Ryshkov domains of reductive algebraic groups

Takao Watanabe

July 31, 2013

Abstract

Let \(G \) be a connected reductive algebraic group defined over a number field \(k \). In this paper, we introduce the Ryshkov domain \(R \) for the arithmetical minimum function \(m_Q \) defined from a height function associated to a maximal \(k \)-parabolic subgroup \(Q \) of \(G \). The domain \(R \) is a \(Q(k) \)-invariant subset of the adele group \(G(A) \). We show that a fundamental domain \(\Omega \) for \(Q(k) \backslash R \) yields a fundamental domain for \(G(k) \backslash G(A) \). We also see that any local maximum of \(m_Q \) is attained in the boundary of \(\Omega \).

Introduction Let \(P_n \) be the cone of positive definite \(n \) by \(n \) real symmetric matrices, and let \(m(A) \) be the arithmetical minimum \(\min_{x \neq y \in \mathbb{Z}^n \setminus \{x \} : x A x} \) of \(A \in P_n \). The function \(f : A \mapsto m(A)/(\det A)^{1/n} \) on \(P_n \) is called the Hermite invariant. Since the maximum of \(f \) gives the Hermite constant \(\gamma_n \) for dimension \(n \), the determination of local maxima of \(f \) is a fundamental problem of lattice sphere packings in Euclidean spaces and arithmetic theory of quadratic forms. Voronoi’s theorem [15, Théorème 17] states that \(f \) attains a local maximum at a point \(A \) if and only if \(A \) is perfect and eutactic. Moreover, perfect forms play an essential role in Voronoi’s reduction theory of \(P_n \) with respect to the action of \(GL_n(\mathbb{Z}) \) (see, e.g., [8], [10]). In [9], Ryshkov introduced a locally finite polyhedron \(R(m) \) in \(P_n \) defined by the condition \(m(A) \geq 1 \). It is not difficult to show that \(A \) is perfect with \(m(A) = 1 \) if and only if \(A \) is a vertex of the boundary of \(R(m) \). In particular, any local maximum of the Hermite invariant \(f \) is attained in the boundary of \(R(m) \). In this sense, we can say that the Ryshkov polyhedron \(R(m) \) is well matched with \(f \).

Let \(G \) be a connected isotropic reductive algebraic group defined over a number field \(k \), and let \(Q \) be a maximal \(k \)-parabolic subgroup of \(G \). In previous papers [16] and [17], we investigated a constant \(\gamma(G, Q, k) \) as a generalization of Hermite’s constant \(\gamma_n \). Precisely, the constant \(\gamma(G, Q, k) \) is defined to be the maximum of the function \(m_Q(g) = \min_{x \in Q(k) \setminus G(k)} H_Q(xg) \) on \(G(k) \backslash G(A)^1 \), where \(H_Q \) denotes the height function associated to \(Q \). To prove the existence of the maximum of \(m_Q \), we used Borel and Harish-Chandra’s reduction theory for the adele group \(G(A) \) with respect to \(G(k) \). However, a Siegel set in \(G(A) \) is not well matched with \(m_Q \) in a sense that one can not obtain any information on locations of extreme points of \(m_Q \) in a Siegel set.

The purpose of this paper is to construct a fundamental domain of \(G(A)^1 \) with respect to \(G(k) \) which is well matched with \(m_Q \). We first consider an analog of the Ryshkov polyhedron. For a given \(g \in G(A)^1 \), we set \(X_Q(g) = \{ x \in Q(k) \setminus G(k) : m_Q(g) = H_Q(xg) \} \). This is a finite subset of \(Q(k) \backslash G(k) \) and is regarded as an analog of the set of minimal vectors of a positive definite real quadratic form. We define the domain \(R(m_Q) \) as follows:

\[
R(m_Q) = \{ g \in G(A)^1 : \pi \in X_Q(g) \}
\]
where \(\mathcal{T} \) denotes the trivial class \(Q(k) \in Q(k) \setminus G(k) \). The set \(R(m_Q) \) is a left \(Q(k) \)-invariant closed set with non-empty interior. The interior of \(R(m_Q) \) is just a subset \(R_1 \) consisting of \(g \in R(m_Q) \) such that \(X_Q(g) \) is the one-point set \(\{ \mathcal{T} \} \). We denote by \(R_1^- \) the closure of \(R_1 \) in \(G(A) \). Both \(R_1 \) and \(R_1^- \) are also left \(Q(k) \)-invariant. By Baer and Levi’s theorem [1, Satz 7], there exists an open fundamental domain \(\Omega_Q \) of \(R_1^- \) with respect to \(Q(k) \), i.e., \(\Omega_Q \) is a relatively open subset of \(R_1^- \) satisfying

- \(Q(k)\Omega_Q = R_1^- \), where \(\Omega_Q \) denotes the closure of \(\Omega_Q \) in \(R_1^- \), and
- \(\gamma \Omega_Q \cap \Omega_Q = \emptyset \) for any \(\gamma \in Q(k) \setminus \{ e \} \).

Let \(\Omega_Q^* \) denote the interior of \(\Omega_Q \) in \(G(A) \). Then our main theorem is stated as follows:

Theorem. The set \(\Omega_Q^* \) is an open fundamental domain of \(G(A) \) with respect to \(G(k) \). Any local maximum of \(m_Q \) is attained in the intersection of the boundary of \(\Omega_Q^* \) and the boundary of \(\Omega_Q^* \).

If we denote by \(r_G \) the \(k \)-rank of the commutator subgroup of \(G \), then \(G \) has \(r_G \) standard maximal \(k \)-parabolic subgroups. Since \(\Omega_Q \) depends on \(Q \), we obtain \(r_G \) different kinds of fundamental domains of \(G(A) \) with respect to \(G(k) \). The method to construct \(\Omega_Q \) may be viewed as a generalization of the highest point method (see [6], [13], §4,4]). For example, let \(k = Q \). \(G = GL_n \) and \(Q \) be a standard maximal \(Q \)-parabolic subgroup such that \(Q \) is a projective space. Then our construction gives a fundamental domain \(\Omega_Q \) whose Archimedean part is isomorphic with Grenier’s fundamental domain. If we choose another standard maximal \(Q \)-parabolic subgroup of \(GL_n \) as \(Q \), then the Archimedean part of \(\Omega_Q \) yields a new kind of fundamental domain of \(P_n \) with respect to \(GL_n(Z) \) (see Example 3 in §7).

Notation For a given ring \(\mathfrak{A} \), the set of all \(n \) by \(k \) matrices with entries in \(\mathfrak{A} \) is denoted by \(M_{n,k}(\mathfrak{A}) \). We write \(M_n(\mathfrak{A}) \) for \(M_{n,n}(\mathfrak{A}) \). The transpose of a given matrix \(a \in M_{n,k}(\mathfrak{A}) \) is denoted by ‘\(a^t \)’. In this paper, \(k \) denotes an algebraic number field of finite degree over \(Q \) and \(\mathcal{O} \) the ring of integers of \(k \). The sets of all infinite and finite places of \(k \) are denoted by \(\mathfrak{p}_\infty \) and \(\mathfrak{p}_f \), respectively. For \(\sigma \in \mathfrak{p}_\infty \cup \mathfrak{p}_f \), \(k_\sigma \) denotes the completion of \(k \) at \(\sigma \). For \(\sigma \in \mathfrak{p}_f \), \(k_\sigma \) denotes the closure of \(\sigma \) in \(k_\sigma \). The étale \(R \)-algebra \(k_\sigma = k \otimes_Q R \) is identified with \(\prod_{\sigma \in \mathfrak{p}_f} k_\sigma \). Let \(A \) and \(A^\times \) denote the adele ring and the idele group of \(k \), respectively. The idele norm of \(A^\times \) is denoted by \(| \cdot |_A \).

1. Height functions

Let \(G \) be a connected affine algebraic group defined over \(k \). For any \(k \)-algebra \(\mathfrak{A} \), \(G(\mathfrak{A}) \) stands for the set of \(\mathfrak{A} \)-rational points of \(G \). Let \(X^*(G)_k \) be the free \(Z \)-module consisting of all \(k \)-rational characters of \(G \). For each \(g \in G(\mathfrak{A}) \), we define the homomorphism \(\vartheta_G(g) : X^*(G)_k \to R_{\geq 0} \) by \(\vartheta_G(g)(\chi) = |\chi(g)|_A \) for \(\chi \in X^*(G)_k \). Then \(\vartheta_G \) is a homomorphism from \(G(\mathfrak{A}) \) into \(\text{Hom}_Z(X^*(G)_k, R_{\geq 0}) \). We write \(G(\mathfrak{A})^1 \) for the kernel of \(\vartheta_G \).

