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Abstract. Let g be a Lie algebra of type E6, C a Cayley algebra and J a cubic Jordan
algebra of type A defined over an algebraic number field F . Ferrar proved that Tits’ construc-

tion of exceptional Lie algebras yields a surjection ξ from H1(F, Aut C) × H1(F, Aut J) onto
H1(F, Aut g). In this paper, we study the fiber of ξ and compute the class number of a given
F -form of g.
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Introduction. Let g(F ) be a split Lie algebra of type E6 over an algebraic number field
F . In a paper [1, II], Ferrar proved that any F -form of g(F ) is isomorphic to the Tits
algebra T (Ca(F ), Jb(F )) constructed from a suitable pair of a Cayley algebra Ca(F ) and
a cubic Jordan algebra Jb(F ) of type A over F . The Cayley algebra Ca(F ) is obtained
from the twist of a split Cayley algebra C(F ) by a 1-cocycle a ∈ Z1(Γ, AutC(F )) of the
absolute Galois group Γ = Gal(F/F ). Similarly, the Jordan algebra Jb(F ) is obtained from
the twist of a split Jordan algebra J(F ) = M3(F )+ by a 1-cocycle b ∈ Z1(Γ, AutJ(F )). In
terms of Galois cohomology, Ferrar’s theorem is stated as the Tits construction gives rise to a
surjection ξ from H1(F,Aut C(F ))×H1(F, AutJ(F )) onto H1(F, Aut g(F )). In general, this
ξ is not injective and, by [1, II, Proposition(7.1)], one knows only that T (Ca(F ), Jb(F )) ∼=
T (Ca′(F ), Jb′(F )) implies Ca(F ) ∼= Ca′(F ). A purpose of this paper is to give a refinement
of this isomorphism condition. We will give, in Theorem 2 below, a necessary and sufficient
condition for T (Ca(F ), Jb(F )) ∼= T (Ca′(F ), Jb′(F )).

One reason of complication of a classification of F -forms of g(F ) is a failure of the Hasse
principle of H1(F,Aut g(F )). As was shown in [1, II, Theorem(5.1)], the Hasse principle
holds only for H1(F, Int g(F )). A failure of the Hasse principle allows us to define the
class number h(gz(F )) of a given F -form gz(F ). We denote by Λ(gz(F )) the set of F -
isomorphism classes [gz′(F )] such that gz(Fv) ∼= gz′(Fv) for all places v of F . Then h(gz(F ))
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is defined to be the cardinal number of Λ(gz(F )). Since the same situation occurs for
F -forms of J(F ), the set Λ(Jb(F )) and the class number h(Jb(F )) are similarly defined.
If a Cayley algebra Ca(F ) is fixed, one has two sets Λ(Jb(F )) and Λ(T (Ca(F ), Jb(F ))).
Then we will prove that the mapping [Jb′(F )] 7→ [T (Ca(F ), Jb′(F ))] yields a bijection from
Λ(Jb(F )) to Λ(T (Ca(F ), Jb(F ))). Therefore, one understands that a failure of the Hasse
principle for forms of E6 is ”heredity” of that for forms of M3(F )+. The class number
h(Jb(F )) = h(T (Ca(F ), Jb(F ))) will be computed in Section 1.

Notation. For a given field F , its separable algebraic closure is denoted by F and the
Galois group of F/F is denoted by Γ. If A(F ) is an F -algebra and E/F is an extension,
then A(E) stands for A(F )⊗F E. If E = F , we will simply write A for A(F ). The group of
the n-th root of unity in F is denoted by µn. This is regarded as an algebraic group defined
over F . For a finite separable extension E/F , RE/F (µn) stands for the restriction of scalars
of µn/E to F . The kernel of the norm homomorphism from RE/F (µn) to µn is denoted by
R

(1)
E/F (µn). If E = F , R

(1)
E/F (µn) is equal to µn. For a finite set X, the cardinal number of

X is denoted by |X|.

