\sup _{a \in P_{n}} m_{k}(a) m_{k}\left(a^{-1}\right)\right)^{k / 2}
$$

was first defined by Bergé and Martinet. In [13], they proved several inequalities among $\gamma_{n, k}$ and $\gamma_{n, k}^{\prime}$.

Theorem 2.4 (Bergé and Martinet). One has the following:
(1) $\gamma_{n, k}^{\prime} \leq \gamma_{n, k} \leq\left(\gamma_{n}\right)^{k}$ for $1 \leq k \leq n-1$.
(2) $\left(\gamma_{n, k}\right)^{n} \leq\left(\gamma_{n-k, k}\right)^{n-k}\left(\gamma_{n, k}^{\prime}\right)^{2 k}$ for $1 \leq k \leq n / 2$.
(3) $\gamma_{n, 2 k}^{\prime} \leq\left(\gamma_{n-k, k}^{\prime}\right)^{2}$ for $1 \leq k \leq n / 2$.
(4) $\left(\gamma_{n, k}\right)^{n-2 k} \leq\left(\gamma_{n-k, k}\right)^{n-k}$ for $1 \leq k \leq n-1$.
(5) $\gamma_{n, n / 2}=\gamma_{n, n / 2}^{\prime}$ if n is even.

When $k=1$, an analog of Voronoï's theorem holds for the BergéMartinet invariant $F_{\mathrm{BM}}(a)=\sqrt{m_{1}(a) m_{1}\left(a^{-1}\right)}$. A point $a \in P_{n}$ is said to be dual-extreme (strictly dual extreme) if F_{BM} attains a local maximum (resp. a strict local maximum) on a up to the multiplication by an element of $\mathbf{R}_{>0}$. To define the dual-perfection and the dual-eutaxy, we use the same notation as in 1.2.

Definition 2.2. Let $a \in P_{n}$. We fix an element $b \in G L_{n}(\mathbf{R})$ such that $a=$ ${ }^{t} b b$. An element a is said to be dual-perfect if $\left\{\varphi_{b x}\right\}_{x \in S(a)} \cup\left\{\varphi_{t^{-1}} y\right\}_{y \in S\left(a^{-1}\right)}$ spans the dual space V_{n}^{*} of V_{n}. An element a is said to be dual-eutactic if there exist $\rho_{x}>0(x \in S(a))$ and $\rho_{y}>0\left(y \in S\left(a^{-1}\right)\right)$ such that

$$
\sum_{x \in S(a)} \rho_{x} \varphi_{b x}=\sum_{y \in S\left(a^{-1}\right)} \rho_{y} \varphi_{t^{-1}} y .
$$

Then one has:
Theorem 2.5 (Bergé and Martinet). A point $a \in P_{n}$ is dual-extreme if and only if a is dual-perfect and dual-eutactic. Any dual extreme point is a strict dual extreme.

As noticed in [40, p.99], the number of dual-perfect points in P_{n} modulo $\mathbf{R}_{>0} G L_{n}(\mathbf{Z})$ is infinite in general. In [12], Bergé proved the following:

Theorem 2.6 (Bergé). The number of dual-extreme points in P_{n} modulo $\mathbf{R}_{>0} G L_{n}(\mathbf{Z})$ is finite. If $a \in P_{n}$ is dual extreme, then there exists $\lambda \in \mathbf{R}_{>0}$ such that $\lambda a \in G L_{n}(\overline{\mathbf{Q}})$. In particular , $\gamma_{n}^{\prime}=\gamma_{n, 1}^{\prime}$ is an algebraic number.

As to the explicit value of $\gamma_{n}^{\prime}, \gamma_{8}^{\prime}=\gamma_{8}=2$ immediately follows from the self-duality of the E_{8}-lattice. Bergé and Martinet determined the values $\gamma_{2}^{\prime}=2 / \sqrt{3}, \gamma_{3}^{\prime}=\sqrt{3 / 2}$ and $\gamma_{4}^{\prime}=\sqrt{2}$. In [49], Poor and Yuen proved the inequality

$$
\begin{equation*}
\frac{n}{\left(\gamma_{n}\right)^{2}} \leq \inf _{(a, b) \in P_{n} \times P_{n}} \frac{\langle a, b\rangle}{m_{1}(a) m_{1}(b)} \leq \frac{n}{\left(\gamma_{n}^{\prime}\right)^{2}} \tag{2}
\end{equation*}
$$

and, by using this, they determined the following values.
Theorem 2.7 (Poor and Yuen). $\gamma_{5}^{\prime}=\sqrt{2}, \gamma_{6}^{\prime}=\sqrt{8 / 3}$ and $\gamma_{7}^{\prime}=\sqrt{3}$.
All known values of γ_{n}^{\prime} satisfy $\left(\gamma_{n}^{\prime}\right)^{2} \in \mathbf{Q}$. The following problem is due to Martinet [40, Questions 3.8.12].

Problem 2.6. Is $\left(\gamma_{n}^{\prime}\right)^{2}$ rational for all n ?
Applying Theorem 2.4 to the explicit values of $\gamma_{5}^{\prime}, \gamma_{7}^{\prime}, \gamma_{4,2}$ and γ_{n} for $n=2, \cdots, 8$, we have

Theorem 2.8. $\gamma_{6,2}=3^{2 / 3}$, $\gamma_{6,2}^{\prime}=2$, $\gamma_{8,2}=\gamma_{8,2}^{\prime}=3$ and $\gamma_{8,3}=\gamma_{8,3}^{\prime}=$ $\gamma_{8,4}=\gamma_{8,4}^{\prime}=4$.

See $[57, \S 2]$ for details. Barnes and Cohn [7] also proved the first part of the inequality (2). Since one has

$$
\frac{1}{\xi_{w_{1}}}=\inf _{(a, b) \in P_{n} \times P_{n}} \frac{\langle a, b\rangle}{m_{1}(a) m_{1}(b)}
$$

the first part of (2) is a special case of Proposition 1.4. Furthermore, the inequality (2) is generalized to $\gamma_{n, k}$ and $\gamma_{n, k}^{\prime}$ as follows:

$$
\frac{n}{\left(\gamma_{n, k}\right)^{2 / k}} \leq \inf _{(a, b) \in P_{n} \times P_{n}} \frac{\langle a, b\rangle}{m_{k}(a) m_{k}(b)} \leq \frac{n}{\left(\gamma_{n, k}^{\prime}\right)^{2 / k}},
$$

(see [57, Theorem 1]). To find an analog of Voronoï's theorem for the k th Bergé-Martinet invariant $F_{\mathrm{BM}}^{(k)}(a)=\left(m_{k}(a) m_{k}\left(a^{-1}\right)\right)^{k / 2}([40$, Problem 10.6.10]) solved by Bavard, see Example 3.7 below. See [26] for other Hermite like invariants.

3. Generalizations of Voronoï's theorem

There are several directions to generalize Voronoi's theorem. A natural generalization of the domain P_{n} was considered by Koecher [35] and Ash [3]. An extension of the geometric framework was developed by Bavard [9], [11]. A change of a base field from \mathbf{Q} to an algebraic number field was studied by several authors [22], [32], [38], [45], [46]. In this section, we will survey these theories. We do not exhaust all of generalizations. See e.g., [40, Chaprter 13] for other variations.

3.1. Voronoï's theorem of packing functions on symmetric cones

A generalization of the domain P_{n} is given by the notion of symmetric cones. Let Ω be an open convex cone in the Euclidean space \mathbf{R}^{N}. The open dual cone Ω^{*} of Ω is defined to be

$$
\Omega^{*}=\left\{a \in \mathbf{R}^{N}:(a, b)>0 \text { for all } b \in \bar{\Omega} \backslash\{0\}\right\},
$$

where $\bar{\Omega}$ denotes the closure of Ω in \mathbf{R}^{N}. If $\Omega=\Omega^{*}$ holds, then Ω is called a self-dual cone. We denote by G_{Ω} the stabilizer of Ω in $G L_{N}(\mathbf{R})$, i.e.,

$$
G_{\Omega}=\left\{g \in G L_{N}(\mathbf{R}): g \Omega=\Omega\right\} .
$$

If G_{Ω} acts transitively on Ω, then Ω is said to be homogeneous. By a symmetric cone, we mean a self-dual homogeneous cone. See the textbook [25] for details of symmetric cones.

We fix a symmetric cone Ω. Let G_{Ω}° be the connected component of the identity in G_{Ω}. Then G_{Ω}° also acts transitively on Ω. We denote by K_{a} the stabilizer of $a \in \Omega$ in G_{Ω}°. There exists a point $e \in \Omega$ such that $K_{\boldsymbol{e}}=$ $G_{\Omega}^{\circ} \cap O_{N}(\mathbf{R})$. The group K_{e} is connected and gives a maximal compact subgroup of G_{Ω}°. Thus Ω is identified with the Riemannian symmetric space $G_{\Omega}^{\circ} / K_{e}$.

Let $L \subset \mathbf{R}^{N}$ be a lattice of rank N which contains e. Now we define the packing function $F_{(\Omega, L)}: \Omega \longrightarrow \mathbf{R}_{>0}$, of which we study local maxima. First, the characteristic function φ_{Ω} of Ω is defined by

$$
\varphi_{\Omega}(a)=\int_{\Omega} e^{-(a, b)} d b, \quad(a \in \Omega)
$$

The Lebesgue measure $d b$ is normalized so that $\varphi_{\Omega}(\boldsymbol{e})=1$. The defining integral is uniformly convergent on any compact subset in Ω. It follows from the definition that $\varphi_{\Omega}(g a)=|\operatorname{det} g|^{-1} \varphi_{\Omega}(a)$ for all $g \in G_{\Omega}$ and $a \in \Omega$.

Next, the minimum function m_{L} on Ω is defined by

$$
m_{L}(a)=\min \{(a, b): b \in(L \backslash\{0\}) \cap \bar{\Omega}\} .
$$

Since Ω is self-dual, the value $m_{L}(a)$ is positive. Then the packing function $F_{\Omega, L}$ is defined by

$$
F_{(\Omega, L)}(a)=m_{L}(a)^{N} \varphi_{\Omega}(a) .
$$

A point $a \in \Omega$ is said to be extreme if $F_{(\Omega . L)}$ attains a local maximum on a up to the multiplication by an element of $\mathbf{R}_{>0}$.

To state Ash's definition of eutaxy, we need a Jordan algebra structure of \mathbf{R}^{N} induced from Ω. Let \mathfrak{g} be the Lie algebra of G_{Ω}°, i.e.,

$$
\mathfrak{g}=\left\{X \in M_{N}(\mathbf{R}): \exp (X) \in G_{\Omega}^{\circ}\right\}
$$

Since Ω is a symmetric cone, \mathfrak{g} is invariant by the transpose $X \mapsto{ }^{t} X$. We set $\mathfrak{g}_{ \pm}=\left\{X \in \mathfrak{g}:{ }^{t} X= \pm X\right\}$. Then \mathfrak{g}_{-}coincides with the Lie algebra of $K_{\boldsymbol{e}}$. Moreover, the map $\psi: \mathfrak{g}_{+} \longrightarrow \mathbf{R}^{N}$ defined by $\psi(X)=X \boldsymbol{e}$ gives a linear isomorphism. We define the binary product * : $\mathbf{R}^{N} \times \mathbf{R}^{N} \longrightarrow \mathbf{R}^{N}$ by

$$
a * b=\psi^{-1}(a) b .
$$

This product satisfies
$\left(\mathrm{J}_{1}\right) a * b=b * a$
$\left(\mathrm{J}_{2}\right) a *\left(a^{2} * b\right)=a^{2} *(a * b)$, where a^{2} means $a * a$
$\left(\mathrm{J}_{3}\right) \boldsymbol{e} * a=a * \boldsymbol{e}=a$
$\left(\mathrm{J}_{4}\right)(a * c, b)=(a, c * b)$
for all $a, b, c \in \mathbf{R}^{N}$. Namely, $*$ gives \mathbf{R}^{N} a formally real Jordan algebra structure with the identity \boldsymbol{e}. We denote by J_{Ω} this formally real Jordan algebra. For $a \in J_{\Omega}$, the subalgebra $\mathbf{R}[a]$ of J_{Ω} generated by a and \boldsymbol{e} is an associative algebra. An element a is said to be invertible if there exists an element $b \in \mathbf{R}[a]$ such that $a * b=\boldsymbol{e}$. This b is unique and is denoted by a^{-1}. Let J_{Ω}^{\times}be the subset of all invertible elements in J_{Ω}. Then Ω coincides with the connected component of J_{Ω}^{\times}which contains e.

