A NOTE ON LIE ALGEBRAS OF TYPE E_6 OVER ALGEBRAIC NUMBER FIELDS

TAKAO WATANABE

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan

ABSTRACT. Let \mathfrak{g} be a Lie algebra of type E_6 , C a Cayley algebra and J a cubic Jordan algebra of type A defined over an algebraic number field F. Ferrar proved that Tits' construction of exceptional Lie algebras yields a surjection ξ from $H^1(F, \operatorname{Aut} C) \times H^1(F, \operatorname{Aut} J)$ onto $H^1(F, \operatorname{Aut} \mathfrak{g})$. In this paper, we study the fiber of ξ and compute the class number of a given F-form of \mathfrak{g} .

Key words: Lie algebra of type E_6 , Tits' construction, Galois cohomology.

Introduction. Let $\mathfrak{g}(F)$ be a split Lie algebra of type E_6 over an algebraic number field F. In a paper [1, II], Ferrar proved that any F-form of $\mathfrak{g}(F)$ is isomorphic to the Tits algebra $T(C_a(F), J_b(F))$ constructed from a suitable pair of a Cayley algebra $C_a(F)$ and a cubic Jordan algebra $J_b(F)$ of type A over F. The Cayley algebra $C_a(F)$ is obtained from the twist of a split Cayley algebra C(F) by a 1-cocycle $a \in Z^1(\Gamma, \operatorname{Aut} C(\overline{F}))$ of the absolute Galois group $\Gamma = \operatorname{Gal}(\overline{F}/F)$. Similarly, the Jordan algebra $J_b(F)$ is obtained from the twist of a split Jordan algebra $J(F) = M_3(F)^+$ by a 1-cocycle $b \in Z^1(\Gamma, \operatorname{Aut} J(\overline{F}))$. In terms of Galois cohomology, Ferrar's theorem is stated as the Tits construction gives rise to a surjection ξ from $H^1(F, \operatorname{Aut} C(\overline{F})) \times H^1(F, \operatorname{Aut} J(\overline{F}))$ onto $H^1(F, \operatorname{Aut} \mathfrak{g}(\overline{F}))$. In general, this ξ is not injective and, by [1, II, Proposition(7.1)], one knows only that $T(C_a(F), J_b(F)) \cong T(C_{a'}(F), J_{b'}(F))$ implies $C_a(F) \cong C_{a'}(F)$. A purpose of this paper is to give a refinement of this isomorphism condition. We will give, in Theorem 2 below, a necessary and sufficient condition for $T(C_a(F), J_b(F)) \cong T(C_{a'}(F), J_{b'}(F))$.

One reason of complication of a classification of F-forms of $\mathfrak{g}(F)$ is a failure of the Hasse principle of $H^1(F, \operatorname{Aut} \mathfrak{g}(\overline{F}))$. As was shown in [1, II, Theorem(5.1)], the Hasse principle holds only for $H^1(F, \operatorname{Int} \mathfrak{g}(\overline{F}))$. A failure of the Hasse principle allows us to define the class number $h(\mathfrak{g}_z(F))$ of a given F-form $\mathfrak{g}_z(F)$. We denote by $\Lambda(\mathfrak{g}_z(F))$ the set of Fisomorphism classes $[\mathfrak{g}_{z'}(F)]$ such that $\mathfrak{g}_z(F_v) \cong \mathfrak{g}_{z'}(F_v)$ for all places v of F. Then $h(\mathfrak{g}_z(F))$

Mathematics Subject Classification (1991): 11E72, 17B25, 20G30

is defined to be the cardinal number of $\Lambda(\mathfrak{g}_z(F))$. Since the same situation occurs for F-forms of J(F), the set $\Lambda(J_b(F))$ and the class number $h(J_b(F))$ are similarly defined. If a Cayley algebra $C_a(F)$ is fixed, one has two sets $\Lambda(J_b(F))$ and $\Lambda(T(C_a(F), J_b(F)))$. Then we will prove that the mapping $[J_{b'}(F)] \mapsto [T(C_a(F), J_{b'}(F))]$ yields a bijection from $\Lambda(J_b(F))$ to $\Lambda(T(C_a(F), J_b(F)))$. Therefore, one understands that a failure of the Hasse principle for forms of E_6 is "heredity" of that for forms of $M_3(F)^+$. The class number $h(J_b(F)) = h(T(C_a(F), J_b(F)))$ will be computed in Section 1.