1. Class numbers of cubic Jordan algebras of type A.

Let J(F ) be the Jordan algebra consisting of 3 by 3 matrices with entries in a field F
of characteristic 0. As usual, the Jordan algebra product of J(F ) is given by x ∗ y =
(xy + yx)/2 for x, y ∈ J(F ). The automorphism group AutJ is isomorphic to a semi-direct
product of the group PGL3(F ) of inner automorphisms and the cyclic group Θ generated
by the transpose θ : x 7→ tx. The F -forms of J(F ) is classified by the Galois cohomology
set H1(F, AutJ) as follows. For a given 1-cocycle z ∈ Z1(Γ,Aut J), set Jz(F ) = {x ∈
J : z(γ)γx = x for all γ ∈ Γ}. Then Jz(F ) is an F -form of J(F ) and its F -isomorphism
class [Jz(F )] depends only on the cohomology class [z]. The map [z] 7→ [Jz(F )] yields a
bijection from H1(F,Aut J) to the set of F -isomorphism classes of F -forms of J(F ). By the
exact sequence

H1(F, PGL3(F )) −−−−→ H1(F, AutJ) ε−−−−→ H1(F, Θ) = Hom(Γ,Θ) ,

H1(F, AutJ) decomposes into a disjoint union of ε−1(α), α ∈ Hom(Γ, Θ). We choose a
splitting

H1(F, Θ) −→ H1(F,Aut J) : α 7→ [zα]

of ε as

zα(γ) =
{

the identity (γ ∈ Ker α)
int(w) ◦ θ (γ ̸∈ Ker α)

where w =

 0 0 1
0 1 0
1 0 0

 .
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We write simply Jα(F ) for Jzα(F ). Let Eα be the invariant field of Kerα in F , so that
the degree of the extension Eα/F is of at most two. If α is non-trivial and x 7→ x
denotes the Galois involution of Eα/F , then Jα(F ) is the reduced Freudenthal algebra
{x ∈ J(Eα) : wtxw−1 = x}. The automorphism group AutJα is an algebraic group de-
fined over F . Its identity component (AutJα)0 is a projective linear group or a projective
quasi-split unitary group of degree 3 according as α is trivial or non-trivial. The action
int(g) 7→ θ◦int(g)◦θ−1 = int(tg−1) on (AutJα)0 induces the action of Θ on H1(F, (AutJα)0).
Then, by the diagram

H1(F,AutJ) ε−−−−→ H1(F, Θ)y y
H1(F, (AutJα)0) iα−−−−→ H1(F,Aut Jα) εα−−−−→ H1(F, Θ) ,

where vertical arrows are those natural bijections which transform [zα] and α to trivial
classes, one has

ε−1(α) ∼= Ker ϵα = Im iα ∼= Θ\H1(F, (AutJα)0) ,

and hence

H1(F, AutJ) =
⊔

α∈Hom(Γ,Θ)

ε−1(α) ∼=
⊔

α∈Hom(Γ,Θ)

Θ\H1(F, (AutJα)0) . (1)

Let Jα,c(F ) be the twist of Jα(F ) by a 1-cocycle c ∈ Z1(Γ, (AutJα)0). It follows from (1)
that Jα,c(F ) ∼= Jα,c′(F ) if and only if Θ[c] = Θ[c′]. Since the center of the universal covering
group of (AutJα)0 is R

(1)
Eα/F (µ3), there is a connection morphism from H1(F, (AutJα)0) to

H2(F,R
(1)
Eα/F (µ3)). The action of θ on R

(1)
Eα/F (µ3) is given by ζ 7→ ζ−1. This action and the

connection morphism induces the morphism

Θ\H1(F, (AutJα)0) −−−−→ Θ\H2(F,R
(1)
Eα/F (µ3)) .

If F is a nonarchimedean local field, this morphism is bijective ([4, Corollary to Theorem
6.20]). For simplicity, we denote by Ĥ1(F, (AutJα)0) and by Ĥ2(F,R

(1)
Eα/F (µ3)) the orbit

spaces Θ\H1(F, (AutJα)0) and Θ\H2(F,R
(1)
Eα/F (µ3)), respectively.

In the following, let F be an algebraic number field, Vf the set of all finite places and
V∞,1 the set of all real places of F . If v ∈ Vf , there is the canonical isomorphism

invv : H2(Fv, µ3) −→
1
3

Z/Z.
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We fix an α ∈ Hom(Γ, Θ) and denote by V s
f (Eα) (resp. V r

∞,1(Eα)) the subset consisting of
v ∈ Vf (resp. v ∈ V∞,1) such that v splits (resp. does not split) in Eα. If Eα = F , we regard
V s

f (Eα) (resp. V r
∞,1(Eα)) as Vf (resp. the empty set) for convenience. By the Tate–Poitou

duality, one has the isomorphism

H2(F,R
(1)
Eα/F (µ3)) ∼=


{(βv) ∈

⨿
v∈Vf

H2(Fv, µ3) :
∑
v∈Vf

invv(βv) = 0} (α ≡ 1)

