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Let Vn be the vector space of real n × n symmetric matrices and Pn

the open cone of positive definite symmetric matrices in Vn. By m1(a),

we denote the arithmetical minimum infx∈Zn\{0}
txax of a ∈ Pn. The

Hermite invariant is the positive valued function γ on Pn defined by

γ(a) = m1(a)/det(a)
1/n. Its maximum γn is called Hermite’s constant. The

determination of γn is one of main problems in lattice sphere packings or

the arithmetic theory of quadratic forms. Voronöı’s fundamental theorem

[62] gives a characterization of local maxima of γ, i.e., which can be stated

that γ attains a local maximum on a ∈ Pn if and only if a is perfect and

eutactic. In the last half of 20th century, various generalizations of Her-

mite’s constant and Voronöı’s theorem were studied by many authors. In

this paper, we give an account of a recent development concerning Voronöı’s

theorem.
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Notation. Throughout this paper, Vn denotes the vector space of real

n× n symmetric matrices, Pn the open cone of positive definite symmetric

matrices in Vn and P semi
n the closure of Pn in Vn. The vector space Vn is

equipped with the inner product ⟨a1, a2⟩ = tr(a1a2) for a1, a2 ∈ Vn. The

unimodular group GLn(Z) acts on Vn by (a, g) 7→ tgag for a ∈ Vn and

g ∈ GLn(Z). In general, for a given ring R, the set of all m × n matrices

with coefficients in R is denoted byMm,n(R). We writeMn(R) forMn,n(R)

and Rn for Mn,1(R). The unit group of the matrix ring Mn(R) is denoted

by GLn(R). The identity matrix in GLn(R) is denoted by In.

A Euclidean space Rn is equipped with the inner product (x, y) = txy.

For a ∈Mn(R), ∥a∥ denotes the operator norm of a, i.e.,

∥a∥ = sup
x∈Rn\{0}

(
(ax, ax)

(x, x)

)1/2

.

For a constant c ∈ R, R>c and R≥c stand for the open interval (c,+∞)

and the closed interval [c,+∞), respectively.

1. Type one functions and Voronöı’s theorem

There are several methods to prove Voronöı’s theorem [62, Théorème 17],

e.g., [6], [51], [54], see also [28, §29], [29, §39], [40, §3.4] and [60, §3.1.7].
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Convexity of the domain Pn and the concavity of both functions m1 and

det1/n play key roles in some proofs. Poor and Yuen [47] investigated a

family of such kind functions as m1 and det1/n. This family is called type

one functions. Every type one function ϕ is completely characterized by

the corresponding semikernel K1(ϕ). In this section, we first discuss type

one functions and semikernels, and then formulate Voronöı type theorem

in terms of type one functions. The semikernel K1(m1) associated with

m1 is called the Ryshkov polyhedron. In the second half of this section,

we investigate a description of faces of K1(m1). This gives a well-known

geometric interpretation of perfection.

1.1. Type one functions and semikernels

Definition 1.1. A function ϕ : P semi
n → R≥0 is called a type one function

if ϕ satisfies the following conditions:

(TO1) ϕ(θa) = θϕ(a) for all a ∈ P semi
n and θ ≥ 0,

(TO2) ϕ(a1 + a2) ≥ ϕ(a1) + ϕ(a2) for all a1, a2 ∈ P semi
n ,

(TO3) ϕ(a) > 0 for all a ∈ Pn.

A type one function ϕ is called a type one class function if ϕ(tgag) = ϕ(a)

holds for all a ∈ P semi
n and g ∈ GLn(Z).

Example 1.1. The trace tr and the smallest eigenvalue λ1 are type one

functions, but not type one class functions. The reduced determinant det1/n

and the arithmetical minimum

m1(a) = inf
x∈Z\{0}

txax

are type one class functions.

For a type one function ϕ, the dual type one function ϕ◦ : P semi
n → R≥0

is defined to be

ϕ◦(a) = inf
b∈Pn

⟨a, b⟩
ϕ(b)

.

If ϕ is a type one class function, then so is ϕ◦. The dual type one class

function of m1 is denoted by w1, which is called the dyadic trace. The dual

type one class function of det1/n is ndet1/n.

Any type one function is continuous on Pn, but not necessarily contin-

uous on P semi
n . For example, w1 is not continuous on P semi

n ; however w1 is

upper semicontinuous on P semi
n . Here a type one function ϕ is said to be

upper semicontinuous at a ∈ P semi
n if

ϕ(a) = lim sup
b→a

ϕ(b) = lim
ϵ↓0

(sup{ϕ(b) : ∥a− b∥ ≤ ϵ, b ∈ P semi
n }) .
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In general, the dual ϕ◦ of an arbitrary type one function ϕ is necessarily

upper semicontinuous on P semi
n ( [58, Corollary 2.7]).

Definition 1.2. Let K be a convex subset of P semi
n such that 0 /∈ K,

R≥1 ·K = K and R>0 ·K ⊃ Pn.

(1) K is called a kernel if K is closed in P semi
n .

(2) K is called a semikernel if the following three conditions are satisfied:

(SK1) K ∩ (Pn ∪ {0}) is closed in Pn ∪ {0},
(SK2) { θ ≥ 0 | θa ∈ K } is closed in [0,∞) for any a ∈ K,

(SK3) a+ b ⊂ K for all a ∈ K and b ∈ P semi
n .

It is easy to see that a kernel is a semikernel. The dualK⊔ of a semikernel

K is defined to be

K⊔ = { a ∈ Vn : ⟨a, b⟩ ≥ 1 for all b ∈ K }.

This K⊔ is a kernel.

There is a natural correspondence between type one functions and

semikernels. For a type one function ϕ, we set

K1(ϕ) = { a ∈ P semi
n : ϕ(a) ≥ 1 }.

Conversely, for a semikernel K, define the function ψ(K, ·) : P semi
n → R≥0

by

ψ(K, a) = max ({ θ > 0 : a ∈ θ ·K } ∪ {0}) .

The existence of this maximum follows from the condition (SK2). The fol-

lowing results were proved in [58, §1]

Proposition 1.1. The correspondence ϕ 7→ K1(ϕ) gives a bijection be-

tween the set of type one functions (resp. upper semicontinuous type one

functions) and the set of semikernels (resp. kernels). For any type one func-

tion ϕ and any semikernel K, one has

ψ(K1(ϕ), ·) = ϕ , K1(ψ(K, ·)) = K

and moreover

ψ(K, ·)◦ = ψ(K⊔, ·).

Proposition 1.2. For any type one function ϕ, we have{
ϕ◦◦(a) = ϕ(a) if a ∈ Pn

ϕ◦◦(a) ≥ ϕ(a) if a ∈ P semi
n \ Pn.

If ϕ is upper semicontinuous on P semi
n , then ϕ◦◦ = ϕ on P semi

n .
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1.2. Voronöı’s theorem of m1/ϕ

Voronöı’s theorem characterizes local maxima of the Hermite invariant

Fdet1/n = m1/det
1/n. A point a ∈ Pn is said to be extreme (resp. strict

extreme) if Fdet1/n attains a local maximum (resp. a strict local maximum)

on a up to the multiplication by an element of R>0. Indeed, we do not need

to distinguish between extreme points and strictly extreme points since any

extreme point is strictly extreme ( [40, Theorem 3.4.5]). For a ∈ Pn, S(a)

denotes the set of minimal integral vectors of a, i.e.,

S(a) = {x ∈ Zn \ {0} : txax = m1(a) }.

For any y ∈ Rn, φy denotes the linear form v 7→ tyvy on Vn.

Definition 1.3. Let a ∈ Pn. We fix an element b ∈ GLn(R) such that

a = tbb. An element a is said to be perfect if the linear forms φbx (x ∈ S(a))

span the dual space V ∗
n of Vn. An element a is said to be eutactic (resp.

weakly eutactic) if there exist ρx ∈ R>0 (resp. ρx ∈ R), x ∈ S(a), such

that

tr =
∑

x∈S(a)

ρxφbx. (1)

We note that these definitions of perfection, eutaxy and weakly eutaxy

are independent of a choice of b. It follows from definition that a is perfect

if and only if {xtx : x ∈ S(a)} spans Vn. If tr is represented as (1), then

we have

tr =
∑

x∈S(a)

ρxφhbx

for any orthogonal matrix h. The coefficients ρx are independent of h.

Any perfect element a is uniquely determined by m1(a) and S(a), i.e., a

is a unique solution of the system of linear equations in the unknown v = tv:

⟨v, xtx⟩ = m1(a), x ∈ S(a). If m1(a) ∈ Q, then its solution is contained in

Vn ∩Mn(Q) by Cramer’s formula. This is none other than the rationality

of perfect elements ( [36, p.252, 5◦]).

Theorem 1.1 (Korkine–Zorotareff). If a ∈ Pn is perfect and m1(a) ∈
Q, then a ∈ Pn ∩Mn(Q).

Voronöı’s theorem [62, Théorème 17] is stated as follows.

Theorem 1.2 (Voronöı). a ∈ Pn is extreme if and only if a is perfect

and eutactic.
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We fix a type one function ϕ. It is natural to ask whether the same kind

of Voronöı’s theorem holds for the function Fϕ = m1/ϕ on Pn. An element

a ∈ Pn is said to be ϕ-extreme (resp. strictly ϕ-extreme) if Fϕ attains a local

maximum (resp. a strictly local maximum) on a up to the multiplication

by an element of R>0. Assume ϕ is differentiable on Pn. Then

(∂ log ϕ)b(v) = lim
t→0

log ϕ(tb(In + tv)b)− log ϕ(tbb)

t

exists for b ∈ GLn(R) and v ∈ Vn. We define ϕ-eutaxy as follows:

Definition 1.4. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that

a = tbb. An element a is said to be ϕ-eutactic if there exist ρx > 0 (x ∈ S(a))

such that (∂ log ϕ)b =
∑

x∈S(a) ρxφbx.

In a similar fashion as eutaxy, this definition is independent of a choice

of b. If ϕ = det1/n, then (∂ log ϕ)b = tr, and hence det1/n-eutaxy is the

same as Definition 1.3.

It follows from (TO1) and (TO2) that ϕ is log-concave, i.e,

log ϕ((1− θ)a1 + θa2)) ≥ (1− θ) log ϕ(a1) + θ log ϕ(a2)

holds for all a1, a2 ∈ Pn and 0 < θ < 1. We say ϕ is strictly log-concave if

this inequality is strict for a1 ̸= a2.

In [58, §2], Voronöı’s theorem is generalized as follows.

Theorem 1.3. Let ϕ be a strictly log-concave and differentiable type one

function. Then, a ∈ Pn is ϕ-extreme if and only if a is perfect and ϕ-

eutactic. Moreover, any ϕ-extreme point is strictly ϕ-extreme.

The line of the proof of Theorem 1.3 is the same as Barnes’ [6] and

Martinet’s [40, §3.4] proof of Voronöı’s theorem. We give an outline of the

proof. We use the following two lemmas: the first is the same as [40, Lemmas

3.4.2 and 3.4.3] and the second is a generalization of [40, Lemma 3.4.4].

Lemma 1.1. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that a = tbb.

(1) There exists a neighborhood U of In in GLn(R) such that S(tbtuub) ⊂
S(a) for any u ∈ U .
(2) There exists a neighborhood V of 0 in Vn such that

m1(
tb(In + v)b) = m1(a) ⇐⇒ min

x∈S(a)
φbx(v) = 0

for any v ∈ V.
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Lemma 1.2. Let ϕ be a strictly log-concave and differentiable type one

function. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that a = tbb.

(1) There exists a neighborhood V ⊂ Vn of 0 such that either v = 0 or

ϕ(tb(In+v)b) < ϕ(a) holds for any v ∈ V with (∂ log ϕ)b(v) ≤ 0 and In+v ∈
Pn.

(2) Let C be a closed cone in Vn such that (∂ log ϕ)b(v) > 0 for all v ∈ C\{0}.
Then there exists α > 0 such that ϕ(tb(In + v)b) > ϕ(a) holds for any v ∈ C
with 0 < ∥v∥ < α.

We set Da = {v ∈ Vn : minx∈S(a) φbx(v) ≥ 0 and (∂ log ϕ)b(v) ≤ 0}.
By these lemmas, we obtain the following generalization of Korkine and

Zolotareff’s equivalent condition (cf. [40, Theorem 3.4.5]).

