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Introduction

The group of units of the ring of n×n matrices with integer entries is called
the n-th integral unimodular group. This group acts naturally on the set of
all n-variable positive definite real quadratic forms via linear transformations
of variables. The description of a set of representatives for each orbit under
this action is known as the reduction theory of positive definite real quadratic
forms, for which different methods were proposed by Hermite, Korkine–
Zolotarev, Minkowski, Voronoi, etc. ([16, Ch.2 Section v]). The reduction
theory of positive definite real quadratic forms can be seen as the reduction
theory of the general linear group defined over the field of rational numbers.
More generally, the reduction theory of an algebraic group is a theory that
describes a fundamental domain for the quotient of the group of real rational
points by its arithmetic subgroup. When the base field is an algebraic number
field, it is more natural to develop the reduction theory by replacing the group
of real rational points with the adelic group.

A central role in Voronoi’s reduction theory is played by the set of integer-
component shortest vectors. When A is a positive definite n×n real symmetric
matrix, the arithmetical minimum of A is defined by the minimum of txAx
for non-zero x ∈ Zn. A vector x ∈ Zn attaining the arithmetical minimum
is called a shortest vector of A. If {xi}i is the set of all shortest vectors of A,
then the closed cone generated by {xi

txi}i is called the Voronoi cone of A. If
the Voronoi cone of A is full-dimensional in the space of n× n real symmetric
matrices, then A is called a perfect form. The Voronoi fundamental domain is
constructed from the Voronoi cones of finitely many perfect forms ([24, 3.1.8]).
Ryshkov organized Voronoi’s reduction theory from a good perspective by
defining a convex polyhedron from the arithmetical minimum function on
the cone of all positive definite real quadratic forms. This convex polyhedron
is called the Ryshkov polyhedron. The vertices of the Ryshkov polyhedron
correspond to perfect quadratic forms.

The concepts of the arithmetical minimum function, the set of shortest
vectors, and the Ryshkov polyhedron can be generalized to the adelic group
of an isotropic reductive algebraic group. This allowed the paper [28] to
provide a method for constructing a fundamental domain for the arithmetic
quotient in the adelic group of a reductive algebraic group defined over the
field of rational numbers. Applying this construction to the aforementioned
n-variable positive definite real quadratic forms for n ≥ 4 yields a fundamental
domain whose boundary is not a hyperplane. Therefore, we can construct a
fundamental domain that differs from both the Voronoi fundamental domain
and the Minkowski fundamental domain. Even when limited to this case,
the concrete description of the boundary hypersurface is not simple. The
motivation for constructing such a fundamental domain is related to the
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Hermite–Rankin constant, which is defined as the maximum value of some
arithmetical minimum function. In the paper [28], we proved that all extremal
points of an arithmetical minimum function lie on the boundary hypersurface.
Exploring an analogue of the Voronoi algorithm in this domain with a non-
linear boundary is a future task.

This note is based on the graduate course ”Topics in Number Theory
II” taught during the fall and winter terms of the 2024 academic year. As
preparation, Sections 1 to 5 provide an overview of the basic definitions and
results of linear algebraic groups, based on [2], [4], [8], [17], [22], and oth-
ers. Section 6 outlines the existence of maximal compact subgroups and the
Iwasawa decomposition in reductive algebraic groups over local fields, and
Section 7 outlines the definition and properties of adele groups. Section 8
introduces the theorems of Mostow–Tamagawa and Borel–Harish-Chandra
concerning the compactness criterion of the arithmetic quotient, as well as
Borel–Harish-Chandra’s theorem stating that the Siegel set provides a fun-
damental set when the arithmetic quotient is not compact. Sections 9 to 11
introduce the results of the paper [28], including proofs.
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stant, Journal de Théorie des Nombres de Bordeaux 22 (2010) 209 - 217.
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Notation
The symbols Z,Q,R,C denote, respectively, the ring of integers and the fields
of rational numbers, real numbers, and complex numbers. For a commutative
ring R, Mm,n(R) represents the set of all m × n matrices with entries in R, and
Mn(R) is an abbreviation for Mn,n(R). The group of all invertible elements in
Mn(R) is denoted by GLn(R). The n×n identity matrix is denoted by En. In this
note, sentences beginning with ▶ provide comments, remarks, or additional
results for the preceding definition or theorem.
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§1 Affine Algebraic Groups

Let C be the field of complex numbers. The following content remains the
same if C is replaced by an algebraically closed field of characteristic 0.

1.1 Algebraic Sets

Let C[X]N := C[X1, . . . ,XN] be the polynomial ring in N variables with coeffi-
cients in C.

Definition Let M be a subset of C[X]N. A subset

V(M) := {z = (z1, . . . , zN) ∈ CN | f (z) = 0 (∀ f ∈M)}

of CN determined by M is called an algebraic set.

▶ Let V = V(M) be an algebraic set. Then

I(V) := { f ∈ C[X]N | f (z) = 0 (∀z ∈ V)}

is an ideal of C[X]N containing M. Since C[X]N is a Noetherian ring, its ideals
are finitely generated. Therefore, I(V) can be written as

I(V) = ( f1, . . . , fr), (∃ f1, . . . , fr ∈ C[X]N),

and
V = V({ f1, . . . , fr})

holds.

▶ If V1 ⊂ CN1 and V2 ⊂ CN2 are algebraic sets with I(V1) ⊂ C[X]N1 and
I(V2) ⊂ C[Y]N2 , then V1×V2 is an algebraic set in CN1+N2 whose corresponding
ideal is I(V1)C[Y]N2 + I(V2)C[X]N1 .

Definition Let V ⊂ CN be an algebraic set. V is called irreducible if whenever
V = V1 ∪ V2 for non-empty algebraic sets V1,V2 ⊂ CN, it implies V1 = V or
V2 = V. V is irreducible if and only if I(V) is a prime ideal.

▶ For any algebraic set V, there exist finitely many irreducible algebraic sets
V j ⊂ V ( j = 1, . . . , k) such that V = V1 ∪ · · · ∪Vk. This representation is unique
up to order. Each V j is called an irreducible component of V.

1.2 Field of Definition for Algebraic Sets

Let F be a subfield of C. Let F[X]N := F[X1, . . . ,XN] be the polynomial ring in
N variables with coefficients in F.

7



Definition Let V ⊂ CN be an algebraic set. If the ideal I(V) can be generated
by elements from I(V) ∩ F[X]N, i.e.,

∃ f1, . . . , fr ∈ I(V) ∩ F[X]N s.t. I(V) =
r∑

i=1

fiC[X]N

then V is said to be defined over F, and F is called a field of definition for V.
In this case, we set

V(F) := {a = (a1, . . . , aN) ∈ FN | fi(a) = 0 (i = 1, . . . , r)}.

The elements of V(F) are called the F-rational points of V.

▶ Let E/F be a field extension. E need not be contained in C. If V is defined
over F, then fi ∈ F[X]N, so we can view fi ∈ E[X]N, and from this, the set of
E-rational points of V can be defined as

V(E) := {a ∈ EN | fi(a) = 0 (i = 1, . . . , r)}.

▶ Let F ⊂ C be the algebraic closure of F, and let Γ = Gal(F/F) be the absolute

Galois group. Γ acts naturally on F
N

. That is,

σ((a1, . . . , aN)) = (σ(a1), . . . , σ(aN)) (σ ∈ Γ, (a1, . . . , aN) ∈ F
N

).

For a subset U ⊂ F
N

, set σ(U) = {σ(a) | a ∈ U}. U is said to be Γ-invariant if
σ(U) = U for all σ ∈ Γ. When V is defined over F, the following equivalence
holds.

V is defined over F ⇐⇒ V(F) is Γ-invariant.

1.3 Polynomial Functions

Let F ⊂ C be a subfield, and let V ⊂ CN be an algebraic set defined over F.

Definition Let f ∈ F[X]N. The restriction of f to V, denoted by f |V, is called
a polynomial function on V defined over F. The set of polynomial functions
on V defined over F is denoted by F[V]. This is an F-algebra. When F = C,
C[V] is isomorphic with C[X]N/I(V).

Definition Let V1 ⊂ CN1 and V2 ⊂ CN2 be algebraic sets both defined over F.
A map ϕ : V1 −→ V2 represented as

ϕ(z) = (ϕ1(z), . . . , ϕN2(z))

is called a polynomial map defined over F (or F-morphism) if ϕi ∈ F[V1] for
all i. (When F = C or F, it is simply called a polynomial map or morphism.)
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▶ For any ideal J ⊂ C[V], let

VJ := {z ∈ V | f (z) = 0 (∀ f ∈ J)}.

The family of sets {VJ}J satisfies the axioms for closed sets, thus defining a
topology on V. This topology is called the Zariski topology.

▶ According to Hilbert’s Nullstellensatz, for any ideal J ⊂ C[V], we have

{ f ∈ C[V] | f (z) = 0 (∀z ∈ VJ)} =
√

J,

where
√

J := { f ∈ C[V] | ∃k > 0 s.t. f k ∈ J}. From this, the following follow:

(1) For a proper ideal J ⫋ C[V], VJ , ∅.

(2) For a point z ∈ V, Mz := { f ∈ C[V] | f (z) = 0} is a maximal ideal of C[V],
and all maximal ideals of C[V] are of this form.

(3) A singleton set {z} ⊂ V is a closed set in the Zariski topology.

▶ Let V1 ⊂ CN1 and V2 ⊂ CN2 be algebraic sets both defined over F. If
ϕ : V1 −→ V2 is a polynomial map defined over F, then for any f ∈ F[V2], we
have f ◦ϕ ∈ F[V1]. Setting ϕ∗( f ) = f ◦ϕ defines an F-algebra homomorphism
ϕ∗ : F[V2] −→ F[V1].

▶ Let f , g ∈ F[V] with g not vanishing identically on each irreducible compo-
nent of V. Then f/g is called a rational function on V defined over F. A map
ϕ : V1 −→ V2 is called a rational map defined over F if its component ϕi is a
rational function on V1 defined over F for all i.

1.4 Affine Algebraic Groups

Let F ⊂ C be a subfield.

Definition A subset G ⊂ CN is called an affine algebraic group defined over
F or an F-algebraic group if it satisfies the following three conditions:

(1) G is a group.

(2) G is an algebraic set defined over F.

(3) The two maps G × G −→ G : (x, y) 7→ xy and G −→ G : x 7→ x−1 are
polynomial maps defined over F.

(When F = C or F, it is simply called an algebraic group.)
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▶ An F-algebraic group G that is irreducible as an algebraic set is called an
irreducible algebraic group or a connected algebraic group. In general, if
G is not irreducible, there is a unique irreducible component G◦ containing
the identity element of G. G◦ is called the identity component (or connected
component of the identity). G◦ itself is also an F-algebraic group. In this
case, the other irreducible components can be represented as g1G◦, . . . , grG◦

for some g1, . . . , gr ∈ G ([2, 1.2]).

▶ Let G be an F-algebraic group. The set of F-rational points G(F) is a group.
More generally, for any field extension E/F, the set of E-rational points G(E)
is a group.

Examples
(1) G = Ga = C as the additive group is a connected algebraic group. I(G) =
(0).

(2) G = Gm = C× as the multiplicative group is a connected algebraic group.
As an algebraic set, it is viewed as a subset of C2:

G = {(z, z−1) ∈ C2 | z ∈ C×} ⊂ C2,

I(G) = (X1X2 − 1).

(3) G = SLn = {z = (zi j) ∈ Mn(C) | det z = 1} ⊂ Cn2
is a connected algebraic

group. I(G) = (det(Xi j) − 1). This is called the special linear group.

(4) G = GLn = {z = (zi j) ∈ Mn(C) | det z , 0} is a connected algebraic group.
As an algebraic set, it is viewed as:

G = {((zi j), y) ∈Mn(C) ⊕ C | det(zi j)y − 1 = 0} ⊂ Cn2+1,

I(G) = (det(Xi j)Y − 1). This is called the general linear group.

(5) The algebraic groups from (1) to (4) are all defined over Q. Therefore, for
any field extension E/Q (e.g., E = R,Qp, etc.), the set of E-rational points G(E)
is a group.

Definition Let G be an F-algebraic group. A subset H ⊂ G is called a
subgroup defined over F or an F-subgroup of G if it satisfies:

(1) H is a subgroup.

(2) H is an algebraic subset of G defined over F.

(When F = C or F, to distinguish from abstract subgroups, it is called a closed
subgroup.) If H is furthermore a normal subgroup, it is called a normal
F-subgroup.
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▶ Condition (2) requires that H is a closed subset of G in the Zariski topology.
In general, if H is a subgroup of G, its closure H− in the Zariski topology is a
closed subgroup of G ([2, 1.3]).

Examples
(1) SLn is a closed subgroup of GLn.

(2) For any F-algebraic group G, the identity component G◦ is a normal
F-subgroup.

1.5 Homomorphisms of Algebraic Groups

Definition Let G1 and G2 be F-algebraic groups. A map ϕ : G1 −→ G2 is
called a homomorphism defined over F or an F-homomorphism if it satisfies:

(1) ϕ is a group homomorphism.

(2) ϕ is a polynomial map defined over F.

Furthermore, if ϕ is bijective and the inverse map ϕ−1 : G2 −→ G1 is also a
polynomial map defined over F, then G1 and G2 are said to be F-isomorphic,
and ϕ is called an F-isomorphism.

▶ For an F-homomorphism ϕ : G1 −→ G2, the following hold ([2, 1.4], [17,
7.4]).

(1) Kerϕ is a normal F-subgroup of G1.

(2) Imϕ is an F-subgroup of G2. Also, (Imϕ)◦ = ϕ(G◦) holds.

▶ If the characteristic of F is p > 0 and F has inseparable extensions, then
Kerϕ is generally not necessarily defined over F.

▶ For any field extension E/F, ϕ naturally induces a homomorphism of (ab-
stract) groups ϕE : G1(E) −→ G2(E). If ϕ is injective, then ϕE is also injective.
However, even if ϕ is surjective, ϕE is not necessarily surjective.

Example The mapϕ : Gm −→ Gm : ϕ(z) = z2 is a surjective Q-homomorphism,
but the image of ϕR : Gm(R) −→ Gm(R) is the set of positive real numbers,
so it is not surjective.

Theorem 1 (Embedding into GLn [2, 1.10])� �
Let G be an affine algebraic group. Then there exist some n and a C-isomorphism
ϕ from G into GLn. If G is an F-algebraic group, ϕ can be chosen to be an
F-isomorphism.� �
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▶ It is clear from the definition that a closed subgroup of GLn is an affine
algebraic group. Therefore, affine algebraic groups and closed subgroups of
GLn can be considered identical.

Examples
(1) The following subgroups of GLn are all connected Q-subgroups.

Tn := {(zi j) ∈ GLn | zi j = 0 (∀i, j, i , j)},
Bn := {(zi j) ∈ GLn | zi j = 0 (∀i, j, i > j)},
Un := {(zi j) ∈ Bn | z11 = . . . = znn = 1},
Zn := {(zi j) ∈ Tn | z11 = . . . = znn}.

Tn is the group of diagonal matrices and Bn is the group of upper triangular
matrices. There are obvious Q-isomorphisms Zn � Gm and Tn � Gn

m.

(2) Let G be a finite group of order n. By the regular representation G −→
GLn(C), G is regarded as a subgroup of GLn(C). Since a finite subset of GLn(C)
is Zariski closed, G is an algebraic group.

Definition Let G1 and G2 be F-algebraic groups. If there exists an F-
homomorphismϕ : G1 −→ G2 such that Kerϕ is a finite group and Imϕ = G2,
then G1 and G2 are said to be F-isogenous, and ϕ is called an F-isogeny.

1.6 Quotient Groups

The quotient G/H of an algebraic group G by its closed subgroup H is generally
not an affine algebraic set. Hereafter, let PN−1 = (CN − {0})/C× denote the
(N − 1)-dimensional projective space, and let π : CN − {0} −→ PN−1 be the
natural map. By considering homogeneous polynomials in the polynomial
ring C[X]N, one can define algebraic sets in the projective space PN−1. That
is, if an ideal I ⊂ C[X]N is generated by homogeneous polynomials f1, . . . , fr,
then

PV(I) := {π(v) ∈ PN−1 | f1(v) = . . . = fr(v) = 0 (v ∈ CN − {0})}

is called an algebraic set in PN−1. The topology on PN−1 for which the collection
of all algebraic sets forms the closed sets is called the Zariski topology. A
Zariski closed subset of PN−1 is called a projective variety, and a Zariski open
subset is called a quasi-projective variety. Let G be an F-algebraic group and
H be an F-subgroup of G. Let PN−1(F) = π(FN − {0}). If ϕ : G −→ GLN is an
F-homomorphism, then G acts on PN−1 via

G × PN−1 −→ PN−1 : gπ(v) = π(ϕ(g)v) (g ∈ G, v ∈ CN − {0}).
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Theorem 2 (Existence of Representation [2, 5.1, 6.8])� �
Let G be an F-algebraic group and H be an F-subgroup of G. Then there exist
some n, an F-homomorphismϕ : G −→ GLn, and x0 ∈ Pn−1(F) such that

H = {g ∈ G | gx0 = x0}

and ϕ induces a bijection G/H � Gx0 ⊂ Pn−1. Furthermore, Gx0 ⊂ Pn−1 is a

quasi-projective variety, and its closure Gx0 with respect to the Zariski topology
is a projective variety defined over F. (Henceforth, we identify G/H with Gx0.)� �

If H is a normal F-subgroup, the following stronger result holds.

Theorem 3 (Existence of Quotient Group [2, 6.8])� �
Let G be an F-algebraic group and H be a normal F-subgroup of G. Then there
exist an F-algebraic group G\ and a surjective F-homomorphismϕ : G −→ G\

satisfying the following:

(1) Kerϕ = H.

(2) For any F-homomorphism ψ : G −→ G′ such that H ⊂ Kerψ, there
exists a unique F-homomorphismψ′ : G\ −→ G′ such thatψ = ψ′◦ϕ.

In particular, G\ is unique up to F-isomorphism. (Henceforth, we view G/H =
G\.)� �
▶ Since ϕ is surjective, if G is connected, then G/H is also connected.

▶ϕ induces a homomorphism of groups of F-rational points G(F) −→ (G/H)(F),
but this is not necessarily surjective.

Examples
(1) The map GLn −→ Gm : g 7→ det g is a surjective Q-homomorphism. Since
Ker (det) = SLn, there is a Q-isomorphism GLn/SLn � Gm.

(2) Un is a normal Q-subgroup of Bn, and there is a Q-isomorphism Bn/Un �
Tn.

(3) Zn is a normal Q-subgroup of GLn. The quotient group GLn/Zn is called
the projective general linear group and is denoted by PGLn. Let

π : GLn −→ PGLn

be the natural Q-homomorphism. Let π1 be the restriction of π to SLn. Then

Kerπ1 = Zn ∩ SLn = {zEn | z ∈ C, zn = 1}
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is a finite group, and π1 is surjective. Therefore, SLn and PGLn are Q-
isogenous.
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§2 Reductive Algebraic Groups

Fix a subfield F ⊂ C. In the following, any algebraic set V is assumed to be
defined over the algebraic closure F of F, and we identify V with V(F).

2.1 Solvable Algebraic Groups

For an abstract group G, let D(G) denote its commutator subgroup. That is,
D(G) is the subgroup of G generated by {xyx−1y−1 | x, y ∈ G}. Inductively,
define

Dk(G) := D(Dk−1(G)) (k = 2, 3, . . .).

Theorem 4 ([2, 2.3])� �
If G is a connected F-algebraic group, then D(G) is a connected F-subgroup.
Thus, for any k, Dk(G) is a connected F-subgroup.� �

Definition A connected algebraic group G is called a solvable algebraic
group if it satisfies Dk(G) = {e} for some k ≥ 1.

