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Let V,, be the vector space of real n X n symmetric matrices and P,
the open cone of positive definite symmetric matrices in V,,. By mq(a),
we denote the arithmetical minimum inf,czn\ (0 tzaxr of a € P,. The
Hermite invariant is the positive valued function v on P, defined by
v(a) = my(a)/det(a)*/™. Tts maximum 7, is called Hermite’s constant. The
determination of =y, is one of main problems in lattice sphere packings or
the arithmetic theory of quadratic forms. Voronoi’s fundamental theorem
[62] gives a characterization of local maxima of ~, i.e., which can be stated
that v attains a local maximum on a € P, if and only if a is perfect and
eutactic. In the last half of 20th century, various generalizations of Her-
mite’s constant and Voronoi’s theorem were studied by many authors. In
this paper, we give an account of a recent development concerning Voronoi’s
theorem.
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Notation. Throughout this paper, V,, denotes the vector space of real
n X n symmetric matrices, P, the open cone of positive definite symmetric
matrices in V,, and Pzemi the closure of P, in V,,. The vector space V,, is
equipped with the inner product (ai,as) = tr(ajag) for a1,as € V,,. The
unimodular group GL,(Z) acts on V,, by (a,g) + gag for a € V,, and
g € GL,(Z). In general, for a given ring R, the set of all m X n matrices
with coefficients in R is denoted by M, »(R). We write M,,(R) for M, ,(R)
and R™ for M, 1(R). The unit group of the matrix ring M, (R) is denoted
by GL,(R). The identity matrix in GL,(R) is denoted by I,,.

A Euclidean space R™ is equipped with the inner product (z,y) = ‘xy.
For a € M,,(R), ||a|| denotes the operator norm of a, i.e.,

1/2

ax,ar

lall = sup (()) .
serm\{0} \ (,7)

For a constant ¢ € R, R~ and R>. stand for the open interval (¢, 4+00)
and the closed interval [¢, +00), respectively.

1. Type one functions and Voronoi’s theorem

There are several methods to prove Voronoi’s theorem [62, Théoréme 17],
e.g., [6], [51], [54], see also [28, §29], [29, §39], [40, §3.4] and [60, §3.1.7].
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Convexity of the domain P, and the concavity of both functions m; and
det’™ play key roles in some proofs. Poor and Yuen [47] investigated a
family of such kind functions as m; and det'/™. This family is called type
one functions. Every type one function ¢ is completely characterized by
the corresponding semikernel K7(¢). In this section, we first discuss type
one functions and semikernels, and then formulate Voronoi type theorem
in terms of type one functions. The semikernel Kj(m;) associated with
my is called the Ryshkov polyhedron. In the second half of this section,
we investigate a description of faces of Kp(mq). This gives a well-known
geometric interpretation of perfection.

1.1. Type one functions and semikernels

Definition 1.1. A function ¢ : P5™ — R is called a type one function
if ¢ satisfies the following conditions:

(TO1) ¢(fa) = O¢(a) for all a € Pe™ and 6 > 0,

(TO2) ¢(ay + az) > d(ay) + d(az) for all ay,ay € PSE™

(TOs3) ¢(a) > 0 for all a € P,.
A type one function ¢ is called a type one class function if ¢(lgag) = ¢(a)
holds for all a € P5*™ and g € GL,(Z).

Example 1.1. The trace tr and the smallest eigenvalue \; are type one
functions, but not type one class functions. The reduced determinant det'/™
and the arithmetical minimum
mi(a) = inf ‘zax
1(a) +€Z\{0}

are type one class functions.

For a type one function ¢, the dual type one function ¢° : Pse™ — R
is defined to be
o .o (a,b)
o(a) =t 5%
If ¢ is a type one class function, then so is ¢°. The dual type one class
function of m; is denoted by w;, which is called the dyadic trace. The dual
type one class function of det'/™ n,
Any type one function is continuous on P,, but not necessarily contin-
uous on Pmi, For example, w; is not continuous on P3™; however w; is

is ndet

upper semicontinuous on P™i. Here a type one function ¢ is said to be
upper semicontinuous at a € Psemi if
¢(a) =limsup §(b) = lim(sup{(b) : [la —b[ <e be Py
€.

b—a
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In general, the dual ¢° of an arbitrary type one function ¢ is necessarily
upper semicontinuous on P3*m ( [58, Corollary 2.7]).

Definition 1.2. Let K be a convex subset of P5™ such that 0 ¢ K,
Rzl-K:KandR>0-KDPH.
(1) K is called a kernel if K is closed in P3°™i,
(2) K is called a semikernel if the following three conditions are satisfied:
(SK;) KN (P, U{0}) is closed in P, U {0},
(SKq) {6 > 0] 60a € K } is closed in [0, 00) for any a € K,
(SK3) a+bC K for all a € K and b € Pse™i,

It is easy to see that a kernel is a semikernel. The dual K" of a semikernel
K is defined to be

K“"={a€V, : (a,b) >1 forallbe K }.

This K" is a kernel.
There is a natural correspondence between type one functions and
semikernels. For a type one function ¢, we set

Ki(¢) ={ae€ PF™ : ¢(a) >1}.
Conversely, for a semikernel K, define the function ¥(K,-) : PS™ — R
by
PY(K,a) =max({0 >0 : acd-K}U{0}).
The existence of this maximum follows from the condition (SKs). The fol-

lowing results were proved in [58, §1]

Proposition 1.1. The correspondence ¢ — Ki(¢) gives a bijection be-
tween the set of type one functions (resp. upper semicontinuous type one
functions) and the set of semikernels (resp. kernels). For any type one func-
tion ¢ and any semikernel K, one has

V(KL(d),)=¢, Ki(¥(K,") =K
and moreover
U(K,)° = (K", ).
Proposition 1.2. For any type one function ¢, we have

{ ¢°°(a) = ¢(a) ifac Py
¢°(a) > ¢(a) if a € P\ Py,

If ¢ is upper semicontinuous on Pi™, then ¢°° = ¢ on P5°™.
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1.2. Voronoi’s theorem of m1 /¢

Voronoi’s theorem characterizes local maxima of the Hermite invariant
Fioi/n = my/det’™. A point a € P, is said to be extreme (resp. strict
extreme) if F;1/» attains a local maximum (resp. a strict local maximum)
on a up to the multiplication by an element of R~ (. Indeed, we do not need
to distinguish between extreme points and strictly extreme points since any
extreme point is strictly extreme ( [40, Theorem 3.4.5]). For a € P, S(a)
denotes the set of minimal integral vectors of a, i.e.,

S(a) ={z e Z"\ {0} : 'wax =mq(a)}.
For any y € R", ¢, denotes the linear form v — yvy on V;,.

Definition 1.3. Let a € P,. We fix an element b € GL,(R) such that
a = bb. An element a is said to be perfect if the linear forms ¢y, (2 € S(a))
span the dual space V,* of V,,. An element a is said to be eutactic (resp.
weakly eutactic) if there exist p, € Rs¢ (resp. p € R), € S(a), such
that

tr = Z PzPbz- (1)
zeS(a)
We note that these definitions of perfection, eutaxy and weakly eutaxy

are independent of a choice of b. It follows from definition that a is perfect
if and only if {z'z : z € S(a)} spans V,,. If tr is represented as (1), then

we have
tr= Z Pz Phba
z€S(a)

for any orthogonal matrix h. The coefficients p, are independent of h.

Any perfect element a is uniquely determined by mq(a) and S(a), i.e., a
is a unique solution of the system of linear equations in the unknown v = tv:
(v,z'z) = my(a), x € S(a). If my(a) € Q, then its solution is contained in
Vi N M, (Q) by Cramer’s formula. This is none other than the rationality

of perfect elements ( [36, p.252, 5°]).

Theorem 1.1 (Korkine—Zorotareff). If a € P, is perfect and mi(a) €
Q, then a € P, N M,(Q).

Voronoi’s theorem [62, Théoréme 17] is stated as follows.

Theorem 1.2 (Voronoil). a € P, is extreme if and only if a is perfect
and eutactic.
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We fix a type one function ¢. It is natural to ask whether the same kind
of Voronoi’s theorem holds for the function Fjy = mi/¢ on P,. An element
a € P, is said to be ¢-extreme (resp. strictly ¢-extreme) if Fy attains a local
maximum (resp. a strictly local maximum) on a up to the multiplication
by an element of R~q. Assume ¢ is differentiable on P,. Then

_ }in(l) log ¢(B(1,, + t’(;)b) — log ¢('bb)

(Olog ¢)(v)
exists for b € GL,(R) and v € V,,. We define ¢-eutaxy as follows:

Definition 1.4. Let a € P,, and fix an element b € GL,(R) such that
a = bb. An element a is said to be ¢-eutactic if there exist p, > 0 (z € S(a))

such that (9log @)y = >, c5(a) PoPba-

In a similar fashion as eutaxy, this definition is independent of a choice
of b. If ¢ = det’’™, then (8log¢), = tr, and hence det!/™-eutaxy is the
same as Definition 1.3.

It follows from (TO;) and (TOgz) that ¢ is log-concave, i.e,

log ((1 = 0)ar + faz)) = (1 — 0) log ¢(a1) + flog ¢(az)

holds for all aj,as € P, and 0 < 6 < 1. We say ¢ is strictly log-concave if
this inequality is strict for a; # as.
In [58, §2], Voronoi’s theorem is generalized as follows.

Theorem 1.3. Let ¢ be a strictly log-concave and differentiable type one
function. Then, a € P, is ¢-extreme if and only if a is perfect and ¢-
eutactic. Moreover, any ¢-extreme point is strictly ¢-extreme.

The line of the proof of Theorem 1.3 is the same as Barnes’ [6] and
Martinet’s [40, §3.4] proof of Voronoi’s theorem. We give an outline of the
proof. We use the following two lemmas: the first is the same as [40, Lemmas
3.4.2 and 3.4.3] and the second is a generalization of [40, Lemma 3.4.4].

Lemma 1.1. Leta € P,, and fix an element b € GL,(R) such that a = bb.
(1) There exists a neighborhood U of 1,, in GL,(R) such that S(buub) C
S(a) for any u € U.

(2) There exists a neighborhood V of 0 in V,, such that

m1(b(1, +v)b) = my(a) <= min @p(v) =0
z€S(a)

for any v € V.
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Lemma 1.2. Let ¢ be a strictly log-concave and differentiable type one
function. Let a € P,, and fix an element b € GL,(R) such that a = bb.

(1) There exists a neighborhood V C 'V, of 0 such that either v = 0 or
d(b(1,, +v)b) < ¢(a) holds for any v € V with (dlog ¢)p(v) <0 and I, +v €
P,.

(2) Let C be a closed cone in'V,, such that (0log ¢)p(v) > 0 for allv € C\{0}.
Then there exists a > 0 such that ¢(b(1,, +v)b) > ¢(a) holds for any v € C
with 0 < [jv]| < a.