Lemma 1.3. Let ϕ be a strictly log-concave and differentiable type one

function. Then a ∈ Pn is ϕ-extreme if and only if Da = {0}. Any ϕ-extreme

point is strictly ϕ-extreme.

Lemma 1.3 leads us to Theorem 1.3 as follows: Let a ∈ Pn be perfect and

ϕ-eutactic. Fix an element b ∈ GLn(R) such that a = tbb. For v ∈ Da, ϕ-

eutaxy concludes φbx(v) = 0 for all x ∈ S(a), and then v = 0 by perfection.

Thus Da = {0} and a is ϕ-extreme. Conversely, let a be ϕ-extreme. If

φbx(v) = 0 for all x ∈ S(a), then either v or −v is contained in Da. Since

Da = {0}, we have v = 0. This implies that a is perfect. The linear forms

−(∂ log ϕ)b and φbx, x ∈ S(a), satisfy

{v ∈ Vn : min
x∈S(a)

φbx(v) ≥ 0 and − (∂ log ϕ)b(v) ≥ 0}

=
∩

x∈S(a)

Ker(φbx) ∩Ker(−(∂ log ϕ)b) = {0} .

Then, by Stiemke’s theorem, a must be ϕ-eutactic. Here Stiemke’s theorem

asserts that, for a family of linear forms φ1, · · · , φr on RN , there exists

ρ1, · · · , ρr ∈ R>0 such that ρ1φ1 + · · ·+ ρrφr = 0 if and only if {v ∈ RN :

min1≤i≤r φi(v) ≥ 0} = Ker(φ1) ∩ · · · ∩Ker(φr).

1.3. Geometric characterizations of perfect forms

The kernel K1(m1) is called the Ryshkov polyhedron. Ryshkov [54], [56,

Chapter III] closely investigated polyhedral geometric structure of K1(m1)

and its dual K1(m1)
⊔. Since m1 equals zero on the boundary of P semi

n ,

the Ryshkov polyhedron K1(m1) is contained in Pn. For an integral vector

x ∈ Zn \ {0} and a constant λ ∈ R, H+
x,λ denotes the affine half-space
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{a ∈ Vn : ⟨a, xtx⟩ ≥ λ} in Vn. Then K1(m1) is the intersection of affine

half-spaces H+
x,1, (x ∈ Zn \ {0}). It is known that K1(m1) is a locally finite

polyhedron, i.e., the intersection of K1(m1) and an arbitrary polytope is a

polytope, (see e.g., [28, Proposition 29.5], [60, Theorem 3.1]). In particular,

K1(m1) ∩ {a ∈ Vn : tr(a) ≤ λ} is a polytope for any sufficiently large

constant λ > 0. We denote by ∂K1(m1) the boundary of K1(m1). In what

follows, we give a description of faces of K1(m1).

Lemma 1.4. Let a1, · · · , ar ∈ ∂K1(m1) and S be a non-empty finite subset

of Zn\{0} such that S ⊂ S(ai) for i = 1, · · · , r. Then, for any λ1, · · · , λr ∈
R≥0 with λ1 + · · · + λr = 1, one has λ1a1 + · · · + λrar ∈ ∂K1(m1) and

S ⊂ S(λ1a1 + · · ·+ λrar).

Proof. Since K1(m1) is convex, λ1a1 + · · ·+ λrar is contained in K1(m1).

If x ∈ S, then

⟨
r∑

i=1

λiai, x
tx⟩ =

r∑
i=1

λim1(ai) =
r∑

i=1

λi = 1 .

This means m1(λ1a1 + · · ·+ λrar) = 1 and S ⊂ S(λ1a1 + · · ·+ λrar).

For a non-empty finite subset S ⊂ Zn \ {0}, define the subset FS of

∂K1(m1) as

FS = {a ∈ ∂K1(m1) : S ⊂ S(a)} .

We denote by HS the affine subspace of Vn generated by FS , i.e.,

HS = {λ1a1+ · · ·+λrar : 1 ≤ r ∈ Z, ai ∈ FS , λi ∈ R, λ1+ · · ·+λr = 1}

if FS ̸= ∅, or HS = ∅ if FS = ∅. Since S is non-empty, HS is a proper affine

subspace of Vn.

Lemma 1.5. One has FS = ∂K1(m1)∩HS. In particular, FS is a face of

K1(m1) if FS ̸= ∅.

Proof. We assume FS ̸= ∅ and fix an a0 ∈ FS . Let r = dimHS . There

exist r elements a1, · · · , ar ∈ FS such that {a1 − a0, · · · , ar − a0} is a basis

of the subspace {a − a0 : a ∈ HS}. Any element b ∈ ∂K1(m1) ∩ HS is

represented as

b = a0 + λ1(a1 − a0) + · · ·+ λr(ar − a0), λ1, · · · , λr ∈ R .

Since S ⊂ S(ai) for i = 0, 1, · · · , r, we have ⟨ai − a0, x
tx⟩ = 0 for all x ∈ S,

and hence ⟨b, xtx⟩ = ⟨a0, xtx⟩ = 1 for all x ∈ S. This means S ⊂ S(b).

Therefore, ∂K1(m1) ∩HS is a subset of FS .
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Lemma 1.6. Any face of K1(m1) is of the form FS for some non-empty

finite subset S ⊂ Zn \ {0}.

Proof. Let F be a face of K1(m1) of dimension r. First, we assume F is

a facet, i.e., r = dimVn − 1. There exist r + 1 elements a0, a1, · · · , ar ∈ F
such that a1 − a0, · · · , ar − a0 are linearly independent. We fix constants

λ0, λ1, · · · , λr such that λ0 + λ1 + · · · + λr = 1 and 0 < λi < 1 for i =

0, 1, · · · , r. Since F is convex, the element a = λ0a0 + λ1a1 + · · ·+ λrar is

also contained in F . For any x ∈ S(a), we have

1 = m1(a) = ⟨a, xtx⟩ =
r∑

i=0

λi⟨ai, xtx⟩ ≥
r∑

i=0

λi = 1 .

Thus, ⟨ai, xtx⟩ equals m1(ai) = 1 for all i = 0, 1, · · · , r. This implies S(a) ⊂
S(ai) for all i = 0, 1, · · · , r. Let S be the intersection of S(ai), i = 0, 1, · · · , r.
Since S ⊂ S(a) is obvious, one has S = S(a). By definition, the face FS

contains a0, a1, · · · , ar. Therefore, ∂K1(m1) ∩ HS = FS contains F . Since

HS is a proper affine subspace and F is a facet, we obtain FS = F .

In general case, F is an intersection of finite number of facets, say

FS1 , · · · ,FSk
. By definition, we have

F =
k∩

i=1

FSi = FS1∪···∪Sk
.

We denote by ∂0K1(m1) the set of all vertices (= 0 dimensional faces)

of K1(m1). The next theorem is well-known.

Theorem 1.4. For a ∈ ∂K1(m1), the following three conditions are equiv-

alent each other.

(1) a is perfect.

(2) a ∈ ∂0K1(m1).

(3) There exists a neibourhood O of a in Pn such that S(b) $ S(a) for any

b ∈ O \R>0a.

Proof. First we show the contraposition of (1) =⇒ (2). Let a ∈ ∂K1(m1)\
∂0K1(m1). Then, there exist a1, a2 ∈ ∂K1(m1) and 0 < λ0 < 1 such that

a = λ0a1 + (1 − λ0)a2. Both S(a1) and S(a2) contain S(a). Assume a is

perfect. By Lemma 1.4, S(λa1+(1−λ)a2) also contains S(a) for all positive

λ < 1. Therefore, λa1 + (1− λ)a2 is perfect. This contradicts Theorem 1.1.

Next we show (2) =⇒ (3). Let a ∈ ∂0K1(m1). By Lemma 1.6, there

exists a finite subset S ⊂ Zn \ {0} such that {a} = FS . By Lemma 1.1,
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there is a neighbourhood O of a in Pn such that S(b) ⊂ S(a) for all b ∈ O.

If b ∈ ∂K1(m1) ∩ O and S(b) = S(a), then we have b ∈ FS , and hence

b = a. This O satisfies (3).

We show the contraposition of (3) =⇒ (1). Let a ∈ ∂K1(m1) be a non-

perfect point. Then, there exists c ∈ Vn \ {0} such that ⟨c, xtx⟩ = 0 for all

x ∈ S(a). If ϵ > 0 is sufficiently small, then a + ϵc is contained in Pn and

S(a + ϵc) is a subset of S(a). Since ⟨a + ϵc, xtx⟩ = 1 for all x ∈ S(a), we

have m1(a + ϵc) = 1 and S(a + ϵc) = S(a). This means that a does not

satisfy the condition (3).

Corollary 1.1. The set of all perfect elements of Pn coincides with R>0 ·
∂0K1(m1).

In the rest of this section, we show that K1(m1) is the convex hull of

∂0K1(m1) in Vn. For a ∈ ∂0K1(m1), we set

Ca = {b ∈ Vn : ⟨b, xtx⟩ ≥ 0 for all x ∈ S(a)} =
∪

x∈S(a)

H+
xtx,0 ,

which is a polyhedral cone in Vn of finite faces. For a non-zero b ∈ Ca, the
ray R≥0 · b is called an extreme ray of Ca if for any b1, b2 ∈ Ca, whenever
b = (b1 + b2)/2, we must have b1, b2 ∈ R≥0 · b.

Lemma 1.7. Let a ∈ ∂0K1(m1). If R≥0 · b is an extreme ray of Ca, then
b ̸∈ P semi

n .

Proof. We prove that b ∈ P semi
n leads us to a contradiction. Since a is

perfect, the set {xtx : x ∈ S(a)} spans Vn. We set

S′ = {x ∈ S(a) : ⟨b, xtx⟩ = 0}

and

W = {c ∈ Vn : ⟨c, xtx⟩ = 0 for all x ∈ S′} .

Since b ̸= 0, S′ is non-empty and W is a subspace of Vn containing the line

R · b.
First we assume dimW ≥ 2. There is a c ∈ W such that b and c are

linearly independent. If we assume b ∈ P semi
n , then we have ⟨b, xtx⟩ > 0 for

all x ∈ S(a)\S′. Thus, for sufficiently small λ > 0, we have ⟨b±λc, xtx⟩ > 0

for all x ∈ S(a) \ S′. From ⟨b ± λc, xtx⟩ = 0 for all x ∈ S′, it follows

b± λc ∈ Ca. Then one has

b =
1

2
(b+ λc) +

1

2
(b− λc)
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and b± λc ̸∈ R≥0 · b. This is a contradiction.

Next we assume dimW = 1, i.e., W = R · b. Let N = dimVn. Since

the subspace spanned by {xtx : x ∈ S′} is the orthogonal complement of

W , there are N − 1 linearly independent vectors x1
tx1, · · · , xN−1

txN−1 in

{xtx : x ∈ S′}. By the perfection of a, there exists xN ∈ S(a) \ S′ such

that x1
tx1, · · · , xN−1

txN−1, xN
txN are linearly independent. If we assume

b ∈ P semi
n , then there is a square root

√
b ∈ P semi

n such that (
√
b)2 = b. For

each i = 1, · · · , N − 1, one has

0 = ⟨b, xitxi⟩ = t(
√
bxi)(

√
bxi) ,

i.e., x1, · · · , xN−1 are contained in the nullspace of
√
b. Thus there is a non-

zero y ∈ Rn such that tyxi = 0 for i = 1, · · · , N − 1. We choose a non-zero

z ∈ Rn which is orthogonal to xN . Then the non-zero symmetric matrix

(ytz+zty)/2 ∈ Vn is orthogonal to x1
tx1, · · · , xNtxN . This contradicts that

x1
tx1, · · · , xNtxN spans Vn.

Proposition 1.3. Let L be an edge (= one dimensional face) of K1(m1).

Then there are a1, a2 ∈ ∂0K1(m1) such that L = {λa1 + (1 − λ)a2 : 0 ≤
λ ≤ 1}.

Proof. For a sufficiently large θ > 0, we set

K1(m1)θ = K1(m1) ∩ {a ∈ Vn : ⟨a, In⟩ ≤ θ} and Lθ = L ∩K1(m1)θ .

Since Lθ is an edge of the polytope K1(m1)θ, there are vertices a1, a
′
1 of

K1(m1)θ such that Lθ is the line joining a1 and a
′
1. Since Lθ is not contained

in the affine hyperplane {a ∈ Vn : ⟨a, In⟩ = θ}, at least one of a1 and a′1
must be a vertex of K1(m1). Let a1 ∈ ∂0K1(m1) and b ∈ Vn be a direction

of L. Thus, any point of L is of the form a1 + λb for some λ ≥ 0.