Notation. For a given field F, its separable algebraic closure is denoted by \overline{F} and the Galois group of \overline{F}/F is denoted by Γ . If A(F) is an F-algebra and E/F is an extension, then A(E) stands for $A(F) \otimes_F E$. If $E = \overline{F}$, we will simply write A for $A(\overline{F})$. The group of the *n*-th root of unity in \overline{F} is denoted by μ_n . This is regarded as an algebraic group defined over F. For a finite separable extension E/F, $R_{E/F}(\mu_n)$ stands for the restriction of scalars of μ_n/E to F. The kernel of the norm homomorphism from $R_{E/F}(\mu_n)$ to μ_n is denoted by $R_{E/F}^{(1)}(\mu_n)$. If E = F, $R_{E/F}^{(1)}(\mu_n)$ is equal to μ_n . For a finite set X, the cardinal number of X is denoted by |X|.

1. Class numbers of cubic Jordan algebras of type A.

Let J(F) be the Jordan algebra consisting of 3 by 3 matrices with entries in a field Fof characteristic 0. As usual, the Jordan algebra product of J(F) is given by x * y = (xy + yx)/2 for $x, y \in J(F)$. The automorphism group Aut J is isomorphic to a semi-direct product of the group $PGL_3(\overline{F})$ of inner automorphisms and the cyclic group Θ generated by the transpose $\theta \colon x \mapsto {}^tx$. The F-forms of J(F) is classified by the Galois cohomology set $H^1(F, \operatorname{Aut} J)$ as follows. For a given 1-cocycle $z \in Z^1(\Gamma, \operatorname{Aut} J)$, set $J_z(F) = \{x \in$ $J \colon z(\gamma)\gamma x = x \text{ for all } \gamma \in \Gamma\}$. Then $J_z(F)$ is an F-form of J(F) and its F-isomorphism class $[J_z(F)]$ depends only on the cohomology class [z]. The map $[z] \mapsto [J_z(F)]$ yields a bijection from $H^1(F, \operatorname{Aut} J)$ to the set of F-isomorphism classes of F-forms of J(F). By the exact sequence

$$H^1(F, PGL_3(\overline{F})) \longrightarrow H^1(F, \operatorname{Aut} J) \xrightarrow{\varepsilon} H^1(F, \Theta) = \operatorname{Hom}(\Gamma, \Theta),$$

 $H^1(F, \operatorname{Aut} J)$ decomposes into a disjoint union of $\varepsilon^{-1}(\alpha)$, $\alpha \in \operatorname{Hom}(\Gamma, \Theta)$. We choose a splitting

$$H^1(F,\Theta) \longrightarrow H^1(F,\operatorname{Aut} J) \colon \alpha \mapsto [z_\alpha]$$

of ε as

$$z_{\alpha}(\gamma) = \begin{cases} \text{the identity} & (\gamma \in \operatorname{Ker} \alpha) \\ \operatorname{int}(w) \circ \theta & (\gamma \notin \operatorname{Ker} \alpha) \end{cases} \quad \text{where } w = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

We write simply $J_{\alpha}(F)$ for $J_{z_{\alpha}}(F)$. Let E_{α} be the invariant field of Ker α in \overline{F} , so that the degree of the extension E_{α}/F is of at most two. If α is non-trivial and $x \mapsto \overline{x}$ denotes the Galois involution of E_{α}/F , then $J_{\alpha}(F)$ is the reduced Freudenthal algebra $\{x \in J(E_{\alpha}): w^{t}\overline{x}w^{-1} = x\}$. The automorphism group Aut J_{α} is an algebraic group defined over F. Its identity component $(\operatorname{Aut} J_{\alpha})^{0}$ is a projective linear group or a projective quasi-split unitary group of degree 3 according as α is trivial or non-trivial. The action $\operatorname{int}(g) \mapsto \theta \circ \operatorname{int}(g) \circ \theta^{-1} = \operatorname{int}({}^{t}g^{-1})$ on $(\operatorname{Aut} J_{\alpha})^{0}$ induces the action of Θ on $H^{1}(F, (\operatorname{Aut} J_{\alpha})^{0})$. Then, by the diagram

