Maximal compact subgroups of $\text{Sp}_4(k)$ and $\text{GSp}_4(k)$

Takao Watanabe

Osaka University, Graduate School of Science

Contents

1 Maximal compact subgroups 3

2 Bruhat–Tits theory of $\text{Sp}_4(k)$ 6
 2.1 Sp_4 and its minimal parabolic subgroup 6
 2.2 Rational characters and cocharacters of S 6
 2.3 Affine root system and root subgroups 7
 2.4 Apartment and chambers 8
 2.5 Tits system 11
 2.6 Building 12
 2.7 Stabilizers 13
 2.8 Special maximal compact subgroups 15
 2.9 o-models of G 16

3 Maximal compact subgroups of $\text{GSp}_4(k)$ 17
 3.1 Bruhat–Tits theory of $\text{GSp}_4(k)$ 17
 3.2 Conjugacy of stabilizers of facets 18

4 Conclusions 19
References

1 Maximal compact subgroups

Let k be a locally compact field of characteristic 0, G a connected linear algebraic group defined over k and G_k the locally compact group of k-rational points of G.

The following result can be found in [Bruhat] and [Satake].

Theorem 1.1. G_k has a maximal compact subgroup if and only if G is reductive. In this case, any compact subgroup of G_k is contained in a maximal compact subgroup.

We assume G is reductive, and let

- $S = \text{maximal } k\text{-split torus of } G$,
- $Z = \text{centralizer of } S \text{ in } G$,
- $P = \text{minimal parabolic subgroup of } G \text{ over } k \text{ of a Levi subgroup } Z$,
- $U = \text{unipotent radical of } P$.

In the case of $k = \mathbb{R}$, the following result is well known.

Theorem 1.2. If $k = \mathbb{R}$, then two maximal compact subgroups of G_k are conjugate by an inner automorphism. If K is a maximal compact subgroup of G_k, then one has the following decompositions:

$$G_k = K \cdot Z_k \cdot U_k \quad (\text{Iwasawa decomposition})$$
$$= K \cdot Z_k \cdot K \quad (\text{Cartan decomposition})$$

This theorem does not true if k is a p-adic field.

Let k be a p-adic field. The following problems occurred in the early of 1960’s.

- How many maximal compact subgroups of G_k up to conjugacy are there?
- Does G_k possess a maximal compact subgroup satisfying both Iwasawa and Cartan decompositions?
These problems were studied by many authors:

1960 – 1964 Shimura, Tsukamoto, Bruhat, Hijikata in classical groups
1965 Iwahori and Matsumoto in Chevalley groups
1966 – 1987 Bruhat and Tits in full generality

The main results of Bruhat–Tits theory are stated as follows.

Theorem 1.3. Let \(B \) be the Bruhat–Tits building associated with \(G_k \). For a point \(x \in B \), \(G_k^x \) denotes the stabilizer of \(x \) in \(G_k \).

1. For a maximal compact subgroup \(K \) of \(G_k \), there is a point \(x \in B \) such that \(K = G_k^x \).
2. If \(x \in B \) is a point contained in a facet of minimal dimension, then \(G_k^x \) is a maximal compact subgroup of \(G_k \).
3. The number \(m(G_k) \) of maximal compact subgroups of \(G_k \) up to conjugacy is finite.
4. If \(G \) is simply connected, then every maximal compact subgroup of \(G_k \) is the stabilizer of a vertex (= 0-dimensional facet) of \(B \), and \(m(G_k) \) is equal to the number of vertices of a chamber in \(B \). Precisely,

\[
m(G_k) = \prod_{i=1}^{\ell} (\text{rank}_k(G_i) + 1)
\]

where \(G_1, \cdots, G_\ell \) are \(k \)-simple factors of \(G \).

5. \(B \) has special points. The stabilizer of every special point of \(B \) is a maximal compact subgroup, which is called a special maximal compact subgroup. Every special maximal compact subgroup satisfies both Iwasawa and Cartan decompositions.
Remark If G is semisimple but not simply connected, then it is possible to happen a case where $x \in B$ is not a vertex but G^x_k is a maximal compact subgroup of G_k. For example, in the case of PGL_n, every chamber has n vertices. Stabilizers of vertices are maximal compact subgroups and they are mutually conjugate in $\text{PGL}_n(k)$. However, $m(\text{PGL}_n(k))$ is equal to the number of divisors of n.