We show R≥0 · b is an extreme ray of Ca1 . There is an open interval

(0, λ0) such that a1 + λb ∈ L for all λ ∈ (0, λ0). Since a1 + λb ∈ ∂K1(m1)

for λ ∈ (0, λ0), we have m1(a1 + λb) = 1 and

1 ≤ ⟨a1 + λb, xtx⟩ = 1 + λ⟨b, xtx⟩

for all x ∈ S(a1). This means b ∈ Ca1 . If R≥0 ·b is not an extreme ray of Ca1 ,

then there are b1, b2 ∈ Ca1 \R≥0 ·b such that b = (b1+b2)/2. For i = 1, 2 and

a sufficiently small λ > 0, we have a1 + λbi ∈ Pn and S(a1 + λbi) ⊂ S(a1).

From bi ∈ Ca1 , it follows that for x ∈ S(a1 + λbi),

m1(a1 + λbi) = ⟨a1 + λbi, x
tx⟩ = 1 + λ(bi, x

tx⟩ ≥ 1 .
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Namely, both a1+λb1 and a1+λb2 are contained in K1(m1)\L and a1+λb

is the middle point of a1 + λb1 and a1 + λb2. This is impossible since L is

an edge of K1(m1). Therefore R≥0 · b must be an extreme ray of Ca.
Since b ̸∈ P semi

n by Lemma 1.7, the value λ1 = sup{λ ≥ 0 : a0 + λb ∈
K1(m1)} is finite. Thus L is written as L = {a1 + λb : 0 ≤ λ ≤ λ1}.
Finally we show the point a2 = a1 + λ1b is a vertex of K1(m1). If a2 ̸∈
∂0K1(m1), then there are c1, c2 ∈ ∂K1(m1) such that a2 = (c1 + c2)/2 and

λc1 + (1 − λ)c2 ∈ ∂K1(m1) for 0 ≤ λ ≤ 1. In this case, the triangle of

vertices a1, c1 and c2 is contained in ∂K1(m1). This contradicts that L is

an edge of K1(m1).

Corollary 1.2. The Ryshkov domain K1(m1) is the convex hull of

∂0K1(m1).

Proof. We fix an arbitrary a ∈ K1(m1). If θ > tr(a), then a ∈ K1(m1)θ.

Let {b1, · · · , br} be the set of all vertices of the polytope K1(m1)θ. Since

K1(m1)θ is the convex hull of {b1, · · · , br}, a is of the form λ1b1+ · · ·+λrbr
with λ1+ · · ·+λr = 1 and λi ≥ 0, i = 1, · · · , r. Each bi is either a vertex of

K1(m1) or the intersection of an edge of K1(m1) and the affine hyperplane

{c ∈ Vn : tr(c) = θ}. In any case bi is a point on an edge of K1(m1). By

Proposition 1.3, all bi are contained in the convex hull of ∂0K1(m1), and

hence a is also contained in the convex hull of ∂0K1(m1).

Proposition 1.3 is regarded as the dual statement of [56, Theorem 12.1].

From Proposition 1.3, it follows that the convex cone K1(m1) does not have

any extreme direction. Thus, Corollary 1.2 is a consequence of more general

theorem [53, Theorem 18.5].

All subsets K1(m1), ∂K1(m1) and ∂
0K1(m1) of Pn are invariant by the

action of GLn(Z). The finiteness of ∂0K1(m1)/GLn(Z) is due to Voronöı

[62, §7 Théorèm]).

Theorem 1.5 (Voronöı). The cardinality of ∂0K1(m1)/GLn(Z) is finite.

Proof. We follows the argument of [60, Theorem 3.4]. Let a ∈ ∂0K1(m1).

By the reduction theory of Hermite or Minkowski, there exists an equivalent

a′ ∈ aGLn(Z) such that λ1λ2 · · ·λn ≤ cn det a
′, where λi denotes the i-th

diagonal component of a′ and cn is the constant depending only on n. Since

a′ is perfect, there are n linearly independent minimal vectors x1, · · · , xn
in S(a′). Since m1(a

′) = m1(a) = 1, Hadamard’s inequality leads us to
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det a′ ≤ ⟨a′, x1tx1⟩ · · · ⟨a′, xntxn⟩ = 1. Therefore, we have

tr(a′) = λ1 + · · ·+ λn ≤ nλ1 · · ·λn ≤ ncn

because of 1 = m1(a
′) ≤ λi for i = 1, · · · , n. This shows that any perfect

element of ∂0K1(m1) isGLn(Z)-equivalent to a vertex of polytopeK1(m1)∩
{a ∈ Vn : tr(a) ≤ ncn}.

More generally, it is known that the set of all faces of ∂K1(m1) has only

finitely many GLn(Z)-orbits ( [55, Theorem 5’], see Theorem 3.2 below).

The actual value of the cardinality ρn = ♯(∂0K1(m1)/GLn(Z)) is known

up to n = 8 (cf. [59, §3.1]): one has ρ2 = ρ3 = 1, ρ4 = 2, ρ5 = 3, ρ6 = 7, ρ7 =

33, ρ8 = 10916.

We note that the face FS may not necessarily be compact in general. It

is known that the non-empty face FS is compact if and only if S spans Rn (

[55, Theorem 1], see also [40, Remark 9.1.12]). If S(a) spansRn, then a ∈ Pn

is said to be well-rounded. Any perfect point is obviously well-rounded.

Any weakly eutactic point is also well-rounded ( [14, Théorème 2.3]). The

finiteness and the algebraicity of weakly eutactic classes are verified by

Bergé and Martinet [14, Théorèmes 3.5 et 4.1].

Theorem 1.6 (Bergé and Martinet). Let ∂weK1(m1) be the set of

all weakly eutactic points in ∂K1(m1). Then the cardinality of

∂weK1(m1)/GLn(Z) is finite. Any a ∈ ∂weK1(m1) is contained in GLn(Q),

where Q stands for the algebraic closure of Q.

Let ∂wrK1(m1) be the set of all well-rounded points in ∂K1(m1). The

quotient ∂wrK1(m1)/GLn(Z) is compact (cf. [40, Proposition 9.1.6]).

1.4. Hermite like constants

Let ϕ be a type one class function and Sp be a complete set of representa-

tives for ∂0K1(m1)/GLn(Z). From Pn ⊂ R>0 ·K1(m1), it follows

sup
a∈Pn

Fϕ(a) = sup
a∈K1(m1)

Fϕ(a) = sup
a∈K1(m1)

1

ϕ(a)
.

By Corollary 1.2, any a ∈ K1(m1) is represented as

a = λ1a1 + · · ·+ λrar

by some a1, · · · , ar ∈ ∂0K1(m1) and λ1, · · · , λr ∈ R≥0 with λ1+ · · ·+λr =

1. Then, since ϕ(a) ≥ min{ϕ(a1), · · · , ϕ(ar)}, one has

sup
a∈K1(m1)

1

ϕ(a)
= sup

a∈∂0K1(m1)

1

ϕ(a)
= max

a∈Sp

1

ϕ(a)
.
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Therefore, the Hermite like constant

δϕ = max
a∈Pn

Fϕ(a)

of Fϕ is well-defined. In the case of ϕ = det1/n, δϕ coincides with the

Hermite constant γn.

Let ϕ◦ be the dual type one class function of ϕ. By definition, the

inequality m1(a) ≤ δϕ◦ϕ◦(a) holds for all a ∈ Pn. By passing to the dual,

one has ϕ◦◦(a) ≤ δϕ◦w1(a) for a ∈ Pn, and by Proposition 1.2,

sup
a∈Pn

ϕ(a)

w1(a)
≤ δϕ◦ .

Thus, we can define the dual constant

δ̂ϕ = sup
a∈Pn

ϕ(a)

w1(a)
.

Indeed, we can show δ̂ϕ = δϕ0 for any type one class function ϕ. In partic-

ular, this gives

γn = δdet1/n = δ̂(det1/n)◦ = n sup
a∈Pn

det(a)1/n

w1(a)
.

We write ξϕ for the product δϕ · δ̂ϕ. This satisfies the invariance ξϕ◦ =

ξCϕ = ξϕ for any constant C > 0. For example, ξw1 = ξm1 = δw1 and

ξdet1/n = γ2n/n. By definition, we have the following:

Proposition 1.4. The inequality ξw1 ≤ ξϕ holds for any type one class

function ϕ.

See [58, Propositions 3.2 and 3.3] for details.

2. Rankin’s constant and Voronöı’s theorem

Rankin [52] defined the constant γn,k as a generalization of Hermite’s con-

stant, and proved Rankin’s inequality among γn,k. About 40 years later,

Coulangeon [22] formulated Voronöı’s theorem of this case in terms of k-

perfection and k-eutaxy. It is an open problem to find a geometric character-

ization of k-perfect forms. Bergé and Martinet [13] introduced the constant

γ′n,k and proved several inequalities among γn,k and γ′n,k. In this section,

we will survey Voronöı’s theorem for γn,k and γ′n,1.
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2.1. Rankin’s constant

Let k be a positive integer with 1 ≤ k ≤ n − 1. We denote by M∗
n,k(Z)

the subset {X = (x1, · · · , xk) ∈ Mn,k(Z) : x1 ∧ x2 ∧ · · · ∧ xk ̸= 0} of

Mn,k(Z). The unimodular group GLk(Z) (resp. GLn(Z)) acts on M
∗
n,k(Z)

by right (resp. left) multiplications. For X ∈ M∗
n,k(Z), define the function

DX : P semi
n −→ R≥0 by

DX(a) = det(tXaX)1/k

for a ∈ P semi
n . It is obvious that DX is a type one function. The function

mk : P semi
n −→ R≥0 defined by

mk(a) = inf
X∈M∗

n,k(Z)
DX(a)

is a type one class function. This is regarded as a generalization of the

arithmetical minimum function m1. It is obvious that mk(a) > 0 if a ∈ Pn,

and mk(a) = 0 otherwise. Rankin [52] defined the constant

γn,k =

(
max
a∈Pn

mk(a)

det(a)1/n

)k

,

and then proved the inequality

γn,k ≤ γj,k(γn,j)
k/j

for 1 ≤ k < j ≤ n− 1 as a generalization of Mordell’s inequality. By using

this inequality, Rankin determined the value γ4,2 = 3/2. See 2.4 for other

explicit values of γn,k.

2.2. Voronöı’s theorem of mk/det1/n

A point a ∈ Pn is said to be k-extreme (strictly k-extreme) if mk/ det
1/n

attains a local maximum (resp. a strict local maximum) on a up to the

multiplication by an element of R>0. A Voronöı type characterization of

k-extreme points was studied by Coulangeon [22]. The subset

S∗
k(a) = {X ∈M∗

n,k(Z) : DX(a) = mk(a)}

corresponding to a ∈ Pn plays a key role. Since DXh(a) = DX(a) for all

h ∈ GLk(Z), the set S∗
k(a) is invariant by the action of GLk(Z), and hence

the quotient Sk(a) = S∗
k(a)/GLk(Z) exists. We write [X] for the element

X ·GLk(Z) in Sk(a). The following was proved in [22, Proposition 2.7].

Proposition 2.1 (Coulangeon). The cardinality of Sk(a) is finite.
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We recall the notion of k-perfection and k-eutaxy. For each i =

1, 2, · · · , k, we define the map ∗i : Vn ×Mn,k(R) −→Mn,k(R) by

v ∗i X = (x1, · · · , xi−1, vxi, xi+1, · · · , xk)

for v ∈ Vn and X = (x1, · · · , xk) ∈ Mn,k(R). Note that ∗i is linear in X

but not in v. Then, for each X ∈M∗
n,k(Z), the linear map φX : Vn −→ R

is defined by

φX(v) =
k∑

i=1

det(tX · (v ∗i X)) .

It is obvious that φX depends only on the class [X] = X ·GLk(Z). Another

definition of φX is given by

φX(v) = det(tX ·X)· < pX , v > ,

where pX denotes the matrix representation of the orthogonal projection

from Rn onto the subspace spanned by {x1, · · · , xk}.