$$\begin{array}{cccc} H^1(F,\operatorname{Aut} J) & \stackrel{\varepsilon}{\longrightarrow} & H^1(F,\Theta) \\ & & & \downarrow & & \downarrow \\ H^1(F,(\operatorname{Aut} J_{\alpha})^0) & \stackrel{i_{\alpha}}{\longrightarrow} & H^1(F,\operatorname{Aut} J_{\alpha}) & \stackrel{\varepsilon_{\alpha}}{\longrightarrow} & H^1(F,\Theta) \,, \end{array}$$

where vertical arrows are those natural bijections which transform $[z_{\alpha}]$ and α to trivial classes, one has

$$\varepsilon^{-1}(\alpha) \cong \operatorname{Ker} \epsilon_{\alpha} = \operatorname{Im} i_{\alpha} \cong \Theta \setminus H^{1}(F, (\operatorname{Aut} J_{\alpha})^{0}),$$

and hence

$$H^{1}(F, \operatorname{Aut} J) = \bigsqcup_{\alpha \in \operatorname{Hom}(\Gamma, \Theta)} \varepsilon^{-1}(\alpha) \cong \bigsqcup_{\alpha \in \operatorname{Hom}(\Gamma, \Theta)} \Theta \setminus H^{1}(F, (\operatorname{Aut} J_{\alpha})^{0}).$$
(1)

Let $J_{\alpha,c}(F)$ be the twist of $J_{\alpha}(F)$ by a 1-cocycle $c \in Z^{1}(\Gamma, (\operatorname{Aut} J_{\alpha})^{0})$. It follows from (1) that $J_{\alpha,c}(F) \cong J_{\alpha,c'}(F)$ if and only if $\Theta[c] = \Theta[c']$. Since the center of the universal covering group of $(\operatorname{Aut} J_{\alpha})^{0}$ is $R^{(1)}_{E_{\alpha}/F}(\mu_{3})$, there is a connection morphism from $H^{1}(F, (\operatorname{Aut} J_{\alpha})^{0})$ to $H^{2}(F, R^{(1)}_{E_{\alpha}/F}(\mu_{3}))$. The action of θ on $R^{(1)}_{E_{\alpha}/F}(\mu_{3})$ is given by $\zeta \mapsto \zeta^{-1}$. This action and the connection morphism induces the morphism

$$\Theta \setminus H^1(F, (\operatorname{Aut} J_{\alpha})^0) \longrightarrow \Theta \setminus H^2(F, R^{(1)}_{E_{\alpha}/F}(\mu_3))$$

If F is a nonarchimedean local field, this morphism is bijective ([4, Corollary to Theorem 6.20]). For simplicity, we denote by $\hat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0)$ and by $\hat{H}^2(F, R_{E_{\alpha}/F}^{(1)}(\mu_3))$ the orbit spaces $\Theta \setminus H^1(F, (\operatorname{Aut} J_{\alpha})^0)$ and $\Theta \setminus H^2(F, R_{E_{\alpha}/F}^{(1)}(\mu_3))$, respectively.

In the following, let F be an algebraic number field, V_f the set of all finite places and $V_{\infty,1}$ the set of all real places of F. If $v \in V_f$, there is the canonical isomorphism

$$\operatorname{inv}_v \colon H^2(F_v,\mu_3) \longrightarrow \frac{1}{3}\mathbb{Z}/\mathbb{Z}.$$

We fix an $\alpha \in \text{Hom}(\Gamma, \Theta)$ and denote by $V_f^s(E_\alpha)$ (resp. $V_{\infty,1}^r(E_\alpha)$) the subset consisting of $v \in V_f$ (resp. $v \in V_{\infty,1}$) such that v splits (resp. does not split) in E_α . If $E_\alpha = F$, we regard $V_f^s(E_\alpha)$ (resp. $V_{\infty,1}^r(E_\alpha)$) as V_f (resp. the empty set) for convenience. By the Tate–Poitou duality, one has the isomorphism

$$H^{2}(F, R_{E_{\alpha}/F}^{(1)}(\mu_{3})) \cong \begin{cases} \{(\beta_{v}) \in \prod_{v \in V_{f}} H^{2}(F_{v}, \mu_{3}) \colon \sum_{v \in V_{f}} \operatorname{inv}_{v}(\beta_{v}) = 0\} & (\alpha \equiv 1) \\ \prod_{v \in V_{f}^{s}(E_{\alpha})} H^{2}(F_{v}, \mu_{3}) & (\alpha \not\equiv 1) \end{cases}$$