We assume $L \otimes_{\mathbf{z}} \mathbf{Q}$ gives a \mathbf{Q}-structure of J_{Ω}. For $a \in \Omega$, we set

$$
S_{(\Omega, L)}(a)=\left\{b \in(L \backslash\{0\}) \cap \bar{\Omega}:(a, b)=m_{L}(a)\right\}
$$

Definition 3.1. Let $a \in \Omega$ and a^{-1} be the inverse of a in the Jordan algebra J_{Ω}. A point a is said to be perfect if $S_{(\Omega . L)}(a)$ spanns \mathbf{R}^{N}. A point
a is said to be eutactic if there exist $\lambda_{b} \in \mathbf{R}_{>0}, b \in S_{(\Omega, L)}$, such that

$$
a^{-1}=\sum_{b \in S_{(\Omega, L)}} \lambda_{b} b
$$

Let $g \in \exp \left(\mathfrak{g}_{+}\right)$. The Taylor expansion of $1 / \varphi_{\Omega}$ at the point $a=g \boldsymbol{e}$ is given by
$\frac{1}{\varphi_{\Omega}(a+v)}=\operatorname{det} g \cdot\left\{1+\left(a^{-1}, v\right)+\frac{1}{2}\left(\left(a^{-1}, v\right)^{2}-\left(g^{-1} v, g^{-1} v\right)\right)+O\left((v, v)^{3 / 2}\right)\right\}$
for $v \in \mathbf{R}^{N}$ ([3, Corollary to Proposition 3]). By using this formula, Ash proved that the function $1 / F_{(\Omega, L)}$ is a topological Morse function on $\Omega / \mathbf{R}_{>0}$. Voronoï's theorem of $F_{(\Omega, L)}$ follows from this fact.

Theorem 3.1 (Ash). A point $a \in \Omega$ is extreme if and only if a is perfect and eutactic.

Let $K_{1}\left(m_{L}\right)=\{a \in \bar{\Omega}:(a, b) \geq 1$ for all $b \in(L \backslash\{0\}) \cap \bar{\Omega}\}$, which is a polyhedral cone and is regarded as a generalization of the Ryshkov domain $K_{1}\left(m_{1}\right)$. Any perfect point $a \in \Omega$ of $m_{L}(a)=1$ is a vertex of $K_{1}\left(m_{L}\right)$. We have the following finiteness:

Theorem 3.2 (Ash). The discrete group $\Gamma=\left\{g \in G_{\Omega}^{\circ}:{ }^{t} g L=L\right\}$ of G_{Ω}° acts on $K_{1}\left(m_{L}\right)$. The set of faces of $K_{1}\left(m_{L}\right)$ has only finitely many Γ-orbits. In particular, the number of perfect points in Ω modulo $\mathbf{R}_{>0} \Gamma$ is finite. Moreover, the number of eutactic points in Ω modulo $\mathbf{R}_{>0} \Gamma$ is finite.

It is proved in [3, Theorem 2] that a point $a \in \Omega$ is eutactic if and only if a is critical non-degenerate for $F_{(\Omega, L)}$. The finiteness of eutactic points is derived from the finiteness of Γ-orbits of critical points of $F_{(\Omega, L)}$.

Example 3.1. The cone P_{n} of positive definite symmetric matrices is a symmetric cone in V_{n}. In this case, \boldsymbol{e} is chosen as the identity matrix I_{n} and the product $*$ is defined by

$$
a * b=\frac{1}{2}(a b+b a)
$$

for $a, b \in V_{n}$. When $L=\left\{v \in M_{n}(\mathbf{Q}) \cap V_{n}: 2 v \in M_{n}(\mathbf{Z}), v_{11}, \cdots, v_{n n} \in\right.$ $\mathbf{Z}\}$, the packing function $F_{\left(P_{n}, L\right)}$ is equal to $\left(m_{1} / \operatorname{det}^{1 / n}\right)^{n(n+1) / 2}$. Ash's definition of perfection and eutaxy is equivalent to Definition 1.3 ([3, Corollary to Proposition 2]).

Example 3.2. Let B be the non degenerate bilinear form on \mathbf{R}^{n} defined by

$$
B(x, y)=x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{n} y_{n}
$$

for $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right)$ and $y={ }^{t}\left(y_{1}, \cdots, y_{n}\right) \in \mathbf{R}^{n}$. Then the Lorentz cone $\Omega_{n}=\left\{x \in \mathbf{R}^{n}: B(x, x)>0, x_{1}>0\right\}$ is a symmetric cone in \mathbf{R}^{n}. We choose \boldsymbol{e} as the unit vector ${ }^{t}(1,0, \cdots, 0) \in \mathbf{R}^{n}$. Let $\{\boldsymbol{e}\}^{\perp}$ be the orthogonal complement of \boldsymbol{e} with respect to the usual inner product (\cdot, \cdot) of \mathbf{R}^{n}. The product of the Jordan algebra $J_{\Omega_{n}}$ is defined by

$$
(\lambda \boldsymbol{e}+u) *\left(\lambda^{\prime} \boldsymbol{e}+u^{\prime}\right)=\left(\lambda \lambda^{\prime}-B\left(u, u^{\prime}\right)\right) \boldsymbol{e}+\lambda u^{\prime}+\lambda^{\prime} u
$$

for $\lambda, \lambda^{\prime} \in \mathbf{R}$ and $u, u^{\prime} \in\{\boldsymbol{e}\}^{\perp}$. The packing function $F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}$ is given as

$$
F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}(a)=\frac{m_{\mathbf{Z}^{n}}(a)^{n}}{B(a, a)^{n / 2}}
$$

Since $G_{\Omega_{n}}^{\circ}=\mathbf{R}_{>0} \cdot S O_{0}(1, n-1)$ acts transitively on Ω_{n}, we have

$$
F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}(\lambda g \boldsymbol{e})=\frac{m_{\mathbf{Z}^{n}}(g \boldsymbol{e})^{n}}{B(g \boldsymbol{e}, g \boldsymbol{e})^{n / 2}}=m_{\mathbf{Z}^{n}}(g \boldsymbol{e})^{n}
$$

for $\lambda \in \mathbf{R}_{>0}$ and $g \in S O_{0}(1, n-1)$, and moreover,
$m_{\mathbf{Z}^{n}}(g \boldsymbol{e})=\min _{x \in\left(\mathbf{Z}^{n} \backslash\{0\}\right) \cap \bar{\Omega}_{n}}\left(\boldsymbol{e},{ }^{t} g x\right)=\min _{x \in\left(\mathbf{Z}^{n} \backslash\{0\}\right) \cap \bar{\Omega}_{n}}\left(\frac{\left({ }^{t} g x,{ }^{t} g x\right)+B(x, x)}{2}\right)^{1 / 2}$.
Therefore, we have
$\max _{a \in \Omega_{n}} F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}(a)=\max _{[g] \in K_{e} \backslash S O_{0}(1, n-1) / \Gamma} \min _{x \in\left(\mathbf{Z}^{n} \backslash\{0\}\right) \cap \bar{\Omega}_{n}}\left(\frac{(g x, g x)+B(x, x)}{2}\right)^{n / 2}$,
where $\Gamma=S O_{0}(1, n-1) \cap S L_{n}(\mathbf{Z})$.
Problem 3.1. Let Ω be an arbitrary symmetric cone. Replacing P_{n} and $P_{n}^{\text {semi }}$ with Ω and $\bar{\Omega}$, respectively, in Definitions 1.1 and 1.2, we can define type one functions on $\bar{\Omega}$ and semikernels in $\bar{\Omega}$. For example, both $\varphi_{\Omega}^{-1 / N}$ and m_{L} are continuously extended to type one functions on $\bar{\Omega}$. Can Proposition 1.1 and Theorem 1.3 be generalized to this setting?

As stated in Theorem 3.2, the number of eutactic classes in $\mathbf{R}_{>0} \backslash \Omega / \Gamma$ is finite. When $\Omega=P_{n}$, Ash verified a "mass formula with signs" of eutactic classes ([4], see also [40, Theorem 9.5.3]). For $a \in \partial K_{1}\left(m_{1}\right)$, we set $\Gamma_{a}=$ $\left\{g \in S L_{n}(\mathbf{Z}):{ }^{t} g a g=a\right\}$. Let $\mathcal{F}_{S(a)}$ be the face of $K_{1}\left(m_{1}\right)$ defined in 1.3, i.e., $\mathcal{F}_{S(a)}=\left\{b \in \partial K_{1}\left(m_{1}\right): S(a) \subset S(b)\right\}$.

Theorem 3.3 (Ash). The set $\partial^{e} K_{1}\left(m_{1}\right)$ of eutactic points in $\partial K_{1}\left(m_{1}\right)$ satisfies

$$
\sum_{[a] \in \partial^{e} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})} \frac{(-1)^{\operatorname{dim} \mathcal{F}_{S(a)}}}{\sharp \Gamma_{a}}=\chi\left(S L_{n}(\mathbf{Z})\right)=\left\{\begin{array}{ll}
-1 / 12 & (n=2) \\
0 & (n \geq 3)
\end{array},\right.
$$

where $\chi\left(S L_{n}(\mathbf{Z})\right)$ stands for the Euler characteristic of $S L_{n}(\mathbf{Z})$.
The actual value of $\epsilon_{n}=\sharp\left(\partial^{e} K_{1}\left(m_{1}\right) / G L_{n}(\mathbf{Z})\right)$ is known up to $n=5$ (cf. [8]): one has $\epsilon_{2}=2, \epsilon_{3}=5, \epsilon_{4}=16, \epsilon_{5}=118$.

3.2. Bavard's theory

Let V be a Riemannian manifold and Γ a discrete subgroup of the isometry group of V. Let C be a set endowed with a right action of Γ. We consider a family of C^{1}-functions $f_{s}: V \longrightarrow \mathbf{R}$ parameterized by $s \in C$. We assume the following two conditions:
$\left(\mathrm{B}_{1}\right) f_{s} \circ \gamma=f_{s \gamma}$ for all $s \in C$ and $\gamma \in \Gamma$.
$\left(\mathrm{B}_{2}\right)$ The cardinality of the subset $\left\{s \in C: f_{s}(v) \leq \lambda\right\}$ of C is finite for any $v \in V$ and $\lambda \in \mathbf{R}$.

Each f_{s} is called a length function on V. We write \mathcal{E} for the quadruplet $\left(V, \Gamma, C,\left\{f_{s}\right\}\right)$. What we do is to characterize local maxima of the function $F_{\mathcal{E}}(v)=\min _{s \in C} f_{s}(v)$ in $v \in V$. A point $v \in V$ is said to be extreme (resp. strictly extreme) if v attains a local maximum (resp. a strictly local maximum) of $F_{\mathcal{E}}$.

For a given $v \in V, T_{v} V$ stands for the tangent space of V at v and $X_{s}(v)$ stands for the gradient vector of f_{s} at v. By the condition $\left(\mathrm{B}_{2}\right)$, $S_{\mathcal{E}}(v)=\left\{s \in C: f_{s}(v)=F_{\mathcal{E}}(v)\right\}$ is a finite subset of C. Let $\operatorname{Conv}(v)$ be the convex hull of $\left\{X_{s}(v)\right\}_{s \in S_{\mathcal{E}}(v)}$ in $T_{v} V$ and $\operatorname{Aff}(v)$ the affine subspace spanned by $\left\{X_{s}(v)\right\}_{s \in S_{\mathcal{E}}(v)}$ in $T_{v} V$.

Definition 3.2. A point $v \in V$ is said to be perfect if $T_{v} V=\operatorname{Aff}(v)$ holds. A point $v \in V$ is said to be eutactic if the origin $0 \in T_{v} V$ is contained in the interior of $\operatorname{Conv}(v)$.

We need the following condition for \mathcal{E}.
(C) For any $v \in V$, any subset $S^{\prime} \subset S_{\mathcal{E}}(v)$ and any non-zero vector $X \in T_{v} V$ orthogonal to $\left\{X_{s}(v)\right\}_{s \in S^{\prime}}$, there exists a C^{1}-curve $c:[0, \epsilon) \longrightarrow V$ for a sufficiently small $\epsilon>0$ such that $c(0)=v, c^{\prime}(0)=X$ and $f_{s}(v)<$ $f_{s}(c(t))$ for all $t \in(0, \epsilon)$ and $s \in S^{\prime}$.

Now Bavard's theorem is stated as:
Theorem 3.4 (Bavard). Assume \mathcal{E} satisfies the condition (C). Then any extreme point in V is strictly extreme, and a point $v \in V$ is extreme if and only if v is perfect and eutactic.