Example The Q-subgroup Bn of upper triangular matrices is a solvable Q-
subgroup of GLn.

Theorem 5 (Lie–Kolchin Theorem [2, 10.5])� �
If G is a connected solvable closed subgroup of GLn, then there exists g ∈ GLn
such that gGg−1 ⊂ Bn.� �
▶ From Theorem 1 and Theorem 5, the following equivalence holds:

G is a connected solvable algebraic group

⇐⇒ There exists an injective F-homomorphism G ↪→ Bn for some n.

Bn has a normal closed subgroup Un.

Definition A connected algebraic group G is called a unipotent algebraic
group if there exists an injective F-homomorphism G ↪→ Un for some n.

2.2 Parabolic Subgroups

Definition A maximal connected solvable closed subgroup of a connected
algebraic group G is called a Borel subgroup. A closed subgroup of G con-
taining a Borel subgroup is called a parabolic subgroup.
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Theorem 6 ([2, 11.1, 11.2, 11.16])� �
Let G be a connected algebraic group.

(1) A Borel subgroups of G exists uniquely up to conjugacy by elements of G.

(2) P is a parabolic subgroup if and only if G/P is a projective variety.

(3) Any parabolic subgroup P is connected. The normalizer NG(P) of P as
an abstract group coincides with P.� �

Example Bn is a Borel subgroup of GLn. Any Borel subgroup of GLn is
conjugate to Bn. For r = 1, . . . , n − 1, let

Qn,r = Qr :=
{(

a b
0 d

)
∈ GLn | a ∈ GLr, d ∈ GLn−r, b ∈Mr,n−r(F)

}
.

Since Qr contains Bn, it is a parabolic subgroup. Qr is called a standard
maximal parabolic subgroup. Let e1, . . . , en be the standard basis of F

n
, and

consider the r-dimensional subspace

Vr := Fe1 + · · · + Fer.

Then
Qr = {g ∈ GLn | g(Vr) = Vr}

holds. Therefore,

GLn/Qr = the set of r-dimensional subspaces of F
n
.

This is called the Grassmann variety. In particular, GLn/Q1 = Pn−1. Bn and
Qr are all defined over Q.

▶ Let G be a connected F-algebraic group. G always has a Borel subgroup
defined over F, but it does not necessarily have a Borel subgroup defined over
F.

2.3 Semisimple Groups and Reductive Groups

Definition Let G be a connected algebraic group. The maximal connected
solvable normal closed subgroup of G is called the radical of G and is denoted
by R(G). The maximal connected unipotent normal closed subgroup of G is
called the unipotent radical of G and is denoted by Ru(G). Ru(G) ⊂ R(G) and
Ru(G) = Ru(R(G)) hold.

▶ Let B be a Borel subgroup of G. The identity component of
⋂

g∈G gBg−1 is
R(G).
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Definition A connected algebraic group G is called semisimple if it satisfies
R(G) = {e}, and reductive if it satisfies Ru(G) = {e}.

▶ For any connected algebraic group G, G/R(G) is connected semisimple, and
G/Ru(G) is connected reductive.

Theorem 7 (Levi Decomposition [2, 11.22, 14.2])� �
Let G be a connected algebraic group.

(1) There exists a maximal reductive closed subgroup H of G, and G is the
semidirect product of H and Ru(G). (This semidirect product is called the
Levi decomposition of G, and H is called a Levi subgroup.)

(2) If G is reductive, then R(G) is equal to the identity component CG
◦ of the

center CG of G. If D(G) is the commutator subgroup of G, then the map
CG
◦×D(G) −→ G : (c, h) 7→ ch is an isogeny. In particular, CG

◦∩D(G)
is a finite group, and D(G) is semisimple.� �

▶ Theorem 7(1) does not hold in general for fields of characteristic p > 0.

▶ If G is a connected reductive F-algebraic group, then the center CG is an F-
subgroup ([2, 18.2]). Therefore, CG

◦ is also an F-subgroup. In fact, CG
◦ becomes

an F-torus ([2, 11.21]).

Examples
(1) R(GLn) = Zn. Thus GLn is reductive. Since PGLn = GLn/R(GLn), PGLn is
semisimple. SLn, which is isogenous to PGLn, is also semisimple.

(2) Let Qn,r be a standard maximal parabolic subgroup of GLn. Let

Mn,r :=
{(

a 0
0 d

)
| a ∈ GLr, d ∈ GLn−r

}
,

Un,r :=
{(

Er b
0 En−r

)
| b ∈Mr,n−r(F)

}
.

Then Un,r is a normal closed subgroup of Qn,r, and Qn,r is the semidirect
product of Un,r and Mn,r. Mn,r is a Levi subgroup of Qn,r. We have Ru(Qn,r) =
Un,r and R(Qn,r) = R(Mn,r)Un,r.

(3) Since Bn is itself solvable, R(Bn) = Bn. We have Ru(Bn) = Un.

(4) Let D(GLn) be the commutator subgroup of GLn. From Theorem 7(2),

GLn = ZnD(GLn) = {zh | z ∈ Zn, h ∈ D(GLn)}.
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In particular, GLn = TnD(GLn). Clearly D(GLn) ⊂ SLn. Therefore, if we set
T1

n = Tn ∩ SLn, then
SLn = T1

nD(GLn)

holds. Now, for the case of 2x2 matrices,(
a 0
0 b

) (
0 1
1 0

) (
a−1 0
0 b−1

) (
0 1
1 0

)
=

(
ab−1 0

0 a−1b

)
∈ D(GL2).

Based on this, it is easy to show that T1
n ⊂ D(GLn) holds for any n. Thus

D(GLn) = SLn.

(5) If G is connected semisimple, then R(G) = {e}, so Theorem 7(2) implies
G = D(G).

18



§3 Tori and Character Groups

3.1 Tori

Definition An algebraic group H is called a torus if it is F-isomorphic to Gk
m

for some k. If H is a torus defined over F, then H is called an F-torus. Further-
more, if the isomorphism H � Gk

m can be taken to be an F-isomorphism, then
H is called an F-split torus.

▶ Any torus is an F-split torus, but for a general F, there exist F-tori that are
not F-split tori.

Definition Let G be an F-algebraic group. A maximal one among tori
contained in G is called a maximal torus of G. A maximal one among F-split
tori contained in G is called a maximal F-split torus.

Theorem 8 ([2, 11.3, 18.2, 20.9])� �
Let G be a connected F-algebraic group.

(1) The maximal tori in G are conjugate by elements of G. Also, there exists
a maximal torus defined over F. (Thus, a maximal F-torus is a maximal
torus.)

(2) If T is a maximal torus of G, then there exists a Borel subgroup B of G
containing T such that T is a maximal torus of B.

(3) If G is a connected reductive F-algebraic group, the maximal F-split tori
in G are conjugate by elements of G(F). Also, there exists a maximal
F-torus containing a maximal F-split torus.� �

Definition Let G be a connected reductive F-algebraic group. Let S � Gk
m

be a maximal F-split torus of G, and let T � G`
m be a maximal torus of G. k is

called the F-rank of G, and ` is called the absolute rank of G. In particular, if
k = `, G is called an F-split group. If k = 0, G is called F-anisotropic, and if
k ≥ 1, G is called F-isotropic.

Examples
(1) Tn is a maximal torus of GLn, and also a maximal Q-split torus. The
Q-rank of GLn is n. GLn is a Q-split group.

(2) SLn is a Q-split group. Its Q-rank is n − 1.

(3) SOEn = {g ∈ SLn | tgEng = En} is a Q-subgroup of SLn. If n ≥ 3, it is a
connected semisimple group with absolute rank [n/2] and Q-rank 0.
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(4) Let F = R and

H :=
{(

a b
−b a

)
| a, b ∈ C, a2 + b2 = 1

}
.

Let T1
2 = T2 ∩ SL2. Define the map f : H −→ T1

2 by

f (g) = hgh−1 where h =
(
−
√
−1 −1

−
√
−1 1

)
.

Since

f
((

a b
−b a

))
=

(
a + b

√
−1 0

0 a − b
√
−1

)
,

f is a C-isomorphism. Therefore H is an R-torus. The group of R-rational
points H(R) is the unit circle, which is a compact group under the usual Eu-
clidean topology. Consequently, there are no non-trivial R-homomorphisms
from Gm to H. Thus H is an R-anisotropic torus.

3.2 Character Groups

Definition Let G be an algebraic group. An F-homomorphism χ : G −→ Gm
is called a rational character of G. The set of all rational characters of G is
denoted by X∗(G) and is called the rational character group. Forχ1, χ2 ∈ X∗(G),
defining

(χ1 + χ2)(g) := χ1(g)χ2(g), (nχ1)(g) := χ1(g)n (g ∈ G, n ∈ Z)

makes X∗(G) into a Z-module.

Definition Let G be an F-algebraic group. A rational character χ : G −→ Gm
that is an F-homomorphism is called an F-rational character. Let

X∗(G)F := {χ ∈ X∗(G) | χ is an F-rational character}.

X∗(G)F is a submodule of X∗(G).

▶ A rational character of G is a polynomial function. Thus X∗(G)F is a subset
of F[G]. A χ ∈ X∗(G)F defines, for any field extension E/F, a group homomor-
phism

χE : G(E) −→ Gm(E) = E×.

▶ Let Γ = Gal(F/F) be the absolute Galois group. For σ ∈ Γ and χ ∈ X∗(G),
define σχ ∈ X∗(G) by

σχ(g) := σ(χ(σ−1(g))) (g ∈ G = G(F)).

20



This defines an action of Γ on X∗(G):

Γ × X∗(G) −→ X∗(G) : (σ, χ) 7→ σχ.

Then, if we set

X∗(G)Γ := {χ ∈ X∗(G) | σχ = χ (∀σ ∈ Γ)},

we have
X∗(G)F = X∗(G)Γ.

▶ If ϕ : G1 −→ G2 is an F-homomorphism, then ϕ induces a module homo-
morphism

ϕ∗ : X∗(G2)F −→ X∗(G1)F : ϕ∗(χ) = χ ◦ ϕ.
If ϕ is surjective, then ϕ∗ is injective. In particular, an exact sequence of
F-algebraic groups under F-homomorphisms

1 −→ H
ψ−→ G1

ϕ−→ G2 −→ 1

gives the following exact sequence:

0 −→ X∗(G2)F
ϕ∗−→ X∗(G1)F

ψ∗−→ X∗(H)F

where ψ∗ is not necessarily surjective.

Examples
(1) For Tn � Gn

m, let a diagonal matrix be

g = diag(a1, . . . , an) =


a1 0

. . .
0 an

 .
Define

εi : T −→ Gm : εi(g) = ai (i = 1, . . . , n).

Then ε1, . . . , εn form a Z-basis of X∗(Tn). Thus

X∗(Tn) = Zε1 + · · · + Zεn � Zn.

Clearly εi are Q-rational characters, so X∗(Tn) = X∗(Tn)Q.

(2) Similarly to (1), if T is an F-split torus with T � Gk
m, then X∗(T) = X∗(T)F �

Zk.

(3) Since there are no polynomial homomorphisms from Ga to Gm, X∗(Ga) = 0.
From this, it follows that if G is a unipotent group, then X∗(G) = 0. In particular,
X∗(Un) = 0.
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(4) Since Bn/Un � Tn, taking the exact sequence yields

0 −→ X∗(Tn) −→ X∗(Bn) −→ X∗(Un) = 0.

So, X∗(Bn) � X∗(Tn) and X∗(Bn)Q � X∗(Tn)Q.

(5) Any character χ ∈ X∗(GLn) must satisfy χ(ghg−1h−1) = 1, so its restriction
to D(GLn) = SLn is trivial. Therefore, from the exact sequence induced by
det : GLn −→ Gm:

1 −→ SLn −→ GLn −→ Gm −→ 1,

we get
X∗(Gm) � X∗(GLn) = X∗(GLn)Q = Z det .

(6) Let G be a connected algebraic group with Levi decomposition G =
HRu(G). Since H � G/Ru(G) and X∗(Ru(G)) = 0 from (3), the restriction
map χ 7→ χ|H gives an isomorphism X∗(G) � X∗(H). From Theorem 7(2),
H = CH

◦D(H). For χ ∈ X∗(H), we have χ|D(H) = 1, so the restriction χ 7→ χ|CH
◦

gives an injection X∗(H) ↪→ X∗(CH
◦). Since CH

◦ = R(H) is a torus ([2, 11.21]), if
CH
◦ � Gk

m, then X∗(CH
◦) � Zk. X∗(G) is isomorphic to a submodule of Zk, thus

X∗(G) is also a finitely generated free abelian group. Also, if G is a connected
semisimple algebraic group, then D(G) = G, so X∗(G) = 0.

3.3 Character Groups of Tori

The following holds for character groups of tori.

Theorem 9 ([2, 8.2, 8.5])� �
Let T be an F-torus.

(1) T is an F-split torus if and only if X∗(T) = X∗(T)F.

(2) T is F-anisotropic if and only if X∗(T)F = 0.

(3) If T′ ⊂ T is a connected F-subgroup, then T′ and T/T′ are both F-tori,
and the following is an exact sequence.

0 −→ X∗(T/T′)F −→ X∗(T)F −→ X∗(T′)F −→ 0

If T is an F-split torus, then T′ and T/T′ are also F-split tori.

(4) Let Ts be a maximal F-split torus in T and Ta be a maximal F-anisotropic
torus in T. Then the product map Ts × Ta −→ T is an F-isogeny.
Furthermore, X∗(T)F = X∗(Ts)F holds.� �
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▶ Ta in Theorem 9 (4) is given as follows:

Ta =
⋂

χ∈X∗(T)F

Kerχ .

For Ts, see 3.5 below.

3.4 The Central Maximal F-split Torus of a Reductive Group

Let G be a connected reductive F-algebraic group. The maximal F-split torus
contained in the center CG of G is denoted by ZG. ZG is called the central
maximal F-split torus of G.

▶ Since G is reductive, R(G) = CG
◦ is a torus. Thus, in the notation of Theorem

9(4), ZG = R(G)s, and X∗(R(G))F = X∗(ZG)F = X∗(ZG) holds.

Proposition 10� �
Let G be a connected reductive F-algebraic group. Then X∗(G/ZG)F = 0, and
the restriction map

X∗(G)F −→ X∗(ZG)F : χ 7→ χ|ZG

is injective. X∗(G)F is a finite index submodule of X∗(ZG)F.� �
Proof. Let R(G)a be the maximal F-anisotropic torus of R(G). By Theorem
9(2),(4),

X∗(R(G)/ZG)F � X∗(R(G)a/(R(G)a ∩ ZG))F ⊂ X∗(R(G)a)F = 0.

Since G/R(G) is semisimple, X∗(G/R(G))F = 0. From the exact sequence

0 −→ X∗(G/R(G))F −→ X∗(G/ZG)F −→ X∗(R(G)/ZG)F,

we have X∗(G/ZG)F = 0. The restriction map gives an injection X∗(G)F ↪→
X∗(ZG)F. From the exact sequence

1 −→ D(G) −→ G −→ G/D(G) −→ 1

and G/D(G) is isomorphic to R(G)/(D(G) ∩ R(G)), we have

X∗(G)F � X∗(R(G)/(D(G) ∩ R(G)))F.

Since D(G)∩ R(G) is a finite group, X∗(D(G)∩ R(G))F is a finite abelian group.
From the exact sequence

0 −→ X∗(R(G)/(D(G) ∩ R(G)))F −→ X∗(R(G))F −→ X∗(D(G) ∩ R(G))F

and X∗(R(G))F = X∗(ZG)F, the index [X∗(ZG)F : X∗(G)F] is finite. □
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Example When G = GLn, ZG = Zn and we have

X∗(GLn)Q = Z · det, X∗(Zn)Q = Zε1,

where ε1(z) = a for z = diag(a, . . . , a) ∈ Zn. Since det
∣∣∣
Zn
= nε1, we have

[X∗(Zn)Q : X∗(GLn)Q] = n.

The image of X∗(GLn)Q under restriction is nZε1 ⊂ Zε1.

3.5 Cocharacter Groups of Tori

Let T be an F-torus. An F-homomorphism

ξ : Gm −→ T

is called an F-cocharacter of T. The set of all F-cocharacters is denoted by
X∗(T)F. Addition is defined on X∗(T)F by

(ξ1 + ξ2)(x) := ξ1(x)ξ2(x) (ξ1, ξ2 ∈ X∗(T)F, x ∈ Gm)

making X∗(T)F into a Z-module. The composition of χ ∈ X∗(T)F and ξ ∈ X∗(T)F

χ ◦ ξ : Gm −→ T −→ Gm

is an F-character of Gm. Let ε1 be the identity map of Gm. Then X∗(Gm)F = Zε1,
so for some k ∈ Z,

χ ◦ ξ = kε1.

If we set
〈χ, ξ〉 = k,

this defines a pairing

〈·, ·〉 : X∗(T)F × X∗(T)F −→ Z.

This pairing is non-degenerate, and X∗(T)F and X∗(T)F are dual modules to
each other. That is,

X∗(T)F � HomZ(X∗(T)F,Z)

holds. From this, X∗(T)F is also a free Z-module with the same rank as X∗(T)F.

▶ A maximal F-split torus Ts of T is given as follows:

Ts = the closed group generated by
⋃

ξ∈X∗(T)F

Im ξ.
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▶ Let XR = X∗(T)F ⊗Z R and YR = X∗(T)F ⊗Z R. By extending the pairing 〈·, ·〉
R-linearly, a non-degenerate R-bilinear map

〈·, ·〉 : XR × YR −→ R

can be defined. Separately, given an inner product

(·, ·) : XR × XR −→ R

on XR, a natural R-linear map

XR −→ YR : v 7→ v∗

is defined by the relation

〈x, v∗〉 = (x, v) (∀x ∈ XR).

In this sense, YR is often identified with XR.

Example By Example (1) in 3.2, we have

X∗(Tn)F = Zε1 + · · · + Zεn .

Take the inner product of X∗(Tn)F⊗Z R such that ε1, . . . , εn form an orthonomal
basis. For i = 1, . . . , n, define ξi ∈ X∗(Tn)F by

ξi(a) := diag(1, . . . , 1,
i
ă, 1, . . . , 1) (a ∈ Gm).

Then ξ1, . . . , ξn is a dual basis of ε1, . . . , εn, and hence ε∗i = ξi for i = 1, . . . , n.
Let α := εi − εi+1. Then α∗ = ξi − ξi+1, i.e.,

α∗(a) = diag(1, . . . , 1,
i
ă, a−1, 1, . . . , 1).

As we shall see in 4.7, α is a simple root of An−1 type root system and α∗ is
identified with the coroot α∨ defined in 4.6
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§4 Root Systems of Reductive Algebraic Groups

4.1 Reflections

Definition Let V be a finite-dimensional real vector space. For 0 , a ∈ V, a
linear map f : V −→ V is called a reflection with respect to a if it satisfies:

(1) f (a) = −a.

(2) There exists a hyperplane W ⊂ V such that f (w) = w for all w ∈W.

▶ A reflection is a linear isomorphism. If EV is the identity map on V, then
f ◦ f = EV. From this, we can choose an inner product (·, ·) on V that is
f -invariant, i.e.,

( f (u), f (v)) = (u, v) (u, v ∈ V).

With respect to this inner product, W becomes the orthogonal complement of
a. Furthermore, f can be expressed as

f (v) = v − 2
(v, a)
(a, a)

a (∀v ∈ V).

4.2 Root Systems

Let X be a free Z-module of finite rank, and let XR := X⊗Z R be the real vector
space.

Definition For a subsetΦ ⊂ X, (X,Φ) (or simplyΦ) is called an extended root
system (or generalized root system) if it satisfies the following conditions:

(1) Φ is a finite set, 0 < Φ, and Φ contains a basis of XR.