Remark The building B is a union of translations of an apartment A by the action of G_k, i.e.,

$$B = \bigcup_{g \in G_k} gA.$$

Let \overline{C} be a closed chamber in A. For a given point $x \in B$, there is a $g \in G_k$ such that $g^{-1}x \in \overline{C}$. Then G^x_k and $G^{g^{-1}x}_k$ are conjugate. To classify conjugacy classes of maximal compact subgroups, it is sufficient to consider only stabilizers of points in \overline{C}.

2 Bruhat–Tits theory of Sp\(_4(k)\)

Let \(k\) be a p-adic field, \(\mathfrak{o}\) the maximal compact subring of \(k\) and \(\mathfrak{p}\) the maximal ideal of \(\mathfrak{o}\).

2.1 \(\text{Sp}_4\) and its minimal parabolic subgroup

Let \(G = \text{Sp}_4\) be a symplectic group, i.e.,

\[
G_k = \left\{ g \in \text{GL}_4(k) : t^g \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \right\}.
\]

We fix a maximal split torus \(S\) and a maximal unipotent subgroup \(U\) as follows:

\[
S_k = Z_k = \left\{ h(s, t) = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & t & 0 & 0 \\ 0 & 0 & s^{-1} & 0 \\ 0 & 0 & 0 & t^{-1} \end{pmatrix} : s, t \in k^\times \right\}
\]

\[
U_k = \left\{ \begin{pmatrix} 1 & w & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -w & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & x & y \\ 0 & 1 & y & z \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : w, x, y, z \in k \right\}
\]

Then \(P = SU\) is a minimal parabolic subgroup of \(G\) over \(k\).

2.2 Rational characters and cocharacters of \(S\)

Define \(k\)-rational characters \(e_1, e_2 : S \rightarrow \mathbb{G}_m\) by

\[
e_1(h(s, t)) = s, \quad e_2(h(s, t)) = t.
\]

Then \(\{e_1, e_2\}\) is a basis of \(X^*(S) = \text{Hom}_k(S, \mathbb{G}_m)\).

Cocharacters \(e_1^\vee, e_2^\vee : \mathbb{G}_m \rightarrow S\) are defined by

\[
e_1^\vee(s) = h(s, 1), \quad e_2^\vee(s) = h(1, s),
\]

which give the dual basis of \(\{e_1, e_2\}\) in \(X_*(S) = \text{Hom}_k(\mathbb{G}_m, S)\).
2.3 Affine root system and root subgroups

Define \(a, b \in X^\ast(S) \) by
\[
 a = e_1 - e_2, \quad b = 2e_2.
\]

The relative root system \(\Phi \) and the affine root system \(\Phi_{aff} \) of \((G, S)\) over \(k \) are given by
\[
 \Phi = \{ \pm a, \pm b, \pm (a + b), \pm (2a + b) \}, \quad \Phi_{aff} = \Phi \times \mathbb{Z}.
\]

We fix a one-parameter subgroup \(u_c : k \rightarrow G_k \) for each \(c \in \Phi \) such that
\[
h \cdot u_c(x) \cdot h^{-1} = u_c(c(h)x) \text{ for } h \in S_k,
\]
e.g., for positive roots,
\[
u_a(x) = \begin{pmatrix} 1 & x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -x & 1 \end{pmatrix}, \quad u_b(x) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & x \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},
\]
\[
u_{a+b}(x) = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & x & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad u_{2a+b}(x) = \begin{pmatrix} 1 & 0 & x & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
\]

For each affine root \(\delta = (c, n) \in \Phi_{aff} \), the root subgroup \(X_\delta \) is defined to be
\[
 X_\delta = u_c(p^n).
\]
2.4 Apartment and chambers

The apartment A is an affine space under the real vector space $X_*(S) \otimes \mathbb{Z}$. By \mathbb{R}-linear extension of the natural pairing

$$\langle \cdot, \cdot \rangle : X^*(S) \times X^*(S) \to \mathbb{Z}$$

each affine root $\delta = (c, n) \in \Phi_{\text{aff}}$ defines an affine function:

$$\delta : A \to \mathbb{R} : \delta(x) = \langle c, x \rangle + n.$$

The null set $\delta^{-1}(0)$ is an affine hyperplane of A. In our case, $\dim A = 2$ and $\delta^{-1}(0)$ is a line of the form:

- $\delta = (a, n) : \delta(x_1e_1^\vee + x_2e_2^\vee) = x_1 - x_2 + n = 0$
- $\delta = (b, n) : 2x_2 + n = 0$
- $\delta = (a + b, n) : x_1 + x_2 + n = 0$
- $\delta = (2a + b, n) : 2x_1 + n = 0$
A connected component C of the set
\[A - \bigcup_{\delta \in \Phi_{\text{aff}}} \delta^{-1}(0) \]
is called a chamber, which is a polytope.

Define the subset $\Delta_{\text{aff}}(C)$ of Φ_{aff} by
\[\Delta_{\text{aff}}(C) = \{ \delta \in \Phi_{\text{aff}} : \delta/2 \notin \Phi_{\text{aff}} \text{ and } \delta^{-1}(0) \cap \partial C \neq \emptyset \} \, . \]

For example, if C is chosen as follows

then
\[\Delta_{\text{aff}}(C) = \{ (a, 0), (b, 0), (2a + b, 1) \} \, . \]
$\Delta_{\text{aff}}(C)$ is displayed by the affine Dynkin diagram:

\[
\begin{array}{c}
\circ \\
\circ \overset{2a+b}{\implies} \circ \\
\circ \overset{a}{\iff} \circ \\
\circ \overset{b}{\iff} \circ
\end{array}
\]

There is the homomorphism \(\nu : S_k \longrightarrow X_*(S) \otimes \mathbb{Z} \mathbb{R} \) so that

\[
h^{-1}X_{(c,n)}h = X_{(c,(c,\nu(h)))+n}
\]

holds for every \((c,n) \in \Phi_{\text{aff}}\) and \(h \in S_k\). Precisely, \(\nu\) is given by

\[
\nu(h(s,t)) = -\text{ord}_p(s)e_1^\nu - \text{ord}_p(t)e_2^\nu.
\]

The kernel of \(\nu\) is the group \(S_\circ\) of \(\circ\) rational points of \(S\). The translation of \(A\) induced by \(\nu(h)\) defines the action of \(S_k\) on \(A\).

Let \(N\) be the normalizer of \(S\) in \(G\). The Weyl group \(W = N/S = N_k/S_k\) of \(\Phi\) acts on \(A\) by reflections as usual. The affine Weyl group \(W_{\text{aff}} = N_k/S_\circ\) is isomorphic with \(S_k/S_\circ \rtimes W\). Both \(N_k\) and \(W_{\text{aff}}\) act on \(A\) by affine transformations.

Remark In our case, the closed chamber \(\overline{C} = C \cup \partial C\) of \(A\) is a fundamental domain of \(A/N_k = A/W_{\text{aff}}\). This is not true in general.

For \(\delta \in \Delta_{\text{aff}}(C)\), \(w_\delta\) denotes the orthogonal reflection of \(A\) with respect to the affine hyperplane \(\delta^{-1}(0)\). The set \(W_{\text{aff}}(C) = \{w_\delta\}_{\delta \in \Delta_{\text{aff}}(C)}\) is a subset of \(W_{\text{aff}}\).
2.5 Tits system

For a subset $F \subset C$ and a root $c \in \Phi$, we set

$$n_F(c) = \inf \{ n \in \mathbb{Z} : \langle c, x \rangle + n \geq 0 \text{ for all } x \in F \}.$$

Define unipotent subgroups X^+_F and X^-_F of G_k by

$$X^+_F = \prod_{0 < c \in \Phi} X_{(c, n_F(c))} = \prod_{0 < c \in \Phi} u_c(p^{n_F(c)}),$$

$$X^-_F = \prod_{0 > c \in \Phi} X_{(c, n_F(c))} = \prod_{0 > c \in \Phi} u_c(p^{n_F(c)}).$$

If $F = C$, then the product

$$B_C = X^-_C \cdot S_0 \cdot X^+_C$$

is a subgroup of G_k, which is called the Iwahori subgroup of G_k corresponding to C. The following is a fundamental result due to Iwahori–Matsumoto.