A function $f: V \longrightarrow \mathbf{R}$ is said to be convex if f is convex on any geodesic line on V, i.e.,

$$
f(\ell(\lambda \alpha+(1-\lambda) \beta)) \leq \lambda f(\ell(\alpha))+(1-\lambda) f(\ell(\beta))
$$

holds for any geodesic $\ell:[0, \epsilon) \longrightarrow V, \alpha, \beta \in(0, \epsilon), \alpha \neq \beta$, and $0<\lambda<1$. If this inequality is strict, then f is said to be strictly convex. It is proved that $\left\{f_{s}\right\}_{s \in C}$ satisfies the condition (C) if f_{s} is strictly convex for all $s \in C$.

Theorem 3.5 (Bavard). Assume f_{s} is convex for all $s \in C$. Then a point $v \in V$ is strictly extreme if and only if v is perfect and eutactic.

Example 3.3. We consider the subset $P_{n}^{1}=\left\{a \in P_{n}: \operatorname{det} a=1\right\}$ of P_{n}, which is identified with the Riemannian symmetric space $S L_{n}(\mathbf{R}) / S O_{n}(\mathbf{R})$. For $x \in \mathbf{Z}^{n} \backslash\{0\}$, define the length function $f_{x}: P_{n}^{1} \longrightarrow \mathbf{R}$ by $f_{x}(a)=$ ${ }^{t} x a x$. The family $\left\{f_{x}\right\}_{x \in \mathbf{Z}^{n} \backslash\{0\}}$ satisfies $\left(\mathrm{B}_{1}\right)$ for $\Gamma=S L_{n}(\mathbf{Z}),\left(\mathrm{B}_{2}\right)$ and the condition (C) ([9, Example 1]). Thus one can apply Theorem 3.4 to $\mathcal{E}=\left(P_{n}^{1}, S L_{n}(\mathbf{Z}), \mathbf{Z}^{n} \backslash\{0\},\left\{f_{x}\right\}\right)$. Since the definition of perfection and eutaxy of Definition 3.2 is equivalent to that of Definition 1.3, this case verifies Voronoï's theorem. The length function f_{x} is convex on P_{n}^{1} for all $x \in \mathbf{Z}^{n} \backslash\{0\}$.

Example 3.4. Let G be a connected Lie subgroup of $S L_{n}(\mathbf{R})$ and $G \cdot \mathrm{I}_{n}$ be the G-orbit of the identity matrix I_{n} in P_{n}^{1}, i.e., $G \cdot \mathrm{I}_{n}=\left\{{ }^{t} g g: g \in G\right\}$. Assume G is invariant by the transpose $g \mapsto{ }^{t} g$. Then $G \cdot \mathrm{I}_{n}$ is totally geodesic, and hence the restriction $\left.f_{x}\right|_{G \cdot \mathrm{I}_{n}}$ of the length function f_{x} to $G \cdot \mathrm{I}_{n}$ is convex for all $x \in \mathbf{Z}^{n} \backslash\{0\}$. Thus one can apply Theorem 3.5 to $\mathcal{E}=\left(G \cdot \mathrm{I}_{n}, G \cap S L_{n}(\mathbf{Z}), \mathbf{Z}^{n} \backslash\{0\},\left\{\left.f_{x}\right|_{G \cdot \mathrm{I}_{n}}\right\}\right)$.

Example 3.5. Assume n is even. Let G be the symplectic group, i.e.,

$$
G=S p_{n}(\mathbf{R})=\left\{g \in S L_{n}(\mathbf{R}):{ }^{t} g\left(\begin{array}{cc}
0 & -\mathrm{I}_{n / 2} \\
\mathrm{I}_{n / 2} & 0
\end{array}\right) g=\left(\begin{array}{cc}
0 & -\mathrm{I}_{n / 2} \\
\mathrm{I}_{n / 2} & 0
\end{array}\right)\right\} .
$$

In this case, the family $\left\{\left.f_{x}\right|_{G \cdot \mathrm{I}_{n}}\right\}_{x \in \mathbf{Z}^{n} \backslash\{0\}}$ satisfies the condition (C). This is a particular case of more general family [1, Lemme 3.3]. See [1, Théorème 3.1] for other symmetric spaces of classical type.

Example 3.6. For $X \in M_{n, k}^{*}(\mathbf{Z})$, define the length function $f_{X}: P_{n}^{1} \longrightarrow$ \mathbf{R} by $f_{X}(a)=\operatorname{det}\left({ }^{t} X a X\right)$, i.e., $f_{X}=D_{X}^{k}$. Then the family $\left\{f_{X}\right\}_{X \in M_{n, k}^{*}(\mathbf{Z})}$ satisfies the condition (C) ($[9$, Proposition 2.8]). Theorem 2.1 is verified again by Theorem 3.4 specialized to $\mathcal{E}=\left(P_{n}^{1}, S L_{n}(\mathbf{Z}), M_{n, k}^{*}(\mathbf{Z}),\left\{f_{X}\right\}\right)$.

Example 3.7. We define the subset $C_{n, k}$ of $M_{n, k}(\mathbf{Z}) \times M_{n, k}(\mathbf{Z})$ by

$$
C_{n, k}=\left\{(X, 0),(0, Y): X, Y \in M_{n, k}^{*}(\mathbf{Z})\right\} .
$$

This set is stable by the action of $S L_{n}(\mathbf{Z}):(X, Y) g=\left({ }^{t} g X, g^{-1} Y\right)$. For $(X, Y) \in C_{n, k}$, define the length function $f_{(X, Y)}: P_{n} \longrightarrow \mathbf{R}$ by $f_{(X, Y)}(a)=D_{X}(a)^{k}+D_{Y}\left(a^{-1}\right)^{k}$ for $a \in P_{n}$. Then the quadruplet $\mathcal{E}=\left(P_{n}, S L_{n}(\mathbf{Z}), C_{n, k},\left\{f_{(X, Y)}\right\}\right)$ satisfies the condition (C) [11, Théorèm 5]. Bavard proved the set of extreme points of k-th Bergé-Martinet invariant $F_{\mathrm{BM}}^{(k)}$ coincides with that of $F_{\mathcal{E}}$ ([11, Proposition 2.21]). Thus Voronoï's theorem for $F_{\mathrm{BM}}^{(k)}$ results in that of $F_{\mathcal{E}}$.

In some cases, the finiteness and the algebraicity of perfect points were also proved by Bavard [11, Corollaire 2.12 et Théorème 1]. We explain the simplest case of Bavard's result. Let f be one of the real number field \mathbf{R}, the complex number field \mathbf{C} or the Hamilton quaternion field \mathbf{H}. For an $n \times n$ matrix $\left(\lambda_{i j}\right) \in M_{n}(\mathrm{f})$ with entries in f , we write $\left(\lambda_{i j}\right)^{*}$ for ${ }^{t}\left(\bar{\lambda}_{i j}\right)$, where $\lambda \mapsto \bar{\lambda}$ stands for the main involution of f . The set $P_{n}^{1}(\mathrm{f})=\left\{g^{*} g\right.$: $\left.g \in S L_{n}(\mathrm{f})\right\}$ is a Riemannian symmetric space. We fix a subring o_{f} in f as $o_{f}=\mathbf{Z}$ if $f=\mathbf{R}$, $o_{f}=\mathbf{Z}[\sqrt{-1}]$ if $f=\mathbf{C}$ and $o_{f}=\mathbf{Z}[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ if $f=\mathbf{H}$, where $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ denotes the usual quaternion basis of \mathbf{H}. For $x \in \mathrm{o}_{\mathrm{f}}^{n} \backslash\{0\}$, define the length function $f_{x}: P_{n}^{1}(\mathbf{f}) \longrightarrow \mathbf{R}$ by $f_{x}(a)=x^{*} a x$. Then $\mathcal{E}=$ $\left(P_{n}^{1}(\mathrm{f}), S L_{n}\left(\mathrm{o}_{\mathrm{f}}\right), \mathrm{o}_{\mathrm{f}}^{n} \backslash\{0\},\left\{f_{x}\right\}\right)$ satisfies the condition (C) ($[1$, Corollaire 3.1]).

Theorem 3.6 (Bavard). For $\mathcal{E}=\left(P_{n}^{1}(\mathrm{f}), S L_{n}\left(\mathrm{o}_{\mathrm{f}}\right), \mathrm{o}_{\mathrm{f}}^{n} \backslash\{0\},\left\{f_{x}\right\}\right)$, the number of perfect points in $P_{n}^{1}(\mathrm{f})$ modulo $S L_{n}\left(\mathrm{o}_{\mathrm{f}}\right)$ is finite. Any perfect point in $P_{n}^{1}(\mathrm{f})$ is algebraic over \mathbf{Q}, i.e., which is contained in $M_{n}\left(\mathrm{o}_{\mathrm{f}} \otimes_{\mathbf{Z}} \overline{\mathbf{Q}}\right)$.

More generally, Bavard proved such result for some totally geodesic subvarieties in $P_{n}^{1}(\mathrm{f})$. However the algebraicity of $\gamma_{n, k}^{\prime}$ for $k \geq 2$ is still unknown.

In connection with Ash's mass formula (Theorem 3.3), we append Bavard's mass formula [10, Théorème 1]. We recall $\partial^{w r} K_{1}\left(m_{1}\right)$ denotes the set of all well-rounded points in $\partial K_{1}\left(m_{1}\right)$. If $a \in \partial^{w r} K_{1}\left(m_{1}\right)$, then $\mathcal{F}_{S(a)}$ is a compact face. The family $\left\{\mathcal{F}_{S(a)}\right\}_{a \in \partial^{w r} K_{1}\left(m_{1}\right)}$ of compact faces
has only finitely many $S L_{n}(\mathbf{Z})$-orbits by Theorem 3.2. Let $\left\{\mathcal{F}_{1}, \cdots, \mathcal{F}_{r}\right\}$ be the complete set of representatives of $S L_{n}(\mathbf{Z})$-orbits in $\left\{\mathcal{F}_{S(a)}\right\}_{a \in \partial^{w r} K_{1}\left(m_{1}\right)}$.

Theorem 3.7 (Bavard). $\left\{\mathcal{F}_{1}, \cdots, \mathcal{F}_{r}\right\}$ satisfies

$$
\sum_{i=1}^{r} \frac{(-1)^{\operatorname{dim} \mathcal{F}_{i}}}{\sharp \Gamma_{i}}=\chi\left(S L_{n}(\mathbf{Z})\right)=\left\{\begin{array}{ll}
-1 / 12 & (n=2) \\
0 & (n \geq 3)
\end{array},\right.
$$

where Γ_{i} stands for the stabilizer of \mathcal{F}_{i} in $S L_{n}(\mathbf{Z})$.
For a further study of this mass formula, see [15].

3.3. Voronoï's theorem over an algebraic number field I

There are two methods of an extension of the base field. One is the additive generalization (35], [38], [45], [46]) and another is the multiplicative generalization ([22], [32]). Both methods give the original Voronoï's theorem if the base field is \mathbf{Q}. We first explain the additive generalization.