We set D, = {v € V,, : mingeg(a) Ppe(v) >0 and (9log)y(v) < 0}.
By these lemmas, we obtain the following generalization of Korkine and
Zolotareft’s equivalent condition (cf. [40, Theorem 3.4.5]).

Lemma 1.3. Let ¢ be a strictly log-concave and differentiable type one
function. Then a € P, is ¢-extreme if and only if D, = {0}. Any ¢-extreme
point is strictly ¢-extreme.

Lemma 1.3 leads us to Theorem 1.3 as follows: Let a € P,, be perfect and
¢-eutactic. Fix an element b € GL,(R) such that a = %b. For v € D,, ¢-
eutaxy concludes ¢y, (v) = 0 for all z € S(a), and then v = 0 by perfection.
Thus D, = {0} and a is ¢-extreme. Conversely, let a be ¢-extreme. If
wpe(v) = 0 for all x € S(a), then either v or —v is contained in D,. Since
D, = {0}, we have v = 0. This implies that a is perfect. The linear forms
—(0log @)y and @y, = € S(a), satisfy

{veV, : zrerg(r;) ©pz(v) >0 and — (dlog @)p(v) > 0}

= ﬂ Ker(ppg) N Ker(—(0log¢)p) = {0}.

z€S(a)

Then, by Stiemke’s theorem, a must be ¢-eutactic. Here Stiemke’s theorem
asserts that, for a family of linear forms ¢, -, ¢, on RY, there exists
p1, -+ pr € Rsg such that p1p; + -+ + pro, = 0 if and only if {v € RV :
ming <;<, ¢;(v) > 0} = Ker(e1) N--- NKer(p,).

1.3. Geometric characterizations of perfect forms

The kernel Kj(mq) is called the Ryshkov polyhedron. Ryshkov [54], [56,
Chapter III] closely investigated polyhedral geometric structure of K;(m;)
and its dual Kj(mi)“. Since m; equals zero on the boundary of P3™i
the Ryshkov polyhedron K7j(m;) is contained in P,. For an integral vector
x € Z"\ {0} and a constant A\ € R, H, denotes the affine half-space
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{a € V,, : (a,ztx) > A} in V,,. Then K;(m1) is the intersection of affine
half-spaces H |, (x € Z™\ {0}). It is known that K (m;) is a locally finite
polyhedron, i.e., the intersection of Kj(m;) and an arbitrary polytope is a
polytope, (see e.g., [28, Proposition 29.5], [60, Theorem 3.1]). In particular,
Kimi)n{a €V, : tr(a) < A} is a polytope for any sufficiently large
constant A > 0. We denote by dK7(mq) the boundary of Kj(m;). In what
follows, we give a description of faces of Kj(my).

Lemma 1.4. Letay, - ,a, € 0K1(m1) and S be a non-empty finite subset
of Z"\ {0} such that S C S(a;) fori=1,---,r. Then, for any A1, , A\ €
R>o with Ay + -+ A\, = 1, one has \a1 + -+ + Ma, € 0K1(mq) and
ScSAar+--+ Aay).

Proof. Since K;(mq) is convex, Aja; + -- -+ A\ra, is contained in K7 (mq).
If x € S, then

T

<zr: Aiag, xtz) = ZT: Aima(a;) = Z Ai=1.
=1 =1 1

=1
This means my(Aaj; +---+ Nay) =1and S C S(A\a1 + -+ Arap). O

For a non-empty finite subset S C Z™ \ {0}, define the subset Fg of
0K1(mq) as
Fs={a€dKi(m1) : SC S(a)}.
We denote by Hg the affine subspace of V,, generated by Fg, i.e.,
Hs={Ma1+ -+ a, : 1<reZ, aeFs, ER, i+ -+ =1}
if Fs # 0, or Hg = () if F5 = (). Since S is non-empty, Hs is a proper affine

subspace of V,,.

Lemma 1.5. One has Fs = 0K1(m1) NHg. In particular, Fs is a face of
Ki(my) if Fs # 0.

Proof. We assume Fg # ) and fix an a9 € Fg. Let » = dim Hg. There
exist r elements aq,--- ,a, € Fg such that {a; —ag,- - ,a, —ap} is a basis
of the subspace {a —ag : a € Hg}. Any element b € OK;(m1) N Hg is
represented as

b=ap+ Ai(ar —ag) +--- 4+ A(ar — ag), A, A ERL

Since S C S(a;) for i = 0,1,--- ,7, we have (a; — ag,xz'z) =0 for all z € S,
and hence (b, z'z) = (ag,z'z) = 1 for all x € S. This means S C S(b).
Therefore, 0K1(m1) N Hg is a subset of Fg. |
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Lemma 1.6. Any face of K1(ma) is of the form Fs for some non-empty
finite subset S C Z™\ {0}.

Proof. Let F be a face of Kj(mq) of dimension r. First, we assume F is
a facet, i.e., r = dim V,, — 1. There exist r + 1 elements ag,a1,--- ,a, € F
such that a; — ag,- - ,a, — ag are linearly independent. We fix constants
Ao, A1, o, A such that A\ g+ A\ +---+ A =1land 0 < \; < 1 for i =
0,1,---,r. Since F is convex, the element a = A\gag + A1ay + -+ + A\qa, is
also contained in F. For any = € S(a), we have

1 =mi(a) = {a,z'z) = Z)\i<ai,xt:v> > Z/\Z‘ =1.
i=0 =0

Thus, {(a;, z'z) equals mi(a;) = 1 for alli = 0,1,--- ,r. This implies S(a) C
S(a;) foralli =0,1,--- ,r. Let S be the intersection of S(a;), i =0,1,--- ,r.
Since S C S(a) is obvious, one has S = S(a). By definition, the face Fg
contains ag, ay,- - ,a,. Therefore, 0K1(m1) N Hg = Fg contains F. Since
Hs is a proper affine subspace and F is a facet, we obtain Fg = F.

In general case, F is an intersection of finite number of facets, say
Fsys -+ ,Fs,. By definition, we have

k
F=()Fs, =Fsu-us, -

i=1

O

We denote by °K7(m1) the set of all vertices (= 0 dimensional faces)
of Ki(mq). The next theorem is well-known.

Theorem 1.4. For a € K1(my), the following three conditions are equiv-
alent each other.

(1) a is perfect.

(2) a € 3Ky (my).

(3) There exists a neibourhood O of a in P, such that S(b) & S(a) for any
beO \ R>0(l.

Proof. First we show the contraposition of (1) = (2). Let a € 0K1(m1)\
9°K1(my). Then, there exist aj,as € K1(my) and 0 < \g < 1 such that
a = May + (1 — Ag)az. Both S(a;) and S(az) contain S(a). Assume a is
perfect. By Lemma 1.4, S(Aaj 4+ (1—A)az) also contains S(a) for all positive
A < 1. Therefore, Aa; + (1 — X)ag is perfect. This contradicts Theorem 1.1.

Next we show (2) = (3). Let a € 9°K;(my). By Lemma 1.6, there
exists a finite subset S C Z™ \ {0} such that {a} = Fg. By Lemma 1.1,
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there is a neighbourhood O of a in P, such that S(b) C S(a) for all b € O.
If b € 0Ki(m1) N O and S(b) = S(a), then we have b € Fg, and hence
b = a. This O satisfies (3).

We show the contraposition of (3) = (1). Let a € 9K1(m1) be a non-
perfect point. Then, there exists ¢ € V,, \ {0} such that (c,z'z) = 0 for all
x € S(a). If € > 0 is sufficiently small, then a + €c is contained in P,, and
S(a + ec) is a subset of S(a). Since (a + ec,z'z) = 1 for all z € S(a), we
have mj(a + ec) = 1 and S(a + ec) = S(a). This means that a does not
satisfy the condition (3). O

Corollary 1.1. The set of all perfect elements of P, coincides with R~ -
80K1 (ml)

In the rest of this section, we show that K;(m;) is the convex hull of
9°K1(m1) in V,,. For a € 9" K;(m1), we set

Co=1{b€V, : (bya'z) >0 forall z € S(a)} = HY o,
z€5(a)
which is a polyhedral cone in V,, of finite faces. For a non-zero b € C,, the

ray R - b is called an extreme ray of C, if for any b1,bs € C,, whenever
b= (b1 + b2)/2, we must have by,b2 € R>¢ - b.

Lemma 1.7. Let a € 3°K1(m1). If R>o - b is an extreme ray of Cq, then
b Psemi,

Proof. We prove that b € P5*™i leads us to a contradiction. Since a is
perfect, the set {z'z : z € S(a)} spans V,,. We set

S'={z e S(a) : (byz'x) =0}
and
W={ceV, : (cz'x) =0 forall z € §'}.

Since b # 0, S’ is non-empty and W is a subspace of V,, containing the line
R-b.

First we assume dim W > 2. There is a ¢ € W such that b and ¢ are
linearly independent. If we assume b € P5°™!, then we have (b, z'x) > 0 for
all z € S(a)\S’. Thus, for sufficiently small A > 0, we have (b+ Ac, z'z) > 0

for all z € S(a) \ S’. From (b + Ac,z'z) = 0 for all z € S’, it follows
b+ Ac € C,. Then one has

1 1
b= §(b+/\c)+ i(bf)\c)
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and b+ Ac &€ R>¢ - b. This is a contradiction.

Next we assume dimW =1, i.e., W = R -b. Let N = dimV,,. Since
the subspace spanned by {zfz : x € S’} is the orthogonal complement of
W, there are N — 1 linearly independent vectors z1tx1, -+ ,zy_1tzn—_1 in
{ztx : x € S'}. By the perfection of a, there exists zy € S(a) \ S" such
that ¢z, - ,zn_1'zNn_1,zn 2N are linearly independent. If we assume
b € P5*™ then there is a square root v/b € P3™ such that (v/b)? = b. For
eachi=1,---,N — 1, one has

0= (b,z;'x;) = t(\/gxz)(\/ng) )

ie., 1, -+ ,xy_1 are contained in the nullspace of v/b. Thus there is a non-
zero y € R such that ‘yx; =0 fori=1,--- , N — 1. We choose a non-zero
z € R™ which is orthogonal to . Then the non-zero symmetric matrix
(ytz+2'y)/2 € V,, is orthogonal to x1tx1, -+, zntx . This contradicts that
itz - ,entzn spans V. m|

Proposition 1.3. Let L be an edge (= one dimensional face) of K1(my).
Then there are aj,as € 0°Ki(m1) such that L = {\a; + (1 — N)az : 0 <
A< 1)

Proof. For a sufficiently large 6 > 0, we set
Ki(mi)g=Ki(m1)N{a €V, : {(a,1,) <0} and Ly=LNKi(mi)g.