⨿
v∈V s

f (Eα)

H2(Fv, µ3) (α ̸≡ 1)

(cf. [4, Lemma 6.19]). We write Hα for the group of the right hand side. Furthermore, we
set

Ĥ′
α = {O ∈

⨿
v∈V s

f (Eα)

Ĥ2(Fv, µ3) : O(1) ̸= ∅} , where O(1) =

 ⨿
v∈V s

f (Eα)

Ov

 ∩Hα . (2)

Note that Ĥ′
α is distinct from Ĥα = Θ\Hα

∼= Ĥ2(F,R
(1)
Eα/F (µ3)) and there is a natural

quotient map Ĥα → Ĥ′
α. The connection morphism and the Hasse map gives the following

diagram.
H1(F, (AutJα)0) −−−−→ H2(F,R

(1)
Eα/F (µ3)) ∼= Hαy∏

v∈V r
∞,1(Eα)

H1(Fv, (AutJα)0)

By the Hasse principle (cf. [5, Corollaire 4.5], [7]), one obtains the bijection

λ : H1(F, (AutJα)0)
∼=−−−−→ Hα ×

∏
v∈V r

∞,1(Eα)

H1(Fv, (AutJα)0) . (3)

This and the triviality of the action of Θ on H1(Fv, (AutJα)0) for v ∈ V r
∞,1(Eα) give the

surjection

λ̂ : Ĥ1(F, (AutJα)0) −−−−→ Ĥ′
α ×

∏
v∈V r

∞,1(Eα)

H1(Fv, (AutJα)0) . (4)

We fix a [c] ∈ H1(F, (AutJα)0). The set Λ(Jα,c(F )) of F -isomorphism classes in the genus
of Jα,c(F ) is defined by

{[Jα,c′(F )] : [c′] ∈ H1(F, (AutJα)0) and Jα,c(Fv) ∼= Jα,c′(Fv) for all v ∈ Vf ∪ V∞,1}.
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In the rest of this section, we compute the class number h(Jα,c(F )) = |Λ(Jα,c(F ))|.

Let λv([c]) be the v-component of λ([c]) and λ̂(Θ[c])f the Ĥ ′
α-component of λ̂(Θ[c]). Define

λ̂(Θ[c])(1)f as in (2). By (3) and (4), the correspondence Θ[c′] 7→ [Jα,c′(F )] gives a bijection

λ̂−1(λ̂(Θ[c])) = Θ\λ−1(λ̂(Θ[c])(1)f × (λv[c])v∈V r
∞,1(Eα))

∼=−−−−→ Λ(Jα,c(F )) .

We simply write invv(c) for the Hasse invariant of λv([c]). Let V s
f (Eα)c be the set of all

v ∈ V s
f (Eα) such that invv(c) is not zero. The set Map(V s

f (Eα)c, {±1}) of all mappings from
V s

f (Eα)c to {±1} is regarded as a finite abelian group by the product (στ)(v) = σ(v)τ(v)
for σ, τ ∈ Map(V s

f (Eα)c, {±1}) and v ∈ V s
f (Eα)c. If V s

f (Eα)c is non-empty, then we define
the subset Mα

c of Map(V s
f (Eα)c, {±1}) as follows:

Mα
c =

{
{σ ∈ Map(V s

f (Eα)c, {±1}) :
∑

v∈V s
f (Eα)c

σ(v)invv(c) = 0} (α ≡ 1)

Map(V s
f (Eα)c, {±1}) (α ̸≡ 1)

In the case of V s
f (Eα)c = ∅, we set Mα

c = {0}. For σ ∈ Mα
c , we define the cohomology class

σ[c] by
σ[c] = λ−1((inv−1

v (σ(v)invv(c)))v∈V s
f (Eα) × (λv[c])v∈V r

∞,1(Eα)) .

Then the mapping σ 7→ σ[c] yields a bijection from Mα
c to λ−1(λ̂(Θ[c])(1)f ×(λv[c])v∈V r

∞,1(Eα)).
Since θ(σ[c]) = σ(θ[c]) = (−σ)[c], one has

{±1}\Mα
c
∼= Θ\λ−1(λ̂(Θ[c])(1)f × (λv[c])v∈V r

∞,1(Eα)) ∼= Λ(Jα,c(F )) .