Let k be an algebraic number field of degree r and o_{k} the ring of integers of k. The set of all infinite (resp. real and imaginary) places of k is denoted by p_{∞} (resp. p_{1} and p_{2}). Let k_{σ} be the completion of k at $\sigma \in \mathrm{p}_{\infty}$, i.e., $\mathrm{k}_{\sigma}=\mathbf{R}$ if $\sigma \in \mathrm{p}_{1}$ and $\mathrm{k}_{\sigma}=\mathbf{C}$ if $\sigma \in \mathrm{p}_{2}$. We use the étale \mathbf{R}-algebra $\mathbf{k}_{\mathbf{R}}=\mathbf{k} \otimes_{\mathbf{Q}} \mathbf{R}$, which is identified with $\prod_{\sigma \in \mathbf{p}_{\infty}} \mathbf{k}_{\sigma}$. For $\boldsymbol{x}=\left(x_{\sigma}\right) \in \mathbf{k}_{\mathbf{R}}$, the conjugate $\overline{\boldsymbol{x}}$ of \boldsymbol{x} is defined to be $\overline{\boldsymbol{x}}=\left(\bar{x}_{\sigma}\right)$, where \bar{x}_{σ} is the complex conjugate of x_{σ}. The trace and the norm of $\mathrm{k}_{\mathbf{R}}$ are defined as

$$
\operatorname{Tr}_{\mathrm{k}_{\mathbf{R}}}(\boldsymbol{x})=\sum_{\sigma \in \mathrm{p}_{\infty}} \operatorname{Tr}_{\mathrm{k}_{\sigma} / \mathbf{R}}\left(x_{\sigma}\right), \quad \mathrm{Nr}_{\mathrm{k}_{\mathbf{R}}}(\boldsymbol{x})=\prod_{\sigma \in \mathrm{p}_{\infty}} \mathrm{Nr}_{\mathrm{k}_{\sigma} / \mathbf{R}}\left(x_{\sigma}\right)
$$

for $\boldsymbol{x}=\left(x_{\sigma}\right) \in \mathbf{k}_{\mathbf{R}}$.
Let $\mathrm{k}_{\mathbf{R}}^{n}=\mathrm{k}^{n} \otimes_{\mathbf{Q}} \mathbf{R}$ be the $\mathrm{k}_{\mathbf{R}}$-module of rank n. An element of $\mathrm{k}_{\mathbf{R}}^{n}$ is denoted by a column vector $X={ }^{t}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n}\right)$ with $\boldsymbol{x}_{i} \in \mathrm{k}_{\mathbf{R}}, i=1, \cdots, n$. The group consisting of $\mathbf{k}_{\mathbf{R}}$-linear automorphisms of $\mathrm{k}_{\mathbf{R}}^{n}$ is denoted by $G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$, which is identified with $\prod_{\sigma \in \mathrm{p}_{\infty}} G L_{n}\left(\mathrm{k}_{\sigma}\right)$. As an \mathbf{R}-vector space, $\mathrm{k}_{\mathbf{R}}^{n}$ is equipped with the inner product

$$
(X, Y)=\operatorname{Tr}_{\mathrm{k}_{\mathbf{R}}}\left({ }^{t} \bar{X} Y\right)=\operatorname{Tr}_{\mathrm{k}_{\mathbf{R}}}\left(\overline{\boldsymbol{x}}_{1} \boldsymbol{y}_{1}+\cdots+\overline{\boldsymbol{x}}_{n} \boldsymbol{y}_{n}\right),
$$

for $X={ }^{t}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{n}\right), Y={ }^{t}\left(\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{n}\right) \in \mathrm{k}_{\mathbf{R}}^{n}$. The group of isometries

$$
O_{n}\left(\mathrm{k}_{\mathbf{R}}\right)=\left\{g \in G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right):(g X, g Y)=(X, Y) \text { for all } X, Y \in \mathrm{k}_{\mathbf{R}}^{n}\right\}
$$

is a maximal compact subgroup of $G L_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$. We define the subsets $V_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ and $P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ of $M_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ as follows:

$$
\begin{aligned}
& V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)=\left\{a \in M_{n}\left(\mathrm{k}_{\mathbf{R}}\right):(a X, Y)=(X, a Y) \text { for all } X, Y \in \mathrm{k}_{\mathbf{R}}^{n}\right\}, \\
& P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)=\left\{a \in V_{n}\left(\mathbf{k}_{\mathbf{R}}\right):(a X, X)>0 \text { for all } X \in \mathrm{k}_{\mathbf{R}}^{n} \backslash\{0\}\right\}
\end{aligned}
$$

The set $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ is an \mathbf{R}-subspace of $M_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ of dimension $n(n+1) \sharp \mathbf{p}_{1} / 2+$ $n^{2} \sharp \mathrm{p}_{2}$, and $P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ is a symmetric cone in $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$. Let $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{*}$ be the dual space of $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ as an \mathbf{R}-vector space. The trace $\operatorname{Tr}_{M_{n}\left(\mathrm{k}_{\mathbf{R}}\right)} \in V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{*}$ is defined to be the composition of the matrix trace tr and $\operatorname{Tr}_{\mathrm{k}_{\mathrm{R}}}$, i.e, $\operatorname{Tr}_{M_{n}\left(\mathrm{k}_{\mathbf{R}}\right)}=\operatorname{Tr}_{\mathrm{k}_{\mathbf{R}}} \circ \operatorname{tr}$. For $X \in \mathrm{k}_{\mathbf{R}}^{n}$, define the linear form $\varphi_{X} \in V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{*}$ by $\varphi_{X}(a)=(a X, X)$ for $a \in V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$.

An o_{k}-submodule Λ in $\mathrm{k}_{\mathbf{R}}^{n}$ is called an o_{k}-lattice if Λ is discrete and $\Lambda \otimes_{\mathbf{Z}} \mathbf{R}=\mathrm{k}_{\mathbf{R}}^{n}$. Any projective o_{k}-module in k^{n} of rank n is regarded as an o_{k}-lattice in $k_{\mathbf{R}}^{n}$ by the natural inclusion $k^{n} \subset k_{\mathbf{R}}^{n}$. Conversely, for any $o_{\mathbf{k}}$-lattice Λ in $\mathrm{k}_{\mathbf{R}}^{n}$, there exists $g \in G L_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ such that $g^{-1} \Lambda$ is a projective o_{k}-module in k^{n} (see e.g., [37, Lemma 3.2]). Thus, by Steinitz's theorem, any o_{k}-lattice is isomorphic with an o_{k}-module of the form $\mathrm{o}_{\mathrm{k}}^{n-1} \oplus \mathrm{q}$, where q is an ideal of o_{k}. Let $\mathrm{q}_{1}=\mathrm{o}_{\mathrm{k}}, \mathrm{q}_{2}, \cdots, \mathrm{q}_{h}$ be a complete system of representatives of the ideal class group of k . If \mathcal{H}_{i} denotes the $G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$-orbit of the $\mathrm{o}_{\mathrm{k}}-$ lattice $\mathrm{o}_{\mathrm{k}}^{n-1} \oplus \mathrm{q}_{i}$, then the set $\mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ of all o_{k}-lattices in $\mathrm{k}_{\mathbf{R}}^{n}$ is given by the disjoint union of $\mathcal{H}_{1}, \cdots, \mathcal{H}_{h}$:

$$
\mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)=\bigsqcup_{i=1}^{h} \mathcal{H}_{i}
$$

Each component \mathcal{H}_{i} is identified with $G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right) / G L\left(\mathrm{o}_{\mathrm{k}}^{n-1} \oplus \mathrm{q}_{i}\right)$, where $G L\left(\mathrm{o}_{\mathrm{k}}^{n-1} \oplus \mathrm{q}_{i}\right)$ denotes the stabilizer of $\mathrm{o}_{\mathrm{k}}^{n-1} \oplus \mathrm{q}_{i}$ in $G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$.

For $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$, the minimum $m_{+}(\Lambda)$ and the discriminant $\operatorname{disc}(\Lambda)$ of Λ are defined to be

$$
m_{+}(\Lambda)=\min _{X \in \Lambda \backslash\{0\}}(X, X), \quad \operatorname{disc}(\Lambda)=\left(\frac{\omega\left(\mathrm{k}_{\mathbf{R}}^{n} / \Lambda\right)}{\omega\left(\mathrm{k}_{\mathbf{R}}^{n} / \mathrm{o}_{\mathrm{k}}^{n}\right)}\right)^{2},
$$

where ω denotes an invariant measure on $\mathrm{k}_{\mathbf{R}}^{n}$. We denote by $S_{+}(\Lambda)$ the set of shortest vectors in Λ, i.e.,

$$
S_{+}(\Lambda)=\left\{X \in \Lambda:(X, X)=m_{+}(\Lambda)\right\} .
$$

As an analog of the Hermite invariant, we consider the function F_{+}: $\mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right) \longrightarrow \mathbf{R}_{>0}$ defined by

$$
F_{+}(\Lambda)=\frac{m_{+}(\Lambda)}{\operatorname{disc}(\Lambda)^{1 /(r n)}}
$$

Obviously, F_{+}depends only on the similar isometry class $\mathbf{R}^{\times} O_{n}\left(\mathbf{k}_{\mathbf{R}}\right) \Lambda$ of Λ, i.e., F_{+}is a function on $\mathbf{R}^{\times} O_{n}\left(\mathrm{k}_{\mathbf{R}}\right) \backslash \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$. An o_{k}-lattice $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ is said to be extreme if F_{+}attains a local maximum on $\mathbf{R}^{\times} O_{n}\left(\mathbf{k}_{\mathbf{R}}\right) \Lambda$.

Definition 3.3. An o_{k}-lattice $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ is said to be perfect if $\left\{\varphi_{X}\right\}_{X \in S_{+}(\Lambda)}$ spanns $V_{n}\left(\mathbf{k}_{\mathbf{R}}\right)^{*}$, and Λ is said to be eutactic if there are $\rho_{X} \in \mathbf{R}_{>0}, X \in S_{+}(\Lambda)$, such that

$$
\operatorname{Tr}_{M_{n}\left(k_{\mathbf{R}}\right)}=\sum_{X \in S_{+}(\Lambda)} \rho_{X} \varphi_{X} .
$$

Leibak [38] proved a weak version of Voronoï's theorem for F_{+}restricted to the component \mathcal{H}_{1} of free o_{k}-lattices. Leibak's definition of eutaxy is weaker than that of Definition 3.3. Okuda and Yano [45] found a suitable definition of eutaxy to complete Leibak's result.

Theorem 3.8 (Leibak, Okuda and Yano). An o_{k}-lattice $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ is extreme if and only if Λ is perfect and eutactic.

By Humbert's reduction theory and Cramer's formula, one has the following finiteness and algebraicity of perfect o_{k}-lattices.

Theorem 3.9 (Okuda and Yano). The number of similar isometry classes of perfect o_{k}-lattices in $\mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ is finite. Let $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ be a perfect $\mathrm{o}_{\mathbf{k}}$-lattice with $m_{+}(\Lambda)=1$. If $g \in G L_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ such that $g^{-1} \Lambda \subset \mathrm{k}^{n}$, then ${ }^{t} \bar{g}_{\sigma} g_{\sigma} \in M_{n}\left(\mathrm{k}^{\prime}\right)$ for all $\sigma \in \mathrm{p}_{\infty}$, where k^{\prime} is the Galois closure of k over \mathbf{Q}.

In the case that k is a real quadratic field, a classification of some perfect o_{k}-lattices of small rank was given by Ong [46] and Leibak [39].

Koecher studied the function F_{+}in connection with the reduction theory of $P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ and proved the finiteness of the number of similar isometry classes of perfect o_{k}-lattices in $\mathcal{H}_{1}([35, \S 9,10])$. The bound $\sharp\left(S_{+}(\Lambda)\right) \leq 2\left(2^{r n}-1\right)$ for all $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$ is proved by the similar way as in 2.3 (see [35, Lemma 12]).

3.4. Voronoï's theorem over an algebraic number field II

We use the same notation as in the previous section. For $a \in P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$, the multiplicative minimum $m_{*}(a)$ and the discriminant $\operatorname{disc}(a)$ are defined to be

$$
\left.m_{*}(a)=\min _{X \in \mathrm{o}_{\mathrm{k}}^{n} \backslash\{0\}} \mathrm{Nr}_{\mathrm{k}_{\mathbf{R}}}{ }^{t} \bar{X} a X\right), \quad \operatorname{disc}(a)=\mathrm{Nr}_{\mathrm{k}_{\mathbf{R}}}(\operatorname{det} a) .
$$

We denote by $S_{*}(a)$ the set of minimal integral vectors, i.e.,

$$
S_{*}(a)=\left\{X \in \mathrm{o}_{\mathrm{k}}^{n}: \mathrm{Nr}_{\mathrm{k}_{\mathbf{R}}}\left({ }^{t} \bar{X} a X\right)=m_{*}(a)\right\}
$$

The unit group $\mathrm{o}_{\mathrm{k}}^{\times}$acts on $S_{*}(a)$ by multiplication. The set $S_{*}(a) / \mathrm{o}_{\mathrm{k}}^{\times}$of classes is finite ($\left[32\right.$, Lemma 1]). Define the function $F_{*}: P_{n}\left(\mathbf{k}_{\mathbf{R}}\right) \longrightarrow \mathbf{R}_{>0}$ by

$$
F_{*}(a)=\frac{m_{*}(a)}{\operatorname{disc}(a)^{1 / n}}
$$

The group $G L_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ acts transitively on $P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ by $(a, g) \mapsto{ }^{t} \bar{g} a g$ for $a \in$ $P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ and $g \in G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$. By definition, F_{*} is invariant by the action of the discrete subgroup $G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right) \subset G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$, i.e., one has

$$
F_{*}\left({ }^{t} \bar{g} a g\right)=F_{*}(a)
$$

for all $a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ and $g \in G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right)$. Moreover, if we set

$$
\mathbf{k}_{\mathbf{R}}^{+}=\left\{x=\left(x_{\sigma}\right)_{\sigma \in \mathbf{p}_{\infty}} \in \mathbf{k}_{\mathbf{R}}^{\times}: x_{\sigma} \in \mathbf{R}_{>0} \text { for all } \sigma \in \mathbf{p}_{\infty}\right\},
$$

then $F_{*}(x a)=F_{*}(a)$ holds for all $a \in P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ and $x \in \mathbf{k}_{\mathbf{R}}^{+}$. Therefore, F_{*} is considered as a function on $\mathrm{k}_{\mathbf{R}}^{+} \backslash P_{n}\left(\mathrm{k}_{\mathbf{R}}\right) / G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right)$. An element $a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ is said to be extreme if F_{*} attains a local maximum on the class $\mathrm{k}_{\mathbf{R}}^{+} a G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right)$.