Since Ly is an edge of the polytope Kj(mq)g, there are vertices ap,a} of
K1(my)g such that Ly is the line joining a; and af. Since Ly is not contained
in the affine hyperplane {a € V;, : (a,1,) = 0}, at least one of a; and a
must be a vertex of Kj(my). Let a; € °K1(m1) and b € V,, be a direction
of L. Thus, any point of L is of the form a; + A\b for some A > 0.

We show R>q - b is an extreme ray of C,,. There is an open interval
(0, Ag) such that a; + Ab € L for all A € (0, Ag). Since a; + Ab € IK;(mq)
for A € (0, \p), we have mq(a; + A\b) = 1 and

1 <{a; +Ab,z'z) =1+ \(b, 2'x)

for all z € S(a1). This means b € Cq,. If R>¢-b is not an extreme ray of C,,,
then there are by, by € Cq, \R>g-bsuch that b = (by +b2)/2. Fori = 1,2 and
a sufficiently small A > 0, we have a; + \b; € P,, and S(a; + Ab;) C S(aq).
From b; € C,,, it follows that for z € S(a; + Ab;),

mi(ay + Ab;) = {ay + Ab, z'x) = 1+ A(bs, 2'z) > 1.
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Namely, both a1 + Ab; and a; + Aby are contained in K7 (m1)\ L and a3 +\b
is the middle point of a; + Ab; and a; + Abs. This is impossible since L is
an edge of K1(m1). Therefore R>q - b must be an extreme ray of C,.

Since b ¢ P*™ by Lemma 1.7, the value Ay = sup{A >0 : ag+ \b €
Ki(my)} is finite. Thus L is written as L = {a1 +Ab : 0 < A < A}
Finally we show the point ay = a1 + A\1b is a vertex of Ky(my). If as &
9°K1(my), then there are ¢, co € K1 (m1) such that as = (¢1 + ¢2)/2 and
Aer + (1 = N)eg € 0Ky(mq) for 0 < A < 1. In this case, the triangle of
vertices a1,c; and cg is contained in 0K;(mq). This contradicts that L is
an edge of K1(myq). |

Corollary 1.2. The Ryshkov domain Ki(mi) is the convex hull of
80K1(m1).

Proof. We fix an arbitrary a € Ky(mq). If § > tr(a), then a € Kq(mq)s.
Let {b1,---,b.} be the set of all vertices of the polytope Ki(mq)g. Since
K1(my)g is the convex hull of {by,--- ,b,}, a is of the form A\1b; +- -+ Ab,
with Ay +---+A.=1land \; >0,i=1,---,r. Each b; is either a vertex of
K1(my) or the intersection of an edge of K;(m1) and the affine hyperplane
{c €V, : tr(c) = 6}. In any case b; is a point on an edge of Ki(my). By
Proposition 1.3, all b; are contained in the convex hull of 8°K;(m;), and
hence a is also contained in the convex hull of 9°K;(my). O

Proposition 1.3 is regarded as the dual statement of [56, Theorem 12.1].
From Proposition 1.3, it follows that the convex cone Kj(m;) does not have
any extreme direction. Thus, Corollary 1.2 is a consequence of more general
theorem [53, Theorem 18.5].

All subsets K1(my), 0K1(m1) and 0°K;(m;) of P, are invariant by the
action of GL,(Z). The finiteness of 3°K;(m1)/GL,(Z) is due to Voronoi
(62, §7 Théorem]).

Theorem 1.5 (Voronoi). The cardinality of ° K1(m1)/GL,,(Z) is finite.

Proof. We follows the argument of [60, Theorem 3.4]. Let a € 9°K1(my1).
By the reduction theory of Hermite or Minkowski, there exists an equivalent
a' € aGLy(Z) such that A+ -\, < ¢, detd, where \; denotes the i-th
diagonal component of ¢’ and ¢, is the constant depending only on n. Since
a’ is perfect, there are n linearly independent minimal vectors z1,--- ,z,
in S(a’). Since my(a’) = mi(a) = 1, Hadamard’s inequality leads us to
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deta’ < {a',x1tx1) - (a’',x,tx,) = 1. Therefore, we have
tr(a’) = A+ 4+ Ay <nAp - A < ney

because of 1 = my(a’) < \; for i = 1,--- ,n. This shows that any perfect
element of 9° K1 (m1) is GL,,(Z)-equivalent to a vertex of polytope K1 (m;1)N
{a €V, : tr(a) < ncy}. O

More generally, it is known that the set of all faces of 0K;(m1) has only
finitely many GL,,(Z)-orbits ( [55, Theorem 5’|, see Theorem 3.2 below).
The actual value of the cardinality p, = #(0°K;(m1)/GL,(Z)) is known
up ton = 8 (cf. [59, §3.1]): one has po = p3 = 1,p4 = 2,p5 =3, p6 = 7, p7 =
33, ps = 10916.

We note that the face Fg may not necessarily be compact in general. It
is known that the non-empty face Fg is compact if and only if S spans R"™ (
[55, Theorem 1], see also [40, Remark 9.1.12]). If S(a) spans R", then a € P,
is said to be well-rounded. Any perfect point is obviously well-rounded.
Any weakly eutactic point is also well-rounded ( [14, Théoréme 2.3]). The
finiteness and the algebraicity of weakly eutactic classes are verified by
Bergé and Martinet [14, Théorémes 3.5 et 4.1].

Theorem 1.6 (Bergé and Martinet). Let 0“°K;(m1) be the set of
all weakly eutactic points in OKi(my). Then the cardinality of

0 K1(m1)/GL(Z) is finite. Anya € 0"°K;(mq) is contained in GL,(Q),
where Q stands for the algebraic closure of Q.

Let 0*"K7(mq) be the set of all well-rounded points in dK;(my). The
quotient 9" K;(m1)/GL,(Z) is compact (cf. [40, Proposition 9.1.6]).

1.4. Hermite like constants

Let ¢ be a type one class function and S, be a complete set of representa-
tives for 0°Ky(m1)/GL,(Z). From P, C R~q - K1(my), it follows

1
sup Fy(a) = sup Fyla)= sup ——.
a€ Py a€Kq(m1) a€Kq(m1) ¢(a)

By Corollary 1.2, any a € K7(mq) is represented as
a=May+ -+ \ea,

by some ay, -+ ,a, € °K;i(mq) and Ay, -+ , A\ € Rsg with Ay +-+-+ X, =
1. Then, since ¢(a) > min{é(a1), -, ¢(a,)}, one has

1 1
= max ——
acSy

¢(a)

sup —_— = sup -
aGKl(ml) (a) aeaDKl(ml) (a)
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Therefore, the Hermite like constant

0¢ = max Fy(a)
of Fy is well-defined. In the case of ¢ = det/ ", 04 coincides with the
Hermite constant ~,.
Let ¢° be the dual type one class function of ¢. By definition, the
inequality m1(a) < d¢0¢°(a) holds for all a € P,. By passing to the dual,
one has ¢°°(a) < dgow1(a) for a € P, and by Proposition 1.2,

wp (@)

a€P, W1 (a)

S6¢o.

Thus, we can define the dual constant

T
= 2 @

Indeed, we can show Sd) = 0g0 for any type one class function ¢. In partic-
ular, this gives

~ det(a)'/™
=4 n =20 nyo =N SUp —————— .
Tn det!/ (det/™) ae}% wl(a)

We write &, for the product dg - 5\45. This satisfies the invariance £go =
oy = &g for any constant C' > 0. For example, &,, = &n, = 0y, and
Eqert/n = 72 /n. By definition, we have the following:

Proposition 1.4. The inequality &,, < & holds for any type one class
function ¢.

See [58, Propositions 3.2 and 3.3] for details.

2. Rankin’s constant and Voronoi’s theorem

Rankin [52] defined the constant 7, ; as a generalization of Hermite’s con-
stant, and proved Rankin’s inequality among v, ;. About 40 years later,
Coulangeon [22] formulated Voronoi’s theorem of this case in terms of k-
perfection and k-eutaxy. It is an open problem to find a geometric character-
ization of k-perfect forms. Bergé and Martinet [13] introduced the constant
’7;;,1@ and proved several inequalities among 7, j and 7;1,;:' In this section,
we will survey Voronoi’s theorem for v, x and 7y, ;.
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2.1. Rankin’s constant

Let k be a positive integer with 1 < k < n — 1. We denote by M}, (Z)
the subset {X = (21, - ,2x) € Myui(Z) : 1 Az Ao Ay # O} of
My, (Z). The unimodular group GLy(Z) (resp. GL,(Z)) acts on M}, (Z)
by right (resp. left) multiplications. For X € M, (Z), define the function
Dy : P™m —; Ry by

Dx(a) = det(*XaX)'/*

for a € Ps*™i Tt is obvious that Dx is a type one function. The function
my : P™ — Ry defined by
my(a) = inf Dx(a
(@) XeM;y . (Z) x(a)
is a type one class function. This is regarded as a generalization of the

arithmetical minimum function m;. It is obvious that my(a) > 0if a € P,,
and my(a) = 0 otherwise. Rankin [52] defined the constant

mg(a F
= max ————— | ,
sk acP, det(a)l/m
and then proved the inequality

Tn,k < 'Yj,k(f}/n,j)k/j

for 1 <k < j <n—1 as a generalization of Mordell’s inequality. By using
this inequality, Rankin determined the value 42 = 3/2. See 2.4 for other
explicit values of vy, k.

2.2. Voronoi’s theorem of my/ det'/™

A point a € P, is said to be k-extreme (strictly k-extreme) if my,/ det/™

attains a local maximum (resp. a strict local maximum) on a up to the
multiplication by an element of R~y. A Voronoi type characterization of
k-extreme points was studied by Coulangeon [22]. The subset

Sia) ={X € My, ;(Z) : Dx(a) =my(a)}

corresponding to a € P, plays a key role. Since Dxp(a) = Dx(a) for all
h € GLi(Z), the set Sj(a) is invariant by the action of GLy(Z), and hence
the quotient Sy(a) = Si(a)/GLk(Z) exists. We write [X] for the element
X - GLi(Z) in Sk(a). The following was proved in [22, Proposition 2.7].

Proposition 2.1 (Coulangeon). The cardinality of Sk(a) is finite.
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We recall the notion of k-perfection and k-eutaxy. For each ¢ =
1,2,--- ,k, we define the map *; : V,, x M,, x(R) — M, x(R) by
U *; X = (xlv 3 Li—1, VT4, Lig1, 7xk‘)

forve V, and X = (x1, -+ ,2r) € M, x(R). Note that #; is linear in X
but not in v. Then, for each X € M, (Z), the linear map px : V, — R
is defined by

k
ox(v) = Zdet(tX (v X)) .