(2) If α ∈ Φ, then −α ∈ Φ.

(3) For each α ∈ Φ, the reflection sα : XR −→ XR with respect to α satisfies

sα(Φ) = Φ, sα(χ) − χ ∈ Zα (∀χ ∈ X).

▶ If Φ satisfies the stronger condition than (2):
(2’) If α ∈ Φ, then Qα ∩Φ = {±α},
then Φ is called a root system. In an extended root system, we have

α ∈ Φ =⇒ Qα ∩Φ ⊂
{
±α,±1

2
α,±2α

}
.
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▶ If Φ is an extended root system, let

Φnd = {α ∈ Φ | α/2 < Φ}.

Then Φnd is a root system. Φnd is called the reduced root system of Φ.

4.3 Weyl Groups

Let (X,Φ) be an extended root system. Let GL(XR) denote the group of all
linear automorphisms of XR.

Definition The subgroup of GL(XR) generated by {sα | α ∈ Φ} is called the
Weyl group of Φ and is denoted by W(Φ).

▶ By condition (3), for any w ∈ W(Φ), we have w(Φ) = Φ. Thus, w induces
a permutation of the elements of Φ. Let Sym(Φ) be the permutation group
of Φ. Then there is a homomorphism W(Φ) −→ Sym(Φ). Since w is a linear
map andΦ contains a basis of XR, this homomorphism is injective. Therefore,
W(Φ) is a finite group.

▶ From condition (3), for any w ∈ W(Φ), we have w(X) ⊂ X. Thus, w is
an automorphism of X. If we let GL(X) = { f ∈ GL(XR) | f (X) = X}, then
W(Φ) ⊂ GL(X).

▶ Since W(Φ) is a finite group, XR has a W(Φ)-invariant inner product. That
is, there exists an inner product such that

(w(u),w(v)) = (u, v) (∀u, v ∈ XR,
∀w ∈W(Φ)).

Then sα can be written as

sα(v) = v − 2
(v, α)
(α, α)

α.

From condition (3),

cα,β := 2
(β, α)
(α, α)

∈ Z (∀α, β ∈ Φ).

These cα,β are called the Cartan integers.

Definition Consider XR as a Euclidean space with the inner product given
above. Since Ker sα is a hyperplane in XR,

XR −
⋃
α∈Φ

Ker sα

is an open set. Each connected component of this open set is called a Weyl
chamber.
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▶ A Weyl chamber C is an open cone. Let C− be the closure of C in XR. Then

XR =
⋃

w∈W(Φ)

w(C−), C ∩ wC = ∅ (∀w ∈W(Φ), w , e)

holds ([7, Ch.VI, n◦1.5]).

4.4 Positive Roots and Simple Roots

Definition Let Φ be an extended root system, and fix a Weyl chamber C. An
element α ∈ Φ is called a positive root (with respect to C) if

(v, α) > 0 (∀v ∈ C)

and is denoted by α > 0. The set of all positive roots is denoted by Φ+(C) or
simply Φ+. Furthermore, a positive root α is called a simple root if it cannot
be expressed as the sum of two positive roots. The set of all simple roots is
denoted by ∆(C) or simply ∆, and is called a fundamental system (or base)
of Φ.

▶ Let ∆ = ∆(C) = {α1, . . . , αn}. The following hold ([7, Ch.VI, n◦1.5]).

(1) Let Φ− := {−α | α ∈ Φ+}. Then Φ = Φ+ ∪Φ−.

(2) ∆ is a basis of XR.

(3) Any positive root β ∈ Φ+ can be expressed as

β =
n∑

i=1

kiαi (0 ≤ ki ∈ Z).

(4) C = {v ∈ XR | (v, αi) > 0 (i = 1, . . . , n)} holds.

(5) W is generated by {sαi | i = 1, . . . , n}.

▶ The fundamental system ∆ ⊂ Φ+ is uniquely determined by the set of
positive roots Φ+. Conversely, the set of positive roots is determined by the
fundamental system ∆ via property (3) above.

4.5 Irreducible Root Systems

Definition Let (X,Φ) be an extended root system. Φ is called reducible if
there exist non-empty subsets Φ1,Φ2 ⊂ Φ such that

Φ = Φ1 ∪Φ2 and with respect to the inner product Φ1 ⊥ Φ2.
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If Φ is not reducible, it is called irreducible.

▶ The classification of irreducible root systems is well-known. They are clas-
sified by connected Dynkin diagrams into types An(n ≥ 1),Bn(n ≥ 2),Cn(n ≥
2),Dn(n ≥ 4),G2,F4,E6,E7,E8.

▶ There is only one series of irreducible extended root systems Φ that are not
root systems, called type BCn(n ≥ 2). In this case, the reduced root system
Φnd is of type Cn.

4.6 Lattices of a Root System

Let (X,Φ) be an extended root system, and let ∆ = {α1, . . . , αn} be a fundamen-
tal system. Let XQ := X ⊗Z Q.

Definition For each α ∈ Φ, the element α∨ := 2α/(α, α) ∈ XQ is called a
coroot. The set of all coroots is denoted by Φ∨.

▶ The dual lattice X∨ of X in XQ is defined as

X∨ = {λ ∈ XQ | (λ, χ) ∈ Z (∀χ ∈ X)}.

Then Φ∨ ⊂ X∨, and (X∨,Φ∨) is an extended root system. This is called the
dual root system of (X,Φ).

Definition The Z-module generated byΦwithin XQ is called the root lattice
and is denoted by (Φ)Z. Let (Φ∨)Z be the Z-module generated by Φ∨. The
dual lattice of (Φ∨)Z in XQ is denoted by (Φ∨)∨Z. That is,

(Φ∨)∨Z = {λ ∈ XQ | (λ, α∨) ∈ Z (∀α∨ ∈ Φ∨)}

(Φ∨)∨Z is called the weight lattice.

▶ From condition (3) in the definition of an extended root system, we have
the inclusion relation

(Φ)Z ⊂ X ⊂ (Φ∨)∨Z ⊂ XQ.

Let Y be a free module such that (Φ)Z ⊂ Y ⊂ (Φ∨)∨Z. Then (Y,Φ) is an extended
root system.

4.7 Root Systems of a Reductive Algebraic Group

Consider a non-commutative connected reductive F-algebraic group G. Fix a
maximal F-split torus T of G and a maximal F-torus Tmax containing T.

29



Definition A rational character α ∈ X∗(Tmax) is called a root (of G with respect
to Tmax) if there exists an injective F-homomorphism

uα : Ga −→ G

such that
tuα(x)t−1 = uα(α(t)x) (∀x ∈ Ga,

∀t ∈ Tmax)

holds. The set of all roots is denoted by Φ(G,Tmax) and is called the absolute
root system (of G with respect to Tmax).

Since T is an F-split torus, X∗(T) = X∗(T)F. From T ⊂ Tmax, a homomorphism

ρ : X∗(Tmax) −→ X∗(T) : ρ(χ) = χ|T

can be defined. ρ is called the restriction map.

Definition The set ρ(Φ(G,Tmax)) excluding 0 is denoted by ΦF(G,T) or ΦF,
and is called the relative root system (of G with respect to T).

▶ If F is algebraically closed or if G is an F-split group, then Tmax = T, so in
this case Φ(G,T) = ΦF(G,T) holds.

▶ Let R(G) be the radical of G. R(G) = CG
◦ is a torus and R(G) ⊂ Tmax. If t ∈ CG

◦,
then

tuα(x) = uα(x)t i.e. α|R(G) = 0 (∀α ∈ Φ(G,Tmax)).

Thus, Φ(G,Tmax) can be regarded as a subset of X∗(Tmax/R(G)). Similarly, let
ZG be the central maximal F-split torus of G. Then ΦF(G,T) can be regarded
as a subset of X∗(T/ZG)F.

▶ If G/ZG is F-anisotropic (i.e., T = ZG), then ΦF(G,T) = ∅.

Theorem 11 ([2, 21.6])� �
LetΦ = Φ(G, Tmax) andΦF = ΦF(G, T).

(1) (X∗(Tmax/R(G)),Φ) is a root system.

(2) IfΦF , ∅, then (X∗(T/ZG),ΦF) is an extended root system.� �
▶ In general, X∗(Tmax) and X∗(Tmax/R(G)) have different ranks. In that case,
the fundamental system of Φ does not form a basis for the vector space
X∗(Tmax) ⊗ R.

Example The characters εi of Tn were defined by

εi(diag(a1, . . . , an)) = ai (i = 1, . . . , n).
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For 1 ≤ i, j ≤ n, i , j, let ei j ∈Mn(Q) be the matrix with a 1 in the (i, j) position
and 0s elsewhere. Define

ui j : Ga −→ GLn : ui j(x) = En + xei j.

A simple calculation shows that

tui j(x)t−1 = ui j(εi(t)ε j(t)−1x) (∀x ∈ Ga,
∀t ∈ Tn).

Therefore, εi − ε j(= εiε−1
j ) is a Q-root.

ΦQ(GLn,Tn) = Φ(GLn,Tn) = {εi − ε j | 1 ≤ i, j ≤ n, i , j}.
This ΦQ(GLn,Tn) is a root system of type An−1.

∆ = {εi − εi+1 | i = 1, . . . , n − 1}
provides one fundamental system.

4.8 Classification of Connected Semisimple Split Groups

Definition Let X and X′ be free Z-modules of the same finite rank, and let
(X,Φ) and (X′,Φ′) be root systems. An injective homomorphism f : X′ −→ X
is called a special homomorphism from (X′,Φ′) to (X,Φ) if there exists a
bijection ψ : Φ −→ Φ′ such that f (ψ(α)) = α (∀α ∈ Φ).

▶ The definition above is for characteristic 0. Over a field of characteristic p,
the condition is changed to f (ψ(α)) = qαα (where qα is a power of p).

▶ If there exists a module isomorphism f : X −→ X′ such that f (Φ) = Φ′

between two root systems (X,Φ) and (X′,Φ′), we denote this by (X,Φ) �
(X′,Φ′).

Theorem 12 ([8, exposé 23, exposé 24])� �
Let G and G′ be connected semisimple algebraic groups, and let T ⊂ G and
T′ ⊂ G′ be maximal tori. Let X = X∗(T), X′ = X∗(T′), and let their respective
absolute root systems beΦ = Φ(G, T),Φ′ = Φ(G′, T′).

(1) (Isogeny Theorem) If a special homomorphism f : (X′,Φ′) −→ (X,Φ)
exists, then there exists an isogeny ϕ : G −→ G′ such that T′ = ϕ(T)
and (ϕ|T)∗ = f . Furthermore, if ψ : G −→ G′ is another isogeny
satisfying the same conditions, then there exists some t ∈ T such that
ψ(g) = ϕ(tgt−1) for all g ∈ G.

(2) (Isomorphism Theorem) If there exists an isomorphism ϕT : T −→ T′

such that ϕ∗
T

yields an isomorphism (X′,Φ′) � (X,Φ), then ϕT can be
extended to an isomorphismϕ : G −→ G′.� �
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Theorem 13 (Existence Theorem [9])� �
Let F be an arbitrary field. Let X be a free Z-module of finite rank, and let (X,Φ)
be a root system. Let Y be a free Z-module such that (Φ)Z ⊂ Y ⊂ (Φ∨)Z

∨.
Then there exists a connected semisimple F-split group G with a maximal F-split
torus T such that (Y,Φ) � (X∗(T)F,ΦF(G, T)), and such G is unique up to
F-isomorphism.� �
▶ In Theorem 13, the choice of Y is finite. The group Gsc corresponding to the
weight lattice (Φ∨)∨Z is called the simply connected group, and the group Gad
corresponding to the root lattice (Φ)Z is called the adjoint group. In general,
since (Φ)Z ⊂ Y ⊂ (Φ∨)∨Z, there are natural isogenies Gsc −→ G and G −→ Gad
by the Isogeny Theorem. The finite group π1(G) := (Φ∨)∨Z/Y is called the
fundamental group of G.

▶ An algebraic group G is said to be almost simple if {e} is the only proper
connected normal closed subgroup of G. If G is a connected almost simple
algebraic group, then G is semisimple and its absolute root system is an
irreducible root system ([2, 14.10]).

▶ Let G be a connected semisimple algebraic group. Then there is a finite set
{G1, . . . ,Gm} of connected almost simple normal closed subgroup of G such
that the product morphism G1 × · · · × Gm −→ G is an isogeny ([2, 14.10]).

▶ Let G be a connected semisimple Q-algebraic group, and let (X,Φ) =
(X∗(Tmax),Φ(G,Tmax)). By Theorem 13, there exists uniquely (up to Q-isomor-
phism) a connected semisimple Q-split group G0 and its maximal Q-split torus
T0 such that (X,Φ) � (X∗(T0)Q,ΦQ(G0,T0)). Over Q, we have Tmax � T0, so by
the Isomorphism Theorem, there exists a Q-isomorphism G � G0. Connected
semisimple Q-split groups can be classified by their root systems (Dynkin
diagrams) and fundamental groups. For a given G0, a Q-algebraic group G
such that G � G0 over Q is called a Q-form of G0. Using Galois cohomology
sets and relative root systems, Q-forms can be classified and described.
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§5 Bruhat Decomposition

Let G be a connected reductive F-algebraic group, T ⊂ G be a maximal F-split
torus, Tmax be a maximal F-torus containing T, and let X = X∗(T/ZG)F. Let
Φ = Φ(G,Tmax) and ΦF = ΦF(G,T) be the absolute and relative root systems
of G, respectively.

5.1 The Normalizer of T

Let CG(T) and NG(T) be the centralizer and the normalizer of T as an abstract
group, respectively. Then the following holds.

Theorem 14 ([2, 8.10, 21.2])� �
NG(T) is an F-algebraic group. CG(T) is a connected reductive F-algebraic
group and is the identity component of NG(T). In particular, the quotient
group NG(T)/CG(T) is a finite group. Also, a representative for each coset of
NG(T)/CG(T) can be chosen from NG(T)(F).� �

Denote the finite group NG(T)/CG(T) by W(G,T), and let the representative g
of each coset [g] = gCG(T) be an element of NG(T)(F). Each w = [g] ∈W(G,T)
gives an inner automorphism iw : T −→ T : iw(t) = gtg−1. This is an
F-isomorphism. From this, for χ ∈ X∗(T)F, if we define wχ as

(wχ)(t) := χ(i−1
w (t)) = χ(g−1tg) (t ∈ T)

then wχ ∈ X∗(T)F. For w′ = [g′] ∈W(G,T),

(w′wχ)(t) = χ((g′g)−1t(g′g)) = (wχ)(g′−1tg′) = {w′(wχ)}(t)

holds, therefore

W(G,T) × X∗(T)F −→ X∗(T)F : (w, χ) 7→ wχ

gives an action of W(G,T) on X∗(T)F. Clearly, iw is the identity map on ZG,
so W(G,T) also acts on X = X∗(T/ZG)F. From this, we can regard W(G,T) ⊂
GL(X).

Theorem 15 ([2, 21.2])� �
As a subgroup of GL(X), W(G, T) is equal to the Weyl group W(ΦF) ofΦF.� �
▶ Denote the coset corresponding to w ∈ W(ΦF) by [nw] ∈ W(G,T), nw ∈
NG(T)(F).
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5.2 Standard Parabolic Subgroups

From the definition of absolute roots, for each δ ∈ Φ, there exists a unipotent
F-subgroup

Uδ = uδ(Ga) ⊂ G.

Let ρ : Φ −→ ΦF ∪ {0} be the restriction map. Fix a base ∆F of ΦF, and let Φ+F
be the set of positive roots. For a subset I ⊂ ∆F, let (I)Z be the sub-Z-module
of X generated by I, and further define

[I] := (I)Z ∩ΦF,

Φ+(∆F \ I) := ρ−1(Φ+F − [I]) = {δ ∈ Φ | ρ(δ) ∈ Φ+F , ρ(δ) < [I]}.
Define subsets TI,MI,UI of G as follows.

• Since each α ∈ I is a character α : T −→ T, its kernel Kerα ⊂ T is
a closed subgroup. Let the identity component of the intersection of
Kerα (α ∈ I) be

TI :=

⋂
α∈I

Kerα


◦

.

TI becomes an F-split torus. (If I = ∅, let T∅ = T.)

• Let the centralizer of TI in G be MI := CG(TI). Then T ⊂ Tmax ⊂MI.

• Let Φ+(∆F \ I) = {δ1, . . . , δk}. Define

UI :=
k∏

i=1

Uδi = {g1 · · · gk | gi ∈ Uδi (i = 1, . . . , k)}.

Theorem 16 ([2, 21.9, 21.11, 21.12])� �
(1) MI is a connected reductive F-subgroup of G, and its relative root system

with respect to T isΦF(MI, T) = [I].

(2) UI is determined independently of the numbering of the elements of
Φ+(∆F \ I). UI is a unipotent F-subgroup of G.

(3) Let PI := MIUI = {mu | m ∈ MI, u ∈ UI}. Then PI is a parabolic
F-subgroup of G. MI is a Levi subgroup of PI, and UI is the unipotent
radical of PI.

(4) Let I and J be two distinct subsets of∆F. Then PI , PJ and PI∩PJ = PI∩J
hold. In particular, P∆ = G, and for any I, P∅ ⊂ PI ⊂ P∆ holds.

(5) Let Q ⊂ G be an arbitrary parabolic F-subgroup. Then there exist I ⊂ ∆
and g ∈ G(F) such that Q = g−1PI g. I is uniquely determined by Q.� �
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Definition Each PI is called a standard parabolic F-subgroup of G. Also,
P∆F−{α} (α ∈ ∆F) is called a standard maximal parabolic F-subgroup.

▶ P∅ and its conjugates are minimal among the parabolic F-subgroups of G,
and are thus called minimal parabolic F-subgroups. If F is an algebraically
closed field or G is an F-split group, then P∅ is a Borel subgroup of G.

▶ If I = ∆, then

T∆ =

⋂
α∈∆

Kerα


◦

= ZG

holds. Therefore, MI = CG(ZG) = G.

Example Consider the base of the root system Φ = ΦQ = ΦQ(GLn,Tn) of
GLn:

∆ = {αi = εi − εi+1 | i = 1, . . . , n − 1}.
Fix αr, and let I = ∆ − {αr}. Then

TI =

⋂
i,r

Kerαi


◦

=

{(
aEr 0
0 dEn−r

)
| a, d ∈ Gm

}
.

Therefore

MI =

{(
A 0
0 D

)
| A ∈ GLr, D ∈ GLn−r

}
.

The set of positive roots of Φ is

Φ+ = {εi − ε j | 1 ≤ i < j ≤ n}
= {αi + · · · + αi+k | 1 ≤ i ≤ n − 1, 0 ≤ k ≤ n − i − 1}.

Thus

Φ+(∆ \ I) = {αi + · · · + αi+k | 1 ≤ i ≤ r, r − i ≤ k ≤ n − i − 1}
= {εi − ε j | 1 ≤ i ≤ r, r + 1 ≤ j ≤ n}.

Hence

UI =

{(
Er B
0 En−r

)
| B ∈Mr,n−r(Q)

}
.

From this

PI =

{(
A B
0 D

)
| A ∈ GLr, D ∈ GLn−r, B ∈Mr,n−r(Q)

}
= Qn,r

is obtained.

▶ Let P =MU be the Levi decomposition of a parabolic F-subgroup P. Then,
for the group of F-rational points,

P(F) =M(F)U(F), (G/P)(F) = G(F)/P(F)

holds([2, Proposition 20.5] ).
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5.3 Bruhat Decomposition

Let WF =W(ΦF) = {[nw] ∈W(G,T)} be the Weyl group ofΦF. For each α ∈ ΦF,
there is a reflection sα ∈ WF, and WF is generated by {sα}α∈∆F . For a subset
I ⊂ ∆F, denote the subgroup of WF generated by {sα}α∈I as WF(I). (However,
if I = ∅, let WF(∅) = {e}.) For two subsets I, J ⊂ ∆F, denote an element of the
double cosets WF(I)\WF/WF(J) as [w]I,J = WF(I)wWF(J). Let P = P∅ be the
standard minimal parabolic F-subgroup of G.