Let $a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ and $X \in \mathrm{k}^{n} \backslash\{0\}$. Then ${ }^{t} \bar{X} a X$ is invertible in $\mathrm{k}_{\mathbf{R}}^{\times}$. The map $b \mapsto\left(b X,\left({ }^{t} \bar{X} a X\right)^{-1} X\right)$ on $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ defines an \mathbf{R}-linear form. We write φ_{X}^{a} for this linear form. For $x=\left(x_{\sigma}\right) \in \mathbf{k}_{\mathbf{R}}^{+}$, we set $\log (x)=\left(\log \left(x_{\sigma}\right)\right) \in \mathbf{k}_{\mathbf{R}}$. From the definition, it follows $\varphi_{X}^{a}(\log (x) a)=\operatorname{Tr}_{\mathbf{k}_{\mathbf{R}}}(\log (x))$ for $x \in \mathrm{k}_{\mathbf{R}}^{+}$. We denote by $\mathrm{k}_{\mathbf{R}}^{1}$ the subset of $x \in \mathrm{k}_{\mathbf{R}}^{+}$such that $\operatorname{Tr}_{\mathrm{k}_{\mathbf{R}}}(\log (x))=0$, i.e.,

$$
\mathrm{k}_{\mathbf{R}}^{1}=\left\{x=\left(x_{\sigma}\right)_{\sigma \in \mathrm{p}_{\infty}} \in \mathrm{k}_{\mathbf{R}}^{+}: \mathrm{Nr}_{\mathbf{k}_{\mathbf{R}}}(x)=1\right\} .
$$

Thus φ_{X}^{a} is null on the $\left(\sharp\left(\mathrm{p}_{1}\right)+\sharp\left(\mathrm{p}_{2}\right)-1\right)$-dimensional subspace $\log \left(\mathrm{k}_{\mathbf{R}}^{1}\right) \cdot a \subset$ $V_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$.

Definition 3.4. An element $a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)$ is said to be perfect if $\left\{\varphi_{X}^{a}\right\}_{[X] \in S_{*}(a) / o_{k}^{\times}}$spanns the dual space $\left(V_{n}\left(\mathrm{k}_{\mathbf{R}}\right) / \log \left(\mathrm{k}_{\mathbf{R}}^{1}\right) \cdot a\right)^{*}$, and a is said to be eutactic if there are $\rho_{X} \in \mathbf{R}_{>0},[X] \in S_{*}(a) / \mathrm{o}_{\mathrm{k}}^{\times}$, such that the linear form $b \mapsto \operatorname{Tr}_{M_{n}\left(k_{\mathbf{R}}\right)}\left(a^{-1} b\right)$ on $V_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ is represented as

$$
\left(b \mapsto \operatorname{Tr}_{M_{n}\left(\mathrm{k}_{\mathbf{R}}\right)}\left(a^{-1} b\right)\right)=\sum_{[X] \in S_{*}(a) / o_{\mathrm{k}}^{\times}} \rho_{X} \varphi_{X}^{a} .
$$

This definition is due to Coulangeon. Icaza [32, Proposition 3] first proved a weak version of Voronoï's theorem for F_{*}, and later Coulangeon [23] completed a full version.

Theorem 3.10 (Icaza, Coulangeon). An element $a \in P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ is extreme if and only if a is perfect and eutactic.

The finiteness and the algebraicity of perfect points were also proved by Coulangeon [23, Proposition 4.1].
Theorem 3.11 (Coulangeon). The number of perfect elements in $P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ modulo $\mathrm{k}_{\mathbf{R}}^{+} G L_{n}\left(\mathrm{o}_{\mathbf{k}}\right)$ is finite. If $a=\left(a_{\sigma}\right) \in P_{n}\left(\mathbf{k}_{\mathbf{R}}\right)$ is perfect, then there exists $x=\left(x_{\sigma}\right) \in \mathbf{k}_{\mathbf{R}}^{+}$such that $x_{\sigma} a_{\sigma} \in M_{n}(\overline{\mathbf{Q}})$ for all $\sigma \in \mathbf{p}_{\infty}$.

Theorem 3.10 is also verified by Bavard's theory. We set $P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{1}=$ $\left\{a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right): \operatorname{disc}(a)=1\right\}$, and for $X \in \mathrm{o}_{\mathrm{k}}^{n} \backslash\{0\}$ define the length function $f_{X}: P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{1} \longrightarrow \mathbf{R}$ by $f_{X}(a)=\log \left(\mathrm{Nr}_{\mathrm{k}_{\mathbf{R}}}\left({ }^{t} \bar{X} a X\right)\right)$. Let $\mathcal{E}=$ $\left(P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)^{1}, S L_{n}\left(\mathrm{o}_{\mathrm{k}}\right), \mathrm{o}_{\mathrm{k}}^{n} \backslash\{0\},\left\{f_{X}\right\}\right)$. Then Bavard [11, Proposition 2.22] proved that the definition of perfection and eutaxy in Definition 3.4 coincides with that in Definition 3.2 for \mathcal{E}, and \mathcal{E} satisfies the condition (C). In contrast to Theorem 3.2, the number of classes in $\mathrm{k}_{\mathbf{R}}^{+} \backslash P_{n}\left(\mathrm{k}_{\mathbf{R}}\right) / G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right)$ of eutactic elements is not finite in general if $k \neq \mathbf{Q}$, see [23, p.162]. To resolve this problem, Bavard introduced the notion of non-degenerate points in his framework ([11, Définition 1.5]), and proved that the number of classes of non-degenerate eutactic elements is finite ([11, Proposition 2.24]).

If k is an imaginary quadratic field, then F_{*} is essentially the same as F_{+}restricted to \mathcal{H}_{1}. More precisely, we have

$$
4 F_{*}(t \bar{g} g)=F_{+}\left(g \mathrm{o}_{\mathrm{k}}^{n}\right)^{2}
$$

for all $g \in G L_{n}\left(\mathrm{k}_{\mathbf{R}}\right)=G L_{n}(\mathbf{C})$. In particular, the number of $S_{*}(a) / \mathrm{o}_{\mathrm{k}}^{\times}$ is bounded by $2\left(4^{n}-1\right) / \sharp\left(o_{k}^{\times}\right)$. In general, any estimate of the number of $S_{*}(a) / \mathrm{o}_{\mathrm{k}}^{\times}$is unknown.

Problem 3.2. Bound the maximum $\max _{a \in P_{n}\left(\mathrm{k}_{\mathbf{R}}\right)} \sharp\left(S_{*}(a) / \mathrm{o}_{\mathrm{k}}^{\times}\right)$.
The assertion of Theorem 3.10 is true even if the free o_{k}-lattice o_{k}^{n} in the definitions of m_{*} and $S_{*}(a)$ is replaced with a general o_{k}-lattice $\Lambda \in \mathcal{H}\left(\mathrm{k}_{\mathbf{R}}^{n}\right)$. This was verified by Meyer [41, Théorème 3.21] in more general setting.

4. Generalized Hermite constants of flag varieties

A generalization of Hermite's constant to algebraic groups was studied in [63] and [64]. The main problem in this theory is to formulate and verify Voronoï type theorems. This problem was completely solved by Meyer [41], [42] in the case of $G L_{n}$. Some inner forms of $G L_{n}$ were studied in [24]. It is likely that Bavard's theory applies to many cases, e.g., see Example 4.2
below. However, to approach adelic Voronoï theorems for the generalized Hermite constants involving positive characteristic cases, we will need a suitable definition of perfection for our adelic setting.

4.1. Generalized Hermite constants

Let G be a connected affine algebraic group defined over \mathbf{Q}. For any \mathbf{Q} algebra $A, G(A)$ stands for the group of A-rational points of G. In particular, $G(\mathbf{A})$ denotes the adele group of G. Let $\mathbf{X}_{\mathbf{Q}}^{*}(G)$ be the module of \mathbf{Q}-rational characters of G. We denote by $G(\mathbf{A})^{1}$ the subgroup $\left\{g \in G(\mathbf{A}):|\chi(g)|_{\mathbf{A}}=1 \quad\right.$ for all $\left.\chi \in \mathbf{X}_{\mathbf{Q}}^{*}(G)\right\}$, where $|\cdot|_{\mathbf{A}}$ denotes the usual idele norm of the idele group of \mathbf{Q}. By the product formula of the idele norm, $G(\mathbf{Q})$ is contained in $G(\mathbf{A})^{1}$.

In the following, let G be a connected reductive algebraic group defined over \mathbf{Q}. We fix a minimal Q-parabolic subgroup P of G and a Levi subgroup M_{P} of P. The maximal central \mathbf{Q}-split torus Z_{P} of M_{P} is a maximal \mathbf{Q}-split torus of G. We choose a maximal \mathbf{Q}-parabolic subgroup Q of G and its Levi subgroup M_{Q} such that $P \subset Q$ and $M_{P} \subset M_{Q}$. Let Z_{G} be the maximal central \mathbf{Q}-split torus of G. Since Q is maximal, the module $\mathbf{X}_{\mathbf{Q}}^{*}\left(M_{Q} / Z_{G}\right)$ is of rank one, and hence there is a unique generator $\widehat{\alpha}_{Q}$ of $\mathbf{X}_{\mathbf{Q}}^{*}\left(M_{Q} / Z_{G}\right)$ such that the restriction of $\widehat{\alpha}_{Q}$ to Z_{P} / Z_{G} is a positive scalar multiple of a positive simple root with respect to $\left(P, Z_{P}\right)$. Let U_{Q} be the unipotent radical of Q, and let K be a maximal compact subgroup of $G(\mathbf{A})$ such that $G(\mathbf{A})=P(\mathbf{A}) K$. Then the height function $H_{Q}: G(\mathbf{A}) \longrightarrow \mathbf{R}_{>0}$ is defined by

$$
H_{Q}(u m h)=\left|\widehat{\alpha}_{Q}(m)\right|_{\mathbf{A}}^{-1}
$$

for $u \in U_{Q}(\mathbf{A}), m \in M_{Q}(\mathbf{A})$ and $h \in K$. Indeed H_{Q} is a function on the space $Z_{G}(\mathbf{A}) Q(\mathbf{A})^{1} \backslash G(\mathbf{A})=Q(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$. Define the function F_{Q} : $G(\mathbf{A}) \longrightarrow \mathbf{R}_{>0}$ by

$$
F_{Q}(g)=\min _{[v] \in Q(\mathbf{Q}) \backslash G(\mathbf{Q})} H_{Q}(v g) .
$$

The generalized Hermite constant γ_{Q} of $Q \backslash G$ is defined to be the maximum

$$
\gamma_{Q}=\max _{[g] \in Z_{G}(\mathbf{A}) G(\mathbf{Q}) \backslash G(\mathbf{A}) / K} F_{Q}(g)=\max _{[g] \in G(\mathbf{Q}) \backslash G(\mathbf{A})^{1} / K} F_{Q}(g) .
$$

We assume the following two conditions for G and Q :
$\left(\mathrm{C}_{1}\right) G(\mathbf{A})=G(\mathbf{Q}) G(\mathbf{R}) K$.
$\left(\mathrm{C}_{2}\right) \quad G(\mathbf{Q})=Q(\mathbf{Q}) G(\mathbf{Z})$, where $G(\mathbf{Z})=G(\mathbf{Q}) \cap G(\mathbf{R}) K$.

The condition $\left(\mathrm{C}_{1}\right)$ means that G is of class number one. By [17, Proposition $7.5]$, the condition $\left(\mathrm{C}_{2}\right)$ is satisfied if M_{Q} is of class number one. Then γ_{Q} is represented as

$$
\gamma_{Q}=\max _{[g] \in G(\mathbf{Z}) \backslash G(\mathbf{R}) / K_{\infty}} F_{Q}(g)=\max _{[g] \in G(\mathbf{Z}) \backslash G(\mathbf{R}) / K_{\infty}} \min _{\gamma \in G(\mathbf{Z})} H_{Q}^{\infty}(\gamma g)
$$

where K_{∞} and H_{Q}^{∞} denote the infinite components of K and H_{Q}, respectively.