Definition 2.1. Let a ∈ Pn. We fix an element b ∈ GLn(R) such that

a = tbb. An element a is said to be k-perfect if {φbX}[X]∈Sk(a) spans the

dual space V ∗
n of Vn. An element a is said to be k-eutactic if there exist

ρX > 0 ([X] ∈ Sk(a)) such that

tr =
∑

[X]∈Sk(a)

ρXφbX .

These definitions of k-perfection and k-eutaxy do not depend on a choice

of b. Now the main theorem of [22] is stated as follows:

Theorem 2.1 (Coulangeon). A point a ∈ Pn is k-extreme if and only if

a is k-perfect and k-eutactic. Any k-extreme point is strictly k-extreme.

The line of the proof of Theorem 2.1 is parallel to that of Theorem 1.3.

Namely, the following sufficient and necessary condition for k-extremeness

is shown: a = tbb ∈ Pn is k-extreme if and only if the set

{v ∈ Vn : min
X∈Sk(a)

φbX(v) ≥ 0 and tr(v) ≤ 0}

is reduced to {0} ( [22, Théorème 3.2.2]). Theorem 2.1 follows from this

and Stiemke’s theorem.

The finiteness of k-perfect points was proved in [22, Théorèm 4.5].

Theorem 2.2 (Coulangeon). The number of k-perfect points in Pn mod-

ulo R>0GLn(Z) is finite.
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Example 2.1. Let L ⊂ Rn be a full lattice, which means a Z-module

of rank n. The dual lattice L∗ of L is defined by L∗ = {y ∈ Rn :
txy ∈ Z for all x ∈ L}. If x1, · · · , xn is a basis of L, then we denote

by [L] the class of the Gram matrix (txixj)1≤i,j≤n in R>0\Pn/GLn(Z).

In dimension 4, there are at least 5 inequivalent 2-perfect points, i.e.,

[A4], [A
∗
4], [D4], [W4], [W

∗
4 ] ( [22, §5.1]). Here we use standard notations of

root lattices. By W4, we denote the Watson lattice of rank 4, i.e.,

[W4] =


3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

 mod R>0GL4(Z) .

The maximum of m2/ det
1/4 is attained on [D4]. In general n ≥ 4, the class

of any irreducible root lattice of rank n is 2-extreme and k-eutactic for all

k < n ( [22, Théorème 5.1.1]).

When k = 1, Theorem 1.1 shows that the Hermite constant γn = γn,1
is an algebraic number. The algebraicity of k-perfect points and γn,k for

k ≥ 2 was verified by Bavard [9, Théorèm 2.2], [11, §1.5]. It is based on the

following general result [11, Lemme 1.11].

Lemma 2.1. Let W ⊂ RN be an algebraic subset defined by polynomials

with coefficients in Q ∩R. Then the set of isolated points in W is a finite

subset contained in W ∩ (Q ∩R)N .

If a is k-perfect, then the set

W = {(b, λ) ∈ Vn ×R : DX(b)− λ = 0 for all X ∈ S∗
k(a)}

satisfies the assumption of Lemma 2.1. Since k-perfect points are isolated

in W ( [11, Proposition 1.8]), we obtain

Theorem 2.3 (Bavard). Any k-perfect point is contained in Pn∩Mn(Q).

In particular, γn,k is an algebraic number.

2.3. Some problems on k-perfect forms

Since mk is a continuous type one function and vanishes on the boundary

of P semi
n , K1(mk) is a kernel contained in Pn. As we have seen in §1.3,

K1(m1) is a locally finite polyhedral convex cone and perfect points are

characterized as vertices ofK1(m1). When k ≥ 2,K1(mk) is not polyhedral,

and we have the following problem.

Problem 2.1. Determine locations of k-perfect points in K1(mk).
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Theorem 1.4 (3) gives another characterization of perfect points in Pn.

On variations of the set Sk(a), the next is elementary ( [22, Lemme 2.9]).

Proposition 2.2 (Coulangeon). For a ∈ Pn, there is a neighborhood U
of a in Pn such that Sk(a

′) ⊂ Sk(a) for a
′ ∈ U .

We say that Sk(a) is locally maximal if there is a neighborhood U of a

in Pn such that Sk(a
′) $ Sk(a) for all a′ ∈ U \R>0a. Let P

(k)
n be the set

of a ∈ Pn such that Sk(a) is locally maximal. If k = 1, P
(1)
n coincides with

the set of all perfect points in Pn.

Problem 2.2. Does P
(k)
n coincide with the set of all k-perfect points in Pn

for any k ≥ 2 ?

The cardinality ♯(S(a)) = 2♯(S1(a)) is called the kissing number of

a. Determination of the maximum maxa∈Pn 2♯(S1(a)) is known as the

lattice kissing number problem [20, Chapter 1, §2]. The actual value of

maxa∈Pn
♯(S1(a)) is known for 1 ≤ n ≤ 9 and n = 24 (cf. [67]). One can

prove the estimate maxa∈Pn ♯(S1(a)) ≤ 2n−1 for all n as follows: Let a ∈ Pn

and x, y ∈ S(a). If y − x = 2z ∈ 2Zn, then m1(a) =
t(x + 2z)a(x + 2z) =

txax, and hence tzaz = −txaz. From txax ≤ t(x + z)a(x + z), it follows
tzaz ≤ 0, i.e., z = 0. This means that the natural map Zn −→ Zn/2Zn

is injective on S1(a). This proof is due to Voronöı [62, p.107, Lemme], see

also [43, §31, p.80] for more general result. When n ≥ 10, Watson [66, The-

orem 1] proved maxa∈Pn
♯(S1(a)) ≤ 2n−2 + 8. We have a similar problem

for k ≥ 2.

Problem 2.3. Bound the maximum maxa∈Pn ♯(Sk(a)).

If ϕ is a type one function, then one can ask about Voronöı’s theorem

for mk/ϕ.

Problem 2.4. Prove Voronöı type theorem for mk/ϕ when k ≥ 2.

Let wk be the dual type one class function of mk. When k ≥ 2, it is not

trivial that the Hermite–Rankin like constant of mk/ϕ exists for a given

type one class function ϕ. We set

δϕ,k = sup
a∈Pn

mk(a)

ϕ(a)
, δ̂ϕ,k = sup

a∈Pn

ϕ(a)

wk(a)

for a type one class function ϕ.

Problem 2.5. When are both δϕ,k and δ̂ϕ,k finite ?
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It is easy to see that δϕ,k = δ̂ϕ◦,k provided that both δϕ,k and δ̂ϕ◦,k are

finite.

2.4. The Bergé–Martinet constant

The constant

γ′n,k =

(
sup
a∈Pn

mk(a)mk(a
−1)

)k/2

was first defined by Bergé and Martinet. In [13], they proved several in-

equalities among γn,k and γ′n,k.

Theorem 2.4 (Bergé and Martinet). One has the following:

(1) γ′n,k ≤ γn,k ≤ (γn)
k for 1 ≤ k ≤ n− 1.

(2) (γn,k)
n ≤ (γn−k,k)

n−k(γ′n,k)
2k for 1 ≤ k ≤ n/2.

(3) γ′n,2k ≤ (γ′n−k,k)
2 for 1 ≤ k ≤ n/2.

(4) (γn,k)
n−2k ≤ (γn−k,k)

n−k for 1 ≤ k ≤ n− 1.

(5) γn,n/2 = γ′n,n/2 if n is even.

When k = 1, an analog of Voronöı’s theorem holds for the Bergé–

Martinet invariant FBM(a) =
√
m1(a)m1(a−1). A point a ∈ Pn is said

to be dual-extreme (strictly dual extreme) if FBM attains a local maximum

(resp. a strict local maximum) on a up to the multiplication by an element

of R>0. To define the dual-perfection and the dual-eutaxy, we use the same

notation as in 1.2.

Definition 2.2. Let a ∈ Pn. We fix an element b ∈ GLn(R) such that a =
tbb. An element a is said to be dual-perfect if {φbx}x∈S(a)∪{φtb−1y}y∈S(a−1)

spans the dual space V ∗
n of Vn. An element a is said to be dual-eutactic if

there exist ρx > 0 (x ∈ S(a)) and ρy > 0 (y ∈ S(a−1)) such that∑
x∈S(a)

ρxφbx =
∑

y∈S(a−1)

ρyφtb−1y.

Then one has:

Theorem 2.5 (Bergé and Martinet). A point a ∈ Pn is dual-extreme

if and only if a is dual-perfect and dual-eutactic. Any dual extreme point is

a strict dual extreme.

As noticed in [40, p.99], the number of dual-perfect points in Pn modulo

R>0GLn(Z) is infinite in general. In [12], Bergé proved the following:



August 16, 2010 12:2 WSPC - Proceedings Trim Size: 9in x 6in voronoi2

20

Theorem 2.6 (Bergé). The number of dual-extreme points in Pn modulo

R>0GLn(Z) is finite. If a ∈ Pn is dual extreme, then there exists λ ∈ R>0

such that λa ∈ GLn(Q). In particular , γ′n = γ′n,1 is an algebraic number.

As to the explicit value of γ′n, γ
′
8 = γ8 = 2 immediately follows from

the self-duality of the E8-lattice. Bergé and Martinet determined the values

γ′2 = 2/
√
3, γ′3 =

√
3/2 and γ′4 =

√
2. In [49], Poor and Yuen proved the

inequality

n

(γn)2
≤ inf

(a,b)∈Pn×Pn

⟨a, b⟩
m1(a)m1(b)

≤ n

(γ′n)
2

(2)

and, by using this, they determined the following values.

Theorem 2.7 (Poor and Yuen). γ′5 =
√
2, γ′6 =

√
8/3 and γ′7 =

√
3.

All known values of γ′n satisfy (γ′n)
2 ∈ Q. The following problem is due

to Martinet [40, Questions 3.8.12].

Problem 2.6. Is (γ′n)
2 rational for all n ?

Applying Theorem 2.4 to the explicit values of γ′5, γ
′
7, γ4,2 and γn for

n = 2, · · · , 8, we have

Theorem 2.8. γ6,2 = 32/3, γ′6,2 = 2, γ8,2 = γ′8,2 = 3 and γ8,3 = γ′8,3 =

γ8,4 = γ′8,4 = 4.

See [57, §2] for details. Barnes and Cohn [7] also proved the first part

of the inequality (2). Since one has

1

ξw1

= inf
(a,b)∈Pn×Pn

⟨a, b⟩
m1(a)m1(b)

,

the first part of (2) is a special case of Proposition 1.4. Furthermore, the

inequality (2) is generalized to γn,k and γ′n,k as follows:

n

(γn,k)2/k
≤ inf

(a,b)∈Pn×Pn

⟨a, b⟩
mk(a)mk(b)

≤ n

(γ′n,k)
2/k

,

(see [57, Theorem 1]). To find an analog of Voronöı’s theorem for the k-

th Bergé–Martinet invariant F
(k)
BM(a) = (mk(a)mk(a

−1))k/2 ( [40, Problem

10.6.10]) solved by Bavard, see Example 3.7 below. See [26] for other Her-

mite like invariants.
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3. Generalizations of Voronöı’s theorem

There are several directions to generalize Voronöı’s theorem. A natural

generalization of the domain Pn was considered by Koecher [35] and Ash

[3]. An extension of the geometric framework was developed by Bavard

[9], [11]. A change of a base field from Q to an algebraic number field

was studied by several authors [22], [32], [38], [45], [46]. In this section, we

will survey these theories. We do not exhaust all of generalizations. See

e.g., [40, Chaprter 13] for other variations.

3.1. Voronöı’s theorem of packing functions on symmetric

cones

A generalization of the domain Pn is given by the notion of symmetric

cones. Let Ω be an open convex cone in the Euclidean space RN . The open

dual cone Ω∗ of Ω is defined to be

Ω∗ = {a ∈ RN : (a, b) > 0 for all b ∈ Ω \ {0}} ,

where Ω denotes the closure of Ω in RN . If Ω = Ω∗ holds, then Ω is called

a self-dual cone. We denote by GΩ the stabilizer of Ω in GLN (R), i.e.,

GΩ = {g ∈ GLN (R) : gΩ = Ω} .

If GΩ acts transitively on Ω, then Ω is said to be homogeneous. By a

symmetric cone, we mean a self-dual homogeneous cone. See the textbook

[25] for details of symmetric cones.