Theorem 17 (Bruhat Decomposition [2, 21.15, 21.16])� �
For the group of F-rational points G(F),

G(F) =
⊔

w∈WF

P(F)nwP(F) =
⊔

[w]I,J∈WF(I)\WF/WF(J)

PI(F)nwPJ(F)

holds, where each union of double cosets is a disjoint union.� �
▶ Let M =M∅ be the Levi subgroup of P and U = U∅ be the unipotent radical.
Then, since T∅ = T, we have M = CG(T). Since CG(T) is a normal subgroup of
NG(T), for nw ∈ NG(T)(F), nwM(F) =M(F)nw holds. Therefore, we have

P(F)nwP(F) = U(F)nwP(F) = P(F)nwU(F).

Example In the case of GLn, WQ � Sn (the n-th symmetric group), and the
representatives of W(GLn,Tn) can be taken as follows. Let ei be the i-th column
of the identity matrix En. For σ ∈ Sn as a permutation of {1, 2, . . . , n}, define
the matrix

nσ = (eσ(1), eσ(2), . . . , eσ(n)) ∈ GLn(Q).

Then,
W(GLn,Tn) = {[nσ] | σ ∈ Sn}.

Therefore, the Bruhat decomposition of GLn is

GLn(Q) =
⊔
σ∈Sn

Bn(Q)nσBn(Q)

where Bn is the standard Borel subgroup of upper triangular matrices.
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§6 Algebraic Groups over Local Fields

6.1 Locally Compact Groups

Definition Let L be a group. L is called a locally compact group if it satisfies
the conditions:

(1) L is a locally compact Hausdorff topological space.

(2) The map L × L −→ L : (x, y) 7→ xy−1 is continuous.

Furthermore, if L is a real analytic (or complex analytic) manifold and the
map in (2) is real analytic (or complex analytic), then L is called a Lie group
(or complex Lie group).

Examples
(1) (p-adic field) Fix a prime number p. For any 0 , n ∈ Z, if n = pkn′ where
p ∤ n′, define

|n|p := p−k

and furthermore, for any rational number n/m ∈ Q, define

|n/m|p := |n|p|m|−1
p , |0|p = 0.

This defines the norm | · |p : Q −→ R. Then

dp : Q ×Q −→ R : dp(x, y) = |x − y|p
becomes a metric. Let Rp be the set of all Cauchy sequences in Q with respect
to dp. Define addition and multiplication on Rp by

{ai} + {bi} = {ai + bi}, {ai} · {bi} = {aibi} ({ai}, {bi} ∈ Rp).

Then Rp becomes a commutative ring. Furthermore, let

Ip := {{ai} ∈ Rp | lim
i→∞

ai = 0}.

Then Ip is a maximal ideal. Therefore, Rp/Ip is a field. We denote this by
Qp = Rp/Ip and call it the p-adic field. Qp is the completion of Q with respect
to dp. Any a ∈ Qp has the following unique representation:

a =
∞∑
i=k

aipi, ai ∈ {0, 1, . . . , p − 1}.

By defining |a|p = p−k in this case, the norm can be extended to Qp. Let Zp be
the closure of Z in Qp. Then Zp = {a ∈ Qp | |a|p ≤ 1}, and Zp is an open and
compact subring. The group of units of Zp is

Z×p = {a ∈ Zp | |a|p = 1} = Zp − pZp
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and pZp = {a ∈ Zp | |a|p < 1} is the unique prime ideal of Zp. Also, we have

Q×p = pZ · Z×p = {pku | k ∈ Z, u ∈ Z×p }.
{pnZp}n∈Z gives a fundamental system of neighborhoods of 0 in Qp. In partic-
ular, Qp becomes a locally compact topological field, and the multiplicative
group Q×p becomes a locally compact topological group.

(2) Let P f be the set of all prime numbers, consider the symbol ∞ formally,
and let P = P f ∪ {∞}. The elements of P are called the primes (or places) of
Q. Hereafter, when we write q ∈ P or q ≤ ∞, it means q is a prime number or
∞. We define Qq as the p-adic field if q = p is a prime number, and Q∞ = R if
q = ∞. Qq is called a local field. Qq is a locally compact field. By the product
topology, Mn(Qq) = Qn2

q also becomes a locally compact topological space. By
endowing GLn(Qq) ⊂ Mn(Qq) with the relative topology, GLn(Qq) becomes a
locally compact topological group. To distinguish it from the Zariski topology,
we call the topology of the locally compact group GLn(Qq) the q-topology. If
L ⊂ GLn(Qq) is a closed subgroup with respect to the q-topology, then L is also
a locally compact group.

(3) Let G ⊂ GLn be a closed subgroup defined over Q. Since G is given as
the zero set of a finite number of polynomials with Q coefficients, for any
q ∈ P, G(Qq) is a closed set of GLn(Qq) with respect to the q-topology. Given
that the group operation is defined by polynomial maps defined over Q, it is
continuous in the q-topology. Therefore, the set of Qq-rational points G(Qq)
of a Q-algebraic group G becomes a locally compact group with respect to the
q-topology.

▶ If G is a Q-algebraic group and p is a prime number, then G(Qp) is totally
disconnected with respect to the p-topology. That is, for any neighborhood
U of the identity element in G(Qp), there exists an open compact subgroup L
such that L ⊂ U.

▶ Even if G is a connected Q-algebraic group, G(Q∞) is not necessarily con-
nected with respect to the∞-topology.

▶ If G ⊂ GLn is a connected algebraic group, then G = G(C) is a connected
complex Lie group with respect to the topology induced from the complex
Lie group GLn(C). Conversely, if G is a connected complex Lie group and g is
its Lie algebra, then

G is an algebraic group ⇐⇒ the replica of any element of g is contained in g

holds (Chevalley-Tuan theorem, [11]).

▶ If L is a compact Lie group, then there exists an algebraic group G defined
over R such that L = G(R) (Chevalley’s version of Tannaka duality [10,
Chapter VI]).
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Theorem 18 (Existence of Invariant Measures)� �
Let L be a locally compact group, and let B be the Borel σ-algebra of L (i.e.,
the smallest σ-algebra containing all open sets of L). There exists a measure
µ` : B −→ [0,∞] on L, unique up to a positive constant factor, such that
µ`(gB) = µ`(B) for all B ∈ B and g ∈ L, and µ`(U) > 0 for any open set U.
(µ` is called a left invariant measure on L.)� �
▶We can paraphrase left as right, i.e., a locally compact group has a non-trivial
right invariant measure uniquely up to a positive constant factor.

▶ For g ∈ L, if we define µ`,g(B) = µ`(Bg) (B ∈ B), then µ`,g is also a left
invariant measure. By uniqueness, there exists a positive constant ∆(g) > 0
such that µ`,g = ∆(g)µ`. ∆ : L −→ (0,∞) is a continuous homomorphism. This
∆ is called the modular character (or modular function). When ∆ = 1, µ` is
also a right invariant measure. Such an L is called a unimodular group.

▶Let L be a compact group. In this case,∆(L) ⊂ (0,∞) is compact, so∆(L) = {1}
holds. Therefore, compact groups are unimodular.

6.2 Maximal Compact Subgroups

Definition Let L be a locally compact group. A non-trivial subgroup K of
L is called a maximal compact subgroup if K is compact and there exists no
compact subgroup that properly contains K.

▶ If the only compact subgroup of L is {e}, or if L has an infinite ascending chain
of compact subgroups, then L is said to have no maximal compact subgroup.

Theorem 19 ([21, Propositions 3.10, 3.15 and 3.16, Theorem 3.1])� �
Fix q ∈ P. Let G be a connected Qq-algebraic group, and let G(Qq) be a locally
compact group.

(1) G(Qq) has a maximal compact subgroup if and only if G is reductive.

(2) If G is reductive and K ⊂ G(Qq) is a compact subgroup, then there exists
a maximal compact subgroup containing K.

(3) If G is reductive and q = ∞, then all maximal compact subgroups of
G(R) are conjugate by elements of G(R).

(4) G(Qq) is compact if and only if G is reductive and Qq-anisotropic.� �
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▶ If G is reductive and q = p is a prime number, the conjugacy classes of
maximal compact subgroups of G(Qp) under conjugation by elements of G(Qp)
are generally not unique. Therefore, there may exist multiple non-conjugate
maximal compact subgroups.

Examples
(1) Let the group consisting of all orthogonal matrices be

On(R) := {g ∈ GLn(R) | tgg = En}.

This is a maximal compact subgroup of GLn(R).
(2) Denote the group of units of the matrix ring Mn(Zp) by GLn(Zp). That is,

GLn(Zp) := {g ∈Mn(Zp) | g−1 ∈Mn(Zp)}.

This coincides with the stabilizer of Zn
p in GLn(Qp). Namely,

GLn(Zp) = {g ∈ GLn(Qp) | gZn
p = Zn

p}.

GLn(Zp) is a unique (up to conjugation) maximal compact subgroup of GLn(Qp).

6.3 Iwasawa Decomposition

Fix q ∈ P, and let G be a connected reductive Qq-algebraic group. Fix a
maximal Qq-split torus T, and let P∅ be the standard minimal parabolic Qq-
subgroup. Let M∅U∅ be a Levi decomposition of P∅, where M∅ = CG(T).

Theorem 20 (Iwasawa Decomposition [21, Theorem 3.9], [26, 3.3.2])� �
There exists a maximal compact subgroup K of G(Qq) such that

G(Qq) = KT(Qq)U∅(Qq) = U∅(Qq)T(Qq)K

holds. That is, any g ∈ G(Qq) can be represented as

g = kau = u′a′k′ (k, k′ ∈ K, a, a′ ∈ T(Qq), u, u′ ∈ U∅(Qq)).� �
▶ The elements k, a,u in the representation of g are generally not unique.

▶ In the case q = ∞, let T(Q∞)+ be the identity component of T(Q∞) with
respect to the∞-topology. Then the map

K × T(Q∞)+ ×U∅(Q∞) −→ G(Q∞) : (k, a,u) 7→ kau

is a diffeomorphism, and in particular, it is a bijection.
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Corollary 21� �
Let K ⊂ G(Qq) be a maximal compact subgroup for which the Iwasawa decom-
position holds. Let K1 be a maximal compact subgroup conjugate to K, and let
P be a parabolic Qq-subgroup of G. Then

G(Qq) = K1P(Qq) = P(Qq)K1

holds.� �
Proof. By assumption, G(Qq) = KP∅(Qq) holds. Therefore, for any standard
parabolic Qq-subgroup PI, we have G(Qq) = KPI(Qq). P is conjugate to some
PI by an element of G(Qq) (Theorem 16, (5)). Thus, there exists g ∈ G(Qq) such
that P = gPI g−1. Since G(Qq) = KPI(Qq), we can write g = kh for some k ∈ K
and h ∈ PI(Qq). Then P = khPI(kh)−1 = khPIh−1k−1 = kPIk−1. So,

G(Qq) = kG(Qq)k−1 = k(KPI(Qq))k−1 = (kKk−1)(kPI(Qq)k−1) = KP(Qq)

holds. The bijecton g 7→ g−1 gives G(Qq) = P(Qq)K. K1 is conjugate to K,
so we can write K1 = γKγ−1 for some γ ∈ G(Qq). From the decomposition
G(Qq) = P(Qq)K, γ can be taken in P(Qq). Therefore,

G(Qq) = γG(Qq)γ−1 = γ(KP(Qq))γ−1 = (γKγ−1)(γP(Qq)γ−1) = K1P(Qq)

holds. □
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§7 Adele Groups

7.1 Adelization of GLn

For a finite subset S ⊂ P f , let

GLn(AS) :=
∏
p∈S

GLn(Qp) ×
∏

p∈P f−S

GLn(Zp).

We equip GLn(AS) with the product topology of the p-adic topologies, making
it a locally compact group. Clearly, if S ⊂ S′, then GLn(AS) ⊂ GLn(AS′). The
inductive limit with respect to this inclusion relation is denoted by

GLn(A f ) := lim
−→

GLn(AS) =
⋃

S⊂P f

GLn(AS).

Here, S runs over all finite subsets of P f . The topology of GLn(A f ) is defined
as follows:

O is an open set def⇐⇒ for any S, O ∩GLn(AS) is an open set in GLn(AS).

This makes GLn(A f ) a locally compact group. Furthermore, we set

GLn(A) := GLn(Q∞) ×GLn(A f ).

With the product topology, GLn(A) becomes a locally compact group. GLn(A)
is called the adele group of GLn.

7.2 Adelization of an Algebraic Group

Let G ⊂ GLn be a Q-subgroup. For p ∈ P f , set

GZp := G(Qp) ∩GLn(Zp).

GZp is a compact group. For a finite subset S ⊂ P f , let

G(AS) :=
∏
p∈S

G(Qp) ×
∏

p∈P f−S

GZp

and endow it with the product topology. Similar to the case of GLn, take the
inductive limit

G(A f ) := lim
−→

G(AS) =
⋃

S⊂P f

G(AS)

and define the topology similarly to the GLn case, making G(A f ) a locally
compact group. Furthermore, set

G(A) := G(Q∞) × G(A f ).
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With the product topology, G(A) becomes a locally compact group. G(A) is
called the adele group of G.

▶ Clearly,
G(A) ⊂

∏
q∈P

G(Qq)

but the topology is different from the relative topology induced by the product
topology on the right-hand side. On the other hand, G(A) ⊂ GLn(A) is also
clear, and the topology of G(A) coincides with the relative topology induced
from GLn(A). More generally, if H ⊂ G is a Q-subgroup, then, by definition,
one has

H(A) = G(A) ∩
∏
q∈P

H(Qq).

Thus, H(A) is a subgroup of G(A), and the topology on H(A) coincides with
the relative topology induced from G(A) ([21, Lemma 5.4]).

▶ G(A f ) is a totally disconnected locally compact group. G(A f ) is sometimes
called the finite adele group of G.

Examples
(1) In the case of Ga, we have

Ga(AA) =
∏
p∈S

Qp ×
∏

p∈P f−S

Zp, Ga(A f ) =
⋃

S⊂P f

Ga(AS).

Ga(A) = Q∞ ×Ga(A f ) is called the adele ring of Q.

(2) Let us look at the case Gm = GL1. Since GL1(Zp) = Z×p , we have

Gm(AS) =
∏
p∈S

Q×p ×
∏

p∈P f−S

Z×p , Gm(A f ) =
⋃

S⊂P f

Gm(AS).

Gm(A) = Gm(Q∞) × Gm(A f ) is specifically called the group of ideles. For
x = (x∞, x f ) ∈ Gm(A), where x f = (xp) ∈ Gm(AS), we define

|x|A :=
∏
q∈P
|xq|q = |x∞|∞

∏
p∈S

|xp|p ∈ R>0.

The map
| · |A : Gm(A) −→ R>0

is a continuous homomorphism. This is called the idele norm. Let the
diagonal embedding be

ι : Gm(Q) −→ Gm(A) : ι(a) = (a, a, a, . . .).
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Then, for any a ∈ Gm(Q), |ι(a)|A = 1 holds.

Proposition 22� �
For g ∈ G(Q), there exists a finite set S ⊂ P f such that g ∈ GZp for all
p ∈ P f − S. In particular, via the natural diagonal embedding

ι : G(Q) ↪→
∏
q∈P

G(Qq) : ι(g) = (g, g, g, . . .)

we have ι(G(Q)) ⊂ G(A). Furthermore, ι(G(Q)) is discrete in G(A).� �
Proof. It suffices to show this for G = GLn. Let g = (gi j) ∈ GLn(Q). Let

S′ = {p ∈ P f | |det g|p = 1, |gi j|p ≤ 1 (for all i, j)}.

Then S = P f − S′ is a finite set, and for p ∈ S′, we have g ∈ GLn(Zp). From
this, ι(g) ∈ GLn(Q∞) ×GLn(AS). Since such an S can be chosen for each g, we
have ι(GLn(Q)) ⊂ GLn(A). For the empty set ∅,

GLn(A∅) =
∏
p∈P f

GLn(Zp)

is an open subgroup of GLn(A f ). Since

ι(GLn(Q)) ∩ (GLn(Q∞) ×GLn(A∅)) = ι(GLn(Z)),

if we let

O∞ = {(gi j) ∈ GLn(Q∞) | |gi j| < 1/2 (i , j), |gii − 1| < 1/2 (for all i)}

then
ι(GLn(Q)) ∩ (O∞ ×GLn(A∅)) = {ι(En)}.

Therefore, ι(GLn(Q)) is discrete in GLn(A). □

▶ Hereafter, we omit the embedding map ι and consider G(Q) ⊂ G(A).

7.3 Fundamental Results on Adele Groups

Let G and G′ be Q-algebraic groups, and let f : G −→ G′ be a Q-homomorphism.
For each q ∈ P, f induces a homomorphism fq : G(Qq) −→ G′(Qq) which is
continuous with respect to the q-adic topology. Let the product map be∏

fq :
∏
q∈P

G(Qq) −→
∏
q∈P

G′(Qq).
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The restiction of this product map to G(A) is denoted by fA, i.e.,

fA =

∏
q

fq

 ∣∣∣G(A) : G(A) −→
∏
q∈P

G′(Qq).

Definition Let f : G −→ G′ be a Q-homomorphism. We say that f has a
local section if for each y ∈ G′, there exist a Zariski open neighborhood Oy of
y and a Q-rational map gy : Oy −→ G such that f ◦ gy is the identity map of
Oy.

Theorem 23 ([21, Lemma 5.2, Propositions 5.2 and 5.3])� �
Let f : G −→ G′ be a Q-homomorphism.

(1) fA yields a continuous homomorphism fA : G(A) −→ G′(A).

(2) If f is injective, then fA is also injective.

(3) If f has a local section, then fA is surjective. In particular, if f is a
Q-isomorphism, then fA is also an isomorphism.� �

▶ In general, even if f is surjective, fq and fA are not necessarily surjective.
For example, let f : Gm −→ Gm be f (x) = x2. Then f is surjective (over an
algebraically closed field), but f∞ : R× → R× is not surjective.

▶ If N ⊂ G is a normal Q-subgroup, then N(A) is a normal subgroup of G(A).
The quotient group G/N is also a Q-algebraic group, so (G/N)(A) can be
defined. The natural map π : G −→ G/N induces πA : G(A) −→ (G/N)(A),
which is not necessarily surjective, so G(A)/N(A) and (G/N)(A) may not be
isomorphic.

▶ The identity component G◦ of G is a normal Q-subgroup. The group
G(A)/G◦(A) is compact ([5, 1.9]).

▶ Let H ⊂ G be a Q-subgroup and N ⊂ G be a normal Q-subgroup such
that G is a semidirect product of H and N. In this case, for the natural map
π : G −→ G/N � H, the map G/N � H ↪→ G provides a local section, so πA is
surjective. G(A) is a semidirect product of H(A) and N(A) ([5, 1.6]).

▶ Let G be a connected reductive Q-algebraic group, and let P ⊂ G be a
parabolic Q-subgroup. If P =MU is a Levi decomposition, then by the above
remark, P(A) =M(A)U(A) is a semidirect product.

45



7.4 Iwasawa Decomposition of Adele Groups

Let G ⊂ GLn be a connected reductive Q-algebraic group.

Theorem 24 ([26, 3.9.1])� �
If the finite set S ⊂ P f is taken sufficiently large, then for any p ∈ P f − S,
GZp = G(Qp) ∩ GLn(Zp) is a maximal compact subgroup of G(Qp), and the
Iwasawa decomposition holds for GZp .� �

For p ∈ P f − S, let Kp = GZp . For q ∈ S ∪ {∞}, let Kq ⊂ G(Qq) be a maximal
compact subgroup for which the Iwasawa decomposition holds. Then set

K :=
∏
q∈P

Kq.