(cf. [4, Lemma 6.19]). We write \mathcal{H}_{α} for the group of the right hand side. Furthermore, we set

$$\widehat{\mathcal{H}}'_{\alpha} = \{ \mathcal{O} \in \coprod_{v \in V_f^s(E_{\alpha})} \widehat{H}^2(F_v, \mu_3) \colon \mathcal{O}^{(1)} \neq \emptyset \}, \text{ where } \mathcal{O}^{(1)} = \left(\coprod_{v \in V_f^s(E_{\alpha})} \mathcal{O}_v \right) \cap \mathcal{H}_{\alpha}.$$
(2)

Note that $\widehat{\mathcal{H}}'_{\alpha}$ is distinct from $\widehat{\mathcal{H}}_{\alpha} = \Theta \setminus \mathcal{H}_{\alpha} \cong \widehat{H}^2(F, R^{(1)}_{E_{\alpha}/F}(\mu_3))$ and there is a natural quotient map $\widehat{\mathcal{H}}_{\alpha} \to \widehat{\mathcal{H}}'_{\alpha}$. The connection morphism and the Hasse map gives the following diagram.

$$H^{1}(F, (\operatorname{Aut} J_{\alpha})^{0}) \longrightarrow H^{2}(F, R^{(1)}_{E_{\alpha}/F}(\mu_{3})) \cong \mathcal{H}_{\alpha}$$

$$\downarrow$$

$$\prod_{v \in V^{r}_{\infty,1}(E_{\alpha})} H^{1}(F_{v}, (\operatorname{Aut} J_{\alpha})^{0})$$

By the Hasse principle (cf. [5, Corollaire 4.5], [7]), one obtains the bijection

$$\lambda \colon H^1(F, (\operatorname{Aut} J_{\alpha})^0) \xrightarrow{\cong} \mathcal{H}_{\alpha} \times \prod_{v \in V_{\infty,1}^r(E_{\alpha})} H^1(F_v, (\operatorname{Aut} J_{\alpha})^0).$$
(3)

This and the triviality of the action of Θ on $H^1(F_v, (\operatorname{Aut} J_\alpha)^0)$ for $v \in V^r_{\infty,1}(E_\alpha)$ give the surjection

$$\widehat{\lambda} \colon \widehat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0) \longrightarrow \widehat{\mathcal{H}}'_{\alpha} \times \prod_{v \in V_{\infty,1}^r(E_{\alpha})} H^1(F_v, (\operatorname{Aut} J_{\alpha})^0).$$
(4)

We fix a $[c] \in H^1(F, (\operatorname{Aut} J_{\alpha})^0)$. The set $\Lambda(J_{\alpha,c}(F))$ of *F*-isomorphism classes in the genus of $J_{\alpha,c}(F)$ is defined by

$$\{[J_{\alpha,c'}(F)]: [c'] \in H^1(F, (\operatorname{Aut} J_{\alpha})^0) \text{ and } J_{\alpha,c}(F_v) \cong J_{\alpha,c'}(F_v) \text{ for all } v \in V_f \cup V_{\infty,1}\}.$$

In the rest of this section, we compute the class number $h(J_{\alpha,c}(F)) = |\Lambda(J_{\alpha,c}(F))|$.

Let $\lambda_v([c])$ be the *v*-component of $\lambda([c])$ and $\widehat{\lambda}(\Theta[c])_f$ the \widehat{H}'_{α} -component of $\widehat{\lambda}(\Theta[c])$. Define $\widehat{\lambda}(\Theta[c])_f^{(1)}$ as in (2). By (3) and (4), the correspondence $\Theta[c'] \mapsto [J_{\alpha,c'}(F)]$ gives a bijection

$$\widehat{\lambda}^{-1}(\widehat{\lambda}(\Theta[c])) = \Theta \setminus \lambda^{-1}(\widehat{\lambda}(\Theta[c])_f^{(1)} \times (\lambda_v[c])_{v \in V_{\infty,1}^r(E_\alpha)}) \xrightarrow{\cong} \Lambda(J_{\alpha,c}(F))$$