Theorem 2.1. The quadruple $(G_k, B_C, N_k, W_{\text{aff}}(C))$ is a Tits system, i.e., this satisfies

(T1) $B_C \cup N_k$ generates G_k and $B_C \cap N_k = S_0$ is a normal subgroup of N_k,

(T2) $W_{\text{aff}}(C)$ generates W_{aff} and every element in $W_{\text{aff}}(C)$ is of order 2,

(T3) $sB_Cs \neq B_C$ for each $s \in W_{\text{aff}}(C)$,

(T4) $sB_Cw \subset B_CwB_C \cup B_CswB_C$ for each $s \in W_{\text{aff}}(C)$ and $w \in W_{\text{aff}}$.

As a consequence of the theory of Tits systems, we obtain the following double coset decomposition of G_k:

$$G_k = \bigsqcup_{w \in W_{\text{aff}}} B_CwB_C \quad \text{(Bruhat decomposition)}$$

For $x \in C$, W_{aff}^x stands for the stabilizer of x in W_{aff}. Then

$$G^x_k = \bigsqcup_{w \in W_{\text{aff}}^x} B_CwB_C$$

is a subgroup of G_k.

2.6 Building

Since G_k does not act on A, we need to build an enlargement of A on which G_k acts. Since \overline{C} is a fundamental domain of A/W_{aff}, the apartment A is identified with the quotient space

$$(W_{\text{aff}} \times \overline{C})/ \sim,$$

where $(w, x) \sim (w', x')$ if $x = x'$ and $w^{-1}w' \in W_{\text{aff}}^x$. We extend the equivalent relation \sim to $G_k \times \overline{C}$ by

$$(g, x) \sim (g', x') \text{ if } x = x' \text{ and } g^{-1}g' \in G_k^x.$$

Then the quotient space

$$\mathcal{B} = \mathcal{B}(G_k) = (G_k \times \overline{C})/ \sim$$

gives the building of G_k. Let n_w be an arbitrary representative in N_k of $w \in W_{\text{aff}}$. Then, by the map $(w, x) \mapsto (n_w, x)$, the apartment $A = (W_{\text{aff}} \times \overline{C})/ \sim$ is embedded in \mathcal{B}. The group G_k acts on \mathcal{B} by $g(h, x) = (gh, x)$.

Theorem 2.2 (Tits, §2.1). The building \mathcal{B} is uniquely characterized as a G_k-set satisfying the following properties:

- $\mathcal{B} = \bigcup_{g \in G_k} gA$,
- N_k stabilizes A and operates on it by the same way defined as in §2.4,
- for any $\delta \in \Phi_{\text{aff}}$, the root subgroup X_δ fixes $\delta^{-1}([0, \infty))$ pointwise.

Remark For every $x \in A$, there is an $n \in N_k$ such that $nx \in \overline{C}$. Then we define G_k^x by $n^{-1}G_k^x n$. Another definition of \mathcal{B} is given by

$$\mathcal{B} = (G_k \times A)/ \sim,$$

where

$$(g, x) \sim (g', x') \text{ if } \exists n \in N_k \text{ such that } x' = nx \text{ and } g^{-1}g'n \in G_k^x.$$

This definition does not need to assume that \overline{C} is a fundamental domain of A/W_{aff}.

12
2.7 Stabilizers

For a subset $F \subset B$, the pointwise stabilizer of F in G_k is denoted by G_k^F, i.e.,

$$G_k^F = \{ g \in G_k : gx = x \text{ for all } x \in F \}.$$

The structure of G_k^F is determined by

Theorem 2.3 (Bruhat–Tits Proposition 2.4.13, Tits §3.1.1). Let $F \subset B$ be a bounded subset.

1. If F^\dagger denotes the closed convex closure of F in B, then $G_k^F = G_k^{F^\dagger}$.
2. If $F \subset C$ and N_k^F denotes the pointwise stabilizer of F in N_k, then

$$G_k^F = X_F^- \cdot N_k^F \cdot X_F^+.$$

If $F = \{x\} \subset C$ is a one point, then $G_k^{\{x\}}$ is coincides with G_k^x defined in §2.5, i.e.,

$$G_k^{\{x\}} = G_k^x = B_C \cdot W_{aff} \cdot B_C.$$

We write v_0, v_1, v_2 for vertices of a chamber C as follows.