Proposition 25� �
K is a maximal compact subgroup of G(A). If P ⊂ G is a parabolic Q-subgroup,
then

G(A) = KP(A) = P(A)K

holds.� �
Proof. We can write K = K∞ × K f , where

K f =
∏
p∈P f

Kp.

It suffices to show that K f ⊂ G(A f ) is a maximal compact subgroup. Take a
compact subgroup L such that K f ⊂ L ⊂ G(A f ). Since K f is an open subgroup,
L/K f is a finite set. Let

L = g1K f ∪ · · · ∪ gnK f .

Choose a finite set S ⊂ P f such that if p ∈ P − S, then gip ∈ GZp for i = 1, . . . , n
and Kp = GZp holds. Then

K f ⊂ L ⊂ G(AS) =
∏
p∈S

G(Qp) ×
∏

p∈P f−S

Kp.

Thus, we can write

L = LS ×
∏

p∈P f−S

Kp, LS ⊂
∏
p∈S

G(Qp).
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Since
KS =

∏
p∈S

Kp ⊂
∏
p∈S

G(Qp)

is a maximal compact subgroup, we must have KS = LS. Therefore K f = L,
and K f ⊂ G(A f ) is a maximal compact subgroup. From Corollary 21, G(A) =
KP(A) follows easily. □

7.5 Unit Adele Groups

Let G ⊂ GLn be a connected Q-algebraic group, and let X∗(G)Q be the group
of Q-rational characters of G. By Theorem 23(1), each χ ∈ X∗(G)Q yields a
continuous homomorphism

χA : G(A) −→ Gm(A).

Let |χ|A denote the composition of χA and the idele norm. That is,

|χ|A : G(A) −→ R>0 : |χ|A(g) = |χA(g)|A.

Let
G(A)1 :=

{
g ∈ G(A) | |χ|A(g) = 1 for all χ ∈ X∗(G)Q

}
.

Here, we will call G(A)1 the unit adele group of G. Let χ1, . . . , χr be a Z-basis
of X∗(G)Q. Define ϑG by

ϑG : G(A) −→ (R>0)r : ϑG(g) =
(|χ1|A(g), . . . , |χr|A(g)

)
.

Then
G(A)1 = KerϑG.

Thus, G(A)1 is a normal subgroup of G(A). Clearly, G(Q) ⊂ G(A)1.

Examples
(1) In the case of GLn,

X∗(GLn)Q = Z det

so
GLn(A)1 =

{
g ∈ GLn(A) | |det(g)|A = 1

}
.

Let Zn be the center of GLn, and let Zn(Q∞)+ be the connected component of
the identity of Zn(Q∞) with respect to the∞-topology. That is,

Zn(Q∞)+ = {aEn | a ∈ R>0} .

Via the natural injection

GLn(Q∞) ↪→ GLn(A) = GLn(Q∞) ×GLn(A f ) : g 7→ (g, e)
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we regard Zn(Q∞)+ ⊂ GLn(A). Then we have a direct product decomposition

GLn(A) = Zn(Q∞)+ ·GLn(A)1.

(2) Let G be a connected reductive Q-algebraic group, and let ZG be the
maximal central Q-split torus of G. From Proposition 10, X∗(G)Q is a subgroup
of finite index in X∗(ZG)Q. Let ZG(Q∞)+ be the connected component of
the identity of ZG(Q∞) with respect to the ∞-topology, and naturally regard
ZG(Q∞)+ ⊂ G(Q∞) as a subgroup of G(A). Then G(A) has a direct product
decomposition

G(A) = ZG(Q∞)+ · G(A)1.

(3) Let Qr = Qn,r ⊂ GLn be the standard maximal parabolic subgroup. If
Qr = MrUr is a Levi decomposition, then Mr � GLr ×GLn−r. From X∗(Qr)Q =
X∗(Mr)Q, we get

Qr(A)1 =Mr(A)1Ur(A), Mr(A)1 � GLr(A)1 ×GLn−r(A)1.

(4) Let G be a connected reductive Q-algebraic group. If G is Q-anisotropic
or if G is semisimple, then X∗(G)Q = 0, so in this case G(A)1 = G(A).

▶ In general, G(A) is not a unimodular group, but G(A)1 is a unimodular
group.
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§8 Arithmetic Quotients of Adele Groups

8.1 Fundamental Domains

Let Γ be an abstract group acting on a Hausdorff topological space V. Denote
the action by

Γ × V −→ V : (γ, v) 7→ γ · v.
If there exists an open set Ω ⊂ V satisfying the conditions:

(1) if Ω− denotes the closure of Ω, then V = ΓΩ−,

(2) {γ ∈ Γ | γΩ− ∩Ω , ∅} = {e},

then such Ω is called an open fundamental domain for Γ\V. A set F such
that Ω ⊂ F ⊂ Ω− is called a fundamental domain for Γ\V.

Theorem 26 (Baer–Levi [27, Section 10])� �
If the action of Γ on V is free and properly discontinuous, then an open funda-
mental domain for Γ\V exists.� �
▶ The action of Γ is said to be free if

{γ ∈ Γ | γv = v} = {e} (for all v ∈ V)

holds. The action of Γ is said to be properly discontinuous if for any v ∈ V,
there exists a neighborhood Ov of v such that

]{γ ∈ Γ | γOv ∩Ov , ∅} < ∞

holds.

▶ If the condition (2) for an open fundamental domain is replaced by

(2’) ]{γ ∈ Γ | γΩ− ∩Ω , ∅} < ∞,

then a set F such that Ω ⊂ F ⊂ Ω− is called a fundamental set. The condition
(2’) is called the Siegel property for Γ ([3, 9.6])

Example Let G be a connected Q-algebraic group. The natural action of G(Q)

G(Q) × G(A)1 −→ G(A)1 : (γ, g) 7→ γg

is clearly free. For any g ∈ G(A)1, let Og be a compact neighborhood of g.
Then Og ·O−1

g is a compact subset of G(A)1, and since G(Q) ⊂ G(A)1 is discrete,

]
(
Og ·O−1

g ∩ G(Q)
)
< ∞
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holds. Therefore, the action of G(Q) is properly discontinuous. From this,
an open fundamental domain Ω ⊂ G(A)1 for G(Q) exists. The quotient space
G(Q)\G(A)1 (or G(Q)\G(A)) is called the arithmetic quotient of G.

▶ From proper discontinuity, the natural map π : G(A)1 −→ G(Q)\G(A)1 is a
local homeomorphism. That is, for any g ∈ G(A)1, there exists a neighborhood
Og such that π restricted to Og is a homeomorphism.

8.2 Compactness Criterion

Theorem 27 (Mostow–Tamagawa, Borel–Harish-Chandra [5, 5.8])� �
For a connected Q-algebraic group G, G(Q)\G(A)1 is compact if and only if
G/R(G) is Q-anisotropic. Here R(G) is the radical of G.� �

Examples
(1) If T is a Q-torus, then R(T) = T, so T(Q)\T(A)1 is compact. Let ZT be the
maximal Q-split torus in T. Since T(A) = ZT(Q∞)+T(A)1 and T(Q)\T(A) =
ZT(Q∞)+ · (T(Q)\T(A)1), it follows that

T(Q)\T(A) is compact ⇐⇒ ZT = {e}, i.e., T is Q-anisotropic.

In particular, for the ideles Gm(A), Gm(Q)\Gm(A)1 is compact, but Gm(Q)\Gm(A)
is not compact.

(2) If G is a connected reductive Q-algebraic group, since G(A) = ZG(Q∞)+G(A)1

and G(Q)\G(A) = ZG(Q∞)+ · (G(Q)\G(A)1), the following are equivalent:

G(Q)\G(A) is compact ⇐⇒ ZG = {e} and G/R(G) is Q-anisotropic.

8.3 Siegel Sets

Let G be a connected reductive Q-algebraic group, let T ⊂ G be a maximal
Q-split torus, and let T ⊂ Tmax ⊂ G be a maximal Q-torus. Assume the relative
root system ΦQ = ΦQ(G,T) , ∅, and fix a fundamental system ∆Q ⊂ ΦQ. Let
P = P∅ be the standard minimal Q-parabolic subgroup, let MP be its Levi
subgroup and UP its unipotent radical. Since T is a maximal Q-split torus of
MP and R(MP) = ZMP = T, the quotient MP/R(MP) = P/R(P) is Q-anisotropic,
so P(Q)\P(A)1 is compact by Theorem 27. Therefore, there exists an open and
relatively compact subset ω ⊂ P(A)1 such that

P(A)1 = P(Q)ω.
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Let K ⊂ G(A) be the maximal compact subgroup given in Proposition 25.
Then the Iwasawa decomposition holds:

G(A) = P(A)K.

For a constant c > 0, set

T(A)c := {t ∈ T(A) | |β|A(t) ≥ c (for all β ∈ ∆Q)}.

Then let
Sω,c := ωT(A)cK.

Sω,c is called a Siegel set.

▶ Since T(A) = ZT(Q∞)+ · T(A)1, if we set

ZT(Q∞)+c := ZT(Q∞)+ ∩ T(A)c

then T(A)c = ZT(Q∞)+c · T(A)1.

Theorem 28 (Borel–Harish-Chandra [15, Théorèm 7])� �
For some c > 0, Sω,c is a fundamental set for G(Q)\G(A). That is,

G(A) = G(Q)Sω,c and ]{γ ∈ G(Q) | γSω,c ∩ Sω,c , ∅} < ∞

holds.� �
▶ It should be noted that there are two different methods to construct funda-
mental sets by using Siegel sets. [5, Theorem 4.5] is using a Siegel set of GLn
and is different from [15, Théorèm 7]. See also [3, Sections 9 and 13].

As an application of this theorem, the following can be proved.

Corollary 29 ([5, 5.8])� �
Let G be a connected Q-algebraic group. Then the volume of G(Q)\G(A)1 by
an invariant measure on G(A)1 is finite.� �
▶ Every Siegel set has a finite volume if ZG = {e} ([3, Lemma 12.5]).

Corollary 30 ([21, Theorem 4.2])� �
Let G ⊂ GLn be a connected Q-algebraic group. Then GZ = G(Q) ∩ GLn(Z)
is finitely generated and is presented by a finite number of defining relations.� �
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§9 Arithmetical Minimum Functions

9.1 Setting and Preparation

• Let G be a connected reductive Q-algebraic group, T ⊂ G a maximal Q-split
torus, and T ⊂ Tmax ⊂ G a maximal Q-torus.

• We assume the relative root system ΦQ = ΦQ(G,T) is non-empty, and fix
a fundamental system ∆Q ⊂ ΦQ. ∆Q forms a basis of the real vector space
XR = X∗(T/ZG) ⊗Z R.

• Let WG = W(G,T) = W(ΦQ) be the Weyl group. Then WG is generated by
the reflections {sβ}β∈∆Q of XR, and acts on both X∗(T) and X∗(T/ZG) (see 5.1).

•We fix a simple root α ∈ ∆Q, and let Q = P∆Q−{α} be the standard maximal
parabolic Q-subgroup. Let Q = MU be the Levi decomposition of Q. Let ZG
and ZM be the maximal central Q-split tori of G and M, respectively. We have

ZG ⊂ ZM ⊂ T

and

ZG =

 ⋂
β∈∆Q

Ker β


◦

, ZM =

 ⋂
β∈∆Q−{α}

Ker β


◦

.

• From the exact sequence

1 −→ ZM/ZG −→ T/ZG −→ T/ZM −→ 1,

we have the exact sequence

0 −→ X∗(T/ZM) −→ X∗(T/ZG) −→ X∗(ZM/ZG) −→ 0.

Thus, X∗(ZM/ZG) ⊗Q is a one-dimensional vector space with basis α
∣∣∣
ZM

, and
X∗(ZM/ZG) is a free Z-module of rank 1. From Proposition 10, X∗(M/ZM)Q = 0.
Therefore

X∗(M/ZG)Q ⊂ X∗(ZM/ZG)Q = X∗(ZM/ZG),

and X∗(M/ZG)Q is also a free Z-module of rank 1.

• Choose a Z-basis α̂ ∈ X∗(M/ZG)Q such that α̂
∣∣∣
ZM
∈ Q>0

(
α
∣∣∣
ZM

)
.

Example In the case G = GLn, Q = Qr = Qn,r, we have

M =Mr =

{
diag(a, d) =

(
a 0
0 d

)
| a ∈ GLr, d ∈ GLn−r

}
, ZG = Zn.

Thus, for (k, `) ∈ Z2, let

χk,` : Mr −→ Gm : χk,`(diag(a, d)) = (det a)k(det d)`.
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Then X∗(Mr)Q = {χk,` | (k, `) ∈ Z2}. Since

χk,`

∣∣∣
Zn
= 0 ⇐⇒ rk + (n − r)` = 0,

letting gcd(r,n − r) = r′, we have

X∗(Mr/Zn)Q = Zχ(n−r)/r′,−r/r′ = Zχ−(n−r)/r′,r/r′ .

Since α = αr = εr − εr+1, we have(
χ(n−r)/r′,−r/r′

) ∣∣∣∣
ZM
=

r(n − r)
r′

(
αr

∣∣∣
ZM

)
∈ Q>0

(
αr

∣∣∣
ZM

)
.

Thus we can take α̂ = χ(n−r)/r′,−r/r′ .

▶ When α̂ is regarded as a rational character of M, it becomes trivial on
the commutator subgroup D(M) of M. The identity connected component
(T ∩ D(M))◦ of T ∩ D(M) is a maximal Q-split torus of D(M), and ∆Q − {α}
is a base of the relative root system ΦQ(D(M), (T ∩ D(M))◦). From this, the
restriction α̂

∣∣∣
T of α̂ to T satisfies

(α̂
∣∣∣
T, β
∨) = 0 (∀β ∈ ∆Q − {α}), (α̂

∣∣∣
T, α

∨) > 0.

Here, β∨ is the coroot corresponding to β. As noted in 3.5, β∨ is regarded as
an element of X∗(T)F ⊗Z R, and in fact, β∨ is contained in X∗((T ∩ D(M))◦)F if
β , α. This is the reason for (α̂

∣∣∣
T, β
∨) = 0. In particular, α̂

∣∣∣
T is located in the

boundary of the Weyl chamber

C := {v ∈ XR | (v, β∨) > 0 (∀β ∈ ∆Q)}.

Proposition 31� �
Let Wα be the subgroup of WG generated by {sβ}β∈∆Q−{α}. Then

Wα =
{
w ∈ WG | wα̂

∣∣∣
T = α̂

∣∣∣
T

}
holds.� �

Proof. Let W′ denote the group on the right-hand side. By Theorem 16(1),
ΦQ(M,T) = [∆Q − {α}], so ΦQ(M,T) is an extended root system with base
∆Q − {α}. Thus Wα = W(ΦQ(M,T)), and a representative nw of w = [nw] ∈ Wα

can be taken from M(Q). Since α̂ is a rational character of M, we have

wα̂
∣∣∣
T(t) = α̂(n−1

w tnw) = α̂(nw)−1α̂(t)α̂(nw) = α̂
∣∣∣
T(t) (∀t ∈ T, ∀w ∈Wα).
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Therefore Wα ⊂W′, and

{sβ}β∈∆Q−{α} ⊂W′ ∩ {sβ}β∈∆Q .

By the previous remark and the general theory of Coxeter groups ([17, 1.12
Theorem (a)]), W′ is generated by W′ ∩ {sβ}β∈∆Q . Since α̂

∣∣∣
ZM
∈ Q>0α

∣∣∣
ZM

, we
have sα <W′. Thus

{sβ}β∈∆Q−{α} =W′ ∩ {sβ}β∈∆Q

must hold, so Wα =W′. □

▶ From the Bruhat decomposition, we have

G(Q) =
⊔

[w]∈Wα\WG/Wα

Q(Q)nwQ(Q).

Fix a maximal compact subgroup K ⊂ G(A) which admits an Iwasawa de-
composition. Since G(A) = Q(A)K, we can write g ∈ G(A) as

g = umh (u ∈ U(A),m ∈M(A), h ∈ K).

Then define

zQ(g) := ZG(A)M(A)1m ∈ ZG(A)M(A)1\M(A).

Proposition 32� �
The map zQ : G(A) −→ ZG(A)M(A)1\M(A) is well-defined, and

zQ(g′g) = zQ(g) (∀g′ ∈ ZG(A)Q(A)1, ∀g ∈ G(A))

holds. Thus zQ induces a map

zQ : ZG(A)Q(A)1\G(A) −→ ZG(A)M(A)1\M(A).� �
Proof. Let g = u′m′h′ (u′ ∈ U(A),m′ ∈M(A), h′ ∈ K) be another decomposition
of g. Since

h′h−1 ∈ Q(A) ∩ K ⊂ Q(A)1 = U(A)M(A)1,

we can write
h′ = u1m1h (u1 ∈ U(A),m1 ∈M(A)1).

Thus

umh = u′m′u1m1h, so m = m2m′, (m2 = m′m1(m′)−1 ∈M(A)1).

Therefore ZG(A)M(A)1m = ZG(A)M(A)1m′. The latter half is trivial. □
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Proposition 33� �
The natural map

Q(A)1\G(A)1 −→ ZG(A)Q(A)1\G(A)

is bijective.� �
Proof. Since G(A) = ZG(R)+G(A)1, surjectivity is clear. For g ∈ G(A)1, it
suffices to show that if g ∈ ZG(A)Q(A)1, then g ∈ Q(A)1. Let

g = zh, (z ∈ ZG(A), h ∈ Q(A)1).

Then
z = gh−1 ∈ G(A)1.

Since X∗(G) ⊂ X∗(ZG) has finite index, ZG(A)1 = ZG(A) ∩ G(A)1. Thus z ∈
ZG(A)1. From the exact sequence

0 −→ X∗(ZM/ZG) −→ X∗(ZM) −→ X∗(ZG) −→ 0

and elementary divisor theory, we have ZG(A)1 ⊂ ZM(A)1. Thus ZG(A)1 ⊂
M(A)1 ⊂ Q(A)1, so g = zh ∈ Q(A)1. □

9.2 Height Functions

α̂ defines a continuous homomorphism

α̂A : ZG(A)M(A)1\M(A) −→ Gm(A).

The composition of zQ and α̂A gives the map

α̂A ◦ zQ : G(A) −→ ZG(A)M(A)1\M(A) −→ Gm(A).

Composing this with the idele norm, define

HQ : G(A) −→ R>0 : HQ(g) = |̂αA ◦ zQ(g)|−1
A .

Letting Y = Q(A)1\G(A)1 = ZG(A)Q(A)1\G(A), HQ defines a continuous
function onY:

HQ : Y −→ R>0.

By definition, for any u ∈ U(A),m ∈M(A), g ∈ G(A)1,

HQ(umg) = |̂αA(m)|−1
A HQ(g)
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holds. Then, from the Iwasawa decomposition G(A) = Q(A)K,

sup
y∈Y

HQ(yg)
HQ(y)

= sup
h∈K

HQ(hg) = max
h∈K

HQ(hg)

holds. We denote this by

‖g‖ := max
h∈K

HQ(hg)

and call this the norm of g. The following is easily verified.

Proposition 34� �
The norm ‖·‖ : G(A)1 −→ R>0 is continuous and satisfies the following:

(1) ‖g1g2‖ ≤ ‖g1‖ · ‖g2‖ (∀g1, g2 ∈ G(A)1)

(2) ‖h1gh2‖ = ‖g‖ (∀h1, h2 ∈ K, ∀g ∈ G(A)1)

(3) ‖h‖ = 1 (∀h ∈ K)� �
Let X = Q(Q)\G(Q). Since G(Q) ∩Q(A)1 = Q(Q), there is a natural injection

X ↪→Y.