In the following, let \(G \) be a connected isotropic reductive group defined over \(k \). We fix a maximal \(k \)-split torus \(S \) of \(G \) and a minimal \(k \)-parabolic subgroup \(P_0 \) of \(G \) containing \(S \). Denote by \(\Phi_k \) and \(\Delta_k \) the relative root system of \(G \) with respect to \(S \) and the set of simple roots of \(\Phi_k \) corresponding to \(P_0 \), respectively. Let \(M_0 \) be the centralizer of \(S \) in \(G \). Then \(P_0 \) has a Levi decomposition \(P_0 = M_0U_0 \), where \(U_0 \) is the unipotent radical of \(P_0 \). A \(k \)-parabolic subgroup of \(G \) containing \(P_0 \) is called a standard \(k \)-parabolic subgroup of \(G \). Every standard \(k \)-parabolic subgroup \(R \) of \(G \) has a unique Levi subgroup \(M_R \) containing \(M_0 \). We
denote by U_R the unipotent radical of R and Z_R the greatest central k-split torus in M_R.
Throughout this paper, we fix a maximal compact subgroup $K = \prod_{\sigma \in \varphi} K_{\sigma} \times \prod_{\sigma \in \varphi} K_{\sigma}$ of $G(A)$ satisfying the following property: For every standard k-parabolic subgroup R of G, $K \cap M_R(A)$ is a maximal compact subgroup of $M_R(A)$ and $M_R(A)$ possesses an Iwasawa decomposition $(M_R(A) \cap U_0(A))M_0(A)(K \cap M_R(A))$.

Let Q be a standard proper maximal k-parabolic subgroup of G. There is an only one simple root $\alpha_0 \in \Delta_k$ such that the restriction of α_0 to Z_Q is non-trivial. Let n_Q be the positive integer such that $n_Q^{-1} a_0|Z_Q$ is a Z-basis of $X^*(Z_Q/Z_G)$. We write α_Q and $\tilde{\alpha}_Q$ for $n_Q^{-1} a_0|Z_Q$ and $\tilde{\alpha}_Q n_Q^{-1} a_0|Z_Q$, respectively, where $\tilde{\alpha}_Q = [X^*(Z_Q/Z_G)_{\kappa} : X^*(M_Q/Z_G)_{\kappa}]$. Then $\tilde{\alpha}_Q$ is a Z-basis of the submodule $X^*(M_Q/Z_G)_{\kappa}$ of $X^*(Z_Q/Z_G)_{\kappa}$. Define the map $z_Q : G(A) \rightarrow Z_G(A)M_Q(A)\backslash M_Q(A)$ by $z_Q(g) = Z_G(A)M_Q(A)^{\dagger}m$ if $g = umh$, $u \in U_Q(A), m \in M_Q(A)$ and $h \in K$. This is well defined and left $Z_G(A)Q(A)^{\dagger}$-invariant. Since $Z_G(A)^{\dagger} = Z_G(A) \cap G(A)^{\dagger} \subset M_Q(A)^{\dagger}$, z_Q gives rise to a map from $Y_Q = Q(A)^{\dagger}\backslash Q(G)^{\dagger}$ to $M_Q(A)^{\dagger}\backslash (M_Q(A) \cap G(A)^{\dagger})$. Namely, we have the following commutative diagram:

$$
\begin{array}{ccc}
Y_Q & \rightarrow & M_Q(A)^{\dagger}\backslash (M_Q(A) \cap G(A)^{\dagger}) \\
\downarrow & & \downarrow \\
Z_G(A)Q(A)^{\dagger}\backslash G(A) & \rightarrow & Z_G(A)M_Q(A)^{\dagger}\backslash M_Q(A)
\end{array}
$$

Here both vertical arrows are natural maps. We define the height function $H_Q : G(A) \rightarrow R_{\geq 0}$ by $H_Q(g) = |\tilde{\alpha}_Q(z_Q(g))|^{-1}$ for $g \in G(A)$. We notice that the restriction of H_Q to $M_Q(A)$ is a homomorphism from $M_Q(A)$ onto $R_{\geq 0}$.

Example 1. Let G be a general linear group GL_n defined over the rational number field Q, P_0 the group of upper triangular matrices in G and S the group of diagonal matrices in G. We fix an integer $k \in \{1, \ldots, n-1\}$, and let

$$Q(Q) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a \in GL_k(Q), b \in M_{k, n-k}(Q), d \in GL_{n-k}(Q) \right\}.$$

Then Q is a standard maximal Q-parabolic subgroup of G. The rational character $\tilde{\alpha}_Q$ and the height H_Q are given by

$$\tilde{\alpha}_Q \left(\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right) = (\det a)^{(n-k)/r}(\det d)^{-k/r}$$

and

$$H_Q \left(\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \right) = |\det a|^{- (n-k)/r}_{A} |\det d|^{k/r}_{A},$$

where r denotes the greatest common divisor of k and $n-k$. The height H_Q has another expression. To explain this, let Q^n be an n-dimensional column vector space over Q with standard basis e_1, \ldots, e_n. The maximal parabolic subgroup $Q(Q)$ stabilizes the subspace spanned by e_1, \ldots, e_k. Let $V_{n,k}(Q) = \bigwedge^k Q^n$ be the k-th exterior product of Q^n. We set $V_{n,k}(A) = V_{n,k}(Q) \otimes_Q A$ and $V_{n,k}(Q_\sigma) = V_{n,k}(Q) \otimes_Q Q_\sigma$ for $\sigma \in \varphi_\infty \cup \varphi_f$. A Q-basis of $V_{n,k}(Q)$ is formed by the elements $e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$ with $I = \{i_1 < i_2 < \cdots < i_k\} \subset \{1, \ldots, n\}$. For a unique infinite place $\infty \in \varphi_\infty$, we define the local height $H_{\infty} : V_{n,k}(Q_\infty) \rightarrow R_{\geq 0}$ by

$$H_{\infty}(\sum_I a_I e_I) = \left(\sum_I |a_I|_{\infty}^2 \right)^{1/2},$$

3
where \(| \cdot |_{\infty} \) denotes the usual absolute value of \(\mathbb{Q}_{\infty} = \mathbb{R} \). For each finite prime \(p \in \mathcal{P}_f \), we define the local height \(H_p : V_{n,k}(\mathbb{Q}_p) \rightarrow \mathbb{R}_{>0} \) by

\[
H_p \left(\sum_{i} a_i e_i \right) = \sup_{i} |a_i|_p,
\]

where \(| \cdot |_p \) denotes the \(p \)-adic absolute value of \(\mathbb{Q}_p \) normalized so that \(|p|_p = p^{-1} \). Then the global height \(H_{n,k} : V_{n,k}(\mathbb{Q}) \rightarrow \mathbb{R}_{>0} \) is defined to be a product of all local heights, i.e.,

\[
H_{n,k}(x) = \prod_{\sigma \in \mathcal{P}_{\infty} \cup \mathcal{P}_f} H_\sigma(x) \quad \text{for} \quad x \in V_{n,k}(\mathbb{Q}).
\]

This \(H_{n,k} \) is immediately extended to the subset \(\text{GL}(V_{n,k}(\mathbb{A}))V_{n,k}(\mathbb{Q}) \) of the adele space \(V_{n,k}(\mathbb{A}) \) by

\[
H_{n,k}(Ax) = \prod_{\sigma \in \mathcal{P}_{\infty} \cup \mathcal{P}_f} H_\sigma(A_{\sigma}x)
\]

for \(A = (A_{\sigma}) \in \text{GL}(V_{n,k}(\mathbb{A})) \) and \(x \in V_{n,k}(\mathbb{Q}) \). In particular, for \(g \in G(\mathbb{A}) = \text{GL}_n(\mathbb{A}) \), we can take the value \(H_{n,k}(ge_1 \wedge ge_2 \wedge \cdots \wedge ge_k) \). We choose a maximal compact subgroup \(K_{\infty} \) of \(\text{GL}(\mathbb{Q}_{\infty}) \) as \(\{ g \in \text{GL}(\mathbb{Q}_{\infty}) : g^{-1} = g \} \). Let \(K_f = \prod_{p \in \mathcal{P}_f} \text{GL}_n(\mathbb{Z}_p) \) and \(K = K_{\infty} \times K_f \). Then, by elementary computations, we have

\[
H_{n,k}(ge_1 \wedge ge_2 \wedge \cdots \wedge ge_k) = | \det a|_A \quad \text{if} \quad g = h \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right)
\]

with \(h \in K, a \in \text{GL}_k(\mathbb{A}), b \in \mathbb{M}_{n-k}(\mathbb{A}) \) and \(d \in \text{GL}_{n-k}(\mathbb{A}) \). Therefore, if \(g \in G(\mathbb{A}) \), i.e., \(| \det g|_A = 1 \), then the equality

\[
H_Q(g) = H_{n,k}(g^{-1}e_1 \wedge g^{-1}e_2 \wedge \cdots \wedge g^{-1}e_k)^{n/r}
\]

holds.