We fix a symmetric cone Ω. Let G◦
Ω be the connected component of

the identity in GΩ. Then G
◦
Ω also acts transitively on Ω. We denote by Ka

the stabilizer of a ∈ Ω in G◦
Ω. There exists a point e ∈ Ω such that Ke =

G◦
Ω ∩ ON (R). The group Ke is connected and gives a maximal compact

subgroup of G◦
Ω. Thus Ω is identified with the Riemannian symmetric space

G◦
Ω/Ke.

Let L ⊂ RN be a lattice of rank N which contains e. Now we define

the packing function F(Ω,L) : Ω −→ R>0, of which we study local maxima.

First, the characteristic function φΩ of Ω is defined by

φΩ(a) =

∫
Ω

e−(a,b)db , (a ∈ Ω) .

The Lebesgue measure db is normalized so that φΩ(e) = 1. The defining

integral is uniformly convergent on any compact subset in Ω. It follows

from the definition that φΩ(ga) = | det g|−1φΩ(a) for all g ∈ GΩ and a ∈ Ω.
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Next, the minimum function mL on Ω is defined by

mL(a) = min{(a, b) : b ∈ (L \ {0}) ∩ Ω} .

Since Ω is self-dual, the value mL(a) is positive. Then the packing function

FΩ,L is defined by

F(Ω,L)(a) = mL(a)
NφΩ(a) .

A point a ∈ Ω is said to be extreme if F(Ω.L) attains a local maximum on

a up to the multiplication by an element of R>0.

To state Ash’s definition of eutaxy, we need a Jordan algebra structure

of RN induced from Ω. Let g be the Lie algebra of G◦
Ω, i.e.,

g = {X ∈MN (R) : exp(X) ∈ G◦
Ω} .

Since Ω is a symmetric cone, g is invariant by the transpose X 7→ tX. We

set g± = {X ∈ g : tX = ±X}. Then g− coincides with the Lie algebra

of Ke. Moreover, the map ψ : g+ −→ RN defined by ψ(X) = Xe gives a

linear isomorphism. We define the binary product ∗ : RN ×RN −→ RN

by

a ∗ b = ψ−1(a)b .

This product satisfies

(J1) a ∗ b = b ∗ a
(J2) a ∗ (a2 ∗ b) = a2 ∗ (a ∗ b), where a2 means a ∗ a
(J3) e ∗ a = a ∗ e = a

(J4) (a ∗ c, b) = (a, c ∗ b)

for all a, b, c ∈ RN . Namely, ∗ gives RN a formally real Jordan algebra

structure with the identity e. We denote by JΩ this formally real Jordan

algebra. For a ∈ JΩ, the subalgebra R[a] of JΩ generated by a and e is an

associative algebra. An element a is said to be invertible if there exists an

element b ∈ R[a] such that a ∗ b = e. This b is unique and is denoted by

a−1. Let J×
Ω be the subset of all invertible elements in JΩ. Then Ω coincides

with the connected component of J×
Ω which contains e.

We assume L⊗Z Q gives a Q-structure of JΩ. For a ∈ Ω, we set

S(Ω,L)(a) = {b ∈ (L \ {0}) ∩ Ω : (a, b) = mL(a)} .

Definition 3.1. Let a ∈ Ω and a−1 be the inverse of a in the Jordan

algebra JΩ. A point a is said to be perfect if S(Ω.L)(a) spanns R
N . A point
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a is said to be eutactic if there exist λb ∈ R>0, b ∈ S(Ω,L), such that

a−1 =
∑

b∈S(Ω,L)

λbb .

Let g ∈ exp(g+). The Taylor expansion of 1/φΩ at the point a = ge is

given by

1

φΩ(a+ v)
= det g ·{1+(a−1, v)+

1

2
((a−1, v)2−(g−1v, g−1v))+O((v, v)3/2)}

for v ∈ RN ( [3, Corollary to Proposition 3]). By using this formula, Ash

proved that the function 1/F(Ω,L) is a topological Morse function on Ω/R>0.

Voronöı’s theorem of F(Ω,L) follows from this fact.

Theorem 3.1 (Ash). A point a ∈ Ω is extreme if and only if a is perfect

and eutactic.

LetK1(mL) = {a ∈ Ω : (a, b) ≥ 1 for all b ∈ (L \ {0}) ∩ Ω}, which is a

polyhedral cone and is regarded as a generalization of the Ryshkov domain

K1(m1). Any perfect point a ∈ Ω of mL(a) = 1 is a vertex of K1(mL). We

have the following finiteness:

Theorem 3.2 (Ash). The discrete group Γ = {g ∈ G◦
Ω : tgL = L} of

G◦
Ω acts on K1(mL). The set of faces of K1(mL) has only finitely many

Γ-orbits. In particular, the number of perfect points in Ω modulo R>0Γ is

finite. Moreover, the number of eutactic points in Ω modulo R>0Γ is finite.

It is proved in [3, Theorem 2] that a point a ∈ Ω is eutactic if and only

if a is critical non-degenerate for F(Ω,L). The finiteness of eutactic points is

derived from the finiteness of Γ-orbits of critical points of F(Ω,L).

Example 3.1. The cone Pn of positive definite symmetric matrices is a

symmetric cone in Vn. In this case, e is chosen as the identity matrix In
and the product ∗ is defined by

a ∗ b = 1

2
(ab+ ba)

for a, b ∈ Vn. When L = {v ∈ Mn(Q) ∩ Vn : 2v ∈ Mn(Z), v11, · · · , vnn ∈
Z}, the packing function F(Pn,L) is equal to (m1/det

1/n)n(n+1)/2. Ash’s def-

inition of perfection and eutaxy is equivalent to Definition 1.3 ( [3, Corollary

to Proposition 2]).
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Example 3.2. Let B be the non degenerate bilinear form on Rn defined

by

B(x, y) = x1y1 − x2y2 − · · · − xnyn

for x = t(x1, · · · , xn) and y = t(y1, · · · , yn) ∈ Rn. Then the Lorentz cone

Ωn = {x ∈ Rn : B(x, x) > 0, x1 > 0} is a symmetric cone in Rn. We

choose e as the unit vector t(1, 0, · · · , 0) ∈ Rn. Let {e}⊥ be the orthogonal

complement of e with respect to the usual inner product (·, ·) of Rn. The

product of the Jordan algebra JΩn is defined by

(λe+ u) ∗ (λ′e+ u′) = (λλ′ −B(u, u′))e+ λu′ + λ′u

for λ, λ′ ∈ R and u, u′ ∈ {e}⊥. The packing function F(Ωn,Zn) is given as

F(Ωn,Zn)(a) =
mZn(a)n

B(a, a)n/2
.

Since G◦
Ωn

= R>0 · SO0(1, n− 1) acts transitively on Ωn, we have

F(Ωn,Zn)(λge) =
mZn(ge)n

B(ge, ge)n/2
= mZn(ge)n

for λ ∈ R>0 and g ∈ SO0(1, n− 1), and moreover,

mZn(ge) = min
x∈(Zn\{0})∩Ωn

(e, tgx) = min
x∈(Zn\{0})∩Ωn

(
(tgx, tgx) +B(x, x)

2

)1/2

.

Therefore, we have

max
a∈Ωn

F(Ωn,Zn)(a) = max
[g]∈Ke\SO0(1,n−1)/Γ

min
x∈(Zn\{0})∩Ωn

(
(gx, gx) +B(x, x)

2

)n/2

,

where Γ = SO0(1, n− 1) ∩ SLn(Z).

Problem 3.1. Let Ω be an arbitrary symmetric cone. Replacing Pn and

P semi
n with Ω and Ω, respectively, in Definitions 1.1 and 1.2, we can define

type one functions on Ω and semikernels in Ω. For example, both φ
−1/N
Ω and

mL are continuously extended to type one functions on Ω. Can Proposition

1.1 and Theorem 1.3 be generalized to this setting?

As stated in Theorem 3.2, the number of eutactic classes in R>0\Ω/Γ is

finite. When Ω = Pn, Ash verified a ”mass formula with signs” of eutactic

classes ([4], see also [40, Theorem 9.5.3]). For a ∈ ∂K1(m1), we set Γa =

{g ∈ SLn(Z) : tgag = a}. Let FS(a) be the face of K1(m1) defined in 1.3,

i.e., FS(a) = {b ∈ ∂K1(m1) : S(a) ⊂ S(b)}.
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Theorem 3.3 (Ash). The set ∂eK1(m1) of eutactic points in ∂K1(m1)

satisfies ∑
[a]∈∂eK1(m1)/GLn(Z)

(−1)dimFS(a)

♯Γa
= χ(SLn(Z)) =

{
−1/12 (n = 2)

0 (n ≥ 3)
,

where χ(SLn(Z)) stands for the Euler characteristic of SLn(Z).

The actual value of ϵn = ♯(∂eK1(m1)/GLn(Z)) is known up to n = 5

(cf. [8]): one has ϵ2 = 2, ϵ3 = 5, ϵ4 = 16, ϵ5 = 118.

3.2. Bavard’s theory

Let V be a Riemannian manifold and Γ a discrete subgroup of the isometry

group of V . Let C be a set endowed with a right action of Γ. We consider a

family of C1-functions fs : V −→ R parameterized by s ∈ C. We assume

the following two conditions:

(B1) fs ◦ γ = fsγ for all s ∈ C and γ ∈ Γ.

(B2) The cardinality of the subset {s ∈ C : fs(v) ≤ λ} of C is finite for any

v ∈ V and λ ∈ R.

Each fs is called a length function on V . We write E for the quadruplet

(V,Γ, C, {fs}). What we do is to characterize local maxima of the function

FE(v) = mins∈C fs(v) in v ∈ V . A point v ∈ V is said to be extreme

(resp. strictly extreme) if v attains a local maximum (resp. a strictly local

maximum) of FE .

For a given v ∈ V , TvV stands for the tangent space of V at v and

Xs(v) stands for the gradient vector of fs at v. By the condition (B2),

SE(v) = {s ∈ C : fs(v) = FE(v)} is a finite subset of C. Let Conv(v) be

the convex hull of {Xs(v)}s∈SE(v) in TvV and Aff(v) the affine subspace

spanned by {Xs(v)}s∈SE(v) in TvV .

Definition 3.2. A point v ∈ V is said to be perfect if TvV = Aff(v) holds.

A point v ∈ V is said to be eutactic if the origin 0 ∈ TvV is contained in

the interior of Conv(v).

We need the following condition for E .

(C) For any v ∈ V , any subset S′ ⊂ SE(v) and any non-zero vectorX ∈ TvV

orthogonal to {Xs(v)}s∈S′ , there exists a C1-curve c : [0, ϵ) −→ V for

a sufficiently small ϵ > 0 such that c(0) = v, c′(0) = X and fs(v) <

fs(c(t)) for all t ∈ (0, ϵ) and s ∈ S′.
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Now Bavard’s theorem is stated as:

Theorem 3.4 (Bavard). Assume E satisfies the condition (C). Then any

extreme point in V is strictly extreme, and a point v ∈ V is extreme if and

only if v is perfect and eutactic.

A function f : V −→ R is said to be convex if f is convex on any

geodesic line on V , i.e.,

f(ℓ(λα+ (1− λ)β)) ≤ λf(ℓ(α)) + (1− λ)f(ℓ(β))

holds for any geodesic ℓ : [0, ϵ) −→ V , α, β ∈ (0, ϵ), α ̸= β, and 0 < λ < 1.

If this inequality is strict, then f is said to be strictly convex. It is proved

that {fs}s∈C satisfies the condition (C) if fs is strictly convex for all s ∈ C.

Theorem 3.5 (Bavard). Assume fs is convex for all s ∈ C. Then a point

v ∈ V is strictly extreme if and only if v is perfect and eutactic.

Example 3.3. We consider the subset P 1
n = {a ∈ Pn : det a = 1} of Pn,

which is identified with the Riemannian symmetric space SLn(R)/SOn(R).

For x ∈ Zn \ {0}, define the length function fx : P 1
n −→ R by fx(a) =

txax. The family {fx}x∈Zn\{0} satisfies (B1) for Γ = SLn(Z), (B2) and

the condition (C) ( [9, Example 1]). Thus one can apply Theorem 3.4 to

E = (P 1
n , SLn(Z),Z

n \ {0}, {fx}). Since the definition of perfection and

eutaxy of Definition 3.2 is equivalent to that of Definition 1.3, this case

verifies Voronöı’s theorem. The length function fx is convex on P 1
n for all

x ∈ Zn \ {0}.