It is obvious that ¢ x depends only on the class [X] = X - GLy(Z). Another
definition of px is given by

ox () =det(*X - X)- < px,v >,

where px denotes the matrix representation of the orthogonal projection
from R™ onto the subspace spanned by {z1, -, 2%}

Definition 2.1. Let a € P,. We fix an element b € GL,(R) such that
a = 'bb. An element a is said to be k-perfect if {@px }(x]es,(a) SPans the
dual space V¥ of V,,. An element a is said to be k-eutactic if there exist
px > 0 ([X] € Sk(a)) such that

tr = Z PXPbX -
[X]€Sk(a)

These definitions of k-perfection and k-eutaxy do not depend on a choice
of b. Now the main theorem of [22] is stated as follows:

Theorem 2.1 (Coulangeon). A point a € P, is k-extreme if and only if
a 18 k-perfect and k-eutactic. Any k-extreme point is strictly k-extreme.

The line of the proof of Theorem 2.1 is parallel to that of Theorem 1.3.
Namely, the following sufficient and necessary condition for k-extremeness
is shown: a = 'bb € P, is k-extreme if and only if the set

{veV, : min ¢x(v)>0 and tr(v) <0}
XeSk(a)
is reduced to {0} ( [22, Théoréme 3.2.2]). Theorem 2.1 follows from this

and Stiemke’s theorem.
The finiteness of k-perfect points was proved in [22, Théorem 4.5].

Theorem 2.2 (Coulangeon). The number of k-perfect points in P, mod-
ulo RsoGL,(Z) is finite.
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Example 2.1. Let L C R”™ be a full lattice, which means a Z-module
of rank n. The dual lattice L* of L is defined by L* = {y € R"
try € Z forallz e L}. If @y,--- ,z, is a basis of L, then we denote
by [L] the class of the Gram matrix (*z;x;)1<ij<n 0 Rso\Pn/GL,(Z).
In dimension 4, there are at least 5 inequivalent 2-perfect points, i.e.,
[A4], [AZ], [D4], [Wal, [W5] ( [22, §5.1]). Here we use standard notations of
root lattices. By Wy, we denote the Watson lattice of rank 4, i.e.,

3 —-1-1-1
-1 3 —-1-1

[W;d = 1.1 3 -1 mod R>0GL4(Z) .
-1-1-13

The maximum of msy/ det'/* is attained on [Dy]. In general n > 4, the class
of any irreducible root lattice of rank n is 2-extreme and k-eutactic for all
k <n ([22, Théoréme 5.1.1]).

When £ = 1, Theorem 1.1 shows that the Hermite constant v, = v,
is an algebraic number. The algebraicity of k-perfect points and ~, ; for
k > 2 was verified by Bavard [9, Théorem 2.2], [11, §1.5]. It is based on the
following general result [11, Lemme 1.11].

Lemma 2.1. Let W C RN be an algebraic subset defined by polynomials
with coefficients in Q N R. Then the set of isolated points in W is a finite
subset contained in W N (QNR)N.

If a is k-perfect, then the set
W ={(b,\) €V, xR : Dx(b)—A=0 forall X € Sj(a)}
satisfies the assumption of Lemma 2.1. Since k-perfect points are isolated

in W ( [11, Proposition 1.8]), we obtain

Theorem 2.3 (Bavard). Any k-perfect point is contained in P, N\M,,(Q).
In particular, v, 1 s an algebraic number.

2.3. Some problems on k-perfect forms

Since my, is a continuous type one function and vanishes on the boundary
of Psmi K;(my) is a kernel contained in P,. As we have seen in §1.3,
Ki(my) is a locally finite polyhedral convex cone and perfect points are
characterized as vertices of K1(my). When k > 2, K;(my,) is not polyhedral,
and we have the following problem.

Problem 2.1. Determine locations of k-perfect points in Kq(my).
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Theorem 1.4 (3) gives another characterization of perfect points in P,.
On variations of the set Si(a), the next is elementary ( [22, Lemme 2.9]).

Proposition 2.2 (Coulangeon). For a € P,, there is a neighborhood U
of a in P, such that Si(a’) C Si(a) fora’ € U.

We say that Si(a) is locally maximal if there is a neighborhood U of a
in P, such that Si(a’) G Sk(a) for all a’ € U \ Rpa. Let P be the set
of a € P, such that Si(a) is locally maximal. If k = 1, PV coincides with
the set of all perfect points in P,.

Problem 2.2. Does P,(Lk) coincide with the set of all k-perfect points in P,
foranyk>2 ?

The cardinality £(S(a)) = 28(S1(a)) is called the kissing number of
a. Determination of the maximum max.cp, 26(S1(a)) is known as the
lattice kissing number problem [20, Chapter 1, §2]. The actual value of
max,ep, #(S1(a)) is known for 1 < n < 9 and n = 24 (cf. [67]). One can
prove the estimate maxqep, #(S1(a)) < 2"—1 for all n as follows: Let a € P,
and z,y € S(a). If y — x = 2z € 2Z", then my(a) = (x + 22)a(x + 22) =
trax, and hence tzaz = —tzaz. From tzax < '(z + 2)a(z + 2), it follows
tzaz < 0, i.e., z = 0. This means that the natural map Z" — Z"/2Z"
is injective on Si(a). This proof is due to Voronoi [62, p.107, Lemme], see
also [43, §31, p.80] for more general result. When n > 10, Watson [66, The-
orem 1] proved max,ep, #(S1(a)) < 2”2 + 8. We have a similar problem
for k > 2.

Problem 2.3. Bound the mazimum maxqep, §(Sk(a)).

If ¢ is a type one function, then one can ask about Voronoi’s theorem
for my /.

Problem 2.4. Prove Voronoi type theorem for my /¢ when k > 2.

Let wy, be the dual type one class function of my. When k > 2, it is not
trivial that the Hermite—Rankin like constant of my /¢ exists for a given
type one class function ¢. We set

mi(a) S ¢(a)
gk = SU , ok = SU
ok aelg?, ¢(a) ok ae}% wk(a)

for a type one class function ¢.

Problem 2.5. When are both 64 ) and g,ﬁ,k finite ?
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It is easy to see that 41 = g¢o’k provided that both 4 5 and gd,o’k are
finite.

2.4. The Bergé—Martinet constant

The constant

k/2

= (sup mutaym ()
acP,

was first defined by Bergé and Martinet. In [13], they proved several in-

equalities among v, ; and ’7;, o

Theorem 2.4 (Bergé and Martinet). One has the following:
(1) Y < Yok < (W) for 1<k <n-—1.
(2) (V)" < (’Yn_k,k)"_k(vﬁhk)% for 1 <k<n/2.
(3) 7;,2k < (’Y;L—k,k)Q for1<k<n/2.
(4) (V)" ™2 < (Vi)™ F for 1 <k <n—1.
(5)

9) Ynn/2 = 'V;L,n/2 if n is even.

When k£ = 1, an analog of Voronoi’s theorem holds for the Bergé-
Martinet invariant Fpy(a) = /mi(a)mi(a=t). A point a € P, is said
to be dual-extreme (strictly dual extreme) if Fpy attains a local maximum
(resp. a strict local maximum) on a up to the multiplication by an element
of R~ g. To define the dual-perfection and the dual-eutaxy, we use the same
notation as in 1.2.

Definition 2.2. Let a € P,. We fix an element b € GL,,(R) such that a =
bb. An element a is said to be dual-perfect if {@ps }res(a) U{@to-1y }yesa-1)
spans the dual space V" of V,,. An element a is said to be dual-eutactic if
there exist p, >0 (z € S(a)) and p, >0 (y € S(a™')) such that

D = Y Py
z€S(a) yeS(a—1)

Then one has:

Theorem 2.5 (Bergé and Martinet). A point a € P, is dual-extreme
if and only if a is dual-perfect and dual-eutactic. Any dual extreme point is
a strict dual extreme.

As noticed in [40, p.99], the number of dual-perfect points in P,, modulo
R-¢GL,(Z) is infinite in general. In [12], Bergé proved the following:
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Theorem 2.6 (Bergé). The number of dual-extreme points in P,, modulo
R.oGL,(Z) is finite. If a € P, is dual extreme, then there exists A € Rsg

such that Aa € GL,(Q). In particular , ), = ’741,1 is an algebraic number.

As to the explicit value of v}, 74 = vs = 2 immediately follows from
the self-duality of the Eg-lattice. Bergé and Martinet determined the values
vy = 2/V3, ¥4 = 1/3/2 and 7, = /2. In [49], Poor and Yuen proved the
inequality

n . (a,b) "

<
(Yn)? ™ (@b)ePuxp. ma(a)ma(b) ~ (v7,)?

(2)
and, by using this, they determined the following values.
Theorem 2.7 (Poor and Yuen). v, = V2, 75 = \/8/3 and v = /3.

All known values of 7/, satisfy (v,,)?> € Q. The following problem is due
to Martinet [40, Questions 3.8.12].

Problem 2.6. Is (v/,)? rational for alln ?

Applying Theorem 2.4 to the explicit values of 7§, 74, Y42 and =, for
n=2,---,8, we have

Theorem 2.8. Y52 = 3%/3, vf, =2, 752 = Vo = 3 and 53 = V3 =
V8,4 = 7é,4 =4.

See [57, §2] for details. Barnes and Cohn [7] also proved the first part
of the inequality (2). Since one has

1 nf (a,b)

Ew, B (a,b)g}’nxPn m ’

the first part of (2) is a special case of Proposition 1.4. Furthermore, the
inequality (2) is generalized to 7,k and 1, ; as follows:

L < in <a’ b> < n
(’Yn,k)2/k ~ (a,b)ePyx P, myg(a)my(b) — (’Y;L,k)z/k )

(see [57, Theorem 1]). To find an analog of Voronoi’s theorem for the k-
th Bergé—Martinet invariant Fgf\/){(a) = (my(a)my(a="))*/? ( [40, Problem
10.6.10]) solved by Bavard, see Example 3.7 below. See [26] for other Her-
mite like invariants.
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3. Generalizations of Voronoi’s theorem

There are several directions to generalize Voronoi’s theorem. A natural
generalization of the domain P,, was considered by Koecher [35] and Ash
[3]. An extension of the geometric framework was developed by Bavard
[9], [11]. A change of a base field from Q to an algebraic number field
was studied by several authors [22], [32], [38], [45], [46]. In this section, we
will survey these theories. We do not exhaust all of generalizations. See
e.g., [40, Chaprter 13] for other variations.

3.1. Voronoi’s theorem of packing functions on symmetric
cones

A generalization of the domain P, is given by the notion of symmetric
cones. Let © be an open convex cone in the Euclidean space R . The open
dual cone 2* of Q is defined to be

Q*={acR" : (a,b) >0 forallbe Q\ {0}},

where  denotes the closure of Q in RV. If Q = Q* holds, then 2 is called
a self-dual cone. We denote by Gq the stabilizer of Q) in GLy(R), i.e.,

Ga={9€GLN(R) : ¢Q=0Q}.

If Gq acts transitively on €, then  is said to be homogeneous. By a
symmetric cone, we mean a self-dual homogeneous cone. See the textbook
[25] for details of symmetric cones.