The chamber C has 7 facets:

$$v_0, v_1, v_2, v_0v_1, v_1v_2, v_2v_0, C.$$
The stabilizers of vertices are

\[
G_{v_0}^k = X_{v_0}^- \cdot S_0 \cdot W \cdot X_{v_0}^+ = Sp_4(o)
\]

\[
G_{v_1}^k = \begin{pmatrix} 1 & p & 1 & p \\ p & 1 & 1 & p \\ p & p & 1 & p \\ p & 0 & 1 \end{pmatrix} \cdot S_0 \cdot \begin{pmatrix} 1 & o & p^{-1} & o \\ 1 & o & o & 1 \\ 0 & 1 \end{pmatrix}
\]

\[
G_{v_2}^k = \begin{pmatrix} 1 & o & 1 & p & p & 1 & o & p & p \\ p & 1 & 1 & o & p & p & 1 & o & p \\ p & p & 1 & o & p & p & 1 & o & p \end{pmatrix} \cdot S_0 \cdot \{I_4, w_0\} \cdot \begin{pmatrix} 1 & o & p^{-1} & p^{-1} & p^{-1} & 1 \\ 1 & p^{-1} & 1 & p^{-1} & 1 & p^{-1} \end{pmatrix},
\]

where \(w_0 = w_{(i,0)}\). By Theorem 2.3 (1), we have

\[
G_{v_i}^k \cap G_{v_j}^k = G_{v_0}^k \cap G_{v_1}^k \cap G_{v_2}^k = B_C.
\]

For each facet \(F\) of \(C\), \(G_F^k\) has the double coset decomposition:

\[
G_F^k = \bigsqcup_{w \in W_{aff}^F} B_C w B_C,
\]

where \(W_{aff}^F\) is the subgroup of \(W_{aff}\) generated by \(\{w_\delta : F \subset \delta^{-1}(0)\}\).

By Theorem 1.3 (4), \(G_{v_0}^k\), \(G_{v_1}^k\) and \(G_{v_2}^k\) are maximal compact subgroups of \(G_k\) and they are not conjugate in \(G_k\) each other. Every maximal compact subgroup of \(G_k\) is conjugate to one of \(G_{v_i}^k\)s.
2.8 Special maximal compact subgroups

Let \(x \in \overline{C} \). We define subsets of \(\Phi_{\text{aff}} = \Phi \times \mathbb{Z} \) by

\[
\Phi_{\text{aff}}(x) = \{ \delta \in \Phi_{\text{aff}} : \delta(x) = 0 \}, \quad \Phi(x) = \Phi\text{-part of } \Phi_{\text{aff}}(x)
\]

and

\[
I_x = \{ \delta \in \Delta_{\text{aff}}(C) : \delta(x) \neq 0 \}.
\]

Then \(\Phi(x) \) is a subroot system of \(\Phi \). If \(x \) is a point in the interior of \(C \), then \(\Phi_{\text{aff}}(x) = \emptyset \) and \(I_x = \Delta_{\text{aff}}(C) \).

The point \(x \) is called special if every element of \(\Phi \) is proportional to some element of \(\Phi(x) \).

For example,

- if \(x = v_0 \), then \(\Phi(v_0) = \Phi \) and \(I_{v_0} = \{(2a + b, 1)\} \),
- if \(x = v_1 \), then \(\Phi(v_1) = \{b, 2a + b\} \) and \(I_{v_1} = \{(a, 0)\} \),
- if \(x = v_2 \), then \(\Phi(v_2) = \Phi \) and \(I_{v_2} = \{(b, 0)\} \).

Hence both \(v_0 \) and \(v_2 \) are special, but not \(v_1 \).