2. Twisted height functions restricted to one parameter subgroups

Let \(N_G(S) \) be the normalizer of \(S \) in \(G \) and \(W_G = N_G(S)(k)/M_0(k) \) the Weyl group of \(G \) with respect to \(S \). For a simple root \(\alpha \in \Delta_k, s_{\alpha} \in W_G \) denotes the simple reflection corresponding to \(\alpha \). Then \(\{ s_{\alpha} \}_{\alpha \in \Delta_k} \) generates \(W_G \). We denote by \(W_G^Q \) the subgroup of \(W_G \) generated by \(\{ s_{\alpha} \}_{\alpha \in \Delta_k \setminus \{ \alpha_0 \}} \). For each \(w \in W_G \), we use the same notation \(w \) for a representative of \(w \) in \(N_G(S)(k) \). The following cell decomposition of \(G(k) \) holds via Bruhat decomposition ([5, Proposition 4.10, Corollaire 5.20]);

\[
G(k) = \bigsqcup_{[w] \in W_G^Q \setminus W_G^Q / W_G^Q} Q(k)wQ(k),
\]

where \([w]\) stands for the class \(W_G^QwW_G^Q \) in \(W_G^Q \setminus W_G / W_G^Q \).

The Weyl group \(W_G \) acts on \(X^*(S)_k \) by \(\chi : t \mapsto \chi(w^{-1}tw) \) for \(w \in W_G \) and \(\chi \in X^*(S)_k \). We consider the restriction \(\hat{\alpha}_Q|_S \) of the rational character \(\hat{\alpha}_Q \) of \(M_Q \) to \(S \).

Lemma 1. The subgroup of \(W_G \) fixing \(\hat{\alpha}_Q|_S \) is equal to \(W_G^Q \).

Proof. Put \(W' = \{ w \in W_G : w \cdot \hat{\alpha}_Q|_S = \hat{\alpha}_Q|_S \} \). Since a representative of \(w \in W_G^Q \) is contained in \(M_Q(k) \), we have \(\hat{\alpha}_Q(w^{-1}tw) = \hat{\alpha}_Q(w)^{-1} \hat{\alpha}_Q(t) \hat{\alpha}_Q(w) = \hat{\alpha}_Q(t) \) for all \(t \in S \). Hence \(W_G^Q \) is contained in \(W' \). By [7, §1.12 Theorem (a) and (c) \], \(W' \) is generated by a subset \(W' \cap \{ s_{\alpha} \}_{\alpha \in \Delta_k} \) of simple reflections. From \(W_G^Q \subset W' \), it follows \(\{ s_{\alpha} \}_{\alpha \in \Delta_k \setminus \{ \alpha_0 \}} \subset W' \cap \{ s_{\alpha} \}_{\alpha \in \Delta_k} \subset \{ s_{\alpha} \}_{\alpha \in \Delta_k} \). Since \(\hat{\alpha}_Q \) is non-trivial on \(S/Z_G \), \(W' \cap \{ s_{\alpha} \}_{\alpha \in \Delta_k} \) must be equal to \(\{ s_{\alpha} \}_{\alpha \in \Delta_k \setminus \{ \alpha_0 \}} \). Therefore \(W' \) coincides with \(W_G^Q \). \(\square \)
Let $X_*(S)_k$ be the free Z-module consisting of all k-rational cocharacters of S. A natural pairing

$$\langle \cdot, \cdot \rangle : X^*(S)_k \times X_*(S)_k \rightarrow Z$$

defined as in [4, §8.6] is a regular pairing over Z.

Lemma 2. Let w_1 and w_2 be elements of W_G such that $w_1^{-1}W_G^Q \neq w_2^{-1}W_G^Q$. Then there exist a cocharacter $\xi = \xi_{w_1,w_2} \in X_*(S)_k$ such that $H_Q(w_1(\xi)w_1^{-1}) > H_Q(w_2(\xi)w_2^{-1})$ holds for all $\lambda \in A^{\times}_1$, where A^{\times}_1 denotes the set of $\lambda \in A^\times$ satisfying $|\lambda|_A > 1$.

Proof. Since $w_1^{-1} \cdot \hat{\xi}Q|_S - w_2^{-1} \cdot \hat{\xi}Q|_S \neq 0$ by Lemma 1, there is a $\xi \in X_*(S)_k$ such that

$$\langle w_1^{-1} \cdot \hat{\xi}Q|_S - w_2^{-1} \cdot \hat{\xi}Q|_S, \xi \rangle < 0.$$

The value $\ell = \langle w_1^{-1} \cdot \hat{\xi}Q|_S - w_2^{-1} \cdot \hat{\xi}Q|_S, \xi \rangle$ is a negative integer. We have

$$\hat{\xi}Q(w_1(\lambda)w_1^{-1}) \cdot \hat{\xi}Q(w_2(\lambda)w_2^{-1})^{-1} = \lambda^\ell$$

for all $\lambda \in G_m$. Therefore,

$$H_Q(w_1(\lambda)w_1^{-1})H_Q(w_2(\lambda)w_2^{-1})^{-1} = |\lambda|_A^{-\ell} > 1$$

holds for all $\lambda \in A^{\times}_1$.

3. The Hermite function associated to Q and minimal points

We set $X_Q = Q(k) \backslash G(k)$, which is regarded as a subset of $Y_Q = Q(A)^1 \backslash G(A)^1$. Let $\pi_X : G(k) \rightarrow X_Q$ be the natural quotient map. The symbol $\overline{\pi} = \pi_X(e) \in X_Q$ denotes the class of the unit element $e \in G(k)$. The Hermite function $m_Q : G(A)^1 \rightarrow R_{\geq 0}$ is defined to be

$$m_Q(g) = \min_{x \in X_Q} H_Q(xg).$$

By definition, m_Q is a positive valued continuous function on $G(k) \backslash G(A)^1 / K$.

For each $g \in G(A)^1$, we put

$$X_Q(g) = \{ x \in X_Q : m_Q(g) = H_Q(xg) \},$$

which is a finite subset of X_Q. Thus we can define the counting function $n_Q(g) = |X_Q(g)|$.

Lemma 3. For any $g \in G(A)^1$, $\gamma \in G(k)$ and $h \in K$, one has $X_Q(\gamma gh) = X_Q(g)\gamma^{-1}$. Especially, the counting function n_Q is left $G(k)$-invariant and right K-invariant.

The following Lemma is proved by the same method as in [18, Proof of Proposition 4.1].

Lemma 4. For $g \in G(A)^1$, there is a neighbourhood \mathcal{U} of g in $G(A)^1$ such that $X_Q(g') \subset X_Q(g)$ for all $g' \in \mathcal{U}$.

Example 2. Let G be a general linear group GL_n defined over Q. We keep notations used in Example 1. In this case, we can express m_Q in terms of some minimum of positive definite symmetric matrices. Since GL_n/Q is of class number one, $G(A)^1 = \{ g \in GL_n(A) : |\det g|_A = 1 \}$ has the following decomposition:

$$G(A)^1 = G(Q)(G(Q_{\infty})^1 \times K_f),$$

where $G(Q_{\infty})^1 = \{ g \in GL_n(Q_{\infty}) : \det g = \pm 1 \}$ and $K_f = \prod_{p \in p_f} GL_n(Z_p)$. We fix $g = \delta(g_\infty \times g_f) \in G(A)^1$ with $\delta \in G(Q)$, $g_\infty \in G(Q_{\infty})^1$ and $g_f \in K_f$. From the left $G(Q)$-invariance and the right K-invariance of m_Q, it follows that

$$m_Q(g) = m_Q(g_\infty) = \min_{x \in X_Q} H_Q(xg_\infty) = \min_{\gamma \in G(Q)} H_Q(\gamma g_\infty).$$