For each g ∈ G(A)1, we have
Xg ⊂ Y.

For λ > 0, let
Bλ := {y ∈ Y | HQ(y) ≤ λ}.

This is a closed subset ofY.

Proposition 35� �
For any λ > 0 and g ∈ G(A)1, Xg ∩ Bλ is a finite set.� �

Proof. Fix λ and g. For y ∈ Bλ,

HQ(yg−1) ≤ HQ(y)‖g−1‖ ≤ λ‖g−1‖.

Let µ = λ‖g−1‖. Then Bλg−1 ⊂ Bµ. It suffices to show that X ∩ Bµ is a finite
set. Since Q is a parabolic subgroup, Q\G can be embedded into a projective
space. By using the existence of a strongly Q-rational representation([4,
Section 12]), we can construct an embedding ϕ : Q\G ↪→ PN defined over Q
satisfying the following ([28, Section 3]):
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• There exists a constant µ′, depending on µ, such that

ϕ(X ∩ Bµ) ⊂ {v ∈ PN(Q) | HPN (v) ≤ µ′},

where HPN denotes the Weil height on PN.

By Northcott’s theorem ([1, Theorem 2.4.9]), the right-hand side is a finite set.
Therefore, X ∩ Bµ is also a finite set. □

▶ In [4, Section 12], G is assumed to be semisimple. When G is reductive, it is
easy to extend a strongly Q-rational representation of D(G) to G. See [3, 14.4].

Let Gm(A)>1 := {a ∈ Gm(A) | |a|A > 1}.

Proposition 36� �
Let σ = [nσ] and τ = [nτ] ∈ WG be elements such that σ−1Wα , τ−1Wα.
Then there exists a Q-cocharacter ξ = ξσ,τ ∈ X∗(T)Q of T such that

HQ(nσξ(a)n−1
σ ) > HQ(nτξ(a)n−1

τ ) (∀a ∈ Gm(A)>1).� �
Proof. By Proposition 31, σ−1α̂

∣∣∣
T , τ

−1α̂
∣∣∣
T. Thus, by the nondegenerate pairing

〈·, ·〉 : X∗(T)Q × X∗(T)Q −→ Z,

there exists ξ ∈ X∗(T)Q such that

` := 〈σ−1α̂
∣∣∣
T − τ

−1α̂
∣∣∣
T , ξ〉 < 0.

Then we can write

α̂(nσξ(x)n−1
σ ) · α̂(nτξ(x)n−1

τ )−1 = x` (∀x ∈ Gm).

Therefore, if a ∈ Gm(A)>1, then

HQ(nσξ(a)n−1
σ )−1 ·HQ(nτξ(a)n−1

τ ) = |a|`A < 1

holds. □

9.3 Arithmetical Minimum Functions

By Proposition 35, for g ∈ G(A)1, the following minimum exists:

mQ(g) := min
x∈X

HQ(xg).
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We call mQ the arithmetical minimum function defined by HQ. Let

π : G(Q) −→ X = Q(Q)\G(Q)

be the natural map, and let e = π(e) ∈ X. Clearly,

mQ(g) ≤ HQ(eg) = HQ(g).

Proposition 37� �
The function mQ : G(A)1 −→ R>0 is continuous.� �

Proof. Let O be a compact neighborhood of g0 ∈ G(A)1. Since HQ and the
norm are continuous, there exist

λ = max
g∈O

HQ(g), c = max
g∈O
‖g−1‖.

Letting µ = cλ, as in the proof of Proposition 35, we have

e ∈ X ∩ Bλg−1 ⊂ X ∩ Bµ (∀g ∈ O).

Since X ∩ Bµ is a finite set, let X ∩ Bµ = {x1, . . . , x`}. Then

mQ(g) = min
1≤i≤`

HQ(xig) (∀g ∈ O).

Thus mQ is continuous on O. □

▶ By definition,

mQ(γgh) = mQ(g) (γ ∈ G(Q), g ∈ G(A)1, h ∈ K),

so
mQ : G(Q)\G(A)1/K −→ R>0.
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§10 Fundamental Domains for Arithmetic Quotients

The setting is the same as in Section 9.

10.1 Minimal Points

For g ∈ G(A)1, define

XQ(g) := {x ∈ X | mQ(g) = HQ(xg)}.
This is a finite set by Proposition 35. Clearly,

XQ(γgh) = XQ(g)γ−1 (γ ∈ G(Q), g ∈ G(A)1, h ∈ K)

holds. An element of XQ(g) is called a minimal point of g

Proposition 38� �
For each g0 ∈ G(A)1, there exists a neighborhood O of g0 such that XQ(g) ⊂
XQ(g0) holds for all g ∈ O.� �

Proof. For g0, let
c = min

x∈X−XQ(g0)
HQ(xg0).

Then mQ(g0) < c. Choose a constant δ such that 1 < δ < c/mQ(g0), and let

Oe :=
{

u ∈ G(A)1 | ‖u−1‖ < c
δmQ(g0)

and
mQ(g0u)
mQ(g0)

< δ

}
.

By the continuity of mQ, Oe is a neighborhood of the identity element e. We
will show that XQ(g0u) ⊂ XQ(g0) for any u ∈ Oe. By the definition of the norm,
for any y ∈ Y and u ∈ Oe, we have

HQ(yuu−1)
HQ(yu)

≤ ‖u−1‖.

Let y = xg0 with x ∈ XQ(g0u). Then

HQ(xg0)
‖u−1‖ ≤ HQ(xg0u) = mQ(g0u).

If x < XQ(g0), then c ≤ HQ(xg0), so

δmQ(g0) ≤ δmQ(g0)
HQ(xg0)

c
<

HQ(xg0)
‖u−1‖ ≤ mQ(g0u) < δmQ(g0),

which is a contradiction. Therefore x ∈ XQ(g0). □

▶ A neighborhood O with the property of Proposition 38 will be called a
stable neighborhood of g0.
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10.2 Ryshkov Domains

For mQ, define the closed subset of G(A)1 as follows:

R = RQ := {g ∈ G(A)1 | mQ(g) = HQ(g)} = {g ∈ G(A)1 | e ∈ XQ(g)},

which is called the Ryshkov domain defined by mQ.

Proposition 39� �
The following hold:

(1) R = Q(Q)RK.

(2) G(A)1 = G(Q)R.

(3) For g ∈ G(A)1, XQ(g) = {π(γ) | γ ∈ G(Q), γg ∈ R}.

(4) For γ ∈ G(Q), γR ⊂ R if and only if γ ∈ Q(Q).� �
Proof. (1) is clear. Let g ∈ G(A)1 and x = π(γ) ∈ X. From

x ∈ XQ(g) ⇐⇒ HQ(xg) = mQ(g) = mQ(γg) ⇐⇒ γg ∈ R,

both (2) and (3) follow. Suppose γR ⊂ R. Then for any g ∈ R, γg ∈ R, so by
(3), x = π(γ) ∈ XQ(g). Thus

x ∈
⋂
g∈R

XQ(g).

Since γQ(Q)R = γR ⊂ R, the same argument implies

π(γQ(Q)) ⊂
⋂
g∈R

XQ(g).

If γ < Q(Q), then π(γQ(Q)) ⊂ X is an infinite set by the Bruhat decomposition.
□

For each g ∈ G(A)1, denote the number of elements in XQ(g) by nQ(g).

Proposition 40� �
Let g0 ∈ R be such that nQ(g0) ≥ 2, and let x0 ∈ XQ(g0) be arbitrary. Then any
neighborhood O of g0 contains an element g ∈ O such that XQ(g) ⊂ XQ(g0)
and x0 < XQ(g).� �
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Proof. We may assume thatO is a stable neighborhood of g0. Since nQ(g0) ≥ 2,
we can take e , y ∈ XQ(g0). This y can be written as

y = π(nσγ), (γ ∈ Q(Q), σ = [nσ] ∈WG −Wα).

By Proposition 36, there exists a cocharacter ξ = ξσ,e ∈ X∗(T)Q such that

HQ(nσξ(a)n−1
σ ) > HQ(ξ(a)) (∀a ∈ Gm(A)>1).

Take a sufficiently close to the identity so that ga := γ−1ξ(a)γg0 ∈ O. Then

HQ(ga) = HQ(ξ(a)γg0) = HQ(ξ(a))HQ(g0)
= HQ(ξ(a))mQ(g0),

HQ(yga) = HQ(nσξ(a)γg0) = HQ(nσξ(a)n−1
σ )HQ(nσγg0)

= HQ(nσξ(a)n−1
σ )mQ(g0)

hold. Therefore HQ(ga) < HQ(yga) (a ∈ Gm(A)>1),
HQ(ga) > HQ(yga) (a−1 ∈ Gm(A)>1).

We consider the cases for x0 ∈ XQ(g0).
If x0 = e, then taking a−1 ∈ Gm(A)>1, we have

mQ(ga) ≤ HQ(yga) < HQ(ga),

so x0 < XQ(ga).
If x0 , e, we can take y = x0. Taking a ∈ Gm(A)>1, we have

mQ(ga) ≤ HQ(ga) < HQ(x0ga),

so x0 < XQ(ga). □

Corollary 41� �
ming∈R nQ(g) = 1.� �

Proof. Take g0 ∈ R such that nQ(g0) = ming∈R nQ(g). If nQ(g0) ≥ 2, then by
Proposition 40, there exists g1 ∈ G(A)1 such that nQ(g1) < nQ(g0). By Proposi-
tion 39 (2), there existsγ ∈ G(Q) such thatγg1 ∈ R. Since XQ(γg1) = XQ(g1)γ−1,
we have nQ(γg1) = nQ(g1) < nQ(g0), which contradicts the minimality of
nQ(g0). □
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10.3 Interior of R

Let R◦ be the interior of R in G(A)1. Define

R1 := {g ∈ R | nQ(g) = 1} = {g ∈ G(A)1 | XQ(g) = {e}}.

Clearly Q(Q)R1 = R1 and

G(Q)R1 = {g ∈ G(A)1 | nQ(g) = 1}.

Proposition 42� �
The following hold:

(1) R◦ = R1.

(2) G(Q)R1 is open and dense in G(A)1.

(3) For γ ∈ G(Q), R1 ∩ γR , ∅ if and only if γ ∈ Q(Q).

(4) Let R−
1

be the closure of R1 in G(A)1. Then G(A)1 = G(Q)R−
1

.� �
Proof. (1) Let g ∈ R1 and O be a stable neighborhood of g. Then O ⊂ R1, so R1
is open. Thus R1 ⊂ R◦. If R1 , R◦, there exists g0 ∈ R◦ such that nQ(g0) ≥ 2.
By Proposition 40, R◦ contains g ∈ R◦ such that e < XQ(g), which contradicts
the definition of R.
(2) Since R1 is open, G(Q)R1 is also open. We show by contradiction that
G(A)1 − G(Q)R1 has no interior points. Suppose there exists an interior point
g0 ∈ G(A)1 − G(Q)R1. Then there exists a neighborhood O of g0 such that
O ∩ G(Q)R1 = ∅. There exists γ0 ∈ G(Q) such that γ0g0 ∈ R. Since nQ(g0) =
nQ(γ0g0) ≥ 2, by Proposition 40, there exists g1 ∈ γ0O such that nQ(g1) <
nQ(g0). There exists γ1 ∈ G(Q) such that γ1g1 ∈ R. If nQ(g1) ≥ 2, there
exist g2 ∈ γ1γ0O and γ2 ∈ G(Q) such that nQ(g2) < nQ(g1) and γ2g2 ∈ R.
Repeating this process, we find g` ∈ γ`−1 · · ·γ1O such that nQ(g`) = 1. Then
(γ`−1 · · ·γ1)−1g` ∈ O ∩ G(Q)R1, which is a contradiction.
(3) If there exists g ∈ R1 ∩ γR, then by Proposition 39 (3),

π(γ−1) ∈ XQ(g) = {e},

so γ ∈ Q(Q).
(4) Let g ∈ G(A)1 be arbitrary, and let O be a stable neighborhood of g. By (2),
there exists a sequence {gn} ⊂ O ∩ G(Q)R1 converging to g. Since nQ(gn) = 1,
we have XQ(gn) = {xn}. Since xn ∈ XQ(g) for all n, there exists a subsequence
{gn j} such that xn j = x for all j. Let x = π(γ), γ ∈ G(Q). Then {gn j} ⊂ γ−1R1,
and g ∈ γ−1R−1 . □
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▶ The arithmetical minimum function mQ has the maximum value max mQ.
([29, Proposition 1]). This is proved by using Borel–Harish-Chandra’s Theo-
rem (Theorem 28). By Proposition 42 (4), we have

max mQ = max
g∈G(A)1

mQ(g) = max
g∈R−1

mQ(g).

If g0 ∈ R−1 attains max mQ, then g0 must be in the boundary of R−1 . This
is proved as follows. The height function HQ gives an isomorphism from
ZG(A)ZM(A)1\ZM(A) onto R>0. Let g0 ∈ R1 and z ∈ ZM(A). If z is sufficiently
close to the identity element, then zg0 ∈ R1 since R1 is open, and we have

mQ(zg0) = HQ(zg0) = HQ(z)HQ(g0) = HQ(z)mQ(g0).

Since HQ(z) can vary in a neighborhood of 1, mQ(g0) cannot be a maximum.

10.4 Fundamental Domains

Since Q(Q)R−1 = R−1 , Q(Q) acts freely and properly discontinuously on R−1 . Let
Ω be an open fundamental domain for Q(Q) in R−1 . Denote the interior and
closure of Ω in G(A)1 by Ω◦ and Ω−, respectively.

Proposition 43� �
Ω◦ = Ω ∩ R1 and Ω− = (Ω◦)−.� �

Proof. Ω◦ ⊂ R1. Indeed, if there exists g0 ∈ Ω◦ ∩ (R−1 − R1), then nQ(g0) ≥ 2.
Let O ⊂ Ω◦ be a neighborhood of g0. Then by Proposition 40, there exists
g ∈ O ⊂ R−1 such that e < XQ(g), which is a contradiction. Thus Ω◦ ⊂ Ω ∩ R1.
Since Ω is open in the relative topology of R−1 , there exists an open set U in
G(A)1 such that Ω = R−1 ∩ U. Therefore Ω ∩ R1 = R1 ∩ U is open in G(A)1,
so Ω ∩ R1 ⊂ Ω◦. For the latter half, it suffices to show that Ω ⊂ (Ω◦)−. Let
g ∈ Ω, and let O be any neighborhood of g in G(A)1. Since g ∈ R−1 , we have
O ∩ R1 , ∅. Thus g ∈ (Ω ∩ R1)−. □

Theorem 44� �
Ω◦ is an open fundamental domain for G(Q) in G(A)1.� �

Proof. By the choice of Ω, we have R−1 = Q(Q)Ω−. By Proposition 42 (4),
G(A)1 = G(Q)R−1 = G(Q)Ω−. Let γ ∈ G(Q) be such that Ω◦ ∩ γΩ− , ∅. By
Proposition 42 (3), γ ∈ Q(Q). Since Ω is an open fundamental domain for the
action of Q(Q), we have γ = e. □
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10.5 Class Numbers

We prepare a result that will be needed in the next section. We have fixed a
maximal compact subgroup K of G(A), which we express as

K = K∞ × K f , K f :=
∏
p∈P f

Kp.

We define the following notation:

GA,∞ := G(Q∞) × K f , G1
A,∞ := GA,∞ ∩ G(A)1, GZ := G(Q) ∩ GA,∞.

The number of elements in the double coset space G(Q)\G(A)/GA,∞ is denoted
by

n(G) := ]
(
G(Q)\G(A)/GA,∞

)
.

We call n(G) the class number of G.

Theorem 45 ([5, 5.1])� �
n(G) is finite.� �

Examples
(1) n(GLn) = 1. In particular, n(Gm) = 1, and hence n(T) = 1 if T is a Q-split
torus.

(2) Let G be a connected simply connected almost simple Q-group. If G is
Q-isotropic, then n(G) = 1. This is a consequence of the strong approximation
property of G ([21, Theorem 7.12]). In particular, n(SLn) = 1.

(3) The class number can be defined for a general connected Q-algebraic
group, not necessarily reductive. The class number of a unipotent group
equals to 1 ([5, 2.5]). In general, the class number of a connected Q-algebraic
group is less than or equal to the class number of its Levi subgroup ([5, 2.7]).

▶ If n(G) = 1, then clearly G(A) = G(Q)GA,∞. From this, G(A)1 = G(Q)G1
A,∞.

▶ Let k be an algebraic number field of finite degree. The class number nk(G)
is defined as

nk(G) := ]
(
G(k)\G(Ak)/GAk,∞

)
,

where Ak = A ⊗Q k denotes the adele ring of k. The class number nk(GLn)
coincides with the ideal class number of k ([5, 2.2]).
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Theorem 46 ([5, 7.5])� �
Let P be a parabolic Q-subgroup of G. Then the number of elements in the double
coset space P(Q)\G(Q)/GZ is equal to the class number of a Levi subgroup of
P.� �

Example In the case G = GLn, we can take K∞ = On(R) and Kp = GLn(Zp).
In this case,

GZ = GLn(Q) ∩
GLn(R) ×

∏
p

GLn(Zp)

 = GLn(Z).

Since the class number of Tn is equal to 1, we have

GLn(Q) = Bn(Q)GLn(Z).

In particular, for the standard maximal parabolic subgroup Q = Qn,k,

GLn(Q) = Q(Q)GLn(Z).

This equality can be shown elementarily without using the result of class
number 1. Let X = Q(Q)\GLn(Q), and let π : GLn(Q) −→ X be the natural
map. Then π(GLn(Z)) = X. Let QZ = Q(Q) ∩ GLn(Z). Then π induces a
bijection QZ\GLn(Z) � X.
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§11 Fundamental Domains in the Case of Class Number 1

We use the same notation as in Section 10.

11.1 ∞ Components

In this section, we assume n(G) = n(M) = 1. Thus

G(Q) = Q(Q)GZ, G(A)1 = G(Q)G1
A,∞ = Q(Q)G1

A,∞

hold. From G(A) = G(Q∞) × G(A f ), we regard G(Q∞) as a subgroup of G(A)
and set G(Q∞)1 := G(Q∞) ∩ G(A)1, i.e.,

G(Q∞)1 = {umh | u ∈ U(Q∞), m ∈M(Q∞), h ∈ K∞, |̂α(m)|∞ = 1}.
Clearly, G1

A,∞ = G(Q∞)1 × K f . Also, for g∞ ∈ G(Q∞)1, by the class number 1
assumption,

mQ(g∞) = min
x∈X

HQ(xg∞) = min
δ∈GZ

HQ(δg∞).

▶ Since δg∞ = (δg∞, δ) ∈ G(Q∞)1 × K f as an element of G(A)1
A,∞, the fi-

nite adelic component is contained in K f . In the decomposition G(Q∞) =
U(Q∞)M(Q∞)K∞ which follows from the Iwasawa decomposition, let (δg∞)M
denote the M(Q∞) component of δg∞. Then

HQ(δg∞) = |̂α((δg∞)M)|−1
∞ .

Therefore, HQ(δg∞), and hence mQ(g∞), are determined only by the infinite
place component.

We define the Ryshkov domain at the infinite place by

R∞ := {g∞ ∈ G(Q∞)1 | mQ(g∞) = HQ(g∞)}.
By the class number 1 assumption, i.e., G(A)1 = Q(Q)G1

A,∞, we have

R = Q(Q) · (R∞ × K f ).

Define the subgroup QZ of Q(Q) by

QZ := Q(Q) ∩ GA,∞ = Q(Q) ∩ GZ.

The closed set R∞ × K f is QZ-invariant, i.e.,

QZ · (R∞ × K f ) = R∞ × K f .