The stabilizer of a special point is a special maximal compact subgroup. Both \(G^{v_0}_k \) and \(G^{v_2}_k \) are special maximal compact subgroups, but not \(G^{v_1}_k \).
2.9 \(\mathfrak{o} \)-models of \(G \)

Let \(J : k^4 \times k^4 \rightarrow k \) be the symplectic form defining \(G \), and let \(e_1, e_2, e_1', e_2' \) be the canonical basis. We define \(\mathfrak{o} \)-lattices \(L_0, L_1, L_2 \) as follows:

\[
\begin{align*}
L_0 &= \mathfrak{o}e_1 + \mathfrak{o}e_2 + \mathfrak{o}e_1' + \mathfrak{o}e_2', \\
L_1 &= \mathfrak{o}e_1 + \mathfrak{o}e_2 + \mathfrak{p}e_1' + \mathfrak{o}e_2', \\
L_2 &= \mathfrak{o}e_1 + \mathfrak{o}e_2 + \mathfrak{p}e_1' + \mathfrak{p}e_2'.
\end{align*}
\]

The stabilizer of \(L_i \) in \(G_k \) is \(G_{k_i}^o \) for \(i = 0, 1, 2 \).

Since \(J(L_i, L_i) \subset \mathfrak{o} \), \((L_i, J) \) gives an \(\mathfrak{o} \)-structure of the symplectic space \((k^4, J) \), and hence an \(\mathfrak{o} \)-model \(G_i \) of \(G \). We have \(G_i^o = G_{k_i}^o \). One of the main results of Bruhat–Tits theory is:

Theorem 2.4 (Tits §3.4.1). Let \(F \) be a non-empty bounded subset of \(B \). Then there exists a unique smooth group \(\mathfrak{o} \)-scheme \(G^F \) satisfying

- \(G^F \times_o k = G \),
- \(G^F_{o'} = G_{k'}^o \) for any unramified extension \(k'/k \).

We put \(G_i^f = (G^f \times_o f)_f \), where \(f = o/p \) is the residue field of \(k \). It is easy to see that \(G_i^f = G_i^f = \text{Sp}_4(f) \). We determine \(G_i^f \). Let \(\pi \) be a prime element of \(o \). Since \(J(L_1, L_1) = o \), the bilinear form

\[\overline{J} : L_1/\pi L_1 \times L_1/\pi L_1 \rightarrow f. \]

over \(f \) is defined from \(J \). For \(x \in L \), \([x] \) denotes \(x \mod \pi L \). Then \([e_1], [e_2], [\pi e_1'], [\pi e_2'] \) is a basis of \(L_1/\pi L_1 \) over \(f \). Since the radical \(R_{\overline{J}} \) of \(\overline{J} \) is spanned by \([e_1], [\pi e_1'] \), the automorphism group of \((L_1/\pi L_1, \overline{J}) \) is isomorphic with \(M_2(f) \times (GL_2(f) \times SL_2(f)) \). Hence \(G_1^f \cong M_2(f) \times (GL_2(f) \times SL_2(f)) \).
3 Maximal compact subgroups of GSp$_4$(k)

Let GSp$_4$ be the symplectic group of similitude. There is the following exact sequence:

$$1 \longrightarrow \text{Sp}_4 \longrightarrow \text{GSp}_4 \longrightarrow \chi \longrightarrow \text{Gm} \longrightarrow 1$$

The similitude character χ has a splitting:

$$s \mapsto d(s) = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Therefore, GSp$_4$ is isomorphic with Sp$_4 \rtimes d(G_m)$.

3.1 Bruhat–Tits theory of GSp$_4$(k)

- In general, the apartment of a connected reductive group H over k is identified with the apartment of $Z(H) \times [H, H]$, where $Z(H)$ denotes the maximal central k-split torus of H. Since $Z(\text{GSp}_4)$ is a one-dimensional split torus and $[\text{GSp}_4, \text{GSp}_4] = \text{Sp}_4$, the apartment \tilde{A} of $\text{GSp}_4(k)$ is identified with $R \times A$.

- $T = S \cdot d(G_m)$ is a maximal k-split torus of GSp$_4$. The root system of GSp$_4$ with respect to T is the same as Φ. For $\delta \in \Phi_{\text{aff}}$, the affine function $\delta : A \longrightarrow R$ is trivially extended to \tilde{A} by composition with the projection $\tilde{A} \longrightarrow A$. Therefore, $\tilde{C} = R \times C$ is a chamber of \tilde{A}.