5
Furthermore, since \(G(Q) = Q(Q)GL_n(Z) \) and \(H_Q \) is left \(Q(Q) \)-invariant, we have
\[
m_Q(g) = \min_{\gamma \in GL_n(Z)} H_Q(\gamma g_{\infty}).
\]
An elementary proof of the decomposition \(G(Q) = Q(Q)GL_n(Z) \) is found in [11, Theorem 3]. By Example 1,
\[
H_Q(\gamma g_{\infty}) = H_{n,k}(g_{\infty}^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_{\infty}^{-1} \gamma^{-1} e_k)^{n/r}
\]
\[
= H_{\infty}(g_{\infty}^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_{\infty}^{-1} \gamma^{-1} e_k)^{n/r} \times \prod_{p \in P_f} H_{p}(\gamma^{-1} e_1 \wedge \cdots \wedge \gamma^{-1} e_k)^{n/r}
\]
\[
= H_{\infty}(g_{\infty}^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_{\infty}^{-1} \gamma^{-1} e_k)^{n/r}.
\]
Here we notice that \(H_{p}(\gamma^{-1} e_1 \wedge \cdots \wedge \gamma^{-1} e_k) = 1 \) for all \(p \in P_f \) and \(\gamma \in GL_n(Z) \). For a given \(\gamma \in GL_n(Z) \), \(X_\gamma \) stands for the \(n \) by \(k \) matrix consisting of the first \(k \)-columns of \(\gamma \). Binet’s formula (see [2, Proposition 2.8.8]) yields
\[
H_{\infty}(g_{\infty}^{-1} \gamma^{-1} e_1 \wedge \cdots \wedge g_{\infty}^{-1} \gamma^{-1} e_k) = \det(tX_{\gamma}^{-1} g_{\infty}^{-1} g_{\infty}^{-1} X_{\gamma}^{-1})^{1/2}.
\]
As a consequence, we obtain
\[
m_Q(g) = \min_{X \in M_{n,k}(Z)^*} \det(tX_{\gamma}^{-1} g_{\infty}^{-1} g_{\infty}^{-1} X)^{n/2r},
\]
where \(M_{n,k}(Z)^* \) denotes the set of \(X \), for all \(\gamma \in GL_n(Z) \). In the case of \(k = 1 \), \(M_{n,1}(Z)^* \) is just the set of primitive vectors of the lattice \(Z^n \), and hence \(m_Q(g) \) coincides with the \(n/2 \) power of the arithmetical minimum of the positive definite symmetric matrix \(t g_{\infty}^{-1} g_{\infty}^{-1} \).

4. The Ryshkov domain of \(G \) associated to \(Q \)
We define the Ryshkov domain \(R = R(m_Q) \) of \(m_Q \) by
\[
R = R(m_Q) = \{ g \in G(A)^1 : m_Q(g)/H_Q(g) \geq 1 \}.
\]
Since \(m_Q(g) \leq H_Q(g) \) holds for all \(g \in G(A)^1 \), we have
\[
R = \{ g \in G(A)^1 : m_Q(g) = H_Q(g) \}
\]
\[
= \{ g \in G(A)^1 : \tau \in X_Q(g) \}. \tag{6}
\]
Since both \(H_Q \) and \(m_Q \) are continuous, \(R \) is a closed subset in \(G(A)^1 \).

Lemma 5. One has \(Q(k)RK = R \) and \(G(A)^1 = G(k)R \).

Proof. The first assertion is obvious by the definition of \(H_Q \). To prove the second assertion, we choose a minimal point \(x \in X_Q(g) \) for a given \(g \in G(A)^1 \). There is a \(\gamma \in G(k) \) such that \(x = \pi_X(\gamma) \). Then \(H_Q(xg) = H_Q(\gamma g) = m_Q(g) = m_Q(\gamma g) \) since \(m_Q \) is left \(G(k) \)-invariant. Therefore, we have \(\gamma g \in R \).

Lemma 6. Let \(C \) be an arbitrary subset of \(G(A)^1 \), and let \(g \in G(A)^1 \) and \(\gamma \in G(k) \). Then we have the following:
(1) \(\gamma g \in R \) if and only if \(\pi_X(\gamma) \in X_Q(g) \).
(2) \(X_Q(g) = \pi_X(\{ \gamma \in G(k) : \gamma g \in R \}) \).
(3) \(\gamma C \subset R \) if and only if \(\pi_X(\gamma) \in \bigcap_{g \in C} X_Q(g) \).
(4) \(\bigcap_{g \in C} X_Q(g) = \{ \tau \} \).
(5) \(\gamma R \subset R \) if and only if \(\gamma \in Q(k) \).
Proof. By definition, \(\gamma g \in \mathbb{R} \) if and only if \(m_Q(\gamma g) = H_Q(\gamma g) \). This is equivalent with \(\pi_X(\gamma) \in X_Q(g) \) because of \(m_Q(\gamma g) = m_Q(g) \). Both (2) and (3) follow from (1). For a point \(x = \pi_X(\gamma) \in \bigcap_{g \in \mathbb{R}} X_Q(g) \), we have \(Q(k)R \subset \mathbb{R} \), in other words, \(xQ(k) \subset \bigcap_{g \in \mathbb{R}} X_Q(g) \). Since \(xQ(k) \) is an infinite set for \(x \neq \tau \) by Bruhat decomposition, we must have \(x = \tau \). This shows (4). (5) follows from (3) and (4).

Lemma 7. Let \(y_0 \in \mathbb{R} \) be an element such that \(n_Q(y_0) > 1 \) and \(x_0 \) be an arbitrary element in \(X_Q(y_0) \). Then, any neighbourhood \(U \) of \(y_0 \) in \(G(A)^1 \) contains a point \(g \) such that \(X_Q(g) \subset X_Q(y_0) \) and \(x_0 \notin X_Q(g) \).

Proof. We may assume that \(U \) satisfies \(X_Q(g) \subset X_Q(y_0) \) for all \(g \in U \) by Lemma 4. Since \(n_Q(y_0) > 1 \), there is an \(x \in X_Q(y_0) \) such that \(x \neq \tau \). This \(x \) is of the form \(\pi_X(w\gamma) \) with \(w \in W_G \setminus W_G^0 \) and \(\gamma \in Q(k) \). By Lemma 2, there is a cocharacter \(\xi = \xi_{w,e} \in X_*(S)_k \) such that \(H_Q(w\xi(\lambda)w^{-1}) > H_Q(\xi(\lambda)) \) holds for all \(\lambda \in A_{\geq 1}^\times \). Let \(\lambda \in A^\times \) be an element sufficiently close to 1 so that \(g_{\lambda} = \gamma^{-1}(\lambda)\gamma y_0 \) is contained in \(U \). We have

\[
H_Q(g_{\lambda}) = H_Q(\xi(\lambda)\gamma y_0) = H_Q(\xi(\lambda)H_Q(y_0)) = H_Q(\xi(\lambda)H_Q(g_0)) = H_Q(\xi(\lambda)m_Q(g_0))
\]

and

\[
H_Q(xg_{\lambda}) = H_Q(w\xi(\lambda)\gamma y_0) = H_Q(w\xi(\lambda)w^{-1})H_Q(w\gamma y_0) = H_Q(w\xi(\lambda)w^{-1}m_Q(g_0)).
\]

If \(x_0 = \tau \), then we choose \(\lambda \) sufficiently close to 1 satisfying \(\lambda^{-1} \in A_{\leq 1}^\times \). Since \(X_Q(g_{\lambda}) \subset X_Q(y_0) \) and \(m_Q(g_{\lambda}) \leq H_Q(xg_{\lambda}) < H_Q(g_{\lambda}) \), \(X_Q(g_{\lambda}) \) does not contain \(\tau \). If \(x_0 \neq \tau \), then we choose \(x \) as \(x_0 \) and \(\lambda \in A_{\geq 1}^\times \) sufficiently close to 1. Since \(m_Q(g_{\lambda}) \leq H_Q(g_{\lambda}) < H_Q(xg_{\lambda}) \), \(X_Q(g_{\lambda}) \) does not contain \(x_0 \).

Lemma 8. \(\min_{g \in G(A)} n_Q(g) = \min_{g \in \mathbb{R}} n_Q(g) = 1 \).

Proof. From Lemma 5 and the \(G(k) \)-invariance of \(n_Q \), it follows that \(\min_{g \in G(A)} n_Q(g) \) equals \(\min_{g \in \mathbb{R}} n_Q(g) \). If \(y_0 \in \mathbb{R} \) satisfies \(\min_{g \in \mathbb{R}} n_Q(g) = n_Q(g_0) > 1 \), then, by Lemmas 5 and 7, there exists a point \(g_1 \in G(A)^1 \) and \(g_1 \in G(k) \) such that \(n_Q(g_1) = n_Q(g_1) < n_Q(g_0) \) and \(g_1 \in \mathbb{R} \). This is a contradiction.