Proposition. The class number h(Jα,c(F )) is equal to

|{±1}\Mα
c | =


1
2

q∑
j=0

[(p−j)/3]∑
k=−[j/3]

(
q

j

)(
p

3k + j

)
(α ≡ 1 and [c] ̸= 0)

2p+q−1 (α ̸≡ 1 and [c] ̸= 0)
1 ([c] = 0)

(5)

Here we set
V s

f (Eα)±c = {v ∈ V s
f (Eα)c : invv(c) = ±1

3
+ Z}

and p = max(|V s
f (Eα)+c |, |V s

f (Eα)−c |), q = min(|V s
f (Eα)+c |, |V s

f (Eα)−c |). For a real number
r, [r] denotes the largest integer which is less than or equal to r.
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Proof. The only non-trivial case is the one of α ≡ 1 and [c] ̸= 0. We may assume p =
|V s

f (Eα)+c | by replacing [c] with θ[c] if necessary. From Hasse’s product formula, p− q ∈ 3Z
follows. For σ ∈ Mα

c , if we set

i = |σ−1(−1) ∩ V s
f (Eα)+c | , j = |σ−1(−1) ∩ V s

f (Eα)−c | ,

then k = (i − j)/3 must be an integer by the definition of Mα
c . Therefore, |Mα

c | is equal to
the number of subsets X × Y of V s

f (Eα)+c × V s
f (Eα)−c such that (|X| − |Y |)/3 is an integer,

0 ≤ |Y | ≤ q and −[|Y |/3] ≤ (|X| − |Y |)/3 ≤ [(p − |Y |)/3]. This is given by

q∑
j=0

[(p−j)/3]∑
k=−[j/3]

(
q
j

)(
p

3k + j

)
. ¤

2. Class numbers of Lie algebras of type E6.

Let g(F ) be a split Lie algebra of type E6 over a field F of characteristic 0. The auto-
morphism group Aut g is a semidirect product of its connected component (Aut g)0 and the
group Θ′ generated by the opposition involution of the Dynkin diagram of g. Since Θ′ is
isomorphic to Θ, we will identify Θ′ with Θ in the following. Similarly as in Section 1, the
F -isomorphism classes of F -forms of g(F ) is classified by the set H1(F, Aut g) and we have
the exact sequence

H1(F, (Aut g)0) −−−−→ H1(F, Aut g) ε′

−−−−→ H1(F, Θ) = Hom(Γ, Θ) .

For α ∈ Hom(Γ,Θ), let gα(F ) be a quasi-split F -form of g(F ) corresponding to α and
(Aut gα)0 the identity connected component of the automorphism group of gα. By the
same way as (1), H1(F, Aut g) decomposes into a disjoint union of Ĥ1(F, (Aut gα)0) =
Θ\H1(F, (Aut gα)0), (α ∈ Hom(Γ, Θ)). If F is a local field, the classification theory by
Satake and Tits concludes that elements of Ĥ1(F, (Aut gα)0) bijectively correspond to Tits
indices of type E6 realized over F . So that one can identify Ĥ1(F, (Aut gα)0) with the set
of Tits indices as follows:

Ĥ1(F, (Aut gα)0) =


{1E0

6,6,
1E16

6,2} (F is nonarchimedean and α ≡ 1)

{2E2
6,4} (F is nonarchimedean and α ̸≡ 1)

{1E0
6,6,

1E28
6,2} (F = R and α ≡ 1)

{2E2
6,4,

2E16
6,2

′
, 2E78

6,0} (F = R and α ̸≡ 1)

(6)
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Let F be an algebraic number field. Since the center of the universal covering group of
(Aut gα)0 is isomorphic to R

(1)
Eα/F (µ3), the group Hα is defined as in Section 1 and one has

the commutative diagram

H1(F, (Aut gα)0) λ−−−−→
∼=

Hα ×
∏

v∈V r
∞,1(Eα) H1(Fv, (Aut gα)0)y y

Ĥ1(F, (Aut gα)0)
bλ−−−−→ Ĥ′

α ×
∏

v∈V r
∞,1(Eα) H1(Fv, (Aut gα)0)

Therefore, the situation is the same as in Section 1. For [d] ∈ H1(F, (Aut gα)0), three sets
Λ(gα,d(F )), V s

f (Eα)d and Mα
d are defined in the same way. The class number h(gα,d(F )) =

|Λ(Hα,d(F ))| is equal to |{±1}\Mα
d | and it is given by the formula (5).