We fix a symmetric cone €. Let Gg be the connected component of
the identity in Go. Then G¢, also acts transitively on 2. We denote by K,
the stabilizer of a € €2 in G§. There exists a point e € ) such that K, =
G N On(R). The group K, is connected and gives a maximal compact
subgroup of G. Thus €2 is identified with the Riemannian symmetric space

5/ Ke.

Let L ¢ RY be a lattice of rank N which contains e. Now we define
the packing function Fiq 1y : 2 — R, of which we study local maxima.
First, the characteristic function pgq of Q is defined by

vala) = / e~ (@0 qp (aeQ).
Q

The Lebesgue measure db is normalized so that ¢q(e) = 1. The defining
integral is uniformly convergent on any compact subset in Q. It follows
from the definition that ¢q(ga) = |det g|"Lpq(a) for all g € Gg and a € Q.
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Next, the minimum function my, on Q is defined by
myz(a) = min{(a,b) : be (L\{0})NQ}.

Since € is self-dual, the value my,(a) is positive. Then the packing function
Fo, 1 is defined by

Fa,py(a) = mp(a)Y pala) .

A point a € Q is said to be extreme if F(q 1) attains a local maximum on
a up to the multiplication by an element of R+.

To state Ash’s definition of eutaxy, we need a Jordan algebra structure
of RY induced from €. Let g be the Lie algebra of G, i.e.,

g={X e MyR) : exp(X) € G3}.

Since €2 is a symmetric cone, g is invariant by the transpose X +— 'X. We
set gr = {X € g : 'X = +X}. Then g_ coincides with the Lie algebra
of K. Moreover, the map ¢ : gy — R” defined by 4(X) = Xe gives a
linear isomorphism. We define the binary product * : RY x RY — RN
by

axb=1v"a)b.

This product satisfies

(J1) axb=bxa

(J2) ax* (a® % b) = a® * (a x b), where a® means a * a
(J3) exa=axe=a

(J4) (a*¢,b) = (a,c*b)

for all a,b,c € RY. Namely, * gives RY a formally real Jordan algebra
structure with the identity e. We denote by Jq this formally real Jordan
algebra. For a € Jq, the subalgebra R[a] of Jo generated by a and e is an
associative algebra. An element a is said to be invertible if there exists an
element b € Rla] such that a * b = e. This b is unique and is denoted by
a~t. Let JS be the subset of all invertible elements in Jg. Then €2 coincides
with the connected component of J3 which contains e.
We assume L ®z Q gives a Q-structure of Jg. For a € €, we set

Sty (a) = {b € (L\{0})NQ : (a,b) = my(a)}.

Definition 3.1. Let a € Q and a~! be the inverse of a in the Jordan
algebra Jq. A point a is said to be perfect if S 1)(a) spanns RY. A point
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a is said to be eutactic if there exist A\, € R0, b € S(q,1), such that

a = Z Aob .

bGS({LL)

Let g € exp(g+). The Taylor expansion of 1/pq at the point a = ge is
given by

— detg- {1+ (=%, v)+ 2 (=%, 0)2 — (g™ 0, g~ 10)) +O((v,0)¥/2)}

pala+v) 2

for v € RY ( [3, Corollary to Proposition 3]). By using this formula, Ash
proved that the function 1/Fq, 1 is a topological Morse function on €2/R.
Voronoi’s theorem of Fq 1) follows from this fact.

Theorem 3.1 (Ash). A point a € Q is extreme if and only if a is perfect
and eutactic.

Let Ki(mz)={a€Q : (a,b) > 1 for all b€ (L\ {0}) N Q}, which is a
polyhedral cone and is regarded as a generalization of the Ryshkov domain
K1(m1). Any perfect point a € Q of myz(a) =1 is a vertex of Ky(myz). We
have the following finiteness:

Theorem 3.2 (Ash). The discrete group I' = {g € G : 'gL = L} of

o acts on Ky(myg). The set of faces of K1(my) has only finitely many
I-orbits. In particular, the number of perfect points in Q modulo R<ol' is
finite. Moreover, the number of eutactic points in Q modulo Rl is finite.

It is proved in [3, Theorem 2| that a point a € Q is eutactic if and only
if @ is critical non-degenerate for F(q ). The finiteness of eutactic points is
derived from the finiteness of I'-orbits of critical points of F(q 1.

Example 3.1. The cone P, of positive definite symmetric matrices is a
symmetric cone in V. In this case, e is chosen as the identity matrix I,
and the product * is defined by

1
a*bzi(abera)

for a,b € V,,. When L = {v € M,(Q)NV, : 2v € My(Z), vi1,"* ,Vnn €
Z}, the packing function Fp, ) is equal to (my/ det'/™)n(n+1)/2 Agh’s def-
inition of perfection and eutaxy is equivalent to Definition 1.3 ( [3, Corollary
to Proposition 2]).
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Example 3.2. Let B be the non degenerate bilinear form on R™ defined
by

B(z,y) = 2151 — Tay2 — -+ — TpYn
for = *(x1, -+ ,2,) and y = *(y1, - ,yn) € R™. Then the Lorentz cone
Q, ={xeR” : B(z,z) >0, 1 > 0} is a symmetric cone in R". We
choose e as the unit vector {(1,0,---,0) € R™. Let {e}* be the orthogonal

complement of e with respect to the usual inner product (-,-) of R™. The
product of the Jordan algebra Jo, is defined by

(Ne +u)x (Ne+u')= (AN — B(u,u'))e + ' + \Nu
for \,\' € R and u,u’ € {e}*. The packing function Fq, zn) is given as
mzn(a)"
F n - = .
(@n.20)(@) = B a7

Since Gy = R0 - SOp(1,n — 1) acts transitively on €2,,, we have

mzn(ge)"

Bl(ge,ge)r/2 %" (ge)"

Flq, zn)(A\ge) =

for A € Rsg and g € SOg(1,n — 1), and moreover,

((tga:ﬁg:v); B(m))l/? |

mzn(ge) = min _ (e,'gz) = min
ze(Z"\{0})NQ, z€e(Z™\{0})N2,

Therefore, we have

B n/2
max F(Qn JZn) (a) = max min B ((937, g.’L‘) =+ (a';’ g;)) 7
e, T [g]€K\SOo(1,n—1)/T ze(z\{0})NT2,

where I' = SOy(1,n — 1) N SL,(Z).

Problem 3.1. Let Q be an arbitrary symmetric cone. Replacing P, and
Psemi ith Q and Q, respectively, in Definitions 1.1 and 1.2, we can define
type one functions on Q and semikernels in Q. For example, both gogl/N and
my, are continuously extended to type one functions on Q. Can Proposition
1.1 and Theorem 1.3 be generalized to this setting?

As stated in Theorem 3.2, the number of eutactic classes in R>o\Q/T is
finite. When Q = P,,, Ash verified a "mass formula with signs” of eutactic
classes ([4], see also [40, Theorem 9.5.3]). For a € 0K1(my), we set I'y, =
{9 € SL,(Z) : 'gag = a}. Let Fg(,) be the face of Ki(m;) defined in 1.3,
ie., Fs@) ={b€ 0Ki(m1) : S(a) C S(b)}.
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Theorem 3.3 (Ash). The set 90°K;(m1) of eutactic points in 0K1(my)
satisfies

)

CORT sty = {027

[a]€8¢ K1 (m1)/G Ly (Z) T (n >3)

where x(SLp(Z)) stands for the Euler characteristic of SLy(Z).

The actual value of €, = §(0°K1(m1)/GLy(Z)) is known up to n =5
(cf. [8]): one has ez = 2,e3 = 5,¢4 = 16, €5 = 118.

3.2. Bavard’s theory

Let V be a Riemannian manifold and I' a discrete subgroup of the isometry
group of V. Let C' be a set endowed with a right action of I'. We consider a
family of C!-functions f, : V — R parameterized by s € C'. We assume
the following two conditions:

(B1) fsoy=fsy forall se C and yeT.
(B2) The cardinality of the subset {s € C' : fs(v) < A} of C is finite for any
veVand A € R.

Each f; is called a length function on V. We write £ for the quadruplet
(V,T,C,{fs}). What we do is to characterize local maxima of the function
Fe(v) = mingee fs(v) in v € V. A point v € V is said to be extreme
(resp. strictly extreme) if v attains a local maximum (resp. a strictly local
maximum) of Fg.

For a given v € V, T,,V stands for the tangent space of V at v and
Xs(v) stands for the gradient vector of fs at v. By the condition (Bsz),
Se(w) ={s € C : fs(v) = Fg(v)} is a finite subset of C. Let Conv(v) be
the convex hull of {X,(v)}sese(v) in T,V and Aff(v) the affine subspace
spanned by {X;(v)}ses, () in T, V.

Definition 3.2. A point v € V is said to be perfect if T,V = Aff(v) holds.
A point v € V is said to be eutactic if the origin 0 € T,V is contained in
the interior of Conv(v).

We need the following condition for £.

(C) Forany v € V, any subset S” C Sg(v) and any non-zero vector X € T,V
orthogonal to {X(v)}ses, there exists a Cl-curve ¢ : [0,€) — V for
a sufficiently small € > 0 such that ¢(0) = v, ¢(0) = X and fs(v) <
fs(c(t)) for all t € (0,€) and s € S".
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Now Bavard’s theorem is stated as:

Theorem 3.4 (Bavard). Assume & satisfies the condition (C). Then any
extreme point in V is strictly extreme, and a point v € V is extreme if and
only if v is perfect and eutactic.

A function f : V — R is said to be convex if f is convex on any
geodesic line on V| i.e.,

fUQa+ (1 =XA)B)) < Af((a)) + (1 = A)f(£(B))

holds for any geodesic £ : [0,e) — V, a, 8 € (0,¢), « # B, and 0 < A < 1.
If this inequality is strict, then f is said to be strictly convex. It is proved
that {fs}scc satisfies the condition (C) if f; is strictly convex for all s € C.

Theorem 3.5 (Bavard). Assume fs is convez for all s € C. Then a point
v € V is strictly extreme if and only if v is perfect and eutactic.

Example 3.3. We consider the subset P! = {a € P, : deta = 1} of P,,
which is identified with the Riemannian symmetric space SL,(R)/SO,(R).
For z € Z™ \ {0}, define the length function f, : P! — R by f.(a) =
trar. The family {fz}sezn\ (o} satisfies (By) for I' = SL,(Z), (B2) and
the condition (C) ( [9, Example 1]). Thus one can apply Theorem 3.4 to
& = (PY,SL,(Z),Z™ \ {0},{f:}). Since the definition of perfection and
eutaxy of Definition 3.2 is equivalent to that of Definition 1.3, this case
verifies Voronoi’s theorem. The length function f, is convex on P! for all
x € Z"\ {0}.