Example 3.4. Let G be a connected Lie subgroup of SLn(R) and G · In
be the G-orbit of the identity matrix In in P 1

n , i.e., G · In = {tgg : g ∈ G}.
Assume G is invariant by the transpose g 7→ tg. Then G · In is totally

geodesic, and hence the restriction fx|G·In of the length function fx to

G · In is convex for all x ∈ Zn \ {0}. Thus one can apply Theorem 3.5 to

E = (G · In, G ∩ SLn(Z),Z
n \ {0}, {fx|G·In}).

Example 3.5. Assume n is even. Let G be the symplectic group, i.e.,

G = Spn(R) =

{
g ∈ SLn(R) : tg

(
0 −In/2

In/2 0

)
g =

(
0 −In/2

In/2 0

)}
.

In this case, the family {fx|G·In}x∈Zn\{0} satisfies the condition (C). This

is a particular case of more general family [1, Lemme 3.3]. See [1, Théorème

3.1] for other symmetric spaces of classical type.
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Example 3.6. For X ∈ M∗
n,k(Z), define the length function fX : P 1

n −→
R by fX(a) = det(tXaX), i.e., fX = Dk

X . Then the family {fX}X∈M∗
n,k(Z)

satisfies the condition (C) ( [9, Proposition 2.8]). Theorem 2.1 is verified

again by Theorem 3.4 specialized to E = (P 1
n , SLn(Z),M

∗
n,k(Z), {fX}).

Example 3.7. We define the subset Cn,k of Mn,k(Z)×Mn,k(Z) by

Cn,k = {(X, 0), (0, Y ) : X,Y ∈M∗
n,k(Z)} .

This set is stable by the action of SLn(Z): (X,Y )g = (tgX, g−1Y ).

For (X,Y ) ∈ Cn,k, define the length function f(X,Y ) : Pn −→ R

by f(X,Y )(a) = DX(a)k + DY (a
−1)k for a ∈ Pn. Then the quadruplet

E = (Pn, SLn(Z), Cn,k, {f(X,Y )}) satisfies the condition (C) [11, Théorèm

5]. Bavard proved the set of extreme points of k-th Bergé–Martinet invari-

ant F
(k)
BM coincides with that of FE ( [11, Proposition 2.21]). Thus Voronöı’s

theorem for F
(k)
BM results in that of FE .

In some cases, the finiteness and the algebraicity of perfect points were

also proved by Bavard [11, Corollaire 2.12 et Théorème 1]. We explain the

simplest case of Bavard’s result. Let f be one of the real number field R,

the complex number field C or the Hamilton quaternion field H. For an

n × n matrix (λij) ∈ Mn(f) with entries in f, we write (λij)
∗ for t(λij),

where λ 7→ λ stands for the main involution of f. The set P 1
n(f) = {g∗g :

g ∈ SLn(f)} is a Riemannian symmetric space. We fix a subring of in f

as of = Z if f = R, of = Z[
√
−1] if f = C and of = Z[i, j,k] if f = H,

where {1, i, j,k} denotes the usual quaternion basis of H. For x ∈ onf \ {0},
define the length function fx : P 1

n(f) −→ R by fx(a) = x∗ax. Then E =

(P 1
n(f), SLn(of), o

n
f \ {0}, {fx}) satisfies the condition (C) ( [1, Corollaire

3.1]).

Theorem 3.6 (Bavard). For E = (P 1
n(f), SLn(of), o

n
f \ {0}, {fx}), the

number of perfect points in P 1
n(f) modulo SLn(of) is finite. Any perfect

point in P 1
n(f) is algebraic over Q, i.e., which is contained in Mn(of ⊗ZQ).

More generally, Bavard proved such result for some totally geodesic

subvarieties in P 1
n(f). However the algebraicity of γ′n,k for k ≥ 2 is still

unknown.

In connection with Ash’s mass formula (Theorem 3.3), we append

Bavard’s mass formula [10, Théorème 1]. We recall ∂wrK1(m1) denotes

the set of all well-rounded points in ∂K1(m1). If a ∈ ∂wrK1(m1), then

FS(a) is a compact face. The family {FS(a)}a∈∂wrK1(m1) of compact faces
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has only finitely many SLn(Z)-orbits by Theorem 3.2. Let {F1, · · · ,Fr} be

the complete set of representatives of SLn(Z)-orbits in {FS(a)}a∈∂wrK1(m1).

Theorem 3.7 (Bavard). {F1, · · · ,Fr} satisfies

r∑
i=1

(−1)dimFi

♯Γi
= χ(SLn(Z)) =

{
−1/12 (n = 2)

0 (n ≥ 3)
,

where Γi stands for the stabilizer of Fi in SLn(Z).

For a further study of this mass formula, see [15].

3.3. Voronöı’s theorem over an algebraic number field I

There are two methods of an extension of the base field. One is the additive

generalization (35], [38], [45], [46]) and another is the multiplicative gener-

alization ([22], [32]). Both methods give the original Voronöı’s theorem if

the base field is Q. We first explain the additive generalization.

Let k be an algebraic number field of degree r and ok the ring of integers

of k. The set of all infinite (resp. real and imaginary) places of k is denoted

by p∞ (resp. p1 and p2). Let kσ be the completion of k at σ ∈ p∞, i.e.,

kσ = R if σ ∈ p1 and kσ = C if σ ∈ p2. We use the étale R-algebra

kR = k ⊗Q R, which is identified with
∏

σ∈p∞
kσ. For x = (xσ) ∈ kR,

the conjugate x of x is defined to be x = (xσ), where xσ is the complex

conjugate of xσ. The trace and the norm of kR are defined as

TrkR(x) =
∑
σ∈p∞

Trkσ/R(xσ), NrkR(x) =
∏

σ∈p∞

Nrkσ/R(xσ)

for x = (xσ) ∈ kR.

Let knR = kn ⊗Q R be the kR-module of rank n. An element of knR is

denoted by a column vector X = t(x1, · · · ,xn) with xi ∈ kR, i = 1, · · · , n.
The group consisting of kR-linear automorphisms of knR is denoted by

GLn(kR), which is identified with
∏

σ∈p∞
GLn(kσ). As an R-vector space,

knR is equipped with the inner product

(X,Y ) = TrkR(
tXY ) = TrkR(x1y1 + · · ·+ xnyn),

for X = t(x1, · · · ,xn), Y = t(y1, · · · ,yn) ∈ knR. The group of isometries

On(kR) = {g ∈ GLn(kR) : (gX, gY ) = (X,Y ) for all X,Y ∈ knR}
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is a maximal compact subgroup of GLn(kR). We define the subsets Vn(kR)

and Pn(kR) of Mn(kR) as follows:

Vn(kR) = {a ∈Mn(kR) : (aX, Y ) = (X, aY ) for all X,Y ∈ knR} ,
Pn(kR) = {a ∈ Vn(kR) : (aX,X) > 0 for all X ∈ knR \ {0}} .

The set Vn(kR) is an R-subspace of Mn(kR) of dimension n(n+ 1)♯p1/2 +

n2♯p2, and Pn(kR) is a symmetric cone in Vn(kR). Let Vn(kR)∗ be the

dual space of Vn(kR) as an R-vector space. The trace TrMn(kR) ∈ Vn(kR)∗

is defined to be the composition of the matrix trace tr and TrkR , i.e,

TrMn(kR) = TrkR ◦ tr. For X ∈ knR, define the linear form φX ∈ Vn(kR)∗ by

φX(a) = (aX,X) for a ∈ Vn(kR).

An ok-submodule Λ in knR is called an ok-lattice if Λ is discrete and

Λ ⊗Z R = knR. Any projective ok-module in kn of rank n is regarded as

an ok-lattice in knR by the natural inclusion kn ⊂ knR. Conversely, for any

ok-lattice Λ in knR, there exists g ∈ GLn(kR) such that g−1Λ is a projective

ok-module in kn (see e.g., [37, Lemma 3.2]). Thus, by Steinitz’s theorem, any

ok-lattice is isomorphic with an ok-module of the form on−1
k ⊕q, where q is an

ideal of ok. Let q1 = ok, q2, · · · , qh be a complete system of representatives

of the ideal class group of k. If Hi denotes the GLn(kR)-orbit of the ok-

lattice on−1
k ⊕ qi, then the set H(knR) of all ok-lattices in knR is given by the

disjoint union of H1, · · · ,Hh:

H(knR) =
h⊔

i=1

Hi .

Each component Hi is identified with GLn(kR)/GL(on−1
k ⊕ qi), where

GL(on−1
k ⊕ qi) denotes the stabilizer of on−1

k ⊕ qi in GLn(kR).

For Λ ∈ H(knR), the minimum m+(Λ) and the discriminant disc(Λ) of

Λ are defined to be

m+(Λ) = min
X∈Λ\{0}

(X,X) , disc(Λ) =

(
ω(knR/Λ)

ω(knR/o
n
k )

)2

,

where ω denotes an invariant measure on knR. We denote by S+(Λ) the set

of shortest vectors in Λ, i.e.,

S+(Λ) = {X ∈ Λ : (X,X) = m+(Λ)} .

As an analog of the Hermite invariant, we consider the function F+ :

H(knR) −→ R>0 defined by

F+(Λ) =
m+(Λ)

disc(Λ)1/(rn)
.
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Obviously, F+ depends only on the similar isometry class R×On(kR)Λ of

Λ, i.e., F+ is a function on R×On(kR)\H(knR). An ok-lattice Λ ∈ H(knR) is

said to be extreme if F+ attains a local maximum on R×On(kR)Λ.

Definition 3.3. An ok-lattice Λ ∈ H(knR) is said to be perfect if

{φX}X∈S+(Λ) spanns Vn(kR)∗, and Λ is said to be eutactic if there are

ρX ∈ R>0, X ∈ S+(Λ), such that

TrMn(kR) =
∑

X∈S+(Λ)

ρXφX .

Leibak [38] proved a weak version of Voronöı’s theorem for F+ restricted

to the component H1 of free ok-lattices. Leibak’s definition of eutaxy is

weaker than that of Definition 3.3. Okuda and Yano [45] found a suitable

definition of eutaxy to complete Leibak’s result.

Theorem 3.8 (Leibak, Okuda and Yano). An ok-lattice Λ ∈ H(knR) is

extreme if and only if Λ is perfect and eutactic.

By Humbert’s reduction theory and Cramer’s formula, one has the fol-

lowing finiteness and algebraicity of perfect ok-lattices.

Theorem 3.9 (Okuda and Yano). The number of similar isometry

classes of perfect ok-lattices in H(knR) is finite. Let Λ ∈ H(knR) be a perfect

ok-lattice with m+(Λ) = 1. If g ∈ GLn(kR) such that g−1Λ ⊂ kn, then
tgσgσ ∈Mn(k

′) for all σ ∈ p∞, where k′ is the Galois closure of k over Q.

In the case that k is a real quadratic field, a classification of some perfect

ok-lattices of small rank was given by Ong [46] and Leibak [39].

Koecher studied the function F+ in connection with the reduction theory

of Pn(kR) and proved the finiteness of the number of similar isometry classes

of perfect ok-lattices in H1 ( [35, §9, 10]). The bound ♯(S+(Λ)) ≤ 2(2rn−1)

for all Λ ∈ H(knR) is proved by the similar way as in 2.3 (see [35, Lemma

12]).

3.4. Voronöı’s theorem over an algebraic number field II

We use the same notation as in the previous section. For a ∈ Pn(kR), the

multiplicative minimum m∗(a) and the discriminant disc(a) are defined to

be

m∗(a) = min
X∈onk \{0}

NrkR(
tXaX) , disc(a) = NrkR(det a) .
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We denote by S∗(a) the set of minimal integral vectors, i.e.,

S∗(a) = {X ∈ onk : NrkR(
tXaX) = m∗(a)} .

The unit group o×k acts on S∗(a) by multiplication. The set S∗(a)/o
×
k of

classes is finite ( [32, Lemma 1]). Define the function F∗ : Pn(kR) −→ R>0

by

F∗(a) =
m∗(a)

disc(a)1/n
.

The group GLn(kR) acts transitively on Pn(kR) by (a, g) 7→ tgag for a ∈
Pn(kR) and g ∈ GLn(kR). By definition, F∗ is invariant by the action of

the discrete subgroup GLn(ok) ⊂ GLn(kR), i.e., one has

F∗(
tgag) = F∗(a)

for all a ∈ Pn(kR) and g ∈ GLn(ok). Moreover, if we set

k+R = {x = (xσ)σ∈p∞ ∈ k×R : xσ ∈ R>0 for all σ ∈ p∞} ,

then F∗(xa) = F∗(a) holds for all a ∈ Pn(kR) and x ∈ k+R. Therefore, F∗ is

considered as a function on k+R\Pn(kR)/GLn(ok). An element a ∈ Pn(kR) is

said to be extreme if F∗ attains a local maximum on the class k+RaGLn(ok).