Example 4.1. For $k=1, \cdots, n-1$, let

$$
R_{k}(\mathbf{Q})=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a \in G L_{k}(\mathbf{Q}), b \in M_{k, n-k}(\mathbf{Q}), d \in G L_{n-k}(\mathbf{Q})\right\}
$$

Then R_{k} is a maximal \mathbf{Q}-parabolic subgroup of $G L_{n}$. It is well-known that $G L_{n}$ and R_{k} satisfy both conditions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$. The character $\widehat{\alpha}_{R_{k}}$ is given by

$$
\widehat{\alpha}_{R_{k}}\left(\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\right)=(\operatorname{det} a)^{(n-k) / \operatorname{gcd}(k, n-k)}(\operatorname{det} d)^{-k / \operatorname{gcd}(k, n-k)} .
$$

For $\gamma \in G L_{n}(\mathbf{Z}), X_{\gamma}$ denotes the n by k matrix consisting of the first k-colums of γ. It is an easy exercise to prove that

$$
H_{R_{k}}^{\infty}(\gamma g)^{\operatorname{gcd}(k, n-k) / n}=\operatorname{det}\left({ }^{t} X_{\gamma^{-1}}{ }^{t} g^{-1} g^{-1} X_{\gamma^{-1}}\right)^{1 / 2}
$$

holds for any $\gamma \in G L_{n}(\mathbf{Z})$ and $g \in S L_{n}(\mathbf{R})$. From this relation, it follows that $\left(\gamma_{R_{k}}\right)^{2 \operatorname{gcd}(k, n-k) / n}$ equals the Rankin constant $\gamma_{n, k}$. Thus, Coulangeon's result in 2.2 is interpreted as Voronoï's theorem of the function $F_{R_{k}}$.

Example 4.2. Let B be a non degenerate bilinear form on \mathbf{Q}^{n} defined by

$$
B(x, y)=x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{n} y_{n}
$$

for $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right)$ and $y={ }^{t}\left(y_{1}, \cdots, y_{n}\right) \in \mathbf{Q}^{n}$. We assume $n \geq 3$ and put $\boldsymbol{e}_{11}={ }^{t}(1,1,0, \cdots, 0) \in \mathbf{Q}^{n}$. Let $\mathcal{N}_{B}(\mathbf{Q})$ be the set of all non-zero isotropic vectors in \mathbf{Q}^{n} with respect to B. The special orthogonal group $S O_{B}(\mathbf{Q})$ of B transitively acts on $\mathcal{N}_{B}(\mathbf{Q})$, i.e., one has $\mathcal{N}_{B}(\mathbf{Q})=S O_{B}(\mathbf{Q}) \boldsymbol{e}_{11}$. Let $P(\mathbf{Q})$ be the stabilizer of the isotropic line $\mathbf{Q} \boldsymbol{e}_{11}$ in $S O_{B}(\mathbf{Q})$. Then P is a unique proper \mathbf{Q}-parabolic subgroup of the algebraic group $S O_{B}$ up to $S O_{B}(\mathbf{Q})$-conjugates. For any finite prime p, K_{p} denotes the stabilizer of the \mathbf{Z}_{p}-lattice \mathbf{Z}_{p}^{n} in $S O_{B}\left(\mathbf{Q}_{p}\right)$. Since \mathbf{Z}_{p}^{n} is a unimodular maximal lattice with respect to B, K_{p} is a maximal compact subgroup of $S O_{B}\left(\mathbf{Q}_{p}\right)$. At the infinite place ∞, the stabilizer K_{∞} of the vector $\boldsymbol{e}={ }^{t}(1,0, \cdots, 0)$ in
$S O_{B}(\mathbf{R})$ gives a maximal compact subgroup of $S O_{B}(\mathbf{R})$. The intersection $S O_{B}(\mathbf{Q}) \cap\left(S O_{B}(\mathbf{R}) \times \prod_{p<\infty} K_{p}\right)$ is the stabilizer $S O_{B}(\mathbf{Z})$ of the lattice \mathbf{Z}^{n} in $S O_{B}(\mathbf{Q})$. The adele group $S O_{B}(\mathbf{A})$ has the Iwasawa decomposition: $S O_{B}(\mathbf{A})=P(\mathbf{A})\left(\prod_{p \leq \infty} K_{p}\right)$. The height function $H_{P}: S O_{B}(\mathbf{A}) \longrightarrow \mathbf{R}_{>0}$ is given by

$$
H_{P}(g)=\left\|g^{-1} \boldsymbol{e}_{11}\right\|_{\mathbf{A}^{n}}=\prod_{p \leq \infty}\left\|g_{p}^{-1} \boldsymbol{e}_{11}\right\|_{p}
$$

for $g=\left(g_{p}\right)_{p \leq \infty} \in S O_{B}(\mathbf{A})$. Here, the local height $\|\cdot\|_{p}$ is defined by

$$
\|x\|_{p}= \begin{cases}\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} & (p=\infty) \\ \max \left(\left|x_{1}\right|_{p}, \cdots,\left|x_{n}\right|_{p}\right) & (p<\infty)\end{cases}
$$

for $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right) \in \mathbf{Q}_{p}^{n}$. If $g=u m h$ with $u \in U_{P}(\mathbf{A}), m \in M_{P}(\mathbf{A})$ and $h \in \prod_{p \leq \infty} K_{p}$, then $H_{P}(g)$ equals the idele norm of the first component of the vector $m^{-1} \boldsymbol{e}_{11}$. Since the class number of the indefinite lattice $\left(B, \mathbf{Z}^{n}\right)$ equals one, $S O_{B}$ satisfies the condition $\left(\mathrm{C}_{1}\right)$, and hence the generalized Hermite constant γ_{P} is written as

$$
\gamma_{P}=\max _{[g] \in S O_{B}(\mathbf{Z}) \backslash S O_{B}(\mathbf{R}) / K_{\infty}[v] \in P(\mathbf{Q}) \backslash S O_{B}(\mathbf{Q})}\left\|g^{-1} v^{-1} \boldsymbol{e}_{11}\right\|_{\mathbf{A}^{n}}
$$

Let $\mathcal{N}_{B}^{*}(\mathbf{Z})$ denote the set of primitive vectors in $\mathcal{N}_{B}(\mathbf{Q}) \cap \mathbf{Z}^{n}$, i.e.,

$$
\mathcal{N}_{B}^{*}(\mathbf{Z})=\left\{x \in \mathbf{Z}^{n} \backslash\{0\}: B(x, x)=0 \text { and } \operatorname{gcd}\left(x_{1}, \cdots, x_{n}\right)=1\right\}
$$

From $S O_{B}(\mathbf{Q}) \boldsymbol{e}_{11}=\mathcal{N}_{B}(\mathbf{Q})=\mathbf{Q}^{\times} \cdot \mathcal{N}_{B}^{*}(\mathbf{Z})$, it follows that

$$
\min _{[v] \in P(\mathbf{Q}) \backslash S O_{B}(\mathbf{Q})}\left\|g^{-1} v^{-1} \boldsymbol{e}_{11}\right\|_{\mathbf{A}^{n}}=\min _{x \in \mathcal{N}_{B}^{*}(\mathbf{Z})}\left\|g^{-1} x\right\|_{\mathbf{A}^{n}} .
$$

Since x is a primitive isotropic vector and $g \in S O_{B}(\mathbf{R})$, we have

$$
\left\|g^{-1} x\right\|_{\mathbf{A}^{n}}=\left\|g^{-1} x\right\|_{\infty} \times \prod_{p<\infty}\|x\|_{p}=\left\|g^{-1} x\right\|_{\infty}
$$

and hence

$$
\gamma_{P}=\max _{[g] \in K_{\infty} \backslash S O_{B}(\mathbf{R}) / S O_{B}(\mathbf{Z})} \min _{x \in \mathcal{N}_{B}^{*}(\mathbf{Z})}\|g x\|_{\infty}
$$

We may compare this with Example 3.2. The group $S O_{0}(1, n-1)$ is the identity connected component of $S O_{B}(\mathbf{R})$. Since $K_{\infty} \backslash S O_{B}(\mathbf{R}) / S O_{B}(\mathbf{Z})=$ $K_{e} \backslash S O_{0}(1, n-1) / \Gamma$ and $\mathcal{N}_{B}^{*}(\mathbf{Z})$ equals the subset of primitive vectors in $\mathbf{Z}^{n} \backslash\{0\} \cap \partial \bar{\Omega}_{n}$, one has

$$
\begin{equation*}
2^{n / 2} \max _{a \in \Omega_{n}} F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}(a) \leq\left(\gamma_{P}\right)^{n} \tag{3}
\end{equation*}
$$

If $n=3$, then $\gamma_{P}=\sqrt{\gamma_{2}}=\sqrt{2 / \sqrt{3}}$ since $S O_{B}$ is isomorphic with $P G L_{2}$ over \mathbf{Q}. In this case, the equality of (3) holds. In general n, Birch and Davenport's theorem [16, Theorem A] gives $\gamma_{P} \leq\left(\sqrt{2 n} \gamma_{n-1}\right)^{(n-1) / 2}$. It is unknown whether the equality $2^{n / 2} \max _{a \in \Omega_{n}} F_{\left(\Omega_{n}, \mathbf{Z}^{n}\right)}(a)=\left(\gamma_{P}\right)^{n}$ holds for all n or not. Bavard's theory applies to this example. By using the same notation as in Example 3.4, we can choose $\mathcal{E}=\left(S O_{0}(1, n-1)\right.$. $\left.\mathrm{I}_{n}, \Gamma, \mathcal{N}_{B}^{*}(\mathbf{Z}),\left\{\left.f_{x}\right|_{S O_{0}(1, n-1)}\right\}\right)$ as a quadruplet in question (cf. [9, Proposition 2.6]).

We should mention two remarks. Let G and P be the same as above, i.e., G is a connected reductive algebraic group defined over \mathbf{Q} and P a minimal Q-parabolic subgroup. First, let R be a Q-parabolic subgroup of G such that $P \subset R$. Then the generalized Hermite constant γ_{R} is defined even if R is not maximal. However, in this case, there is no canonical height function on $R(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$. As a result, there are infinitely many multiplicatively independent generalized Hermite constants of $R \backslash G$. To define a height function on $R(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$, we choose a \mathbf{Q}-rational embedding of the projective variety $R \backslash G$ into a projective space. Such an embedding is constructed by a strongly \mathbf{Q}-rational irreducible representation $\pi: G \longrightarrow G L_{N}$ of G. By strongly \mathbf{Q}-rational, we mean that π is a \mathbf{Q}-rational morphism and the highest weight line l_{π} in $\overline{\mathbf{Q}}^{N}$ of π is defined over \mathbf{Q}. Assume $\pi(R)$ is the stabilizer of l_{π} in $\pi(G)$. Then the map $g \mapsto \pi\left(g^{-1}\right) l_{\pi}$ gives rise to a \mathbf{Q}-rational embedding of $R \backslash G$ into the projective space \mathbf{P}^{N-1}. If R_{1} denotes the maximal parabolic subgroup of $G L_{N}$ defined in a similar fashion as in Example 4.1, then \mathbf{P}^{N-1} is identified with $R_{1} \backslash G L_{N}$, and the height $H_{R_{1}}$ is defined on $R_{1}(\mathbf{A})^{1} \backslash G L_{N}(\mathbf{A})^{1}$. The composition of π and $H_{R_{1}}$ gives a height function $H_{R, \pi}$ on $R(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$. Then the generalized Hermite constant $\gamma_{R, \pi}$ is defined to be
$\gamma_{R, \pi}=\max _{[g] \in R(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}} F_{R, \pi}(g), \quad$ where $\quad F_{R, \pi}(g)=\min _{[v] \in R(\mathbf{Q}) \backslash G(\mathbf{Q})} H_{R, \pi}(v g)$.
Second remark is a base change from \mathbf{Q} to a number field k. The adelic definition of the generalized Hermite constants is immediately extended to reductive groups defined over k . Thus one can define $\gamma_{R, \pi}(\mathrm{k})$ for a connected reductive group G defined over k , a parabolic k-subgroup $R \subset G$ and a strongly k-rational representation π. In this notation, the constant $\gamma_{R, \pi}(\mathbf{Q})$ means $\gamma_{R, \pi}$. We write $\gamma_{n}(\mathrm{k})$ (resp. $\gamma_{n}(\mathrm{k})_{1}$ and $\gamma_{n, k}(\mathrm{k})$) for the generalized Hermite constant of $R_{1} \backslash G L_{n}$ (resp. $\left(R_{1} \cap S L_{n}\right) \backslash S L_{n}$ and $R_{k} \backslash G L_{n}$) defined over k . When k is a totally real number field, $\gamma_{2}(\mathrm{k})_{1}$ was implicitly occurred in Cohn's paper [19, §5, §9]. Newman [44, Chapter XI] defined $\gamma_{n}(k)_{1}$ for
imaginary quadratic fields k. For a general number filed $k, \gamma_{n}(k)_{1}$ was studied by Icaza [32] in terms of Humbert forms, i.e., $\gamma_{n}(\mathrm{k})_{1}$ is relating with the function F_{*} as follows:

$$
\left(\gamma_{n}(\mathrm{k})_{1}\right)^{2 n}=\max _{[a] \in \mathrm{k}_{\mathbf{R}}^{+} \backslash P_{n}\left(\mathrm{k}_{\mathbf{R}}\right) / G L_{n}\left(\mathrm{o}_{\mathrm{k}}\right)} F_{*}(a),
$$

(cf. [65, §3]). As a generalization of Rankin's constant, Thunder [61] defined $\gamma_{n, k}(\mathrm{k})$ by using twisted heights on Grassmann varieties. The above definition of $\gamma_{R, \pi}(\mathrm{k})$ was given in [63]. Meyer [41] investigated $\gamma_{R, \pi}(\mathrm{k})$ when $G=G L_{n}$ and π is a Schur module realized as a polynomial representation, and established Voronoil's theorem for $F_{R, \pi}$ by using Bavard's theory. Among other results in [41], we present here only the algebraicity of $\gamma_{R, \pi}(\mathrm{k})$:

Theorem 4.1 (Meyer). Let k be an arbitrary algebraic number field. When $G=G L_{n}$, all $\gamma_{R, \pi}(\mathrm{k})$ are algebraic numbers.