Example 3.4. Let G be a connected Lie subgroup of SL,(R) and G - I,
be the G-orbit of the identity matrix I,, in P}, i.e., G-I, = {tgg : g € G}.
Assume G is invariant by the transpose g — fg. Then G - I, is totally
geodesic, and hence the restriction f,|g.1, of the length function f, to
G -1, is convex for all z € Z™ \ {0}. Thus one can apply Theorem 3.5 to
&= (G In,GN SLn(Z)’ z \ {O}a {fz|GIn})

Example 3.5. Assume n is even. Let G be the symplectic group, i.e.,

G:Spn(R): QGSLn(R) . tg 0 _In/2 g= 0 _In/2 .
In/2 0 In/2 0

In this case, the family {f:|q.1, }zezn\ {0} satisfies the condition (C). This
is a particular case of more general family [1, Lemme 3.3]. See [1, Théoréme
3.1] for other symmetric spaces of classical type.
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Example 3.6. For X € M?,(Z), define the length function fx : P} —
R by fx(a) = det(*XaX), ie., fx = D%. Then the family {fx}xen: (z)
satisfies the condition (C) ( [9, Proposition 2.8]). Theorem 2.1 is verified
again by Theorem 3.4 specialized to & = (P, SL,(Z), M} . (Z),{fx}).

Example 3.7. We define the subset C,, j of M,, (Z) x M, x(Z) by
Cni ={(X,0),(0,Y) : X,Y € M, ,(Z)}.

This set is stable by the action of SL,(Z): (X,Y)g = (‘¢gX,g7'Y).
For (X,Y) € Cyy, define the length function fixy) : P, — R
by fix,yy(a) = Dx(a)® + Dy(a™')* for a € P,. Then the quadruplet
E = (Pn,SLn(Z),Crr, {fix,v)}) satisfies the condition (C) [11, Théorem
5]. Bavard proved the set of extreme points of k-th Bergé—Martinet invari-

ant Fgf& coincides with that of Fg ( [11, Proposition 2.21]). Thus Voronoi’s

theorem for F](glf\zl results in that of Fg.

In some cases, the finiteness and the algebraicity of perfect points were
also proved by Bavard [11, Corollaire 2.12 et Théoréme 1]. We explain the
simplest case of Bavard’s result. Let f be one of the real number field R,
the complex number field C or the Hamilton quaternion field H. For an
n x n matrix (A\;;) € M,(f) with entries in f, we write (X\;;)* for {(\;;),
where A — X stands for the main involution of f. The set P!(f) = {g*g :
g € SL,(f)} is a Riemannian symmetric space. We fix a subring of in f
as of = Z if f = R, of = Z[y/—1] if f = C and of = Z[i,j, k] if f = H,
where {1,1,j,k} denotes the usual quaternion basis of H. For z € of \ {0},
define the length function f, : P}(f) — R by f.(a) = v*az. Then £ =
(P(f), SLn(of),0r \ {0},{f:}) satisfies the condition (C) ( [1, Corollaire
3.1]).

Theorem 3.6 (Bavard). For & = (P}(f),SL,(of),0f \ {0}, {fz}), the
number of perfect points in PL(f) modulo SL,(of) is finite. Any perfect
point in P}(f) is algebraic over Q, i.e., which is contained in M, (of @z Q).

More generally, Bavard proved such result for some totally geodesic
subvarieties in P} (f). However the algebraicity of Yo for k > 2 is still
unknown.

In connection with Ash’s mass formula (Theorem 3.3), we append
Bavard’s mass formula [10, Théoreme 1]. We recall 0¥"K;(my) denotes
the set of all well-rounded points in 0K;(mq). If a € 9¥"K;(mq), then
Fs(a) is a compact face. The family {Fs(q)}acowr i, (m,) of compact faces
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has only finitely many SL,,(Z)-orbits by Theorem 3.2. Let {Fy,--- , F.} be
the complete set of representatives of SLy,(Z)-orbits in {Fg(a) tacowr iy (my)-

Theorem 3.7 (Bavard). {Fi,---,F,} satisfies

DT _ -2 (n=2)
>, —x(SLn<z>>—{0 .

i=1
where I'; stands for the stabilizer of F; in SLy,(Z).

For a further study of this mass formula, see [15].

3.3. Voronoi’s theorem over an algebraic number field 1

There are two methods of an extension of the base field. One is the additive
generalization (35], [38], [45], [46]) and another is the multiplicative gener-
alization ([22], [32]). Both methods give the original Voronoi’s theorem if
the base field is Q. We first explain the additive generalization.

Let k be an algebraic number field of degree r and ok the ring of integers
of k. The set of all infinite (resp. real and imaginary) places of k is denoted
by pso (resp. p1; and ps). Let k, be the completion of k at o € po, i€,
ke = R if 0 € p; and k, = C if ¢ € py. We use the étale R-algebra
kr = k ®q R, which is identified with ngpm ky. For @ = (z,) € kg,
the conjugate T of x is defined to be T = (T, ), where T, is the complex
conjugate of x,. The trace and the norm of kg are defined as

’I‘rkR(w) = Z Trkﬁ/R(wU)v NrkR(w) = H Nrkg/R(ajU)

TEPso TEPso

for ¢ = (z,) € kr.

Let ki = k™ ®q R be the kr-module of rank n. An element of kg is
denoted by a column vector X = (zy,--- ,x,) with x; € kg, i=1,--- ,n.
The group consisting of kgr-linear automorphisms of kg is denoted by
GLy(kr), which is identified with [],., GLn(ks). As an R-vector space,
ki is equipped with the inner product

(X’ Y) = TrkR (tYY) = TrkR (ilyl +oeee jnyn)v
for X =1, -+ ,@n),Y ="(yq, - ,¥,) € kik. The group of isometries

Onkr) ={9 € GL,(kr) : (gX,gY)=(X,Y) forall X,Y € kg }
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is a maximal compact subgroup of GL, (kg ). We define the subsets V,,(kr)
and P, (kr) of M, (kr) as follows:

Vokr) ={a € M, (kr) : (aX,Y) = (X,aY) forall X,Y € ki },
P,(kr) ={a € V,(kr) : (aX,X)>0 forall X € kg \ {0}}.
(

The set V,,(kr) is an R-subspace of M, (kgr) of dimension n(n + 1)fp;/2 +
n?fpy, and P,(kr) is a symmetric cone in V,,(kr). Let V,(kr)* be the
dual space of V;,(kr) as an R-vector space. The trace Trys, (kg) € Va(kr)*
is defined to be the composition of the matrix trace tr and Try,, i.e,
Trar, (kg) = Trig o tr. For X € ki, define the linear form px € V,(kr)* by
px(a) = (aX,X) for a € V,(kr).

An ox-submodule A in kg is called an og-lattice if A is discrete and
A ®z R = k§. Any projective ox-module in k™ of rank n is regarded as
an og-lattice in kg by the natural inclusion k™ C k. Conversely, for any
o-lattice A in ki, there exists g € GL,(kr) such that g='A is a projective
ok-module in k™ (see e.g., [37, Lemma 3.2]). Thus, by Steinitz’s theorem, any
ok-lattice is isomorphic with an og-module of the form offl@q, where q is an
ideal of ox. Let q; = ok, g2, -+ ,qn be a complete system of representatives
of the ideal class group of k. If H; denotes the GL,, (kg)-orbit of the oy-
lattice o ' @ q;, then the set H(k}) of all ox-lattices in k}} is given by the
disjoint union of Hy,--- , Hp:

Hikp) = | | #i-
i=1
Each component H; is identified with G'Ln(kR)/GL(o&“1 @ q;), where
GL(OL“1 @ q;) denotes the stabilizer of oﬁfl @ q; in GL,(kr).
For A € H(kg), the minimum my (A) and the discriminant disc(A) of
A are defined to be

- ony (@R /) )
)= a0 et = (SRS

where w denotes an invariant measure on kjy. We denote by Si(A) the set
of shortest vectors in A, i.e.,

S(A) = {X €A : (X,X)=m(A)}.
As an analog of the Hermite invariant, we consider the function F
H(kk) — R defined by

m4(A)
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Obviously, Fy depends only on the similar isometry class R*O,,(kr)A of
A, ie., Fy is a function on R*0,,(kr)\H (k). An ox-lattice A € H(kE) is
said to be extreme if F; attains a local maximum on R*O,,(kgr)A.

Definition 3.3. An og-lattice A € H(kk) is said to be perfect if
{vx}xes, (a) spanns V,(kr)*, and A is said to be eutactic if there are
px € Rxo, X € S (A), such that

Trar, (kg) = Z PXPX -
XS54 (M)

Leibak [38] proved a weak version of Voronoi’s theorem for F' restricted
to the component H; of free oy-lattices. Leibak’s definition of eutaxy is
weaker than that of Definition 3.3. Okuda and Yano [45] found a suitable
definition of eutaxy to complete Leibak’s result.

Theorem 3.8 (Leibak, Okuda and Yano). An oy-lattice A € H(kE) is
extreme if and only if A is perfect and eutactic.

By Humbert’s reduction theory and Cramer’s formula, one has the fol-
lowing finiteness and algebraicity of perfect oy-lattices.

Theorem 3.9 (Okuda and Yano). The number of similar isometry
classes of perfect ox-lattices in H(ky) is finite. Let A € H(k) be a perfect
ok-lattice with my(A) = 1. If g € GL,(kr) such that g~*A C k", then
Y99, € My (k') for all 0 € ps, where K is the Galois closure of k over Q.

In the case that k is a real quadratic field, a classification of some perfect
ox-lattices of small rank was given by Ong [46] and Leibak [39].

Koecher studied the function F in connection with the reduction theory
of P, (kr) and proved the finiteness of the number of similar isometry classes
of perfect ox-lattices in Hy ([35, §9, 10]). The bound #(S54+(A)) < 2(2™ —1)
for all A € H(kg) is proved by the similar way as in 2.3 (see [35, Lemma
12]).

3.4. Voronoi’s theorem over an algebraic number field 11

We use the same notation as in the previous section. For a € P, (kr), the
multiplicative minimum m,(a) and the discriminant disc(a) are defined to
be

my(a) = Xeg?{l{o} N1, ("X aX), disc(a) = Nryg (det a) .
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We denote by S.(a) the set of minimal integral vectors, i.e.,
S.(a) ={X €0} : Nr, ("XaX) =mu(a)}.

The unit group o, acts on Sy (a) by multiplication. The set S, (a)/o; of
classes is finite ( [32, Lemma 1]). Define the function Fy : P,(kr) — Rsg
by
my(a)
F.(a)= ————.
(@) disc(a)t/™

The group GL,(kr) acts transitively on P,(kr) by (a,g) — ‘gag for a €
P,(kr) and g € GL,(kr). By definition, F is invariant by the action of
the discrete subgroup GL,(ok) C GL,(kr), i.e., one has

F.("gag) = F.(a)
for all a € P, (kr) and g € GL,(ok). Moreover, if we set
kip = {2 = (2o)oep. € kp @ To € Rog forall o € poo},

then F,(za) = F.(a) holds for all a € P,(kr) and x € ki;. Therefore, F, is
considered as a function on k\ P, (kr)/GLn (o). An element a € P, (kr) is
said to be extreme if F, attains a local maximum on the class kg aG Ly, (o).