We simply write $\operatorname{inv}_v(c)$ for the Hasse invariant of $\lambda_v([c])$. Let $V_f^s(E_\alpha)_c$ be the set of all $v \in V_f^s(E_\alpha)_c$ such that $\operatorname{inv}_v(c)$ is not zero. The set $\operatorname{Map}(V_f^s(E_\alpha)_c, \{\pm 1\})$ of all mappings from $V_f^s(E_\alpha)_c$ to $\{\pm 1\}$ is regarded as a finite abelian group by the product $(\sigma\tau)(v) = \sigma(v)\tau(v)$ for $\sigma, \tau \in \operatorname{Map}(V_f^s(E_\alpha)_c, \{\pm 1\})$ and $v \in V_f^s(E_\alpha)_c$. If $V_f^s(E_\alpha)_c$ is non-empty, then we define the subset M_c^α of $\operatorname{Map}(V_f^s(E_\alpha)_c, \{\pm 1\})$ as follows:

$$M_c^{\alpha} = \begin{cases} \{\sigma \in \operatorname{Map}(V_f^s(E_{\alpha})_c, \{\pm 1\}) \colon \sum_{v \in V_f^s(E_{\alpha})_c} \sigma(v) \operatorname{inv}_v(c) = 0 \} & (\alpha \equiv 1) \\ \operatorname{Map}(V_f^s(E_{\alpha})_c, \{\pm 1\}) & (\alpha \not\equiv 1) \end{cases}$$

In the case of $V_f^s(E_\alpha)_c = \emptyset$, we set $M_c^\alpha = \{0\}$. For $\sigma \in M_c^\alpha$, we define the cohomology class $\sigma[c]$ by

$$[c] = \lambda^{-1} ((\operatorname{inv}_v^{-1}(\sigma(v)\operatorname{inv}_v(c)))_{v \in V_f^s(E_\alpha)} \times (\lambda_v[c])_{v \in V_{\infty,1}^r(E_\alpha)}).$$

Then the mapping $\sigma \mapsto \sigma[c]$ yields a bijection from M_c^{α} to $\lambda^{-1}(\widehat{\lambda}(\Theta[c])_f^{(1)} \times (\lambda_v[c])_{v \in V_{\infty,1}^r(E_{\alpha})})$. Since $\theta(\sigma[c]) = \sigma(\theta[c]) = (-\sigma)[c]$, one has

$$\{\pm 1\} \setminus M_c^{\alpha} \cong \Theta \setminus \lambda^{-1}(\widehat{\lambda}(\Theta[c])_f^{(1)} \times (\lambda_v[c])_{v \in V_{\infty,1}^r(E_{\alpha})}) \cong \Lambda(J_{\alpha,c}(F)).$$

Proposition. The class number $h(J_{\alpha,c}(F))$ is equal to

 σ

$$|\{\pm 1\} \setminus M_{c}^{\alpha}| = \begin{cases} \frac{1}{2} \sum_{j=0}^{q} \sum_{k=-\lfloor j/3 \rfloor}^{\lfloor (p-j)/3 \rfloor} {q \choose j} {p \choose 3k+j} & (\alpha \equiv 1 \text{ and } [c] \neq 0) \\ 2^{p+q-1} & (\alpha \not\equiv 1 \text{ and } [c] \neq 0) \\ 1 & ([c] = 0) \end{cases}$$
(5)

Here we set

$$V_f^s(E_\alpha)_c^{\pm} = \{ v \in V_f^s(E_\alpha)_c \colon \operatorname{inv}_v(c) = \pm \frac{1}{3} + \mathbb{Z} \}$$

and $p = \max(|V_f^s(E_\alpha)_c^+|, |V_f^s(E_\alpha)_c^-|), q = \min(|V_f^s(E_\alpha)_c^+|, |V_f^s(E_\alpha)_c^-|))$. For a real number r, [r] denotes the largest integer which is less than or equal to r.