Let a ∈ Pn(kR) and X ∈ kn \ {0}. Then tXaX is invertible in k×R. The

map b 7→ (bX, (tXaX)−1X) on Vn(kR) defines an R-linear form. We write

φa
X for this linear form. For x = (xσ) ∈ k+R, we set log(x) = (log(xσ)) ∈ kR.

From the definition, it follows φa
X(log(x)a) = TrkR(log(x)) for x ∈ k+R. We

denote by k1R the subset of x ∈ k+R such that TrkR(log(x)) = 0, i.e.,

k1R = {x = (xσ)σ∈p∞ ∈ k+R : NrkR(x) = 1} .

Thus φa
X is null on the (♯(p1)+♯(p2)−1)-dimensional subspace log(k1R)·a ⊂

Vn(kR).

Definition 3.4. An element a ∈ Pn(kR) is said to be perfect if

{φa
X}[X]∈S∗(a)/o

×
k

spanns the dual space (Vn(kR)/ log(k1R) · a)∗, and a is

said to be eutactic if there are ρX ∈ R>0, [X] ∈ S∗(a)/o
×
k , such that the

linear form b 7→ TrMn(kR)(a
−1b) on Vn(kR) is represented as

(b 7→ TrMn(kR)(a
−1b)) =

∑
[X]∈S∗(a)/o

×
k

ρXφ
a
X .

This definition is due to Coulangeon. Icaza [32, Proposition 3] first

proved a weak version of Voronöı’s theorem for F∗, and later Coulangeon

[23] completed a full version.
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Theorem 3.10 (Icaza, Coulangeon). An element a ∈ Pn(kR) is ex-

treme if and only if a is perfect and eutactic.

The finiteness and the algebraicity of perfect points were also proved by

Coulangeon [23, Proposition 4.1].

Theorem 3.11 (Coulangeon). The number of perfect elements in

Pn(kR) modulo k+RGLn(ok) is finite. If a = (aσ) ∈ Pn(kR) is perfect, then

there exists x = (xσ) ∈ k+R such that xσaσ ∈Mn(Q) for all σ ∈ p∞.

Theorem 3.10 is also verified by Bavard’s theory. We set Pn(kR)1 =

{a ∈ Pn(kR) : disc(a) = 1}, and for X ∈ onk \ {0} define the length

function fX : Pn(kR)1 −→ R by fX(a) = log(NrkR(
tXaX)). Let E =

(Pn(kR)1, SLn(ok), o
n
k \ {0}, {fX}). Then Bavard [11, Proposition 2.22]

proved that the definition of perfection and eutaxy in Definition 3.4 co-

incides with that in Definition 3.2 for E , and E satisfies the condition (C).

In contrast to Theorem 3.2, the number of classes in k+R\Pn(kR)/GLn(ok) of

eutactic elements is not finite in general if k ̸= Q, see [23, p.162]. To resolve

this problem, Bavard introduced the notion of non-degenerate points in his

framework ( [11, Définition 1.5]), and proved that the number of classes of

non-degenerate eutactic elements is finite ( [11, Proposition 2.24]).

If k is an imaginary quadratic field, then F∗ is essentially the same as

F+ restricted to H1. More precisely, we have

4F∗(
tgg) = F+(go

n
k )

2

for all g ∈ GLn(kR) = GLn(C). In particular, the number of S∗(a)/o
×
k

is bounded by 2(4n − 1)/♯(o×k ). In general, any estimate of the number of

S∗(a)/o
×
k is unknown.

Problem 3.2. Bound the maximum maxa∈Pn(kR) ♯(S∗(a)/o
×
k ).

The assertion of Theorem 3.10 is true even if the free ok-lattice o
n
k in the

definitions of m∗ and S∗(a) is replaced with a general ok-lattice Λ ∈ H(knR).

This was verified by Meyer [41, Théorème 3.21] in more general setting.

4. Generalized Hermite constants of flag varieties

A generalization of Hermite’s constant to algebraic groups was studied in

[63] and [64]. The main problem in this theory is to formulate and verify

Voronöı type theorems. This problem was completely solved by Meyer [41],

[42] in the case of GLn. Some inner forms of GLn were studied in [24]. It

is likely that Bavard’s theory applies to many cases, e.g., see Example 4.2
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below. However, to approach adelic Voronöı theorems for the generalized

Hermite constants involving positive characteristic cases, we will need a

suitable definition of perfection for our adelic setting.

4.1. Generalized Hermite constants

Let G be a connected affine algebraic group defined over Q. For any Q-

algebra A, G(A) stands for the group of A-rational points of G. In par-

ticular, G(A) denotes the adele group of G. Let X∗
Q(G) be the mod-

ule of Q-rational characters of G. We denote by G(A)1 the subgroup

{g ∈ G(A) : |χ(g)|A = 1 for all χ ∈ X∗
Q(G)}, where | · |A denotes

the usual idele norm of the idele group of Q. By the product formula of the

idele norm, G(Q) is contained in G(A)1.

In the following, let G be a connected reductive algebraic group defined

overQ. We fix a minimalQ-parabolic subgroup P of G and a Levi subgroup

MP of P . The maximal centralQ-split torus ZP ofMP is a maximalQ-split

torus of G. We choose a maximal Q-parabolic subgroup Q of G and its Levi

subgroup MQ such that P ⊂ Q and MP ⊂ MQ. Let ZG be the maximal

central Q-split torus of G. Since Q is maximal, the module X∗
Q(MQ/ZG)

is of rank one, and hence there is a unique generator α̂Q of X∗
Q(MQ/ZG)

such that the restriction of α̂Q to ZP /ZG is a positive scalar multiple of

a positive simple root with respect to (P,ZP ). Let UQ be the unipotent

radical of Q, and let K be a maximal compact subgroup of G(A) such that

G(A) = P (A)K. Then the height function HQ : G(A) −→ R>0 is defined

by

HQ(umh) = |α̂Q(m)|−1
A

for u ∈ UQ(A), m ∈ MQ(A) and h ∈ K. Indeed HQ is a function on

the space ZG(A)Q(A)1\G(A) = Q(A)1\G(A)1. Define the function FQ :

G(A) −→ R>0 by

FQ(g) = min
[v]∈Q(Q)\G(Q)

HQ(vg) .

The generalized Hermite constant γQ of Q\G is defined to be the maximum

γQ = max
[g]∈ZG(A)G(Q)\G(A)/K

FQ(g) = max
[g]∈G(Q)\G(A)1/K

FQ(g) .

We assume the following two conditions for G and Q:

(C1) G(A) = G(Q)G(R)K.

(C2) G(Q) = Q(Q)G(Z), where G(Z) = G(Q) ∩G(R)K.
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The condition (C1) means thatG is of class number one. By [17, Proposition

7.5], the condition (C2) is satisfied if MQ is of class number one. Then γQ
is represented as

γQ = max
[g]∈G(Z)\G(R)/K∞

FQ(g) = max
[g]∈G(Z)\G(R)/K∞

min
γ∈G(Z)

H∞
Q (γg) ,

where K∞ and H∞
Q denote the infinite components of K and HQ, respec-

tively.

Example 4.1. For k = 1, · · · , n− 1, let

Rk(Q) =

{(
a b

0 d

)
: a ∈ GLk(Q), b ∈Mk,n−k(Q), d ∈ GLn−k(Q)

}
.

Then Rk is a maximal Q-parabolic subgroup of GLn. It is well-known that

GLn and Rk satisfy both conditions (C1) and (C2). The character α̂Rk
is

given by

α̂Rk

((
a 0

0 d

))
= (det a)(n−k)/gcd(k,n−k)(det d)−k/gcd(k,n−k) .

For γ ∈ GLn(Z), Xγ denotes the n by k matrix consisting of the first

k-colums of γ. It is an easy exercise to prove that

H∞
Rk

(γg)gcd(k,n−k)/n = det(tXγ−1
tg−1g−1Xγ−1)1/2

holds for any γ ∈ GLn(Z) and g ∈ SLn(R). From this relation, it follows

that (γRk
)2gcd(k,n−k)/n equals the Rankin constant γn,k. Thus, Coulan-

geon’s result in 2.2 is interpreted as Voronöı’s theorem of the function

FRk
.

Example 4.2. Let B be a non degenerate bilinear form on Qn defined by

B(x, y) = x1y1 − x2y2 − · · · − xnyn

for x = t(x1, · · · , xn) and y = t(y1, · · · , yn) ∈ Qn. We assume n ≥ 3 and put

e11 = t(1, 1, 0, · · · , 0) ∈ Qn. Let NB(Q) be the set of all non-zero isotropic

vectors in Qn with respect to B. The special orthogonal group SOB(Q)

of B transitively acts on NB(Q), i.e., one has NB(Q) = SOB(Q)e11. Let

P (Q) be the stabilizer of the isotropic line Qe11 in SOB(Q). Then P is

a unique proper Q-parabolic subgroup of the algebraic group SOB up to

SOB(Q)-conjugates. For any finite prime p, Kp denotes the stabilizer of

the Zp-lattice Zn
p in SOB(Qp). Since Zn

p is a unimodular maximal lattice

with respect to B, Kp is a maximal compact subgroup of SOB(Qp). At

the infinite place ∞, the stabilizer K∞ of the vector e = t(1, 0, · · · , 0) in
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SOB(R) gives a maximal compact subgroup of SOB(R). The intersection

SOB(Q) ∩ (SOB(R) ×
∏

p<∞Kp) is the stabilizer SOB(Z) of the lattice

Zn in SOB(Q). The adele group SOB(A) has the Iwasawa decomposition:

SOB(A) = P (A)(
∏

p≤∞Kp). The height function HP : SOB(A) −→ R>0

is given by

HP (g) = ∥g−1e11∥An =
∏
p≤∞

∥g−1
p e11∥p

for g = (gp)p≤∞ ∈ SOB(A). Here, the local height ∥ · ∥p is defined by

∥x∥p =

{√
x21 + · · ·+ x2n (p = ∞)

max(|x1|p, · · · , |xn|p) (p <∞)

for x = t(x1, · · · , xn) ∈ Qn
p . If g = umh with u ∈ UP (A), m ∈MP (A) and

h ∈
∏

p≤∞Kp, then HP (g) equals the idele norm of the first component of

the vector m−1e11. Since the class number of the indefinite lattice (B,Zn)

equals one, SOB satisfies the condition (C1), and hence the generalized

Hermite constant γP is written as

γP = max
[g]∈SOB(Z)\SOB(R)/K∞

min
[v]∈P (Q)\SOB(Q)

∥g−1v−1e11∥An .

Let N ∗
B(Z) denote the set of primitive vectors in NB(Q) ∩ Zn, i.e.,

N ∗
B(Z) = {x ∈ Zn \ {0} : B(x, x) = 0 and gcd(x1, · · · , xn) = 1} .

From SOB(Q)e11 = NB(Q) = Q× · N ∗
B(Z), it follows that

min
[v]∈P (Q)\SOB(Q)

∥g−1v−1e11∥An = min
x∈N∗

B(Z)
∥g−1x∥An .

Since x is a primitive isotropic vector and g ∈ SOB(R), we have

∥g−1x∥An = ∥g−1x∥∞ ×
∏
p<∞

∥x∥p = ∥g−1x∥∞ ,

and hence

γP = max
[g]∈K∞\SOB(R)/SOB(Z)

min
x∈N∗

B(Z)
∥gx∥∞ .

We may compare this with Example 3.2. The group SO0(1, n − 1) is the

identity connected component of SOB(R). Since K∞\SOB(R)/SOB(Z) =

Ke\SO0(1, n − 1)/Γ and N ∗
B(Z) equals the subset of primitive vectors in

Zn \ {0} ∩ ∂Ωn, one has

2n/2 max
a∈Ωn

F(Ωn,Zn)(a) ≤ (γP )
n . (3)



August 16, 2010 12:2 WSPC - Proceedings Trim Size: 9in x 6in voronoi2

36

If n = 3, then γP =
√
γ2 =

√
2/
√
3 since SOB is isomorphic with PGL2

over Q. In this case, the equality of (3) holds. In general n, Birch and

Davenport’s theorem [16, Theorem A] gives γP ≤ (
√
2nγn−1)

(n−1)/2. It

is unknown whether the equality 2n/2 maxa∈Ωn F(Ωn,Zn)(a) = (γP )
n holds

for all n or not. Bavard’s theory applies to this example. By using the

same notation as in Example 3.4, we can choose E = (SO0(1, n − 1) ·
In,Γ,N ∗

B(Z), {fx|SO0(1,n−1)}) as a quadruplet in question (cf. [9, Proposi-

tion 2.6]).