Let a € P,(kr) and X € k™ \ {0}. Then *XaX is invertible in k. The
map b — (bX, (*XaX)"1X) on V,,(kg) defines an R-linear form. We write
©% for this linear form. For z = (z,,) € kg, we set log(z) = (log(z,)) € k.
From the definition, it follows ¢% (log(z)a) = Try, (log(z)) for z € k. We
denote by kk the subset of € ki such that Ty (log(z)) =0, i.e.,

kﬁ ={z = (o)oep., € kﬁ : Nryg (2) =1}

Thus ¢% is null on the (f(p1)+#(p2) — 1)-dimensional subspace log(kg)-a C
Vi (kr).

Definition 3.4. An element ¢ € P,(kr) is said to be perfect if
{@%}[X]GS*(G)/OS spanns the dual space (V,,(kr)/log(kk) - a)*, and a is
said to be eutactic if there are px € Rso, [X] € Si(a)/o,, such that the
linear form b — Ty, (ke)(a™'b) on V,,(kg) is represented as

(b~ Trar gy (@ ') = > pxek-
[X]€S. (a)/0)

This definition is due to Coulangeon. Icaza [32, Proposition 3] first
proved a weak version of Voronoi’s theorem for F, and later Coulangeon
[23] completed a full version.
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Theorem 3.10 (Icaza, Coulangeon). An element a € P,(kr) is ex-
treme if and only if a is perfect and eutactic.

The finiteness and the algebraicity of perfect points were also proved by
Coulangeon [23, Proposition 4.1].

Theorem 3.11 (Coulangeon). The number of perfect elements in
P (kr) modulo ki G Ly (ox) is finite. If a = (a,) € Po(kr) is perfect, then
there exists x = (x,) € kJﬁ such that xya, € M, (Q) for all o € pso.

Theorem 3.10 is also verified by Bavard’s theory. We set P, (kgr)! =
{a € P,(kmr) : disc(a) = 1}, and for X € o} \ {0} define the length
function fx : P.(kr)' — R by fx(a) = log(Nriy (‘XaX)). Let & =
(Pn(kr)*, SLy(ok), 08 \ {0},{fx}). Then Bavard [11, Proposition 2.22]
proved that the definition of perfection and eutaxy in Definition 3.4 co-
incides with that in Definition 3.2 for £, and & satisfies the condition (C).
In contrast to Theorem 3.2, the number of classes in ki \ P, (kr )/G Ly, (ok) of
eutactic elements is not finite in general if k # Q, see [23, p.162]. To resolve
this problem, Bavard introduced the notion of non-degenerate points in his
framework ( [11, Définition 1.5]), and proved that the number of classes of
non-degenerate eutactic elements is finite ( [11, Proposition 2.24]).

If k is an imaginary quadratic field, then F, is essentially the same as
F restricted to H;. More precisely, we have

4F.("gg) = Fi(goy)?

for all ¢ € GL,(kr) = GL,(C). In particular, the number of S,(a)/o;
is bounded by 2(4™ — 1)/#(0;). In general, any estimate of the number of
Si(a)/o; is unknown.

Problem 3.2. Bound the mazimum max,cp, (kg) 1(Sx(a)/0; ).

The assertion of Theorem 3.10 is true even if the free ox-lattice o} in the
definitions of m, and S, (a) is replaced with a general o-lattice A € H(kE).
This was verified by Meyer [41, Théoréme 3.21] in more general setting.

4. Generalized Hermite constants of flag varieties

A generalization of Hermite’s constant to algebraic groups was studied in
[63] and [64]. The main problem in this theory is to formulate and verify
Voronoi type theorems. This problem was completely solved by Meyer [41],
[42] in the case of GL,,. Some inner forms of GL,, were studied in [24]. It
is likely that Bavard’s theory applies to many cases, e.g., see Example 4.2
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below. However, to approach adelic Voronoi theorems for the generalized
Hermite constants involving positive characteristic cases, we will need a
suitable definition of perfection for our adelic setting.

4.1. Generalized Hermite constants

Let G be a connected affine algebraic group defined over Q. For any Q-
algebra A, G(A) stands for the group of A-rational points of G. In par-
ticular, G(A) denotes the adele group of G. Let X(G) be the mod-
ule of Q-rational characters of G. We denote by G(A)! the subgroup
{9 € GA) : [|x(9)la = 1 forall x € X4(G)}, where | - [o denotes
the usual idele norm of the idele group of Q. By the product formula of the
idele norm, G(Q) is contained in G(A)*.

In the following, let G be a connected reductive algebraic group defined
over Q. We fix a minimal Q-parabolic subgroup P of G and a Levi subgroup
Mp of P. The maximal central Q-split torus Zp of Mp is a maximal Q-split
torus of G. We choose a maximal Q-parabolic subgroup @ of G and its Levi
subgroup Mg such that P C @ and Mp C Mg. Let Zg be the maximal
central Q-split torus of G. Since @ is maximal, the module X&(Mq/Zc)
is of rank one, and hence there is a unique generator aq of X&(Mq/Zc)
such that the restriction of d¢g to Zp/Zq is a positive scalar multiple of
a positive simple root with respect to (P, Zp). Let Ug be the unipotent
radical of @, and let K be a maximal compact subgroup of G(A) such that
G(A) = P(A)K. Then the height function Hg : G(A) — R is defined
by

He(umh) = |Gq(m)|5'
for u € Ug(A), m € Mg(A) and h € K. Indeed Hg is a function on
the space Zg(A)Q(A)'\G(A) = Q(A)'\G(A)!. Define the function Fy :
G(A) — R by

F = min Ho(vg) .
Q9) = e g He(v9)

The generalized Hermite constant g of Q\G is defined to be the maximum

Yo = Fo(g) = Fo(g) -

max max
[91€Za(A)G(Q\G(A)/K [9€EG(QN\G(A) /K

We assume the following two conditions for G and Q:

(C1) G(A) =GQGR)K.
(C2) G(Q) = Q(Q)G(Z), where G(Z) = G(Q)NG(R)K.
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The condition (C;) means that G is of class number one. By [17, Proposition
7.5], the condition (Cs) is satisfied if M is of class number one. Then ¢
is represented as

min H3(v9),

F =
Q) = e By ke B

= max
TQ 7 lec@NG®)/Ka

where Ko and Hgy' denote the infinite components of K and Hg, respec-
tively.

Example 4.1. For k=1,--- ;'n—1, let

Ri(Q) = {(g Z) a0 €GLy(Q), b e My, 1(Q), de GLnk(Q)} .

Then Ry, is a maximal Q-parabolic subgroup of GL,,. It is well-known that
GL, and Ry, satisfy both conditions (C;) and (Cz). The character ap, is
given by

ar, ((8 2)) = (det a)(nfk)/gcd(k,nfk)(det d)fk/gcd(k:,nfk) '
For v € GL,(Z), X, denotes the n by k matrix consisting of the first
k-colums of ~y. It is an easy exercise to prove that

Hg, (yg)Ecdtbon=hl/n = det(*X,-1'g g7 X, )2

holds for any v € GL,(Z) and g € SL,(R). From this relation, it follows
that (yg, )28k =k)/" equals the Rankin constant 7, ;. Thus, Coulan-
geon’s result in 2.2 is interpreted as Voronoi’s theorem of the function
Fg,.

Example 4.2. Let B be a non degenerate bilinear form on Q" defined by

B(z,y) = x1y1 — T2y2 — *** — Tn¥Yn

forx =z, - ,x,)andy = *(y1, -+ ,yn) € Q™. We assume n > 3 and put
e =(1,1,0,---,0) € Q™. Let N3(Q) be the set of all non-zero isotropic
vectors in Q™ with respect to B. The special orthogonal group SOp(Q)
of B transitively acts on Np(Q), i.e., one has N5(Q) = SOp(Q)e;;. Let
P(Q) be the stabilizer of the isotropic line Qej; in SOp(Q). Then P is
a unique proper Q-parabolic subgroup of the algebraic group SOp up to
SOB(Q)-conjugates. For any finite prime p, K, denotes the stabilizer of
the Z,-lattice Z; in SOp(Q,). Since Z; is a unimodular maximal lattice
with respect to B, K, is a maximal compact subgroup of SOp(Q,). At
the infinite place oo, the stabilizer K, of the vector e = ¥(1,0,---,0) in
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SOp(R) gives a maximal compact subgroup of SOp(R). The intersection
SOB(Q) N (SOB(R) x [[, .., Kp) is the stabilizer SO(Z) of the lattice
Z" in SOp(Q). The adele group SOp(A) has the Iwasawa decomposition:
SOp(A) = P(A)(I],<o Kp). The height function Hp : SOp(A) — R
is given by

Hp(g) = llg”"ertllan = [ llg, "enlly
p<oco

for g = (gp)p<oo € SOB(A). Here, the local height || - ||, is defined by

af + o (p = o)
zll, =

max(|x1|p, T |xnlp> (p < oo)

for x = *(x1,--- ,x,) € Qp. If g = umh with u € Up(A), m € Mp(A) and
h € Hpgoo K,, then Hp(g) equals the idele norm of the first component of
the vector m~ej;. Since the class number of the indefinite lattice (B, Z")
equals one, SOp satisfies the condition (C;), and hence the generalized
Hermite constant vyp is written as

vp = @ lg~ v ern|an -

[6€S0B(ZN SO (R)/ Ko [u]eP(éI)ligoB
Let N} (Z) denote the set of primitive vectors in Ng(Q) NZ™, i.e.,

N5(Z)={x € Z"\ {0} : B(xz,z)=0and ged(zy1, - ,x,) = 1}.
From SOp(Q)e11 = Np(Q) = Q* - Nj(Z), it follows that

. -1 -1 —1
min v e n = 1IN Tl|An -
w]eP(Q)\SOB(Q) ”g 11||A zeN}(Z) ”g HA

Since x is a primitive isotropic vector and g € SOp(R), we have

lg™ zllar = llg™ zlloe x ] l2llp = g™ @lloo
p<oo

and hence

min || gz|co -

Yp = max
[91€Kc\SOB(R)/SOB(Z) zEN}(Z)

We may compare this with Example 3.2. The group SOg(1,n — 1) is the
identity connected component of SOg(R). Since K,\SOp(R)/SOp(Z) =
K\SOp(1,n —1)/T and N} (Z) equals the subset of primitive vectors in
Z"\ {0} N 99, one has

on/2 (?é?zx Fea, zn(a) < (vp)". (3)
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If n = 3, then vp = /75 = 1/2/V/3 since SOp is isomorphic with PGLy
over Q. In this case, the equality of (3) holds. In general n, Birch and
Davenport’s theorem [16, Theorem A] gives vp < (v2n7y,_1)™ " D/2 Tt
is unknown whether the equality 2"/2 max,cq, Fq, zn(a) = (vp)" holds
for all n or not. Bavard’s theory applies to this example. By using the

same notation as in Example 3.4, we can choose & = (SOq(1,n — 1) -
L, I\ NE(Z),{ folsoo(1,n—1)}) as a quadruplet in question (cf. [9, Proposi-
tion 2.6]).