We define the subset \(R_1 \) of \(R \) by

\[
R_1 = \{ g \in \mathbb{R} : n_Q(g) = 1 \} = \{ g \in G(A)^1 : X_Q(g) = \{ \tau \} \}.
\]

Lemma 9. \(R_1 \) coincides with the interior \(R^o \) of \(R \) in \(G(A)^1 \).

Proof. For \(g \in R_1 \), we choose a neighbourhood \(U \) of \(g \) in \(G(A)^1 \) as in Lemma 4. Then \(U \subset R_1 \). Therefore, \(R_1 \) is open and is contained in \(R^o \). If there exists an element \(y_0 \in R^o \) such that \(n_Q(y_0) > 1 \), then, by Lemma 7, \(R^o \) contains an element \(g \) satisfying \(\tau \notin X_Q(g) \). This contradicts \(g \in R \).

It is obvious that \(G(k)R_1 = \{ g \in G(A)^1 : n_Q(g) = 1 \} \).

Lemma 10. \(G(k)R_1 \) is open and dense in \(G(A)^1 \).

Proof. Since \(R_1 \) is open in \(G(A)^1 \), so is \(G(k)R_1 \). We assume that \(G(A)^1 \setminus G(k)R_1 \) has an interior point \(y_0 \). Let \(U \) be a neighbourhood of \(y_0 \) in \(G(A)^1 \) so that \(U \cap G(k)R_1 = \emptyset \). By Lemma 5, we can take \(g_0 \in G(k) \) such that \(n_Q(g_0) > 1 \), by Lemmas 5 and 7, there exists \(g_1 \in g_0(U) \) and \(g_1 \in G(k) \) such that \(n_Q(g_1) < n_Q(g_0) \).
and $\gamma g_1 \in \mathbb{R}$. If $n_0(g_1) > 1$, then there exists $g_2 \in \gamma\gamma_0\mathcal{U}$ and $\gamma_2 \in G(k)$ such that $n_0(g_2) < n_0(g_1)$ and $\gamma_2 g_2 \in \mathbb{R}$. This process terminates after finitely many iterations. At the last step, we obtain an element $g_\ell \in \gamma_{\ell-1}\cdots\gamma_0\mathcal{U}$ such that $n_0(g_\ell) = 1$. Then $(\gamma_{\ell-1}\cdots\gamma_0)^{-1}g_\ell$ is contained in $\mathcal{U} \cap G(k)R_1$. This contradicts $\mathcal{U} \cap G(k)R_1 = \emptyset$. Therefore, $G(A)^1 \setminus G(k)R_1$ is nowhere dense in $G(A)^1$. \hfill \Box

Lemma 11. For $\gamma \in G(k)$, $R_1 \cap \gamma R \neq \emptyset$ if and only if $\gamma \in Q(k)$.

Proof. If $R_1 \cap \gamma R$ has an element g, then $\pi_X(\gamma^{-1}) \in X_Q(g) = \{\pi\}$ by Lemma 6. \hfill \Box

Lemma 12. Let R_1^- be the closure of R_1. Then we have the following subdivision of $G(A)^1$:

\[G(A)^1 = \bigcup_{\gamma \in G(k)/Q(k)} \gamma R_1^- . \]

Proof. We fix an arbitrary $g \in G(A)^1$. By Lemma 10, there exists a sequence $\{g_\ell\} \subset G(k)R_1$ such that $\lim_{\ell \rightarrow \infty} g_\ell = g$. We take a neighbourhood \mathcal{U} of g as in Lemma 4 and may assume that $\{g_\ell\} \subset \mathcal{U}$. Since $g_\ell \in G(k)R_1$, $X_Q(g_\ell)$ consists of a single element $\pi_X(\gamma_\ell)$, where $\gamma_\ell \in G(k)$. From $g_\ell \in \mathcal{U}$, it follows that $\pi_X(\gamma_\ell) \in X_Q(g)$ for all ℓ. Since $X_Q(g)$ is a finite set, we can take a subsequence $\{g_{\ell_\gamma}\}$ such that $\pi_X(\gamma_{\ell_\gamma}) = \pi_X(\gamma) \in X_Q(g)$ for all ℓ. Then $\{g_{\ell_\gamma}\} \subset \gamma^{-1}R_1$, and g is contained in the closure of $\gamma^{-1}R_1$. \hfill \Box

For $g \in G(A)^1$, we put

\[S_Q(g) = \pi_X(\{\gamma \in G(k) : \gamma g \in R_1^-\}) . \]

By Lemmas 6 and 12, $S_Q(g)$ is a non-empty subset of $X_Q(g)$.

Lemma 13. For $g_0 \in G(A)^1$, there is a neighbourhood \mathcal{U} of g_0 in $G(A)^1$ such that $S_Q(g) \subset S_Q(g_0)$ for all $g \in \mathcal{U}$.

Proof. Let \mathcal{U} be a neighbourhood of g_0 such that $X_Q(g) \subset X_Q(g_0)$ for all $g \in \mathcal{U}$. Since $g_0 \notin \gamma^{-1}R_1^-$ for any $\pi_X(\gamma) \in X_Q(g_0) \setminus S_Q(g_0)$, we can take a sufficiently small \mathcal{U} so that $\mathcal{U} \cap \gamma^{-1}R_1^- = \emptyset$ for all $\pi_X(\gamma) \in X_Q(g_0) \setminus S_Q(g_0)$. Then, for all $g \in \mathcal{U}$, $S_Q(g) \cap X_Q(g_0) \setminus S_Q(g_0)$ is empty, namely $S_Q(g)$ is contained in $S_Q(g_0)$. \hfill \Box

Remark. We do not know whether $R_1^- = \mathbb{R}$ holds or not in general. If $R_1^- = \mathbb{R}$ holds, then $S_Q(g) = X_Q(g)$ holds for all g.

5. A fundamental domain of $G(A)^1$ with respect to $G(k)$

Definition. Let T be a locally compact Hausdorff space and Γ be a discrete group acting on T from the left. Assume that the action of Γ on T is properly discontinuous. An open subset Ω of T is called an open fundamental domain of T with respect to Γ if Ω satisfies the following conditions:

(i) $T = \Gamma\Omega^-$, where Ω^- stands for the closure of Ω in T, and

(ii) $\Omega \cap \gamma\Omega^- = \emptyset$ if $\gamma \in \Gamma \setminus \{e\}$.

A subset F of T is called a fundamental domain of T with respect to Γ if there is an open fundamental domain Ω as above such that $\Omega \subset F \subset \Omega^-$.

8
Theorem 17. Let Q be an open fundamental domain of R^+_1 with respect to $Q(k)$. Then one has $\Omega^+_Q = \Omega^+ \cap R_1$ and $\Omega^-_Q = (\Omega^+ \cap R_1)^-$.

Proof. Since Ω^+_Q is an open set in R^+_1 with respect to the relative topology, there is an open set U in $G(A)^1$ such that $\Omega^+_Q = R^+_1 \cap U$. Therefore, $\Omega^+_Q \cap R_1 = U \cap R_1$ is open in $G(A)^1$, and hence $\Omega^-_Q = \Omega^+_Q \cap R_1$. Since R_1 is dense in R^+_1 and Ω^+_Q is relatively open in R^+_1, the closure of $\Omega^+_Q \cap R_1$ in R^+_1 contains Ω^+_Q, i.e., $\Omega^+_Q \subset (\Omega^+ \cap R_1)^-$. Hence we have $\Omega^-_Q = (\Omega^+ \cap R_1)^-$.

Theorem 15. Let Q be an open fundamental domain of $G(A)^1$ with respect to $Q(k)$. Then Ω^+_Q is an open fundamental domain of $G(A)^1$ with respect to $G(k)$.

Proof. From $R^+_1 = Q(k)\Omega^-_Q$ and Lemma 12, it follows $G(A)^1 = G(k)\Omega^-_Q$. For $\gamma \in G(k)$, we assume $\Omega^+_Q \cap \gamma \Omega^-_Q \neq \emptyset$. By Lemma 11, γ is contained in $Q(k)$. Since Ω^+_Q is an open fundamental domain of R^+_1 with respect to $Q(k)$, γ must be equal to e.

For a given subset A of $G(A)^1$, we denote by ∂A the boundary of A.

Lemma 16. If $g_0 \in R^+_1$ attains a local maximum of m_Q, then g_0 is contained in ∂R^+_1.