In the case that k is a function field of one variable over a finite field, $\gamma_{Q}(\mathrm{k})$ was studied in [64].

4.2. Generalized Hermite constants of $S p_{n}$

Let $n=2 m$ be an even integer. We consider a symplectic group

$$
G(\mathbf{Q})=S p_{n}(\mathbf{Q})=\left\{g \in G L_{2 m}(\mathbf{Q}):{ }^{t} g\left(\begin{array}{cc}
0 & -\mathrm{I}_{m} \\
\mathrm{I}_{m} & 0
\end{array}\right) g=\left(\begin{array}{cc}
0 & -\mathrm{I}_{m} \\
\mathrm{I}_{m} & 0
\end{array}\right)\right\}
$$

For $1 \leq k \leq m, Q_{k}$ denotes the maximal parabolic subgroup of G given as follows:

$$
\begin{aligned}
& Q_{k}(\mathbf{Q})=U_{k}(\mathbf{Q}) L_{k}(\mathbf{Q}), \\
& L_{k}(\mathbf{Q})=\left\{\delta(a, b)=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b_{11} & 0 & b_{12} \\
0 & 0 & t^{-1} a^{-1} & 0 \\
0 & b_{21} & 0 & b_{22}
\end{array}\right): \begin{array}{l}
a \in G L_{k}(\mathbf{Q}) \\
b=\left(b_{i j}\right) \in S p_{2(m-k)}(\mathbf{Q})
\end{array}\right\}, \\
& U_{k}(\mathbf{Q})=\left\{\left(\begin{array}{cccc}
\mathrm{I}_{k} * * & * & * \\
0 & \mathrm{I}_{m-k} & * & 0 \\
0 & 0 & \mathrm{I}_{k} & 0 \\
0 & 0 & * & \mathrm{I}_{m-k}
\end{array}\right) \in G(\mathbf{Q})\right\}
\end{aligned}
$$

The module of \mathbf{Q}-rational characters $\mathbf{X}_{\mathbf{Q}}^{*}\left(L_{k}\right)$ of L_{k} is a free \mathbf{Z}-module of rank 1 and its base is given by

$$
\widehat{\alpha}_{Q_{k}}(\delta(a, b))=\operatorname{det} a .
$$

We fix a good maximal compact subgroup K of $G(\mathbf{A})$ so that $G(\mathbf{A})$ has the Iwasawa decomposition $G(\mathbf{A})=Q_{k}(\mathbf{A}) K$. Since G and Q_{k} satisfy both conditions $\left(\mathrm{C}_{1}\right)$ and $\left(\mathrm{C}_{2}\right)$, one has

$$
\begin{equation*}
\gamma_{Q_{k}}=\max _{[g] \in G(\mathbf{Z}) \backslash G(\mathbf{R}) / K_{\infty}} \min _{\gamma \in G(\mathbf{Z})} H_{Q_{k}}^{\infty}(\gamma g) \tag{4}
\end{equation*}
$$

We restrict ourselves to the case $k=m$. An element of $L_{m}(\mathbf{A})$ is denoted by

$$
\delta(a)=\left(\begin{array}{lc}
a & 0 \\
0^{t} a^{-1}
\end{array}\right), \quad\left(a \in G L_{m}(\mathbf{A})\right) .
$$

By definition, we have

$$
H_{Q_{m}}^{\infty}(u \delta(a) h)=|\operatorname{det} a|^{-1}, \quad\left(u \in U_{m}(\mathbf{R}), \delta(a) \in L_{m}(\mathbf{R}), h \in K_{\infty}\right)
$$

Let

$$
\mathrm{H}_{m}=\left\{Z \in M_{m}(\mathbf{C}): \operatorname{Re} Z \in V_{m}, \operatorname{Im} Z \in P_{m}\right\}
$$

be the Siegel upper half space. The group $G(\mathbf{R})$ acts on H_{m} by

$$
g\langle Z\rangle=(a Z+b)(c Z+d)^{-1}, \quad\left(g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G(\mathbf{R}), Z \in \mathbf{H}_{m}\right) .
$$

Since it is possible to choose the maximal compact subgroup K_{∞} as the stabilizer of $Z_{0}=\sqrt{-1} \mathrm{I}_{m} \in \mathrm{H}_{m}$ in $G(\mathbf{R})$, we have $\operatorname{Im}\left\{(u \delta(a) h)\left\langle Z_{0}\right\rangle\right\}=a^{t} a$, and hence

$$
H_{Q_{m}}^{\infty}(g)=\left(\operatorname{det} \operatorname{Im}\left\{g\left\langle Z_{0}\right\rangle\right\}\right)^{-1 / 2}
$$

for any $g \in G(\mathbf{R})$. Combining this with (4), we get

$$
\gamma_{Q_{m}}=\max _{[g] \in G(\mathbf{Z}) \backslash G(\mathbf{R}) / K_{\infty}} \min _{\gamma \in G(\mathbf{Z})}\left(\operatorname{det} \operatorname{Im}\left\{\gamma g\left\langle Z_{0}\right\rangle\right\}\right)^{-1 / 2} .
$$

Since $g\left\langle Z_{0}\right\rangle$ runs over a fundamental domain of $G(\mathbf{Z}) \backslash \mathbf{H}_{m}$, we have

$$
\gamma_{Q_{m}}=\frac{1}{\min _{[Z] \in G(\mathbf{Z}) \backslash \mathbf{H}_{m}} \max _{\gamma \in G(\mathbf{Z})}(\operatorname{det} \operatorname{Im}\{\gamma\langle Z\rangle\})^{1 / 2}} .
$$

Note that

$$
\operatorname{det} \operatorname{Im}\{\gamma\langle Z\rangle\}=|\operatorname{det}(c Z+d)|^{-2} \operatorname{det} \operatorname{Im} Z \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G(\mathbf{Z}) .
$$

Siegel's fundamental domain S_{m} of $G(\mathbf{Z}) \backslash \mathrm{H}_{m}$ is given as follows:

$$
\mathrm{S}_{m}=\left\{\begin{aligned}
Z \in \mathrm{H}_{m}: & \bullet|\operatorname{det}(c Z+d)| \geq 1 \text { for all }\binom{* *}{c d} \in G(\mathbf{Z}) \\
& \bullet \operatorname{Im} Z \in \mathrm{M}_{m}, \quad\left|\operatorname{Re} Z_{i j}\right| \leq 1 / 2 \text { for all } i, j
\end{aligned}\right\}
$$

where M_{m} denotes Minkowski's domain:

$$
\left\{Y \in P_{m}: \begin{array}{l}
\stackrel{t}{ }{ }^{t} x Y x \geq Y_{i i} \text { for all } x \in \mathbf{Z}^{m} \text { with } \operatorname{gcd}\left(x_{i}, \cdots, x_{m}\right)=1 \\
\bullet Y_{j, j+1}>0, \quad i=1, \cdots, m, j=1, \cdots, m-1
\end{array}\right\}
$$

From

$$
Z \in \mathrm{~S}_{m} \Longrightarrow \max _{\gamma \in G(\mathbf{Z})} \operatorname{det} \operatorname{Im}\{\gamma\langle Z\rangle\}=\operatorname{det} \operatorname{Im} Z
$$

it follows that

$$
\gamma_{Q_{m}}=\frac{1}{\min _{Z \in S_{m}}(\operatorname{det} \operatorname{Im} Z)^{1 / 2}}
$$

namely

$$
\min _{Z \in \mathrm{~S}_{m}} \operatorname{det} \operatorname{Im} Z=\frac{1}{\left(\gamma_{Q_{m}}\right)^{2}}
$$

If $m=1$, we have $\min _{Z \in S_{1}} \operatorname{det} \operatorname{Im} Z=\sqrt{3} / 2$. Recently, Kawamura [33] determined the actual value of $\min _{Z \in \mathrm{~S}_{2}} \operatorname{det} \operatorname{Im} Z$ by using Gottschling's description of S_{2}.

Theorem 4.2 (Kawamura). One has $\min _{Z \in \mathrm{~S}_{2}} \operatorname{det} \operatorname{Im} Z=2 / 3$, and hence $\gamma_{Q_{2}}=\sqrt{3 / 2}$. This minimum is attained only when $Z=Z_{8}$ or $-\overline{Z_{8}}$, where

$$
Z_{8}=\frac{1}{3}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)+\sqrt{-1} \frac{\sqrt{2}}{3}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

The boundary $\partial \mathrm{S}_{2}$ of S_{2} is described by 28 polynomials in 6 real variables. Hayata [30] computed 0-dimensional cells of $\partial \mathrm{S}_{2}$. There are at least 1700 -dimensional cells of $\partial \mathrm{S}_{2}$. The points Z_{8} and $-\overline{Z_{8}}$ are contained in Hayata's list.

For general $n=2 m$, we have the following bound by [63, Example 3]:

$$
\min _{Z \in \mathrm{~S}_{m}} \operatorname{det} \operatorname{Im} Z \leq\left\{\frac{1}{m+1} \cdot \frac{\prod_{j=1}^{\left[\frac{m-1}{2}\right]} \xi(2 j+1)}{\prod_{j=1}^{m} \xi(m+j)}\right\}^{\frac{2}{m+1}}
$$

where $\xi(s)$ denotes the zeta function $\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$.
Problem 4.1. Give a good lower bound of $\min _{Z \in S_{m}} \operatorname{det} \operatorname{Im} Z$.

Problem 4.2. Formulate a Voronoï type theorem for the function $Z \mapsto$ $\operatorname{det} \operatorname{Im} Z$ on S_{m}.

We finish this example by some observation. Let

$$
R_{m}(\mathbf{Q})=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, d \in G L_{m}(\mathbf{Q}), b \in M_{m}(\mathbf{Q})\right\}
$$

be a maximal parabolic subgroup of $G L_{n}$. We have $\gamma_{R_{m}}=\gamma_{n, m}$ as seen in Example 4.1. It is obvious that $S p_{n}(\mathbf{A}) \subset G L_{n}(\mathbf{A}), S p_{n}(\mathbf{A}) \cap R_{m}(\mathbf{A})=$ $Q_{m}(\mathbf{A})$ and $H_{R_{m}}(g)=H_{Q_{m}}(g)^{2}$ for $g \in S p_{n}(\mathbf{R})$. Since $Q_{m}(\mathbf{Q}) \backslash S p_{n}(\mathbf{Q}) \subset$ $R_{m}(\mathbf{Q}) \backslash G L_{n}(\mathbf{Q})$, the inequality

$$
F_{R_{m}}(g) \leq F_{Q_{m}}(g)^{2} \leq\left(\gamma_{Q_{m}}\right)^{2}
$$

holds for any $g \in S p_{n}(\mathbf{A})$. If the maximum of $F_{R_{m}}$ is attained on a point in $S p_{n}(\mathbf{A}), \gamma_{n, m}$ would be bounded by $\left(\gamma_{Q_{m}}\right)^{2}$. This happens when $m=1$ or 2 and in fact we have $\gamma_{2,1}=\left(\gamma_{Q_{1}}\right)^{2}$ and $\gamma_{4,2}=\left(\gamma_{Q_{2}}\right)^{2}$.