We should mention two remarks. Let G and P be the same as above, i.e.,
G is a connected reductive algebraic group defined over Q and P a minimal
Q-parabolic subgroup. First, let R be a Q-parabolic subgroup of G such
that P C R. Then the generalized Hermite constant g is defined even if R
is not maximal. However, in this case, there is no canonical height function
on R(A)'\G(A)!. As a result, there are infinitely many multiplicatively in-
dependent generalized Hermite constants of R\G. To define a height func-
tion on R(A)'\G(A)!, we choose a Q-rational embedding of the projective
variety R\G into a projective space. Such an embedding is constructed by
a strongly Q-rational irreducible representation @ : G — GLy of G.
By strongly Q-rational, we mean that 7 is a Q-rational morphism and the
highest weight line [, in QN of 7 is defined over Q. Assume 7(R) is the sta-
bilizer of I, in 7(G). Then the map g +— m(g~!)l, gives rise to a Q-rational
embedding of R\G into the projective space PV~ If R; denotes the max-
imal parabolic subgroup of GLy defined in a similar fashion as in Example
4.1, then PV 1 is identified with R;\G Ly, and the height Hp, is defined
on Ri(A)'\GLx(A)'. The composition of 7 and Hg, gives a height func-
tion Hgr » on R(A)"\G(A)!. Then the generalized Hermite constant vz .
is defined to be
M7 = en(ieay T where Fral)= )t o HRr(09):
Second remark is a base change from Q to a number field k. The adelic
definition of the generalized Hermite constants is immediately extended to
reductive groups defined over k. Thus one can define vz - (k) for a connected
reductive group G defined over k, a parabolic k-subgroup R C G and a
strongly k-rational representation 7. In this notation, the constant vz (Q)
means yg, .. We write v, (k) (resp. v, (k)1 and 7, x(k)) for the generalized
Hermite constant of R1\GL,, (resp. (R1NSL,)\SL, and R;\GL,,) defined
over k. When k is a totally real number field, v2(k); was implicitly occurred
in Cohn’s paper [19, §5, §9]. Newman [44, Chapter XI] defined ~, (k); for
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imaginary quadratic fields k. For a general number filed k, 7, (k)1 was stud-
ied by Icaza [32] in terms of Humbert forms, i.e., v, (k)1 is relating with the
function F, as follows:
(T (k)1)*" = max Fi(a),
[a] €k \ P (kr) / G L (%)

(cf. [65, §3]). As a generalization of Rankin’s constant, Thunder [61] defined
n,k(k) by using twisted heights on Grassmann varieties. The above defi-
nition of g »(k) was given in [63]. Meyer [41] investigated vg (k) when
G = GL, and 7 is a Schur module realized as a polynomial representa-
tion, and established Voronoi’s theorem for Fg . by using Bavard’s theory.
Among other results in [41], we present here only the algebraicity of vr »(k):

Theorem 4.1 (Meyer). Let k be an arbitrary algebraic number field.
When G = GLy,, all yr.(k) are algebraic numbers.

In the case that k is a function field of one variable over a finite field,
~vo (k) was studied in [64].

4.2. Generalized Hermite constants of Sp,
Let n = 2m be an even integer. We consider a symplectic group

6(Q) = 5,(@ ={s€ 6Ll 9 ("5 )a= ()}

m m

For 1 <k <m, Q) denotes the maximal parabolic subgroup of G given as
follows:

Qr(Q) = Ur(Q)Lr(Q),

a0 0 O
_ . 0 b11 0 blg . a S GLk(Q)
Lr(Q) = { 4(a,b) = 00 tal O © b= (bij) € SPam—i)(Q) [
0 b21 O b22
I, *x % x
0L, xx*x O
Uk(Q) = 0 0 g I, 0O = G(Q)
0 0 * Imfk

The module of Q-rational characters X (Lx) of Ly, is a free Z-module of
rank 1 and its base is given by

0, (0(a,b)) =deta.
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We fix a good maximal compact subgroup K of G(A) so that G(A) has
the Iwasawa decomposition G(A) = Q,(A)K. Since G and Qy, satisfy both
conditions (C;) and (Cz), one has

= max min HX® ) A
T [9]EG(Z)\G(R)/ Koo YEG(Z) Qk(,yg) ( )

We restrict ourselves to the case k = m. An element of L, (A) is denoted
by

5(a) = (“ tao_l) . (0 €GLn(A)).
By definition, we have
HG (ud(a)h) = |det al ™, (u € Un(R), 6(a) € L(R), h € Kx).
Let
H,={Z € M,(C) : ReZ€V,,, ImZ € P,}
be the Siegel upper half space. The group G(R) acts on H,, by

ab

s =z iz, o= (2

> € G(R), Z € Hy,).

Since it is possible to choose the maximal compact subgroup K., as the
stabilizer of Zy = /—1I,, € H,;, in G(R), we have Im {(ud(a)h)(Zy)} = a'a,
and hence

HE (9) = (detIm {g(Zo)})~*/*

for any g € G(R). Combining this with (4), we get

- max min_(det Im 730 —1/2
Jan [9]€G(Z)\G(R) /Koo ’YEG(Z)( {Pyg< O>})

Since g(Zy) runs over a fundamental domain of G(Z)\H,,, , we have
1

i det T AV EEE
21T\, iy (A T VD))

MQm =

Note that

detTm {y(Z)} = |det(cZ + d)| *>detIm Z for v = (Z Z) € G(Z2).

Siegel’s fundamental domain S,, of G(Z)\H,, is given as follows:

* %

e |det(cZ +d)| > 1 for all <Cd> € G(Z)
eImZecM,, |ReZ;|<1/2foralli,j

Sm=RZ2Z¢€H, :

)
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where M,,, denotes Minkowski’s domain:

Yep - o '2Yx > Yy for all & € Z™ with ged(zy, - -+ ,zm) = 1
m o Y ;i1>0, i=1,--- ,m, j=1,---,m—1
From

Z €S, = max detIm{y(Z)} =detImZ,
Y€G(Z)

it follows that

1
1o = in (det Im Z)'/2”’
Z€Sm
namely
. 1
min detImZ = —— .
Z€ESm, (’}/Qm)

If m = 1, we have minges, detIm Z = 1/3/2. Recently, Kawamura [33]
determined the actual value of minges, detIm Z by using Gottschling’s
description of S,.

Theorem 4.2 (Kawamura). One has minges,detImZ = 2/3, and
hence g, = \/3/2. This minimum is attained only when Z = Zg or —Zg,

where
1/1 -1 V2 (21
Z8_3<1 1>+”_13<12>'

The boundary 9S, of Sy is described by 28 polynomials in 6 real vari-
ables. Hayata [30] computed 0-dimensional cells of 9S,. There are at least
170 0-dimensional cells of 0Sy. The points Zg and —Zg are contained in
Hayata’s list.

For general n = 2m, we have the following bound by [63, Example 3]:

2
71] m+1

II e+

1

3

[

<.
Il

min detIm Z < .
ZeSn, m+1

s

§(m +j)

N
Il
-

where &(s) denotes the zeta function 7—%/2T'(s/2)¢(s).

Problem 4.1. Give a good lower bound of mingcs,, det Im Z.
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Problem 4.2. Formulate a Voronoi type theorem for the function Z —
detImZ on S,,.

We finish this example by some observation. Let

Rn(Q) = {(g Z) : a,d € GLn(Q), be Mm(Q)} .

be a maximal parabolic subgroup of GL,,. We have yr,, = 7n,m as seen in
Example 4.1. It is obvious that Sp,(A) C GL,(A), Spn(A) N Ryu(A) =
Qm(A) and Hg, (9) = Hg,,(g)? for g € Sp,(R). Since Q,,(Q)\Sp.(Q) C
R (Q)\GL,(Q), the inequality

Fr,.(9) < Fq,.(9)° < (1q..)°

holds for any g € Sp,(A). If the maximum of Fp, is attained on a point
in Sp,,(A), Vn,m would be bounded by (vq,,)?. This happens when m = 1
or 2 and in fact we have vo1 = (70,)? and V42 = (7g,)>.

4.3. Variation of the set of minimal points

We return to the general setting of 4.1. We write Yo and Xg for
Q(A)"\G(A)! and Q(Q)\G(Q), respectively. For g € G(A)!, the set Sg(g)
of minimal points in X is defined as

Sqlg) ={lz] € Xq : Holxg) = Fo(9)} -
By Northcott’s theorem, Sg(g) is a finite set. We prove the following:

Proposition 4.1. For g € G(A)!, there is a neighbourhood U of g in
G(A)! such that Sg(g') C Sq(g) for all g’ €U.

Proof. We define the operator norm ||g||g of g € G(A)! by

Hg(yg)
llgllo = sup = max Hg(hg) .
@ weve Holy)  hek @

It is easy to see the following properties:

lgrg2lle < llgrllqligzll for all g1, 92 € G(A)".
|h1ghz2lo = |lgllq for all g € G(A)! and hy,he € K.
|hllo =1 for all h € K.

g |lgllq is continuous on G(A)!.
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We fix a g € G(A)! and put C = minj,jc x,\ s, () Ho(xg). Then Fg(g) < C
and we can take a constant ¢ so that 1 < § < C/Fg(g). Since g — Fp(g)
is continuous on G(A)!, the set

U— {u eG(A) : [lutg < 5F§(g)’ Ff*?ca((ggu)) = 5}

is a neighbourhood of the identity in G(A)!. Let u € U and [z] € Sg(gu).
We have

lu™Ig" Ho(zg) < Ho(zgu) = Fo(gu) .
If [z] & Sg(g), then C' < Hg(zg) and
5Fq(g9) < 6Fq(9)Hq(zg)/C < |lu™tlg' Ho(zg) < Folgu) < 6Fq(g) .

This is a contradiction. Therefore, we have [z] € Sq(g), and hence Sg(gu) C
Sq(g) for any u € U. |

This proposition is a generalization of Proposition 2.2. As a consequence,
one can define the local maximality of Sg(g). This leads us to similar prob-
lems as in 2.3, e.g.,

Problem 4.3. If g € G(A)! is an extreme point of Fg, is Sq(g) locally
maximal?

Problem 4.4. Bound §Sg(g) by a constant independent of g.
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