- For a vertex v_i of C, we denote by \tilde{v}_i the one-dimensional facet $R \times v_i$ of \tilde{C}. Since \tilde{v}_i is a facet of minimal dimension, its stabilizer $K_i = \text{GSp}_4(k)^{\tilde{v}_i}$ is a maximal compact subgroup of GSp$_4(k)$.

- The homomorphism $\nu : S_k \longrightarrow X_*(S) \otimes Z R$ is extended to T_k by

$$\nu(d(s)) = -\frac{\text{ord}_p(s)}{2}(e'_1 + e'_2).$$

Then T_k acts on \tilde{A} by the translation: $(r, x) \mapsto (r, x + \nu(h))$ for $(r, x) \in \tilde{A}$ and $h \in T_k$. The facet \tilde{v}_0 transforms to the facet \tilde{v}_2 by the action of $d(\pi^{-1})$. Hence K_0 and K_2 are conjugate in GSp$_4(k)$.

- K_0 is not conjugate to K_1 because that v_0 is a special point but not v_1.
3.2 Conjugacy of stabilizers of facets

The subset $\Delta_{\text{aff}}(\tilde{C}) = \Delta_{\text{aff}}(C)$ of Φ_{aff} is the local Dynkin diagram of $\text{GSp}_4(k)$:

$$\circ \xrightarrow{2a+b} \circ \leftrightarrow \circ \rightleftharpoons \circ$$

The local Dynkin diagram does not depend, up to canonical isomorphism, on the choice of the chamber \tilde{C}. The torus T_k acts on the set of chambers in \tilde{A}, and hence on $\Delta_{\text{aff}}(\tilde{C})$. We denote by $\Xi(\text{GSp}_4)$, or simply Ξ, the image of the homomorphism $T_k \rightarrow \text{Aut}(\Delta_{\text{aff}}(\tilde{C}))$.

Theorem 3.1 (Tits §2.5). Ξ is isomorphic with $T_k/T_0S_kZ(\text{GSp}_4)_k$, in particular $\Xi = \text{Aut}(\Delta_{\text{aff}}(\tilde{C}))$.

For every facet \tilde{F} of the chamber \tilde{C}, we define the subset $I_{\tilde{F}}$ of $\Delta_{\text{aff}}(\tilde{C})$ by

$$I_{\tilde{F}} = \{ \delta \in \Delta_{\text{aff}}(\tilde{C}) : \delta|_{\tilde{F}} \neq 0 \}$$

Obviously, we have $I_{\tilde{v}_i} = I_{v_i}$.

Theorem 3.2 (Tits §2.5). Let \tilde{F}_1 and \tilde{F}_2 be facets of \tilde{C}. Then $\text{GSp}_4(k)^{\tilde{F}_1}$ and $\text{GSp}_4(k)^{\tilde{F}_2}$ are conjugate in $\text{GSp}_4(k)$ if and only if $I_{\tilde{F}_1}$ and $I_{\tilde{F}_2}$ are in the same orbit of Ξ.

18
4 Conclusions

- $G_k^{\nu_0}, G_k^{\nu_1}$ and $G_k^{\nu_2}$ are representatives of conjugacy classes of maximal compact subgroups of $G_k = \text{Sp}_4(k)$.

- Both $G_k^{\nu_0}$ and $G_k^{\nu_2}$ are special maximal compact subgroups of G_k. They satisfy both Iwasawa and Cartan decompositions. The reduction mod p of each of them is isomorphic with $\text{Sp}_4(f)$.

- $G_k^{\nu_1}$ is not a special maximal compact subgroup. The reduction mod p of $G_k^{\nu_1}$ is isomorphic with $M_2(f) \times (\text{GL}_2(f) \times \text{SL}_2(f))$.

- $\text{GSp}_4(k)^{\bar{\nu}_0}$ and $\text{GSp}_4(k)^{\bar{\nu}_1}$ are representatives of conjugacy classes of maximal compact subgroups of $\text{GSp}_4(k)$.

- $\text{GSp}_4(k)^{\bar{\nu}_0}$ is a special maximal compact subgroup.

- $\text{GSp}_4(k)^{\bar{\nu}_1}$ is not a special maximal compact subgroup.