Proposition 47� �
For g ∈ Q(Q), g(R∞ × K f ) ∩ (R∞ × K f ) , ∅ if and only if g ∈ QZ.� �
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Proof. If there exists h ∈ R∞ × K f such that gh ∈ R∞ × K f , then

g ∈ (R∞ × K f )h−1 ⊂ GA,∞,

so g ∈ QZ. The converse is clear. □

Let {γ j} be a complete set of representatives for Q(Q)/QZ. Then by Proposition
47,

R =
⊔

j

γ j(R∞ × K f ) (disjoint union).

Let R◦∞ be the interior of R∞ in G(Q∞)1. Denote the closure of R◦∞ by R∗∞. Since
the above decomposition of R is disjoint,

R◦ =
⊔

j

γ j(R◦∞ × K f ), R−1 =
⊔

j

γ j(R∗∞ × K f ).

Let
R∞,1 = {g∞ ∈ G(Q∞)1 | nQ(g∞) = 1}.

Then R◦∞ = R∞,1 by Proposition 42.

Theorem 48� �
Let Ω∞ be an open fundamental domain for the action of QZ in R∗∞. Then
Ω = Ω∞ × K f is an open fundamental domain for the action of Q(Q) in R−

1
.� �

Proof. Let Ω∗∞ be the closure of Ω∞ in G(Q∞)1. Then Ω− = Ω∗∞ × K f and

Q(Q)Ω− = Q(Q)(Ω∗∞ × K f ) =
⋃

j

γ jQZ(Ω∗∞ × K f ) =
⋃

j

γ j(R∗∞ × K f ) = R−1 .

Suppose
∅ , Ω ∩ gΩ− = (Ω∞ × K f ) ∩ g(Ω∗∞ × K f )

for g ∈ Q(Q). Then g = γ jδ for some j and δ ∈ QZ. Since δΩ∗∞ ⊂ R∞,

∅ , (R∞ × K f ) ∩ γ j(R∞ × K f ).

By Proposition 47, γ j = e, so g = δ. Furthermore,

∅ , Ω∞ ∩ δΩ∗∞

implies δ = e. □
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▶ Let Ω◦∞ be the interior of Ω∞ in G(Q∞)1. By Theorem 44, Ω◦∞ × K f gives an
open fundamental domain for G(Q) in G(A)1.

▶ A simple argument shows that Ω◦∞ is an open fundamental domain for GZ
in G(Q∞)1.

▶ As noted below Proposition 42, the maximum of mQ is attained on the
boundary of R∗∞.

▶ The cases where the class number is not equal to 1, as well as the cases
where the field of definition is an algebraic number field, were studied by
Lee Tim Weng ([30]). Fujimori ([12]) studied the case GLn defined over an
algebraic number field.

11.2 The Case of GLn

Let G = GLn, fix k ∈ {1, . . . , n − 1}, and let Q = Qk = Qn,k. Take the maximal
compact subgroup K of G(A) as

K∞ = On(R), Kp = GLn(Zp) (∀p ∈ P f ).

By definition,
G(Q∞)1 = {g∞ ∈ GLn(R) | |det g|∞ = 1}.

Also,
GZ = G(Q) ∩ GA,∞ = GLn(Z), QZ = Q(Q) ∩GLn(Z).

Let

Pn := {A ∈Mn(R) | tA = A, A is positive definite}, P1
n := Pn ∩ SLn(R).

Then the map

f : G(Q∞) = GLn(R) −→ Pn : f (g∞) = tg−1
∞ g−1
∞

gives homeomorphisms

G(Q∞)/K∞ � Pn, G(Q∞)1/K∞ � P1
n.

Any A ∈ Pn has a unique Jacobi decomposition

A =
(
Ek 0
tu En−k

) (
v 0
0 w

) (
Ek u
0 En−k

)
(u ∈Mk,n−k(R), v ∈ Pk, w ∈ Pn−k).

We write
u = uA, v = A[k], w = A[n−k].
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• Description of HQ

Let

Vn,k =

k∧
Qn, Vn,k

q =

k∧
Qn

q (q ∈ P).

Let e1, . . . , en be the standard basis of Qn. For a subset I = {i1 < · · · < ik} of
{1, . . . , n}with k elements, let eI = ei1 ∧ · · · ∧ eik . Then {eI}I is a basis of Vn,k and
Vn,k

q . Define the local height Hq : Vn,k
q −→ R>0 by

H∞

∑
I

aIeI

 =
∑

I

|aI|2∞


1/2

,

Hp

∑
I

aIeI

 = sup
I
|aI|p (p ∈ P f ).

Define the function Hn,k : GLn(A) −→ R>0 by

Hn,k(g) =
∏
q∈P

Hq(gqe1 ∧ · · · ∧ gqek).

A simple calculation shows that

Hn,k

(
h
(
a 0
0 d

)
u
)
= |det a|A, (h ∈ K, a ∈ GLk(A), d ∈ GLn−k(A),u ∈ U(A)),

so
HQ(g) = Hn,k(g−1)n/` (g ∈ G(A)1, ` = gcd(n, k)).

Consider the case g = γg∞ (γ ∈ GZ, g∞ ∈ G(Q∞)1). For each p ∈ P f , gp = γ ∈
GLn(Z) ⊂ Kp, so

Hp(gpe1 ∧ · · · ∧ gpek) = 1.

Thus
HQ(γg∞) = H∞(g−1

∞ γ
−1e1 ∧ · · · ∧ g−1

∞ γ
−1ek)n/`.

From this formula, it is also clear that if γ ∈ QZ, then HQ(γg∞) = HQ(g∞). Let
En,k be the n × k matrix consisting of the first k columns of the identity matrix
En. By Binet’s formula ([1, Proposition 2.8.8]),

HQ(γg∞) = det(t(γ−1En,k) f (g∞)(γ−1En,k))n/2`.

Let
γ(k) = γEn,k, Γn,k := {γ(k) | γ ∈ GLn(Z)}.

Then
mQ(g∞) = min

γ(k)∈Γn,k
det(tγ(k) f (g∞)γ(k))n/2`.
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Since HQ(g∞) = det(tEn,k f (g∞)En,k)n/2`,

R∞ = {g∞ ∈ G(Q∞)1 | mQ(g∞) = HQ(g∞)}
= {g∞ ∈ G(Q∞)1 | det(tEn,k f (g∞)En,k) ≤ det(tγ(k) f (g∞)γ(k)) (∀γ(k))}.

Since R◦∞ = R∞,1,

R◦∞ = {g∞ ∈ G(Q∞)1 | det(tEn,k f (g∞)En,k) < det(tγ(k) f (g∞)γ(k)) (∀γ(k) < QZEn,k)}.

• Description of a fundamental domain
GLk(Z) acts naturally on Γn,k by multiplication from the right. Let Sn,k be a
complete set of representatives for Γn,k/GLk(Z), and assume En,k ∈ Sn,k. For
any nonempty subset S ⊂ Γn,k, define the closed subset R(S) of Pn by

R(S) := {A ∈ Pn | det A[k] ≤ det(tXAX) (∀X ∈ S)}.

In particular, let

Rn,k := {A ∈ Pn | det A[k] ≤ det(tXAX) (∀X ∈ Γn,k)}.

Then Rn,k = R(Sn,k). The interior of Rn,k is given by

R◦n,k := {A ∈ Pn | det A[k] < det(tXAX) (∀X ∈ Sn,k − {En,k})}.

Then
R◦∞/K∞ � f (R◦∞) = R◦n,k ∩ P1

n.

Define the right action of GZ on Pn by

Pn × GZ −→ Pn : (A, γ) 7→ A[γ] := tγAγ.

Then
QZ\R◦∞/K∞ � (R◦n,k ∩ P1

n)/QZ.

If γ ∈ QZ is of the form

γ =

(
a b
0 d

)
(a ∈ GLk(Z), d ∈ GLn−k(Z), b ∈Mk,n−k(Z)),

then for A ∈ Pn,

uA[γ] = a−1(uAd + b), A[γ][k] = taA[k]a, A[γ][n−k] =
tdA[n−k]d.

LetD be a closed fundamental domain for the action of GLk(Z) on Pk, and let
E be a closed fundamental domain for the action of GLn−k(Z) on Pn−k. Let

Mk,n−k(R)1/2 := {(ui j) ∈Mk,n−k(R) | |ui j| ≤ 1/2 (∀i, j), u11 ≥ 0}.
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Define

F(D,E) :=
{
A ∈ Pn | A[k] ∈ D, A[n−k] ∈ E, uA ∈Mk,n−k(R)1/2

}
.

Let R∗n,k be the closure of R◦n,k in Pn. Then

R∗n,k ∩ F(D,E)

is a closed fundamental domain for QZ in R∗n,k. Therefore, the pullback
f−1(R∗n,k ∩ F(D,E) ∩ P1

n) is a closed fundamental domain for QZ in R∗∞. By
Theorem 48,

f−1(R∗n,k ∩ F(D,E) ∩ P1
n) × K f

is a closed fundamental domain for G(Q) in G(A)1.

▶ R∗n,k ∩ F(D,E) is a closed fundamental domain for Pn/GLn(Z). Since the
interior of R∗n,k coincides with the interior of Rn,k,

Rn,k ∩ F(D,E) − R∗n,k ∩ F(D,E) ⊂ ∂Rn,k.

We weaken the boundary condition in the definition of a fundamental domain
and call a closed subset Ω ⊂ Pn an almost fundamental domain (AFD) if it
satisfies the following two conditions:

(1) Pn =
⋃

γ∈GLn(Z)

tγΩγ.

(2) If B = A[γ] for A,B ∈ Ω and some γ ∈ GLn(Z), γ , ±En, then A ∈ ∂Ω.

Thus, Rn,k ∩ F(D,E) is an AFD for Pn/GLn(Z). For k = 1, an AFD can be
constructed inductively on n as follows. For n = 2,

Ω2 = R2,1 ∩ F(P1,P1)

is an AFD for P2/GL2(Z). Then

Ω3 = R3,1 ∩ F(P1,Ω2)

gives an AFD for P3/GL3(Z). Similarly,

Ωn = Rn,1 ∩ F(P1,Ωn−1)

gives an AFD for Pn/GLn(Z). This construction coincides with the Korkine-
Zolotareff-Grenier construction ([13, Theorem 1], [25, Theorem 2]). The first
Ω2 coincides with Minkowski’s fundamental domain.

▶ Based on the methods described in Sections 9 through 11, Fujimori defined
a kind of successive minima derived from a height function and then con-
structed a fundamental domain for GLn(Q)\GLn(A). Fujimori’s fundamental
domain is contained in a Siegel set ([12, Corollary 3.3]).
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▶Grenier constructed the Satake compactification of P1
n/GLn(Z) by usingΩn

([14, Section 4] or [19, Chapter 1, Section 4]). If we putΩ1
n = Ωn∩P1

n, then this
compactification is described as Ω1

n ∪Ω1
n−1 ∪ · · · ∪Ω1

1.

11.3 Remaining Problems

Since the number of inequalities defining Rn,k = R(Sn,k) is infinite, the finite-
ness of the boundary of Rn,k ∩ F(D,E) is not trivial. The finiteness of the
boundary of Ωn constructed above was shown in [13]. That is, there exists a
finite subset S(n) ⊂ Γn,1 such that

Rn,1 ∩ F(P1,Ωn−1) = R(S(n)) ∩ F(P1,Ωn−1).

It is not known whether the same holds for general Rn,k ∩ F(D,E). There is
no restriction on the choice of D and E, but to make the problem concrete,
let Mn be Minkowski’s fundamental domain for Pn/GLn(Z) and takeD =Mk,
E =Mn−k.

Problem� �
• Does there exist a finite subset S0 ⊂ Sn,k such that Rn,k∩F(Mk,Mn−k) =

R(S0) ∩ F(Mk,Mn−k)?

• Give an exact S0 for small n if there exists such a finite subset S0.

• Give a reduction algorithm for Rn,k ∩ F(Mk,Mn−k). Namely, give an
algorithm to find γ ∈ GLn(Z) for a given A ∈ Pn such that A[γ] ∈
Rn,k ∩ F(Mk,Mn−k).� �

▶Minkowski’s fundamental domain Mn for Pn/GLn(Z) is defined as follows:

Mn :=
{

A = (ai j) ∈ Pn

∣∣∣∣∣ A[z] ≥ a j j if z = t(z1, . . . , zn) ∈ Zn with gcd(z j, . . . , zn) = 1
and a j, j+1 ≥ 0 for all j

}
.

See [25, Section 4.4.2]. When n = 2, one has

M2 =

{(
a11 a12
a12 a22

)
∈ P2

∣∣∣∣∣∣ 0 ≤ 2a12 ≤ a11 ≤ a22

}
.

▶ Let Mn(Z)∗ := GLn(Q) ∩ Mn(Z). The Hermite–Rankin constant γn,k is
defined as follows:

γn,k := max
A∈Pn


min

γ∈Mn(Z)∗
det(t(γEn,k)A(γEn,K))

(det A)k/n

 = max
g∈GLn(Q∞)1

min
δ∈Mn(Z)∗

det(tEn,k
tδtg∞g∞δEn,k).
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See [20, Section 2.8] for the Hermite–Rankin constant. For δ ∈Mn(Z)∗, δEn,k has
the elementary divisors e1, . . . , ek, and there are γ ∈ GLn(Z) and γ′ ∈ GLk(Z)
such that

δEn,k = γ



e1 0
. . .

0 ek
0 · · · 0
...

. . .
...

0 · · · 0


γ′ = γEn,k


e1 0

. . .
0 ek

γ′.

Then one has

det(tEn,k
tδtg∞g∞δEn,k) = (e1 · · · ek)2 det(tEn,k

tγtg∞g∞γEn,k),

and as a consequence

min
δ∈Mn(Z)∗

det(tEn,k
tδtg∞g∞δEn,k) = min

γ∈GLn(Z)
det(tEn,k

tγtg∞g∞γEn,k) = mQ(g−1
∞ )2`/n,

where ` denotes gcd(n, k). Therefore, we obtain

γn,k = max
g∞∈GLn(Q∞)1

mQ(g∞)2`/n = max
[g∞]∈GLn(Z)\GLn(Q∞)1/K∞

mQ(g∞)2`/n.

As remarked in 10.3, the maximum of mQ is attained on the boundary of Rn,k.
The following is a table of known values of γn,k and ciritical points ([23]).

γ4,2 γ6,2 γ8,2 γ8,3 γ8,4

3/2 32/3 3 4 4

D4 E6 E8 E8 E8

The value of γ4,2 was determined by Rankin. Here positive definite symmetric
matrices D4,E6,E8 are given as follows:

D4 =


2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 2

 , E6 =



2 1 1 1 1 1
1 2 1 0 1 1
1 1 2 1 1 1
1 0 1 2 0 1
1 1 1 0 2 1
1 1 1 1 1 2


, E8 =



2 1 1 1 1 1 1 1
1 2 1 0 1 1 1 1
1 1 2 1 1 1 1 1
1 0 1 2 0 1 1 1
1 1 1 0 2 1 1 1
1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2


.

These are LLL reduced Gram matrices corresponding to D4, E6, E8 root lattices,
respectively ([20, Section 14.2]).

▶ A compactification of Rn,k ∩ F(Mk,Mn−k) ∩ P1
n is another problem to be

considered.
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Appendix. Numerical Computations of Minimal k tuples

We fix positive integers n and k with 2 ≤ k ≤ n − 1. Let Γn = GLn(Z) and
Mn(Z)∗ =Mn(Z)∩GLn(Q). Let En,k be the n × k matrix consisting of the first k
columns of the n × n identity matrix En. We put

Γn,k := {γEn,k | γ ∈ Γn} and Mn,k(Z)∗ := {XEn,k |X ∈Mn(Z)∗}.

For X ∈Mn,k(Z) and 1 ≤ i ≤ k, the i-th column of X is denoted by Xi.

A 1 k-Perfection

For a positive definite real matrix A ∈ Pn, we put

mk(A) := min
X∈Γn,k

det A[X] = min
X∈Mn,k(Z)∗

det A[X]

and
Sk(A) := {X ∈Mn,k(Z)∗ | det A[X] = mk(A)}.

An element of Sk(A) is called a minimal k-tuple of A. It is clear that Sk(A[γ]) =
γ−1Sk(A) holds for any γ ∈ Γn and Sk(A) is invariant by right multiplications
of elements in Γk. By Proposition 35(or Propositons A1 and A2 in the next
paragraph), the cardinality of Sk(A)/Γk is finite. We define k-perfection. For
X = (X1, . . . ,Xk) ∈ Mn,k(R) of rank k, let ΦX = (Y1, . . . ,Yk) denote the Gram–
Schmidt orthogonalization of X with respect to the standard inner product of
Rn. Namely (Y1, . . . ,Yk) satisfies that

• the subspace spanned by Y1, . . . ,Yi equals the subspace spanned by
X1, . . . ,Xi for each i = 1, . . . , k, and

• tYi · Y j = δi j for 1 ≤ i, j ≤ k.

For A ∈ Pn, fix g ∈ GLn(R) such that A = tgg, and fix a complete system {X( j)} j
of representatives of Sk(A)/Γk. Then A is said to be k-perfect if {ΦgX( j) · tΦgX( j)} j
spanns the whole space of real symmetric n × n matrices. It is easy to see
that this definition does not depend on the choice of both g and {X( j)} j. In
particular, if A is k-perfect, then the cardinality ]Sk(A)/Γk is greater than or
equal to n(n + 1)/2. The k-perfect rank of A is defined to be the dimension of
the real linear space spanned by {ΦgX( j) · tΦgX( j)} j.

A 2 A Finite Set Containing a System of Representatives

We fix an A ∈ Pn and consider the mapping qA : X 7→ A[X] from Γn,k to Pk.
Since A[Xγ] = A[X][γ] = tγA[X]γ for γ ∈ Γk, qA is regarded as a mapping
from Γn,k/Γk to Pk/Γk. Let Mk denote Minkowski’s fundamental domain for
Pk/Γk. If B = (bi j) ∈Mk, then its entries satisfy the following inequalities:
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(a) b11 ≤ b22 ≤ · · · ≤ bkk,

(b) b11b22 · · · bkk ≤ Ck det B,

(c) 0 ≤ 2b1 j ≤ b11 for j = 2, . . . , k.

where Ck is a positive constant, (see [A7, Lectures XI and XIII] for example).
The best possible value of Ck is known for k ≤ 5 as follows:

C2 =
4
3
, C3 = 2, C4 = 4 , C5 = 8

(see [A2, Supplement to Chapter 2, v.5]). For k ≥ 6, one can choose

Ck =
( 4
π

)k (5
4

) (k−3)(k−4)
2

(
Γ

(
k
2
+ 1

))2

by Remak’s estimate ([A5], see also [A8]). We fix a constant λ ≥ mk(A), and
put

Sk(A, λ) := {X ∈ Γn,k | qA(X) ∈Mk and det qA(X) ≤ λ}
and

Tk(A, λ) :=

X ∈ Γn,k | A[Xi] ≤
(

λCk

m1(A)i−1

)1/(k−i+1)

for i = 1, . . . , k

 .
Proposition A1� �
Sk(A, λ) is a subset of Tk(A, λ) and Tk(A, λ) is a finite subset of Γn,k.� �

Proof. For X = (X1, . . . ,Xk) ∈ Γn,k, the i-th diagonal entry of qA(X) equals A[Xi]
for i = 1, . . . , k. If X ∈ Sk(A, λ), then by (b)

A[X1]A[X2] · · ·A[Xk] ≤ Ck det qA(X) ≤ λCk .