Proof. The only non-trivial case is the one of $\alpha \equiv 1$ and $[c] \neq 0$. We may assume $p = |V_f^s(E_\alpha)_c^+|$ by replacing [c] with $\theta[c]$ if necessary. From Hasse's product formula, $p - q \in 3\mathbb{Z}$ follows. For $\sigma \in M_c^\alpha$, if we set

$$i = |\sigma^{-1}(-1) \cap V_f^s(E_\alpha)_c^+|, \qquad j = |\sigma^{-1}(-1) \cap V_f^s(E_\alpha)_c^-|,$$

then k = (i - j)/3 must be an integer by the definition of M_c^{α} . Therefore, $|M_c^{\alpha}|$ is equal to the number of subsets $X \times Y$ of $V_f^s(E_{\alpha})_c^+ \times V_f^s(E_{\alpha})_c^-$ such that (|X| - |Y|)/3 is an integer, $0 \le |Y| \le q$ and $-[|Y|/3] \le (|X| - |Y|)/3 \le [(p - |Y|)/3]$. This is given by

$$\sum_{j=0}^{q} \sum_{k=-\lfloor j/3 \rfloor}^{\lfloor (p-j)/3 \rfloor} \binom{q}{j} \binom{p}{3k+j} \cdot \Box$$

2. Class numbers of Lie algebras of type E_6 .

Let $\mathfrak{g}(F)$ be a split Lie algebra of type E_6 over a field F of characteristic 0. The automorphism group Aut \mathfrak{g} is a semidirect product of its connected component $(\operatorname{Aut} \mathfrak{g})^0$ and the group Θ' generated by the opposition involution of the Dynkin diagram of \mathfrak{g} . Since Θ' is isomorphic to Θ , we will identify Θ' with Θ in the following. Similarly as in Section 1, the F-isomorphism classes of F-forms of $\mathfrak{g}(F)$ is classified by the set $H^1(F, \operatorname{Aut} \mathfrak{g})$ and we have the exact sequence

$$H^1(F, (\operatorname{Aut} \mathfrak{g})^0) \longrightarrow H^1(F, \operatorname{Aut} \mathfrak{g}) \xrightarrow{\varepsilon'} H^1(F, \Theta) = \operatorname{Hom}(\Gamma, \Theta)$$

For $\alpha \in \operatorname{Hom}(\Gamma, \Theta)$, let $\mathfrak{g}_{\alpha}(F)$ be a quasi-split *F*-form of $\mathfrak{g}(F)$ corresponding to α and $(\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}$ the identity connected component of the automorphism group of \mathfrak{g}_{α} . By the same way as (1), $H^{1}(F, \operatorname{Aut} \mathfrak{g})$ decomposes into a disjoint union of $\widehat{H}^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) = \Theta \setminus H^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0})$, ($\alpha \in \operatorname{Hom}(\Gamma, \Theta)$). If *F* is a local field, the classification theory by Satake and Tits concludes that elements of $\widehat{H}^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0})$ bijectively correspond to Tits indices of type E_{6} realized over *F*. So that one can identify $\widehat{H}^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0})$ with the set of Tits indices as follows:

$$\widehat{H}^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) = \begin{cases} \{^{1}E_{6,6}^{0}, \ ^{1}E_{6,2}^{16}\} & (F \text{ is nonarchimedean and } \alpha \equiv 1) \\ \{^{2}E_{6,4}^{2}\} & (F \text{ is nonarchimedean and } \alpha \neq 1) \\ \{^{1}E_{6,6}^{0}, \ ^{1}E_{6,2}^{28}\} & (F = \mathbb{R} \text{ and } \alpha \equiv 1) \\ \{^{2}E_{6,4}^{2}, \ ^{2}E_{6,2}^{16}', \ ^{2}E_{6,0}^{78}\} & (F = \mathbb{R} \text{ and } \alpha \neq 1) \end{cases}$$
(6)

Let F be an algebraic number field. Since the center of the universal covering group of $(\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}$ is isomorphic to $R_{E_{\alpha}/F}^{(1)}(\mu_{3})$, the group \mathcal{H}_{α} is defined as in Section 1 and one has the commutative diagram

$$\begin{array}{ccc} H^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) & \xrightarrow{\lambda} & \mathcal{H}_{\alpha} \times \prod_{v \in V_{\infty,1}^{r}(E_{\alpha})} H^{1}(F_{v}, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) \\ & & \downarrow & & \downarrow \\ \widehat{H}^{1}(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) & \xrightarrow{\widehat{\lambda}} & \widehat{\mathcal{H}}_{\alpha}' \times \prod_{v \in V_{\infty,1}^{r}(E_{\alpha})} H^{1}(F_{v}, (\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) \end{array}$$

Therefore, the situation is the same as in Section 1. For $[d] \in H^1(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^0)$, three sets $\Lambda(\mathfrak{g}_{\alpha,d}(F)), V_f^s(E_{\alpha})_d$ and M_d^{α} are defined in the same way. The class number $h(\mathfrak{g}_{\alpha,d}(F)) = |\Lambda(\mathcal{H}_{\alpha,d}(F))|$ is equal to $|\{\pm 1\} \setminus M_d^{\alpha}|$ and it is given by the formula (5).