Proof. Suppose $g_0 \in R_1$. Since R_1 is open, $z g_0$ is contained in R_1 if $z \in Z_Q(A)$ is sufficiently close to e. Then we have

$$m_Q(z g_0) = H_Q(z) m_Q(g_0) = H_Q(z) H_Q(g_0).$$

Since $H_Q(z)$ can vary on the interval $(1 - \epsilon, 1 + \epsilon)$ for a sufficiently small $\epsilon > 0$, $m_Q(g_0)$ is not a local maximum of m_Q.

Since $(\Omega^-_Q)^e = \Omega^-_Q \subset R_1$, the following theorem immediately follows from Lemma 16.

Theorem 17. Let Ω_Q be the same as in Theorem 15. If $g_0 \in \Omega^-_Q$ attains a local maximum of m_Q, then g_0 is contained in $\partial \Omega^-_Q \cap \partial R^+_1$.

Remark. A point $g_0 \in G(A)^1$ is said to be extreme if g_0 attains a local maximum of m_Q. By Theorem 17, any extreme point is contained in $G(k)(\partial \Omega^-_Q \cap \partial R^+_1)$. A candidate of the notion analogous to perfect quadratic forms is the following: A point $g \in G(A)^1$ is said to be Q-perfect if there is a neighbourhood U of g such that

$$U \cap \bigcap_{\pi(\delta) \in \mathcal{S}_Q(g)} \delta^{-1} R^+_1 = \{g\}.$$

6. The case when G is of class number one

We put $K_f = \prod_{\pi \in \Pi_f} K_{\pi}$, $G_{A, \infty} = G(k_{\infty}) \times K_f$, $G_{A, \infty} = G_{A, \infty} \cap G(A)^1$ and $G_0 = G(k) \cap G_{A, \infty}$. By identifying $G(k_{\infty})$ with the subgroup $\{(g_\sigma) \in G(A) : g_\sigma = e \text{ for all } \sigma \in \Pi_f\}$ of $G(A)$, we put $G(k_{\infty})^1 = G(k_{\infty}) \cap G(A)^1$. The number $n_k(G)$ of double cosets in $G(A)$
modular $G(k)$ and $G_{A,\infty}$ is called the class number of G. For example, $n_k(\text{GL}_n)$ is equal to the class number of k. If G is almost k-simple, k-isotropic and simply connected, then $n_k(G) = 1$ by the strong approximation theorem. In this section, we assume that $n_k(G) = 1$. Then we have $G(A)^1 = G(k)G_{A,\infty}^1$. Let h_Q be the number of double cosets of $G(k)$ modulo $Q(k)$ and G_o. By [3, Proposition 7.5], h_Q is equal to the class number of M_Q. Let $\{\xi_i = e, \xi_2, \ldots, \xi_{h_Q}\}$ be a complete system of representatives of $Q(k)\backslash G(k)/G_o$. For each ξ_i, we define the subset $R_{\xi_i,\infty}$ of $G(k_\infty)^1$ as

$$\{g_\infty \in G(k_\infty)^1 : m_Q(g_\infty) = H_Q(\xi_i g_\infty)\}.$$

Since $G(k)$ is a disjoint union of $Q(k)\xi_i G_o$, $i = 1, \ldots, h_Q$, $m_Q(g_\infty)$ is equal to

$$\min_{1 \leq i \leq h_Q} \min_{\delta \in G_o} H_Q(\xi_i \delta g_\infty).$$

Lemma 18. One has

$$R = \bigsqcup_{i=1}^{h_Q} Q(k)\xi_i(R_{\xi_i,\infty} \times K_f).$$

Proof. For each i, $Q(k)\xi_i(R_{\xi_i,\infty} \times K_f) \subset R$ is trivial. Since

$$G(A)^1 = \bigsqcup_{i=1}^{h_Q} Q(k)\xi_i G_{A,\infty}^1$$

by [3, §7], a given $g \in R$ is represented as $g = \gamma \xi_i(g_\infty \times g_f)$ by some $i, \gamma \in Q(k)$ and $g_\infty \times g_f \in G_{A,\infty}^1$. Then $m_Q(g) = H_Q(g)$ implies $m_Q(g_\infty) = H_Q(\xi_i g_\infty)$. Therefore, $g_\infty \in R_{\xi_i,\infty}$. \(
\)

We write Q_i for the conjugate $\xi_i^{-1}Q\xi_i$ of Q. This Q_i is a maximal k-parabolic subgroup of G. We put $Q_{i,o} = Q_i(k) \cap G_{A,\infty}$.

Lemma 19. If $g(R_{\xi_i,\infty} \times K_f) \cap (R_{\xi_i,\infty} \times K_f)$ is non-empty for $g \in Q_i(k)$, then $g \in Q_{i,o}$.

Proof. If there is an $h \in R_{\xi_i,\infty} \times K_f$ such that $gh \in R_{\xi_i,\infty} \times K_f$, then $g \in (R_{\xi_i,\infty} \times K_f)h^{-1} \subset G_{A,\infty}$.

It is easy to prove that the group $Q_{i,o}$ stabilizes $R_{\xi_i,\infty} \times K_f$ by left multiplications. We fix a complete system $\{\gamma_{ij}\}$ of representatives of $Q_i(k)/Q_{i,o}$. It follows from Lemma 19 that $\gamma_{ij}(R_{\xi_i,\infty} \times K_f) \cap \gamma_{ik}(R_{\xi_i,\infty} \times K_f) = \emptyset$ if $j \neq k$. Therefore, we obtain the following subdivision of R:

$$R = \bigsqcup_{i=1}^{h_Q} \bigsqcup_{j} \xi_i \gamma_{ij}(R_{\xi_i,\infty} \times K_f).$$ \(1\)

Let $R_{\xi_i,\infty}^2$ be the interior of $R_{\xi_i,\infty}$ and $R_{\xi_i,\infty}^*$ be the closure of $R_{\xi_i,\infty}^2$ in $G(k_\infty)^1$. Since the union of (1) is disjoint, it is obvious that

$$R_{\xi_i,\infty}^i = \bigsqcup_{i=1}^{h_Q} \bigsqcup_{j} \xi_i \gamma_{ij}(R_{\xi_i,\infty}^* \times K_f).$$ \(2\)
Proposition 20. Let $\Omega_{i,\infty}$ be an open fundamental domain of $R^*_{\epsilon_i,\infty}$ with respect to $Q_{i,\sigma}$ for $i = 1, \cdots, h_Q$. Then the set

$$\Omega = \bigcup_{i=1}^{h_Q} \xi_i(\Omega_{i,\infty} \times K_f)$$

gives an open fundamental domain of R^-_∞ with respect to $Q(k)$.

Proof. Let $\Omega^+_{i,\infty}$ denote the closure of $\Omega_{i,\infty}$ in $G(k_\infty)^1$. For $g \in Q(k)$, we assume $\Omega \cap g\Omega^+ \neq \emptyset$. Then, for some i, j, we have

$$\xi_i(\Omega_{i,\infty} \times K_f) \cap g\xi_j(\Omega_{j,\infty} \times K_f) \neq \emptyset. \quad (3)$$

There exist γ_{jk} and $\delta \in Q_{j,\sigma}$ such that $\xi_j^{-1}g\xi_j = \gamma_{jk}\delta$. Then (3) is the same as

$$\xi_i(\Omega_{i,\infty} \times K_f) \cap \xi_j(\delta\Omega^+_{j,\infty} \times K_f) \neq \emptyset.$$

By (1), we have $i = j$, $\gamma_{jk} = e$ and $\Omega_{j,\infty} \cap \delta\Omega^+_{j,\infty} \neq \emptyset$. Since $\Omega_{j,\infty}$ is an open fundamental domain of R^*_j,∞ with respect to $Q_{j,\sigma}$, δ must be equal to e. Therefore, $\Omega \cap g\Omega^- \neq \emptyset$ implies $g = e$. Finally, $Q(k)^- = R^-_1$ follows from (2) and $Q_{i,\sigma}\Omega_{i,\infty}^- = R^*_\infty,\infty$.

By Theorem 17, we obtain the following.