4.3. Variation of the set of minimal points

We return to the general setting of 4.1. We write Y_{Q} and X_{Q} for $Q(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$ and $Q(\mathbf{Q}) \backslash G(\mathbf{Q})$, respectively. For $g \in G(\mathbf{A})^{1}$, the set $S_{Q}(g)$ of minimal points in X_{Q} is defined as

$$
S_{Q}(g)=\left\{[x] \in X_{Q}: H_{Q}(x g)=F_{Q}(g)\right\} .
$$

By Northcott's theorem, $S_{Q}(g)$ is a finite set. We prove the following:
Proposition 4.1. For $g \in G(\mathbf{A})^{1}$, there is a neighbourhood \mathcal{U} of g in $G(\mathbf{A})^{1}$ such that $S_{Q}\left(g^{\prime}\right) \subset S_{Q}(g)$ for all $g^{\prime} \in \mathcal{U}$.

Proof. We define the operator norm $\|g\|_{Q}$ of $g \in G(\mathbf{A})^{1}$ by

$$
\|g\|_{Q}=\sup _{[y] \in Y_{Q}} \frac{H_{Q}(y g)}{H_{Q}(y)}=\max _{h \in K} H_{Q}(h g) .
$$

It is easy to see the following properties:

- $\left\|g_{1} g_{2}\right\|_{Q} \leq\left\|g_{1}\right\|_{Q}\left\|g_{2}\right\|_{Q}$ for all $g_{1}, g_{2} \in G(\mathbf{A})^{1}$.
- $\left\|h_{1} g h_{2}\right\|_{Q}=\|g\|_{Q}$ for all $g \in G(\mathbf{A})^{1}$ and $h_{1}, h_{2} \in K$.
- $\|h\|_{Q}=1$ for all $h \in K$.
- $g \mapsto\|g\|_{Q}$ is continuous on $G(\mathbf{A})^{1}$.

We fix a $g \in G(\mathbf{A})^{1}$ and put $C=\min _{[x] \in X_{Q} \backslash S_{Q}(g)} H_{Q}(x g)$. Then $F_{Q}(g)<C$ and we can take a constant δ so that $1<\delta<C / F_{Q}(g)$. Since $g \mapsto F_{Q}(g)$ is continuous on $G(\mathbf{A})^{1}$, the set

$$
\mathcal{U}=\left\{u \in G(\mathbf{A})^{1}:\left\|u^{-1}\right\|_{Q}<\frac{C}{\delta F_{Q}(g)}, \frac{F_{Q}(g u)}{F_{Q}(g)}<\delta\right\}
$$

is a neighbourhood of the identity in $G(\mathbf{A})^{1}$. Let $u \in \mathcal{U}$ and $[x] \in S_{Q}(g u)$. We have

$$
\left\|u^{-1}\right\|_{Q}^{-1} H_{Q}(x g) \leq H_{Q}(x g u)=F_{Q}(g u) .
$$

If $[x] \notin S_{Q}(g)$, then $C \leq H_{Q}(x g)$ and

$$
\delta F_{Q}(g) \leq \delta F_{Q}(g) H_{Q}(x g) / C<\left\|u^{-1}\right\|_{Q}^{-1} H_{Q}(x g) \leq F_{Q}(g u)<\delta F_{Q}(g) .
$$

This is a contradiction. Therefore, we have $[x] \in S_{Q}(g)$, and hence $S_{Q}(g u) \subset$ $S_{Q}(g)$ for any $u \in \mathcal{U}$.

This proposition is a generalization of Proposition 2.2. As a consequence, one can define the local maximality of $S_{Q}(g)$. This leads us to similar problems as in 2.3, e.g.,

Problem 4.3. If $g \in G(\mathbf{A})^{1}$ is an extreme point of F_{Q}, is $S_{Q}(g)$ locally maximal?

Problem 4.4. Bound $\sharp S_{Q}(g)$ by a constant independent of g.

References

1. H. Akrout, Théorèm de Voronoï dans les espaces symétriques, Canad. J. Math. 54 (2002), 449-467.
2. A. Ash, D. Mumford, M. Rappaport and Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History, Frontiers and Applications, vol. 4, Math. Sci. Press, Brookline, Massachusetts, 1975.
3. A. Ash, On eutactic forms, Can. J. Math. 29 (1977), 1040-1054.
4. A. Ash. On the existence of eutactic forms, Bull. London Math. Soc. 12 (1980), 192-196.
5. R. Baeza, R. Coulangeon, M. I. Icaza and M. O'Ryan, Hermite's constant for quadratic number fields, Experiment. Math. 16 (2007), no.4, 455-462.
6. E. S. Barnes, On a theorem of Voronoi, Proc. Cambridge Philos. Soc. 53 (1957), 537-539.
7. E. S. Barnes and M. J. Cohn, On the inner product of positive quadratic forms, J. Lond. Math. Soc. (2) 12(1976), 32-36.
8. C. Batut, Classification of quintic eutactic forms, Math. Comp. 70 (2001), 395-417.
9. C. Bavard, Systole et invariant d'Hermite, J. reine angew. Math. 482 (1997), 93-120.
10. C. Bavard, Classes minimales de re'seaux et re'tractions ge'ome'triques e'quivariantes dans les espaces syme'triques, J. London Math. Soc. (2) 64 (2001), 275-286.
11. C. Bavard, Théorie de Voronoï géométrique. Propriétés de finitude pour les familes de résaux et analgues, Bull. Soc Math. France 133 (2005), 205-257.
12. A.-M. Bergé, Minimal vectors of pairs of dual lattices, J. Number Theory 52 (1995), 284-298.
13. A.-M. Bergé and J. Martinet, Sur un problém de dualité lié aux sphères en géométrié des nombres, J. Number Theory 32 (1989), 14-42.
14. A.-M. Bergé and J. Martinet, Sur la classification des réseaux eutactiques, J. London Math. Soc. (2) 53 (1996), 417-432.
15. A.-M. Bergé and J. Martinet, On weakly eutactic forms, J. Lond. Math. Soc. (2) 75 (2007), 187-198.
16. B. J. Birch and H. Davenport, Quadtratic equations in several variables, Proc. Cambridge Phil. Soc. 54 (1958), 135-138.
17. A. Borel, Some finiteness properties of adele groups over number fields, Publ. Math. Inst. Hautes Etud. Sci. 16 (1963), 5-30.
18. J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, second edition, CMS Books in Mathematics, vol. 3, Springer-Verlag, New York, 2006.
19. H. Cohn, On the shape of the fundamental domain of the Hilbert modular group, Proc. Symp. Pure Math. VIII, Amer. Math. Soc. (1965), 190-202.
20. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grund. Math. Wiss. Vol. 290, Springer-Verlag 1999.
21. R. Coulangeon, M. I. Icaza and M. O'Ryan, Lenstra's constant and extreme forms in number fields, Experiment. Math. 16 (2007), no.4, 455-462.
22. R. Coulangeon, Réseaux k-extremes, Proc. London Math. Soc 73 (1996), no.3, 555-574.
23. R. Coulangeon, Voronoï theory over algebraic number fields, in Réseaux euclidens, designs sphériques et formes modulaires, Monogr. Enseign. Math. vol. 37, 2001, 147-162.
24. R. Coulangeon and T. Watanabe, Hermite constant and Voronoi theory over a quaternion skew field, Osaka J. Math. 43 (2006), 517-556.
25. J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Clarendon Press, 1994.
26. M. Gindraux, Lamination et antilamination des réseaux euclidiens, J. Th. Normbles Bordeaux 21 (2009), 535-557.
27. E. Gottschling, Explizite Bestimmung der Randfächen des Fundamentalbereiches der Modulgruppe zweiten Grades, Math. Ann. 138 (1959), 103-124.
28. P. M. Gruber, Convex and Discrete Geomety, Grundlehren Math. Wiss., vol. 336, Springer-Verlag, 2007.
29. P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland 1987.
30. T. Hayata, Zero cells of a Siegel fundamental domain of degree 2 with Gröbner
method, preprint, (2009).
31. P. Humbert, Théorie de la réduction des formes quadratiques définies positives dans un corps algébrique K fini, Comment. Math. Helv. 12 (1939/40), 263-306.
32. M. I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Sco. 55 (1997), 11-22.
33. T. Kawamura, The minimum of the determinant in the fundamental region of the modular group of degree 2, preprint, 2009.
34. Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge, 1993.
35. M. Koecher, Beiträge zu einer Reductionstheorie in Positivitätsbereichen. I, Math. Ann. 141 (1960), 384 - 432.
36. A. Korkine and G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242-292.
37. M. Laca, N. Larsen and S. Neshveyev, On Bost-Connes types systems for number fields, J. Number Theory 129 (2009), 325-338.
38. A. Leibak, On additive generalization of Voronoï's thoery to algebraic number fields, Proc. Estonian Acad. Sci. Phys. Math. 54 (2005), no.4, 195-211.
39. A. Leibak, The complete enumeration of binary perfect forms over the algebraic number field $\mathbf{Q}(\sqrt{6})$, Proc. Estonian Acad. Sci. Phys. Math. 54 (2005), no.4, 212-234.
40. J. Martinet, Perfect Lattices in Euclidean Spaces, Grundlehren Math. Wiss., vol. 327, Springer-Verlag, 2003.
41. B. Meyer, Constantes d'Hermite et théorie de Voronoï, Thèse, L'Université Bordeaux 1, 2008.
42. B. Meyer, Generalized Hermite constants, Voronoi theory and heights on flag varieties, Bull. Soc. Math. Fr. 137 (2009), 127-158.
43. H. Minkowski, Geometrie der Zahlen, Druck und Verlag von B. G. Teubner, 1910.
44. M. Newman, Integral Matrices, Academic Press, Pure and Applied Math. Vol.45, 1972.
45. K. Okuda and S. Yano, A generalization of Voronoï's theorem to algebraic lattices, preprint, (2010).
46. H. E. Ong, Perfect quadratic forms over real-quadratic number fields, Geom. Dedicata 20 (1986), no.1, 51-77.
47. C. Poor and D. S. Yuen, Linear dependence among Siegel Modular forms, Math. Ann. 318(2000), no.2, 205-234.
48. C. Poor and D. S. Yuen, The extreme core, Abh. Math. Sem. Univ. Hamburg 75(2005), 51-75.
49. C. Poor and D. S. Yuen, The Bergé-Martinet constant and slopes of Siegel cusp forms, Bull. Lond. Math. Soc. 38(2006), no.6, 913-924.
50. M. E. Pohst and M. Wagner, On the computation of Hermite-Humbert constants for real quadratic number fields, J. Théor. Normbres Bordeaux 17 (2005), no. 3, 905-920.
51. M. Kneser, Two remarks on extreme forms, Canad. J. Math. 7 (1955). 145149.
52. R. A. Rankin, On positive definite quadratic forms, J. London Math. Soc. 28
(1953), 309-314.
53. R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, vol. 28, Princeton Univ. Press, 1970.
54. S. S. Ryshkov, The polyhedron $\mu(m)$ and some extremal problems of the geomety of numbers, Soviet Math. Dokl. 11 (1970), 1240-1244.
55. S. S. Ryshkov, On the problem of the determination of the perfect quadratic forms in many variables, Proc. Steklov Math. 3 (1979), 233-259.
56. S. S. Ryshkov and E. P. Baranovskii, Classical methods in the theory of lattice packings, Russian Math. Surveys 34 (1979), 1-68.
57. K. Sawatani, T. Watanabe and K. Okuda, A note on the Hermite-Rankin constant, J. Th. Normbles Bordeaux 22 (2010), 209-217.
58. K. Sawatani and T. Watanabe, Type one functions and Voronoï's theorem, to appear in J. Convex Analysis.
59. A. Schürmann, From positive definite quadratic forms to lattice sphere packings and coverings, lecture notes, 2006, http://fma2.math.uni-magdeburg.de/~achill/publications.html.
60. A. Schürmann, Computational Geometry of Positive Definite Quadratic Forms, University Lecture Series 48, Amer. Math. Soc., 2008.
61. J. L. Thunder, Higher dimensional analogues of Hermite's constant, Michigan Math. J. 45 (1998), 301-314.
62. G. Voronoï, Nouvelles applications des paramétres coninus á la théorie des formes quadratiques, premier mémoire. Sur quelques propri-'etés des formes quadratiques positives parfaites, J. reine angew. Math. 133 (1908), 97-178.
63. T. Watanabe, On an analog of Hermite's constant, J. Lie Theory 10 (2000), 33-52.
64. T. Watanabe Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003), 1061-1080.
65. T. Watanabe A survey and a complement of fundamental Hermite constants, Contemporary Math. Vol. 344, Amer. Math. Soc. (2004), 339-350.
66. G. L. Watson, The number of minimum points of a positive quadratic form, Dissertationes Math. Rozprawy Mat. 84 (1971) 42 pp.
67. C. Zong, The kissing numbers of convex bodies - a brief survey, Bull. London Math. Soc. 30 (1998), 1-10.