We should mention two remarks. Let G and P be the same as above, i.e.,

G is a connected reductive algebraic group defined over Q and P a minimal

Q-parabolic subgroup. First, let R be a Q-parabolic subgroup of G such

that P ⊂ R. Then the generalized Hermite constant γR is defined even if R

is not maximal. However, in this case, there is no canonical height function

on R(A)1\G(A)1. As a result, there are infinitely many multiplicatively in-

dependent generalized Hermite constants of R\G. To define a height func-

tion on R(A)1\G(A)1, we choose a Q-rational embedding of the projective

variety R\G into a projective space. Such an embedding is constructed by

a strongly Q-rational irreducible representation π : G −→ GLN of G.

By strongly Q-rational, we mean that π is a Q-rational morphism and the

highest weight line lπ in Q
N

of π is defined over Q. Assume π(R) is the sta-

bilizer of lπ in π(G). Then the map g 7→ π(g−1)lπ gives rise to a Q-rational

embedding of R\G into the projective space PN−1. If R1 denotes the max-

imal parabolic subgroup of GLN defined in a similar fashion as in Example

4.1, then PN−1 is identified with R1\GLN , and the height HR1 is defined

on R1(A)1\GLN (A)1. The composition of π and HR1 gives a height func-

tion HR,π on R(A)1\G(A)1. Then the generalized Hermite constant γR,π

is defined to be

γR,π = max
[g]∈R(A)1\G(A)1

FR,π(g) , where FR,π(g) = min
[v]∈R(Q)\G(Q)

HR,π(vg) .

Second remark is a base change from Q to a number field k. The adelic

definition of the generalized Hermite constants is immediately extended to

reductive groups defined over k. Thus one can define γR,π(k) for a connected

reductive group G defined over k, a parabolic k-subgroup R ⊂ G and a

strongly k-rational representation π. In this notation, the constant γR,π(Q)

means γR,π. We write γn(k) (resp. γn(k)1 and γn,k(k)) for the generalized

Hermite constant of R1\GLn (resp. (R1∩SLn)\SLn and Rk\GLn) defined

over k. When k is a totally real number field, γ2(k)1 was implicitly occurred

in Cohn’s paper [19, §5, §9]. Newman [44, Chapter XI] defined γn(k)1 for
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imaginary quadratic fields k. For a general number filed k, γn(k)1 was stud-

ied by Icaza [32] in terms of Humbert forms, i.e., γn(k)1 is relating with the

function F∗ as follows:

(γn(k)1)
2n = max

[a]∈k+R\Pn(kR)/GLn(ok)
F∗(a) ,

(cf. [65, §3]). As a generalization of Rankin’s constant, Thunder [61] defined

γn,k(k) by using twisted heights on Grassmann varieties. The above defi-

nition of γR,π(k) was given in [63]. Meyer [41] investigated γR,π(k) when

G = GLn and π is a Schur module realized as a polynomial representa-

tion, and established Voronöı’s theorem for FR,π by using Bavard’s theory.

Among other results in [41], we present here only the algebraicity of γR,π(k):

Theorem 4.1 (Meyer). Let k be an arbitrary algebraic number field.

When G = GLn, all γR,π(k) are algebraic numbers.

In the case that k is a function field of one variable over a finite field,

γQ(k) was studied in [64].

4.2. Generalized Hermite constants of Spn

Let n = 2m be an even integer. We consider a symplectic group

G(Q) = Spn(Q) =

{
g ∈ GL2m(Q) : tg

(
0 −Im
Im 0

)
g =

(
0 −Im
Im 0

)}
.

For 1 ≤ k ≤ m, Qk denotes the maximal parabolic subgroup of G given as

follows:

Qk(Q) = Uk(Q)Lk(Q) ,

Lk(Q) =

δ(a, b) =

a 0 0 0

0 b11 0 b12
0 0 ta−1 0

0 b21 0 b22

 :
a ∈ GLk(Q)

b = (bij) ∈ Sp2(m−k)(Q)

 ,

Uk(Q) =




Ik ∗ ∗ ∗
0 Im−k ∗ 0

0 0 Ik 0

0 0 ∗ Im−k

 ∈ G(Q)

 .

The module of Q-rational characters X∗
Q(Lk) of Lk is a free Z-module of

rank 1 and its base is given by

α̂Qk
(δ(a, b)) = det a .
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We fix a good maximal compact subgroup K of G(A) so that G(A) has

the Iwasawa decomposition G(A) = Qk(A)K. Since G and Qk satisfy both

conditions (C1) and (C2), one has

γQk
= max

[g]∈G(Z)\G(R)/K∞
min

γ∈G(Z)
H∞

Qk
(γg) . (4)

We restrict ourselves to the case k = m. An element of Lm(A) is denoted

by

δ(a) =

(
a 0

0 ta−1

)
, (a ∈ GLm(A)).

By definition, we have

H∞
Qm

(uδ(a)h) = | det a|−1, (u ∈ Um(R), δ(a) ∈ Lm(R), h ∈ K∞).

Let

Hm = {Z ∈Mm(C) : ReZ ∈ Vm, ImZ ∈ Pm}

be the Siegel upper half space. The group G(R) acts on Hm by

g⟨Z⟩ = (aZ + b)(cZ + d)−1, (g =

(
a b

c d

)
∈ G(R), Z ∈ Hm).

Since it is possible to choose the maximal compact subgroup K∞ as the

stabilizer of Z0 =
√
−1Im ∈ Hm in G(R), we have Im {(uδ(a)h)⟨Z0⟩} = ata,

and hence

H∞
Qm

(g) = (det Im {g⟨Z0⟩})−1/2

for any g ∈ G(R). Combining this with (4), we get

γQm = max
[g]∈G(Z)\G(R)/K∞

min
γ∈G(Z)

(det Im {γg⟨Z0⟩})−1/2 .

Since g⟨Z0⟩ runs over a fundamental domain of G(Z)\Hm , we have

γQm =
1

min
[Z]∈G(Z)\Hm

max
γ∈G(Z)

(det Im {γ⟨Z⟩})1/2
.

Note that

det Im {γ⟨Z⟩} = |det(cZ + d)|−2 det ImZ for γ =

(
a b

c d

)
∈ G(Z).

Siegel’s fundamental domain Sm of G(Z)\Hm is given as follows:

Sm =

Z ∈ Hm :
• | det(cZ + d)| ≥ 1 for all

(
∗ ∗
c d

)
∈ G(Z)

• ImZ ∈ Mm, |ReZij | ≤ 1/2 for all i, j

 ,
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where Mm denotes Minkowski’s domain:{
Y ∈ Pm :

• txY x ≥ Yii for all x ∈ Zm with gcd(xi, · · · , xm) = 1

• Yj,j+1 > 0, i = 1, · · · ,m, j = 1, · · · ,m− 1

}
.

From

Z ∈ Sm =⇒ max
γ∈G(Z)

det Im {γ⟨Z⟩} = det ImZ,

it follows that

γQm =
1

min
Z∈Sm

(det ImZ)1/2
,

namely

min
Z∈Sm

det ImZ =
1

(γQm)2
.

If m = 1, we have minZ∈S1 det ImZ =
√
3/2. Recently, Kawamura [33]

determined the actual value of minZ∈S2 det ImZ by using Gottschling’s

description of S2.

Theorem 4.2 (Kawamura). One has minZ∈S2 det ImZ = 2/3, and

hence γQ2 =
√
3/2. This minimum is attained only when Z = Z8 or −Z8,

where

Z8 =
1

3

(
1 −1

−1 1

)
+
√
−1

√
2

3

(
2 1

1 2

)
.

The boundary ∂S2 of S2 is described by 28 polynomials in 6 real vari-

ables. Hayata [30] computed 0-dimensional cells of ∂S2. There are at least

170 0-dimensional cells of ∂S2. The points Z8 and −Z8 are contained in

Hayata’s list.

For general n = 2m, we have the following bound by [63, Example 3]:

min
Z∈Sm

det ImZ ≤


1

m+ 1
·

[m−1
2 ]∏

j=1

ξ(2j + 1)

m∏
j=1

ξ(m+ j)



2
m+1

,

where ξ(s) denotes the zeta function π−s/2Γ(s/2)ζ(s).

Problem 4.1. Give a good lower bound of minZ∈Sm det ImZ.
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Problem 4.2. Formulate a Voronöı type theorem for the function Z 7→
det ImZ on Sm.

We finish this example by some observation. Let

Rm(Q) =

{(
a b

0 d

)
: a, d ∈ GLm(Q), b ∈Mm(Q)

}
.

be a maximal parabolic subgroup of GLn. We have γRm = γn,m as seen in

Example 4.1. It is obvious that Spn(A) ⊂ GLn(A), Spn(A) ∩ Rm(A) =

Qm(A) and HRm(g) = HQm(g)2 for g ∈ Spn(R). Since Qm(Q)\Spn(Q) ⊂
Rm(Q)\GLn(Q), the inequality

FRm(g) ≤ FQm(g)2 ≤ (γQm)2

holds for any g ∈ Spn(A). If the maximum of FRm is attained on a point

in Spn(A), γn,m would be bounded by (γQm)2. This happens when m = 1

or 2 and in fact we have γ2,1 = (γQ1)
2 and γ4,2 = (γQ2)

2.

4.3. Variation of the set of minimal points

We return to the general setting of 4.1. We write YQ and XQ for

Q(A)1\G(A)1 and Q(Q)\G(Q), respectively. For g ∈ G(A)1, the set SQ(g)

of minimal points in XQ is defined as

SQ(g) = {[x] ∈ XQ : HQ(xg) = FQ(g)} .

By Northcott’s theorem, SQ(g) is a finite set. We prove the following:

Proposition 4.1. For g ∈ G(A)1, there is a neighbourhood U of g in

G(A)1 such that SQ(g
′) ⊂ SQ(g) for all g′ ∈ U .

Proof. We define the operator norm ∥g∥Q of g ∈ G(A)1 by

∥g∥Q = sup
[y]∈YQ

HQ(yg)

HQ(y)
= max

h∈K
HQ(hg) .

It is easy to see the following properties:

• ∥g1g2∥Q ≤ ∥g1∥Q∥g2∥Q for all g1, g2 ∈ G(A)1.

• ∥h1gh2∥Q = ∥g∥Q for all g ∈ G(A)1 and h1, h2 ∈ K.

• ∥h∥Q = 1 for all h ∈ K.

• g 7→ ∥g∥Q is continuous on G(A)1.
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We fix a g ∈ G(A)1 and put C = min[x]∈XQ\SQ(g)HQ(xg). Then FQ(g) < C

and we can take a constant δ so that 1 < δ < C/FQ(g). Since g 7→ FQ(g)

is continuous on G(A)1, the set

U =

{
u ∈ G(A)1 : ∥u−1∥Q <

C

δFQ(g)
,
FQ(gu)

FQ(g)
< δ

}
is a neighbourhood of the identity in G(A)1. Let u ∈ U and [x] ∈ SQ(gu).

We have

∥u−1∥−1
Q HQ(xg) ≤ HQ(xgu) = FQ(gu) .

If [x] ̸∈ SQ(g), then C ≤ HQ(xg) and

δFQ(g) ≤ δFQ(g)HQ(xg)/C < ∥u−1∥−1
Q HQ(xg) ≤ FQ(gu) < δFQ(g) .

This is a contradiction. Therefore, we have [x] ∈ SQ(g), and hence SQ(gu) ⊂
SQ(g) for any u ∈ U .

This proposition is a generalization of Proposition 2.2. As a consequence,

one can define the local maximality of SQ(g). This leads us to similar prob-

lems as in 2.3, e.g.,

Problem 4.3. If g ∈ G(A)1 is an extreme point of FQ, is SQ(g) locally

maximal?

Problem 4.4. Bound ♯SQ(g) by a constant independent of g.
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