Corollary 21. If $g_0 \in \Omega^-$ attains a local maximum of m_Q, then g_0 is contained in the set

$$\bigcup_{i=1}^{h_Q} \xi_i((\partial\Omega^-_{i,\infty} \cap \partial R^*_{\epsilon_i,\infty}) \times K_f).$$

We consider the infinite part Ω_∞ of Ω given in Proposition 20, i.e.,

$$\Omega_\infty = \bigcup_{i=1}^{h_Q} \xi_i \Omega_{i,\infty}.$$

Let Ω°_{∞} and Ω^-_{∞} be the interior and the closure of Ω_{∞} in $G(k_\infty)^1$, respectively. The projection from $G(A)^1 = G(k)G^1_{\lambda,\infty}$ to the infinite component $G(k_\infty)^1$ gives an isomorphism $G(k)\backslash G(A)^1 / K_f \cong G_\delta \backslash G(k_\infty)^1$. Since Ω is a fundamental domain of $G(A)^1$ with respect to $G(k)$ by Theorem 15, we have $G_\delta\Omega^-_{\infty} = G(k_\infty)^1$.

Corollary 22. If $h_Q = 1$, then Ω_∞ is a fundamental domain of $G(k_\infty)^1$ with respect to G_σ.

Proof. Since $\Omega_{\infty} = \Omega_{1,\infty}$ is a relatively open set in $R^*_{\epsilon_1,\infty}$, we have $\Omega^\circ_{\infty} = \Omega_{\infty} \cap R^*_{\epsilon_1,\infty}$. Thus the closure of Ω°_{∞} coincides with Ω_{∞}. If $\Omega^\circ_{\infty} \cap g\Omega_{\infty}^\circ \neq \emptyset$ for $g \in G_\sigma$, then $(\Omega^\circ_{\infty} \times K_f) \cap g(\Omega^\circ_{\infty} \times K_f) \neq \emptyset$ because of $gK_f = K_f$. This implies $g = e$ since $\Omega^\circ_{\infty} \times K_f$ is an open fundamental domain of $G(A)^1$ with respect to $G(k)$.

7. Examples
Example 3. Let G be a general linear group GL_n defined over \mathbb{Q}. We continue an illustration given in Examples 1 and 2. We fix an integer $k \in \{1, \ldots, n-1\}$, and let

$$Q(\mathbb{Q}) = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a \in \text{GL}_k(\mathbb{Q}), b \in M_{k,n-k}(\mathbb{Q}), d \in \text{GL}_{n-k}(\mathbb{Q}) \right\}.$$

Since $h_\mathbb{Q} = 1$, we have $\xi_1 = e$ and $Q_1 = \mathbb{Q}$.

Let P_n be the cone of positive definite $n \times n$ real symmetric matrices, and let P^1_n be the intersection of P_n and $\text{SL}_n(\mathbb{R})$. The group $G(\mathbb{Q}_\infty) = \text{GL}_n(\mathbb{R})$ acts on P_n from the right by $A \mapsto A|_P = tAg$ for $(A, g) \in P_n \times G(\mathbb{Q}_\infty)$. The maximal compact subgroup K_∞ of $G(\mathbb{Q}_\infty)$ defined as in Example 2 stabilizes the identity matrix $I_n \in P_n$. The map $\pi : g \mapsto t^{-1}g^{-1}t$ from $G(\mathbb{Q}_\infty)$ onto P_n gives an isomorphism between $G(\mathbb{Q}_\infty)/K_\infty$ and P_n.

Since $G(\mathbb{Q}_\infty)^1 = \{ g \in G(\mathbb{Q}_\infty) : \det g = \pm 1 \}$, we have $G(\mathbb{Q}_\infty)^1/K_\infty \cong \pi(G(\mathbb{Q}_\infty)^1) = P_n^1$. An element $A \in P_n$ is written as

$$A = \begin{pmatrix} I_k & 0 & & \\ t & u & I_{n-k} & \\ 0 & 0 & w & \\ & & & 0 \end{pmatrix},$$

where $v \in P_k$, $w \in P_{n-k}$ and $u \in M_{k,n-k}(\mathbb{R})$. We write u_A, $A[k]$ and $A_{[n-k]}$ for u, v, and w, respectively.

By definition, $G_{\mathbb{Z}} = G(\mathbb{Q}) \cap G_{A,\infty}$ and $Q_{\mathbb{Z}} = Q(\mathbb{Q}) \cap G_{A,\infty}$ are just groups $\text{GL}_n(\mathbb{Z})$ and $Q(\mathbb{Q}) \cap \text{GL}_n(\mathbb{Z})$ of integral matrices in $G(\mathbb{Q})$ and $Q(\mathbb{Q})$, respectively. As in Example 2, X_γ stands for the n by k matrix consisting of the first k-columns of $\gamma \in G_{\mathbb{Z}}$, and $M_{n,k}(\mathbb{Z})^*$ stands for the set of X_γ for all $\gamma \in G_{\mathbb{Z}}$. We define the closed subset $F_{n,k}$ of P_n as follows:

$$F_{n,k} = \{ A \in P_n : \text{det} A[k] \leq \text{det} (t^*AXA) \text{ for all } X \in M_{n,k}(\mathbb{Z})^* \}.$$

In Example 2, we showed

$$H_Q(\gamma g) = \det(t^*X_\gamma^{-1}\pi(g)X_\gamma^{-1})^{n/2r}$$

for any $\gamma \in G_{\mathbb{Z}}$ and $g \in G(\mathbb{Q}_\infty)^1$. Since $H_Q(g) = (\det(\pi(g))^{n/2r}$, we obtain

$$\mathbb{R}_{r,\infty}/K_\infty \cong \pi(\mathbb{R}_{r,\infty}) = F_{n,k} \cap \text{SL}_n(\mathbb{R}).$$

Therefore, $Q_{\mathbb{Z}}\mathbb{R}_{r,\infty}/K_\infty$ is isomorphic with $(F_{n,k} \cap \text{SL}_n(\mathbb{R}))/Q_{\mathbb{Z}}$. If $\gamma \in Q_{\mathbb{Z}}$ is of the form

$$\gamma = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

with $a \in \text{GL}_k(\mathbb{Z})$, $d \in \text{GL}_{n-k}(\mathbb{Z})$ and $b \in M_{k,n-k}(\mathbb{Z})$, then components of $t^*\gamma A \gamma$ for $A \in P_n$ are given by

$$w_{t^*\gamma A} = a^{-1}(u_A + b), \quad (t^*\gamma A \gamma)[k] = tA[k]a, \quad (t^*\gamma A \gamma)[n-k] = tA[n-k]d.$$

Let \mathcal{D} and \mathcal{E} be arbitrary fundamental domains for $P_k/\text{GL}_k(\mathbb{Z})$ and $P_{n-k}/\text{GL}_{n-k}(\mathbb{Z})$, respectively. We define the subset $F_{n,k}(\mathcal{D}, \mathcal{E})$ of $F_{n,k}$ as

$$F_{n,k}(\mathcal{D}, \mathcal{E}) = \left\{ A \in F_{n,k} : A[k] \in \mathcal{D}, A_{[n-k]} \in \mathcal{E}, \quad u_A = (u_{ij}), -1/2 \leq u_{ij} \leq 1/2 \text{ for all } i, j, \text{ and } 0 \leq u_{11} \right\}.$$

Since $F_{n,k}(\mathcal{D}, \mathcal{E})$ is a fundamental domain of $F_{n,k}$ with respect to $Q_{\mathbb{Z}}$, the inverse image $\pi^{-1}(F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R}))$ of $F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R})$ gives a fundamental domain of $\mathbb{R}_{r,\infty}$ with respect to $Q_{\mathbb{Z}}$. As a consequence of Theorem 15 and Proposition 20, the set

$$\pi^{-1}(F_{n,k}(\mathcal{D}, \mathcal{E}) \cap \text{SL}_n(\mathbb{R})) \times K_f$$
gives a fundamental domain of \(G(A)^1 \) with respect to \(G(Q) \). Moreover, from Corollary 22, it follows that \(F_{n,k}(D, E) \) is a fundamental domain of \(P_n \) with respect to \(GL_n(Z) \).

In the case of \(k = 1 \), this gives an inductive construction of a fundamental domain \(\Omega_n \) of \(P_n \) with respect to \(GL_n(Z) \) as follows. First, put \(\Omega_2 = F_{2,1}(P_1, P_1) \). By definition, \(\Omega_2 \) is Minkowski’s fundamental domain of \(P_2 \). Then we define inductively \(\Omega_3 = F_{3,1}(P_1, \Omega_2), \ldots, \Omega_n = F_{n,1}(P_1, \Omega_{n-1}) \). The domain \(\Omega_n \) coincides with Grenier’s fundamental domain [6].