By m1(A) ≤ A[X1] and (a), we obtain

m1(A)i−1A[Xi]k−i+1 ≤ A[X1]A[X2] · · ·A[Xk],

and hence

A[Xi] ≤
(

λCk

m1(A)i−1

)1/(k−i+1)

for i = 1, . . . , k. Therefore, Sk(A, λ) is a subset of Tk(A, λ). The finiteness of the
cardinality of Tk(A, λ) is trivial. □
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Proposition A2� �
Sk(A, λ) contains a complete system of representatives of Sk(A)/Γk.� �

Proof. Let X be an arbitrary element in Sk(A). Then det qA(X) = mk(A) ≤ λ.
Since Mk is a fundamental domain for Pk/Γk, there exists γ ∈ Γk such that
qA(X)[γ] ∈ Mk. Then Xγ ∈ Sk(A, λ), i.e., Sk(A, λ) contains a representative of
the class XΓk. □

When λ = mk(A), we can slightly improve the estimate of A[Xi]. Let {λi(A)}i
denote the successive minima of the gauge function x 7→ A[x]1/2 on Rn defined
by A.

Proposition A3� �
If X = (X1, . . . ,Xk) ∈ Sk(A,mk(A)), then

A[Xi]k−i+1 ≤ {λi(A) · · · λk(A)}2Ck

holds for each i = 1, . . . , k.� �
Proof. By Hadamard’s inequality, we have

mk(A) ≤ det A[X] ≤ A[X1]A[X2] · · ·A[Xk]

for all X ∈Mn,k(Z)∗. This implies

mk(A) ≤ {λ1(A)λ2(A) · · ·λk(A)}2 ≤ A[X1]A[X2] · · ·A[Xk]

for X ∈Mn,k(Z)∗. If qA(X) ∈Mk, then

{λ1(A) · · ·λi−1(A)}2 ≤ A[X1] · · ·A[Xi−1]

holds for all i = 2, . . . , k. Therefore, if X ∈ Sk(A,mk(A)), then

A[Xi]k−i+1 ≤ mk(A)Ck

{λ1(A) · · ·λi−1(A)}2 ≤ {λi(A) · · ·λk(A)}2Ck .

□

A 3 Algorithm to Computing Sk(A)/Γk

By Propositions A1 and A2, the following algorithm computes Sk(A)/Γk.

Input: A ∈ Pn.
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Output: A complete system of representatives of Sk(A)/Γk.

Step 1 For each i = 1, . . . , k, compute the set

Tλ,i :=

0 , Yi ∈ Zn | A[Yi] ≤
(

λCk

m1(A)i−1

)1/(k−i+1)
 .

Step 2 Compose possible Y = (Y1, . . . ,Yk) ∈ Tλ,1 × · · · × Tλ,k, and select all
Y( j) ∈ Tλ,1 × · · · × Tλ,k such that the rank of qA(Y( j)) equals k.

Step 3 Select Y( j′) ∈ {Y( j)} such that det qA(Y( j′)) = min j det qA(Y( j)). Such Y( j′)s
are automatically contained in Sk(A).

Step 4 Check Γk equivalence among Y( j′)s.

There are several choices of λ for A. One is λ = det A[En,k]. Another is

λ = γk
n(det A)k/n or

(
4
π
Γ
(
1 +

n
2

)2/n
(det A)1/n

)k

(see [A3, Theorems 2.6.8 and 2.7.4]). Here γn denotes Hermite’s constant. If
the diagonal elements of A = (ai j) satisfy a11 ≤ a22 ≤ · · · ≤ ann, then one has
λi(A)2 ≤ aii for i = 1, . . . , n. In this case, by Proposition A3, we can replace Tλ,i
with

Ti :=
{
0 , Yi ∈ Zn | A[Yi] ≤ (aii · · · akkCk)1/(k−i+1)

}
.

Since det A[En,k] ≤ a11a22 · · · akk by Hadamard’s inequality, Ti is not necessarily
better than Ti,λ of λ = det A[En,k]. To reduce the size of the set {Y( j)} of Step
2, we can replace Tλ, j with its half subset Tλ, j mod {±Ek} since Sk(A) is Γk
invariant. If we want to compute Sk(A, λ), we cannot use such reduction,
because that Sk(A, λ) is not invariant by {diag(ε1, . . . , εk) : εi ∈ {±1}}. In this
case, we can impose the condition (c) to select Y( j). On Step 4, we note that two
elements X,X′ ∈ Γn,k areΓk-equivalent if and only if X1∧· · ·∧Xk = ±X′1∧· · ·∧X′k.

A 4 Examples

We give some numerical examples. These examples were computed by using
Pari/GP in Step 1 and Mathematica in Steps 2, 3 and 4. In the following, we
use the standard labeling of the irreducible root lattices, i.e., An, Dn, E6, E7 and
E8. The Watson lattices of dimension n (3 ≤ n ≤ 7) are denoted by Wn ([A1,
Section 5]). Equivalent classes of n dimensional perfect lattices are classified
in n ≤ 8. We use Martinet’s labeling of perfect lattices in dimension ≤ 7 ([A3,
Section 14.1] and [A4]). The similar isomorphism class (i.e., R× ·GLn(Z) orbit
in Pn) of a Gram matrix of one of these lattices is expressed by the same label as
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the lattice in question. For an orbit [A] = A[R× ·GLn(Z)], we denote by [A]∗ the
dual of [A], i.e., [A]∗ = [A−1]. Although we do not display an explicit form of a
matrix A representing a given label, the values det A and mk(A) depend only
on an equivalent class A[GLn(Z)], and the values hrk(A) = mk(A)/(det A)k/n,
]Sk(A)/Γk and k-perfect rank depend only on a similar equivalent class [A].
For irreducible root lattices An,Dn,E6,E7,E8 (n ≥ 3) and Watson lattices Wn,
Coulangeon computed ]S2(A)/Γ2, and proved that

(d) all of these lattices are 2-perfect except only A3, and moreover

(e) irreducible root lattices of dimension n are k-eutactic if k ≤ n,

([A1, Theorem 5.1.1 and Proposition 5.2.1]). Thus Table 1 follows from [A1]
and Tables 2, 3, 5, 7 contain a part of Coulangeon’s computation.

• (n, k) = (4, 2)

[A] det A m2(A) hr2(A) ]S2(A)/Γ2 2-perfect rank
P1

4 = D4 4 3 1.5 16 10
P2

4 = A4 5 3 1.3416 . . . 10 10
A∗4 125 15 1.3416 . . . 10 10
W4 32 8 1.4142 . . . 15 10
W∗

4 128 16 1.4142 . . . 15 10
Table 1

Gram matrices of D4, A4 and W4 are given as follows:

D4 =


2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 2

 , A4 =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 , W4 =


3 −1 −1 −1
−1 3 −1 1
−1 −1 3 −1
−1 1 −1 3

 .
Only in these cases, we show representatives of minimal 2-tuples.
Representatives of S2(D4)/Γ2:


−1 0
1 0
0 0
1 1

 ,

−1 −1
1 0
0 0
1 1

 ,

−1 0
1 1
0 −1
1 1

 ,

−1 −1
1 1
0 −1
1 1

 ,


0 −1
0 0
0 0
1 1

 ,


0 0
0 1
0 −1
1 1

 ,
0 0
0 0
1 0
0 1

 ,

−1 −1
0 1
0 −1
1 1

 ,

−1 0
0 0
0 −1
1 1

 ,


0 −1
1 1
−1 −1
1 1

 ,


0 0
1 0
−1 −1
1 1

 ,

−1 0
1 0
−1 −1
1 1

 ,
0 −1
0 0
1 1
0 0

 ,


0 0
0 −1
1 1
0 0

 ,

−1 0
0 −1
1 1
0 0

 ,


1 0
0 1
0 0
0 0

 .
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Representatives of S2(A4)/Γ2:


0 −1
0 0
0 0
1 1

 ,


0 0
0 −1
0 0
1 1

 ,


0 0
0 0
1 0
0 1

 ,

−1 0
0 −1
0 0
1 1

 ,

−1 0
0 0
0 −1
1 1

 ,
0 0
−1 0
0 −1
1 1

 ,


0 −1
0 0
1 1
0 0

 ,


0 0
0 −1
1 1
0 0

 ,

−1 0
0 −1
1 1
0 0

 ,


1 0
0 1
0 0
0 0

 .
Representatives of S2(W4)/Γ2:


1 0
0 0
1 0
1 1

 ,


1 1
0 1
1 1
1 0

 ,


1 0
0 0
1 1
1 0

 ,


1 0
0 1
1 0
1 0

 ,


1 1
0 0
1 0
1 0

 ,


0 1
0 1
0 1
1 0

 ,


0 0
0 0
1 0
0 1

 ,


0 0
0 1
0 0
1 0

 ,
0 1
0 0
0 0
1 0

 ,


1 0
1 0
1 1
0 0

 ,


1 0
1 1
1 0
0 0

 ,


1 1
1 0
1 0
0 0

 ,


0 0
0 1
1 0
0 0

 ,


0 1
0 0
1 0
0 0

 ,


1 0
0 1
0 0
0 0

 .
There are 2 equivalent classes P1

4,P
2
4 of 4 dimensional perfect lattices. We

note that W4 (and hence W∗
4) is not 2-eutacitc. This is immediately checked

by using the data S2(W4)/Γ2.

• (n, k) = (5, 2)

[A] det A m2(A) hr2(A) ]S2(A)/Γ2 2-perfect rank
P1

5 = D5 4 3 1.7230 . . . 40 15
P2

5 =W∗
5 162 12 1.5681 . . . 15 10

P3
5 = A5 6 3 1.4650 . . . 20 15

A∗5 1296 24 1.3651 . . . 15 15
D∗5 256 16 1.7411 . . . 50 15
W5 48 8 1.7005 . . . 45 15

Table 2

There are 3 equivalent classes P1
5,P

2
5,P

3
5 of 5 dimensional perfect lattices. By

(d) and (e), both A5 and D5 are 2-extreme. By duality ([A1, Proposition 4.6])
and (e), A∗5 and D∗5 are 2-eutactic, and hence, by Table 2, both A∗5 and D∗5 are
2-extreme .
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• (n, k) = (6, 2)

[A] det A m2(A) hr2(A) ]S2(A)/Γ2 2-perfect rank
P1

6 = E6 3 3 2.0800 . . . 120 21
P2

6 = E∗6 243 12 1.9229 . . . 45 21
P3

6 = D6 4 3 1.8898 . . . 80 21
P4

6 324 12 1.7471 . . . 30 21
P5

6 343 12 1.7142 . . . 28 21
P6

6 351 12 1.7011 . . . 27 19
P7

6 = A6 7 3 1.5682 . . . 35 21
A∗6 16807 35 1.3663 . . . 21 21
D∗6 16 4 1.5874 . . . 15 6
W6 64 8 2 120 21
W∗

6 64 8 2 120 21
Table3

• (n, k) = (6, 3)

[A] det A m3(A) hr3(A) ]S3(A)/Γ3 3-perfect rank
P1

6 = E6 3 4 2.3094 270 21
P2

6 = E∗6 243 36 2.3094 270 21
P3

6 = D6 4 4 2 140 21
P4

6 324 32 1.77778 9 9
P5

6 343 32 1.7278 . . . 14 13
P6

6 351 32 1.7080 . . . 8 7
P7

6 = A6 7 4 1.5118 . . . 35 21
W6 64 16 2 60 16

Table 4

There are 7 equivalent classes P1
6, . . . ,P

7
6 of 6 dimensional perfect lattices. By

(d) and (e), A6,D6,E6 are 2-extreme. By duality and (e), A∗6, D∗6 and E∗6 are
2-eutactic, and hence, Table 3 shows both A∗6 and E∗6 are 2-extreme, but not
D∗6. It is known that hr2(E6) = 32/3 attains the maximum of the function hr2 on
P6 ([A6]). By (e) and Table4, A6, D6, E6 (and hence A∗6, D∗6, E∗6) are 3-extreme.
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• (n, k) = (7, 2)

[A] det A m2(A) hr2(A) ]S2(A)/Γ2 2-perfect rank
P1

7 = E7 =W∗
7 2 3 2.4610 . . . 336 28

P2
7 = E∗7 =W7 64 8 2.4380 . . . 378 28

P3
7 486 12 2.0491 . . . 72 28

P4
7 = D7 4 3 2.0188 . . . 140 28

P5
7 512 12 2.0188 . . . 84 28

P6
7 9216 27 1.9890 . . . 50 26

P7
7 540 12 1.9883 . . . 69 28

P8
7 576 12 1.9520 . . . 58 28

P9
7 356720 75 1.9439 . . . 34 25

P10
7 588 12 1.9405 . . . 61 28

P11
7 10080 27 1.9387 . . . 48 28

P12
7 10240 27 1.9300 . . . 30 20

P13
7 76880 48 1.9288 . . . 35 25

P14
7 10336 27 1.9248 . . . 42 28

P15
7 77618 48 1.9235 . . . 35 27

P16
7 10368 27 1.9231 . . . 46 28

P17
7 10528 27 1.9147 . . . 37 28

P18
7 78880 48 1.9147 . . . 37 28

P19
7 10584 27 1.9118 . . . 42 27

P20
7 10658 27 1.9080 . . . 39 27

P21
7 10752 27 1.9033 . . . 40 28

P22
7 630 12 1.9026 . . . 49 28

P23
7 10780 27 1.9018 . . . 38 28

P24
7 10808 27 1.9004 . . . 39 28

P25
7 11008 27 1.8905 . . . 38 28

P26
7 648 12 1.8874 . . . 52 28

P27
7 648 12 1.8874 . . . 48 28

P28
7 648 12 1.8874 . . . 51 28

P29
7 684 12 1.8585 . . . 47 28

P30
7 686 12 1.8569 . . . 42 28

P31
7 720 12 1.8314 . . . 43 28

P32
7 756 12 1.8061 . . . 45 28

P33
7 = A7 8 3 1.6561 . . . 56 28

A∗7 262144 48 1.3585 . . . 28 28
D∗7 4096 16 1.4859 . . . 21 7

Table 5

There are 33 equivalent classes P1
7, . . . ,P

33
7 of 7 dimensional perfect lattices.

By (d) and (e), A7,D7,E7 are 2-extreme. By duality and (e), A∗7, D∗7 and E∗7 are
2-eutactic, and hence, Table 5 shows A∗7 and E∗7 are 2-extreme, but not D∗7.
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• (n, k) = (7, 3)

[A] det A m3(A) hr3(A) ]S3(A)/Γ3 3-perfect rank
P1

7 = E7 =W∗
7 2 4 2.9719 . . . 1260 28

P2
7 = E∗7 =W7 64 16 2.6918 . . . 315 28

P3
7 486 32 2.2580 . . . 27 19

P4
7 = D7 4 4 2.2081 . . . 315 28

P5
7 512 32 2.2081 . . . 104 28

P6
7 9216 108 2.1594 . . . 8 8

P7
7 540 32 2.1583 . . . 58 28

P8
7 576 32 2.0994 . . . 36 28

P9
7 356720 500 2.0864 . . . 8 8

P10
7 588 32 2.0810 . . . 52 28

P11
7 10080 108 2.0780 . . . 27 25

P12
7 10240 120 2.2934 . . . 135 27

P13
7 76880 256 2.0621 . . . 5 5

P14
7 10336 108 2.0558 . . . 14 14

P15
7 77618 256 2.0537 . . . 7 7

P16
7 10368 108 2.0531 . . . 18 16

P17
7 10528 108 2.0396 . . . 9 9

P18
7 78880 256 2.0395 . . . 9 9

P19
7 10584 108 2.0350 . . . 27 20

P20
7 10658 108 2.0289 . . . 18 18

P21
7 10752 108 2.0213 . . . 17 15

P22
7 630 32 2.0203 . . . 22 20

P23
7 10780 108 2.0191 . . . 14 14

P24
7 10808 108 2.0168 . . . 15 15

P25
7 11008 108 2.0010 . . . 10 10

P26
7 648 32 1.9961 . . . 33 25

P27
7 648 32 1.9961 . . . 17 12

P28
7 648 32 1.9961 . . . 32 28

P29
7 684 32 1.9504 . . . 25 20

P30
7 686 32 1.9479 . . . 21 20

P31
7 720 32 1.9080 . . . 21 17

P32
7 756 32 1.8685 . . . 28 20

P33
7 = A7 8 4 1.6406 . . . 70 28

A∗7 262144 320 1.5237 . . . 56 28
D∗7 4096 64 1.8114 . . . 35 7

Table 6

By (e), duality and Table 6, A7,D7,E7,A∗7,E
∗
7 are 3-extreme.
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• (n, k) = (8, 2), (8, 3) and (8, 4)

[A] det A m2(A) ]S2(A)/Γ2 m3(A) ]S3(A)/Γ3 m4(A) ]S4(A)/Γ4
E8 1 3 1120 4 7560 4 3150

Table 7

]S4(E8)/Γ4 = 3150 was computed as follows. If we put C4 = 4 and λ =
det E8[E8,4] = 4, then one has Tλ,1 = Tλ,2 = Tλ,3 = Tλ,4 and Tλ,1 consists of
240 minimal vectors of E8. We fix a set M of 120 representatives of Tλ,1/{±1}.
Elements of M are ordered as Y1,Y2, . . . ,Y120. Then, as an initial set of Step 2,
one can take

T := {(Yi1 ,Yi2 ,Yi3 ,Yi4) ∈M8,4(Z) | 1 ≤ i1 < i2 < i3 < i4 ≤ 120}.

The cardinality of T equals 8214570. Since m4(E8) = 4 is known, we select
Y( j) ∈ T with det E8[Y( j)] = 4. The cardinality of {Y( j)} equals 982800. Finally,
we make a set {Y( j)

1 ∧Y( j)
2 ∧Y( j)

3 ∧Y( j)
4 }modulo {±1}, and count elements of this

set.
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affine algebraic group, 9
algebraic set, 7
almost simple, 32
arithmetic quotient, 50
arithmetical minimum function, 58

Borel subgroup, 15

Cartan integers, 27
central maximal F-split torus, 23
class number, 64
closed subgroup, 10
complex Lie group, 37
connected algebraic group, 10
coroot, 29

dual root system, 29

extended root system, 26

field of definition, 8
finite adele group, 43
free, 49
fundamental domain, 49
fundamental set, 49
fundamental system, 28

general linear group, 10
Grassmann variety, 16

height function, 55

Hermite–Rankin constant, 72

idele, 43
idele norm, 43
identity component, 10
invariant measure, 39
irreducible algebraic group, 10
irreducible root system, 29

Levi decomposition, 17
Lie group, 37
local field, 38
local section, 45
locally compact group, 37

maximal F-split torus, 19
maximal compact subgroup, 39
maximal torus, 19
minimal k-tuple, 74
minimal parabolic F-subgroup, 35
minimal point, 59
Minkowski’s fundamental domain, 72
modular character, 39

open fundamental domain, 49

parabolic subgroup, 15
place, 38
polynomial function, 8
polynomial map, 8
positive root, 28
projective general linear group, 13
projective variety, 12
properly discontinuous, 49

quasi-projective variety, 12

radical, 16
rational character, 20
rational character group, 20
rational function, 9
rational map, 9
reduced root system, 27
reducible root system, 28
reductive algebraic group, 17
reflection, 26
relative root system, 30
root, 30
root lattice, 29
root system, 26
Ryshkov domain, 60

Satake compactification, 72
semisimple algebraic group, 17
Siegel property, 49
Siegel set, 51
simple root, 28
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simply connected group, 32
solvable algebraic group, 15
special homomorphism, 31
special linear group, 10
stable neighborhood, 59
standard maximal parabolic F-subgroup, 35
standard parabolic F-subgroup, 35
strongly Q-rational representation, 56

Tannaka duality, 38
torus, 19
totally disconnected, 38

unimodular group, 39
unipotent algebraic group, 15
unipotent radical, 16
unit adele group, 47

weight lattice, 29
Weyl chamber, 27
Weyl group, 27

Zariski topology, 9
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