We recall Ferrar’s result. Let C(F ) be a split Cayley algebra over a field F of characteristic
0. The automorphism group AutC is an adjoint group of type G2. The isomorphism classes
of Cayley algebras over F is classified by H1(F, AutC). The twist of C(F ) by a 1-cocycle
a ∈ Z1(Γ,AutC) is denoted by Ca(F ). For a Cayley algebra Ca(F ) and a cubic Jordan
algebra Jb(F ) of type A, one obtains a Lie algebra T (Ca(F ), Jb(F )) of type E6 over F by
Tits’ construction. Namely, T (Ca(F ), Jb(F )) = Der Ca(F )+Ca(F )∗⊗F Jb(F )∗ +Der Jb(F )
as a set, where Der X is the Lie algebra of derivations of X and X∗ the space of elements
of generic trace 0 for X = Ca(F ), Jb(F ), and the Lie bracket product is defined as in [1,
II, §1]. We write Ta,b(F ) for T (Ca(F ), Jb(F )) and denote by ξ([a], [b]) the cohomology class
corresponding to the F -isomorphism class [Ta,b(F )]. Then we have the diagram

H1(F, AutC) × H1(F, AutJ)
ξ−−−−→ H1(F, Aut g)y yε′

Hom(Γ,Θ) Hom(Γ, Θ)
where the left vertical arrow is given by [a]× [b] 7→ ε([b]). Since this diagram is commutative
([1, II, Lemma(2.4), (i)]), for each α ∈ Hom(Γ, Θ), ξ induces the map

H1(F, AutC) × Ĥ1(F, (AutJα)0)
bξα

−−−−→ Ĥ1(F, (Aut gα)0) .

We write Tα
a,c(F ) for the Lie algebra T (Ca(F ), Jα,c(F )). The cohomology class ξ̂α([a],Θ[c])

corresponds to the F -isomorphism class [Tα
a,c(F )]. Furthermore, by a relation of AutC ×

AutJα and Aut gα given by [1, II, Proposition(2.3) and Lemma(2.4)], it is known that the
following diagram is commutative.

H1(F, AutC) × Ĥ1(F, (AutJα)0)
bξα

−−−−→ Ĥ1(F, (Aut gα)0)y y
Ĥ2(F,R

(1)
Eα/F (µ3)) Ĥ2(F,R

(1)
Eα/F (µ3))

(7)
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where vertical arrows are induced from connection morphisms on H1(F, (AutJα)0) and
H1(F, (Aut gα)0).

If F is a nonarchimedean local field, then ξ is bijective ([1, II, Lemmas (6.2) and (6.3)]).
In this case, H1(F, AutC) is trivial. If α ≡ 1, then Ĥ1(F, (AutJα)0) consists of a trivial
class Θ[0] and a non-trivial class Θ[1/3] of Hasse invariant ±1/3. By the identification of (6),
one has ξ̂α([0], Θ[0]) = 1E0

6,6 and ξ̂α([0], Θ[1/3]) = 1E16
6,2. If α ̸≡ 1, Then Ĥ1(F, (AutJα)0)

consists only of a trivial class Θ[0] and ξ̂α([0], Θ[0]) corresponds to 2E2
6,4.

If F = R, then ξ is surjective, but not bijective. The set H1(F, AutC) has two elements,
a trivial class [0] and a nontrivial class [1] corresponding to a division Cayley algebra. By
[2, p.114], one obtains the following classification. If α ≡ 1, Ĥ1(R, (AutJα)0) consists only
of a trivial class Θ[0] and one has ξ̂α([0],Θ[0]) = 1E0

6,6 and ξ̂α([1], Θ[0]) = 1E28
6,2. On the

other hand, if α ̸≡ 1, then Ĥ1(R, (AutJα)0) consists of a trivial class Θ[0] and a non-trivial
class Θ[1] corresponding to the reduced Freudenthal algebra {x ∈ M3(C) : tx = x}. One has
ξ̂α([0],Θ[0]) = ξ̂α([0], Θ[1]) = 2E2

6,4, ξ̂α([1],Θ[0]) = 2E16
6,2

′ and ξ̂α([1], Θ[1]) = 2E78
6,0.