Finally, we show that, in the case of \(k = 1 \), \(R_{c,\infty}/K_{\infty} \) corresponds to a face of the Ryshkov polyhedron \(R(m) = \{ A \in P_n : m(A) = \min_{0 \neq x \in \mathbb{Z}^n} t^tAx \geq 1 \} \). For \(A \in P_n \), \(S(A) \) denotes the set of minimal integral vectors of \(A \), i.e., \(S(A) = \{ x \in \mathbb{Z}^n : m(A) = t^tAx \} \). We take \(e_1 = (1, 0, \cdots, 0) \in \mathbb{Z}^n \). It is obvious that the subset \(\{ A \in P_n : e_1 \in S(A) \} \) of \(P_n \) coincides with \(F_{n,1} \). As was shown in [18, Lemma 1.5], \(F_{\{e_1\}} = F_{n,1} \cap \partial R(m) = \{ A \in F_{n,1} : m(A) = 1 \} \) is a face of \(R(m) \). It is easy to see that the map \(A \mapsto m(A)^{-1}A \) gives a bijection from \(F_{n,1} \cap SL_n(R) \) onto \(F_{\{e_1\}} \). Therefore, \(R_{c,\infty}/K_{\infty} \cong \pi(R_{c,\infty}) \) corresponds to \(F_{\{e_1\}} \).

Example 4. Let \(k \) be a totally real number field of degree \(r \) and \(n = 2m \) be an even integer. We consider a symplectic group \(G(k) = Sp_n(k) = \{ g \in GL_{2m}(k) : t^g \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array} \right) g = \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array} \right) \} \).

For a fixed \(k \in \{1, 2, \cdots, m\} \), \(Q \) denotes the maximal parabolic subgroup of \(G \) given as follows:

\[
Q(k) = U(k)M(k),
\]

\[
M(k) = \left\{ \delta(a, b) = \left(\begin{array}{ccc} a & 0 & 0 & 0 \\ 0 & b_{11} & 0 & b_{12} \\ 0 & 0 & t_{a}^{-1} & 0 \\ 0 & b_{21} & 0 & b_{22} \end{array} \right) : a \in GL_2(k), b = (b_{ij}) \in Sp_2(m-k)(k) \right\},
\]

\[
U(k) = \left\{ \left(\begin{array}{cccc} I_k & * & * & * \\ 0 & I_{m-k} & * & 0 \\ 0 & 0 & I_k & 0 \\ 0 & 0 & * & I_{m-k} \end{array} \right) \in G(k) \right\}.
\]

The module of \(k \)-rational characters \(X^*(M)_k \) of \(M \) is a free \(\mathbb{Z} \)-module of rank 1 generated by the character \(\hat{\alpha}_Q(\delta(a, b)) = \det a \).

The height \(H_Q : G(A) \to R_{>0} \) is given by \(H_Q(g) = |\det a|^A \) if \(g = u\delta(a, b)h \) with \(u \in U(A), \delta(a, b) \in M(A) \) and \(h \in K \).

We restrict ourselves to the case \(k = m \). An element of \(M(A) \) is denoted by

\[
\delta(a) = \left(\begin{array}{cc} a & 0 \\ 0 & t_{a}^{-1} \end{array} \right), \quad (a \in GL_m(A)).
\]

Let

\[
H_m = \{ Z \in M_m(C) : t^t Z = Z, \im Z \in P_m \}
\]

be the Siegel upper half space and \(H_m^r \) the direct product of \(r \) copies of \(H_m \). For \(Z = (Z_\sigma)_{\sigma \in \mathbb{P}_\infty} \in H_m^r \), \(\im Z \) and \(\det Z \) stand for \(\im(Z_\sigma)_{\sigma \in \mathbb{P}_\infty} \) and \(\det(Z_\sigma)_{\sigma \in \mathbb{P}_\infty} \), respectively. The group \(G(k_{\mathbb{Q}}) \) acts transitively on \(H_m^r \) by

\[
g(Z) = ((a_\sigma Z_\sigma + b_\sigma)(c_\sigma Z_\sigma + d_\sigma)^{-1})_{\sigma \in \mathbb{P}_\infty}
\]
for \(Z = (Z_{\sigma}) \in \mathbb{H}_m^r \) and

\[
g = (g_{\sigma}) = \left(\begin{array}{cc} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{array} \right)_{\sigma \in \mathbb{P}_m} \in G(k_\infty).
\]

The stabilizer \(K_\infty \) of \(Z_0 = (\sqrt{-1}I_m, \ldots, \sqrt{-1}I_m) \in \mathbb{H}_m^r \) in \(G(k_\infty) \) is a maximal compact subgroup of \(G(k_\infty) \). We choose \(K = K_\infty \times \prod_{\sigma \in \mathbb{P}_m} \text{Sp}_m(o_\sigma) \). The map \(\pi : g_\infty \mapsto g(Z_0) \) from \(G(k_\infty) \) onto \(\mathbb{H}_m^r \) give an isomorphism \(G(k_\infty)/K_\infty \cong \mathbb{H}_m^r \), and hence \(G(k)\backslash G(A)/K \cong G_\alpha \backslash \mathbb{H}_m^r \). Since \(\text{Im}\{(u\delta(a)h)(Z_0)\} = a'a \) holds for \(u \in U(k_\infty), a \in \text{GL}_m(k_\infty) \) and \(h \in K_\infty \), we have

\[
H_Q(g_\infty) = \text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}\{g_\infty(Z_0)\})^{-1/2} = \left(\prod_{\sigma \in \mathbb{P}_m} \det \text{Im}\{g_\sigma(\sqrt{-1}I_m)\} \right)^{-1/2}
\]

for any \(g_\infty = (g_{\sigma}) \in G(k_\infty) \), where \(\text{Nr}_{k_\infty/\mathbb{R}} \) denotes the norm of \(k_\infty \) over \(\mathbb{R} \).

The class number \(h_Q \) of \(M \cong \text{GL}_m \) defined over \(k \) is equal to the class number \(h_k \) of \(k \). We assume \(h_k = 1 \) for simplicity. Then we have \(G(k) = Q(k)G_\alpha \) and \(G(A) = Q(k)G_{A,\infty} \), and hence

\[
m_Q(g_\infty) = \min_{\gamma \in G_\alpha} H_Q(\gamma g_\infty).
\]

Since

\[
\text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}\{\gamma(Z)\}) = \prod_{\sigma \in \mathbb{P}_m} |\det(\sigma(c)Z_{\sigma} + \sigma(d))|^{-2} \text{Nr}_{k_\infty/\mathbb{R}}(\det \text{Im}Z)
\]

for \(Z = (Z_{\sigma}) \in \mathbb{H}_m^r \) and

\[
\gamma = \left(\begin{array}{cc} * & * \\ c & d \end{array} \right) \in G_\alpha = \text{Sp}_m(o),
\]

the condition \(m_Q(g_\infty) = H_Q(g_\infty) \) of \(g_\infty \) is equivalent with the following condition of \(Z = g_\infty(Z_0) \):

\[
\prod_{\sigma \in \mathbb{P}_m} |\det(\sigma(c)Z_{\sigma} + \sigma(d))| \geq 1 \quad \text{for all} \quad \left(\begin{array}{cc} * & * \\ c & d \end{array} \right) \in G_\alpha.
\]

Therefore, the domain \(R_{c,\infty} \) modulo \(K_\infty \) is isomorphic with

\[
F = \left\{ (Z_{\sigma}) \in \mathbb{H}_m^r : \prod_{\sigma \in \mathbb{P}_m} |\det(\sigma(c)Z_{\sigma} + \sigma(d))| \geq 1 \quad \text{for all} \quad \left(\begin{array}{cc} * & * \\ c & d \end{array} \right) \in G_\alpha \right\}.
\]

Let \(\mathcal{C} \) be an arbitrary fundamental domain of the additive group \(M_m(k_\infty) \) with respect to \(M_m(o) \), and let \(D \) be an arbitrary fundamental domains of \(\mathbb{P}_m^r \) with respect to \(\text{GL}_m(o) \). It is easy to see that

\[
F(\mathcal{C}, D) = \{ Z \in F : \text{Re}Z \in \mathcal{C}, \text{Im}Z \in D \}
\]

is a fundamental domain of \(F \) with respect to \(Q_\infty \). By Corollary 22, \(F(\mathcal{C}, D) \) is a fundamental domain of \(\mathbb{H}_m^r \) with respect to \(G_\alpha \).

If \(k = \mathbb{Q} \) and \(D \) is Minkowski’s fundamental domain, then \(F(\mathcal{C}, D) \) coincides with Siegel’s fundamental domain [12].

Acknowledgments The author would like to thank Professor Takahiro Hayata for useful discussions.
References

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan twatanabe@math.sci.osaka-u.ac.jp