Let F be an algebraic number field. Ferrar proved the following

Theorem. ([1,II,Theorem(6.4),Proposition(7.1)]) The map ξ is surjective and ξ([a], [b]) =
ξ([a′], [b′]) implies [a] = [a′]. If α ≡ 1, then ξ̂α is bijective.

By the surjectivity of ξ, any Lie algebra of type E6 over F is F -isomorphic to some
Tα

b,c(F ). In what follow, we give a refinement of this theorem. We fix [a] ∈ H1(F, AutC),
Θ[c] ∈ Ĥ1(F, (AutJα)0) and put Θ[d] = ξ̂α([a], Θ[c]). From the commutative diagram (7),
it follows that V s

f (Eα)c = V s
f (Eα)d, Mα

c = Mα
d and ξ̂α([a], σΘ[c]) = σξ̂α([a], Θ[c]) holds for

any σ ∈ Mα
c .

Theorem 1. The map

Λ(Jα,c(F )) −→ Λ(Tα
a,c(F )) : [Jα,c′(F )] 7→ [T (Ca(F ), Jα,c′(F ))]

is bijective. In particular, one has h(Tα
a,c(F )) = h(Jα,c(F )).

Proof. In Section 1 and the first paragraph of this section, we showed that the map σ 7→
σΘ[c] (resp. σ 7→ σΘ[d]) gives rise to a bijection from {±1}\Mα

c to λ̂−1(λ̂(Θ[c])) (resp.
λ̂−1(λ̂(Θ[d]))). ¤

Next, we give an isomorphism condition for Tα
a,c(F ) and Tα′

a′,c′(F ). Let V r
∞,1(Eα)a be

the subset consisting of v ∈ V r
∞,1(Eα) such that Ca(Fv) ∼= C(Fv). We say that Jα,c′(F ) is

congruent to Jα,c(F ) modulo V r
∞,1(Eα)a if (invv(c′))v∈Vf

= ϵ(invv(c))v∈Vf
with ϵ = ±1 and
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Jα,c′(Fv) ∼= Jα,c(Fv) for all v ∈ V r
∞,1(Eα) − V r

∞,1(Eα)a. We denote this case by Jα,c(F ) ≃
Jα,c′(F ) mod V r

∞,1(Eα)a. Clearly, by (3), one has that Jα,c(F ) ∼= Jα,c′(F ) if and only if
Jα,c′(F ) ≃ Jα,c(F ) mod V r

∞,1(Eα)a and Jα,c(Fv) ∼= Jα,c′(Fv) for all v ∈ V r
∞,1(Eα)a.

Theorem 2. Tα
a,c(F ) ∼= Tα′

a′,c′(F ) if and only if α′ = α, [a′] = [a] and Jα,c′(F ) ≃ Jα,c(F )
mod V r

∞,1(Eα)a.

Proof. If Tα′

a′,c′(F ) is F -isomorphic to Tα
a,c(F ), then one has obviously α′ = α, and by Ferrar’s

theorem, [a′] = [a]. It follows from the diagram (7) that (invv(c′))v∈Vf
= ±(invv(c))v∈Vf

.
Let v ∈ V r

∞,1(Eα) − V r
∞,1(Eα)a. Since Ca(Fv) is a division Cayley algebra, Tα

a,c′(Fv) ∼=
Tα

a,c(Fv) implies Jα,c′(Fv) ∼= Jα,c(Fv). Conversely, let α′ = α, [a′] = [a] and Jα,c′(F ) ≃
Jα,c(F ) mod V r

∞,1(Eα)a. We may assume a′ = a. If v ∈ V r
∞,1(Eα)a, then Tα

a,c(Fv) is
always quasi-split and its Fv-isomorphism class is independent of [c]. By this and the
definition of congruence, one has Tα

a,c′(Fv) ∼= Tα
a,c(Fv) for all v ∈ V∞,1 and (invv(c′))v∈Vf

=
±(invv(c))v∈Vf

. This concludes Tα
a,c′(F ) ∼= Tα

a,c(F ). ¤

As a result, the cardinal number of the fiber ξ−1(ξ([a], [b])) is equal to 2|V
r
∞,1(Eε(b))a|. Since

V r
∞,1(Eε(b))a is empty for all [a], [b] if and only if V∞,1 is empty, we obtain

Corollary. The map ξ is bijective if and only if F is totally imaginary.
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