We recall Ferrar's result. Let C(F) be a split Cayley algebra over a field F of characteristic 0. The automorphism group Aut C is an adjoint group of type G_2 . The isomorphism classes of Cayley algebras over F is classified by $H^1(F, \operatorname{Aut} C)$. The twist of C(F) by a 1-cocycle $a \in Z^1(\Gamma, \operatorname{Aut} C)$ is denoted by $C_a(F)$. For a Cayley algebra $C_a(F)$ and a cubic Jordan algebra $J_b(F)$ of type A, one obtains a Lie algebra $T(C_a(F), J_b(F))$ of type E_6 over F by Tits' construction. Namely, $T(C_a(F), J_b(F)) = \operatorname{Der} C_a(F) + C_a(F)^* \otimes_F J_b(F)^* + \operatorname{Der} J_b(F)$ as a set, where $\operatorname{Der} X$ is the Lie algebra of derivations of X and X^* the space of elements of generic trace 0 for $X = C_a(F), J_b(F)$, and the Lie bracket product is defined as in [1, II, §1]. We write $T_{a,b}(F)$ for $T(C_a(F), J_b(F))$ and denote by $\xi([a], [b])$ the cohomology class corresponding to the F-isomorphism class $[T_{a,b}(F)]$. Then we have the diagram

where the left vertical arrow is given by $[a] \times [b] \mapsto \varepsilon([b])$. Since this diagram is commutative ([1, II, Lemma(2.4), (i)]), for each $\alpha \in Hom(\Gamma, \Theta)$, ξ induces the map

$$H^1(F, \operatorname{Aut} C) \times \widehat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0) \xrightarrow{\widehat{\xi}^{\alpha}} \widehat{H}^1(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^0).$$

We write $T_{a,c}^{\alpha}(F)$ for the Lie algebra $T(C_a(F), J_{\alpha,c}(F))$. The cohomology class $\widehat{\xi}^{\alpha}([a], \Theta[c])$ corresponds to the *F*-isomorphism class $[T_{a,c}^{\alpha}(F)]$. Furthermore, by a relation of Aut $C \times$ Aut J_{α} and Aut \mathfrak{g}_{α} given by [1, II, Proposition(2.3) and Lemma(2.4)], it is known that the following diagram is commutative.

$$\begin{array}{cccc}
H^{1}(F,\operatorname{Aut} C) \times \widehat{H}^{1}(F,(\operatorname{Aut} J_{\alpha})^{0}) & \stackrel{\widehat{\xi}^{\alpha}}{\longrightarrow} & \widehat{H}^{1}(F,(\operatorname{Aut} \mathfrak{g}_{\alpha})^{0}) \\
& & \downarrow & & \downarrow & \\
\widehat{H}^{2}(F,R^{(1)}_{E_{\alpha}/F}(\mu_{3})) & = & \widehat{H}^{2}(F,R^{(1)}_{E_{\alpha}/F}(\mu_{3}))
\end{array}$$
(7)

where vertical arrows are induced from connection morphisms on $H^1(F, (\operatorname{Aut} J_{\alpha})^0)$ and $H^1(F, (\operatorname{Aut} \mathfrak{g}_{\alpha})^0)$.

If F is a nonarchimedean local field, then ξ is bijective ([1, II, Lemmas (6.2) and (6.3)]). In this case, $H^1(F, \operatorname{Aut} C)$ is trivial. If $\alpha \equiv 1$, then $\widehat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0)$ consists of a trivial class $\Theta[0]$ and a non-trivial class $\Theta[1/3]$ of Hasse invariant $\pm 1/3$. By the identification of (6), one has $\widehat{\xi}^{\alpha}([0], \Theta[0]) = {}^1E^0_{6,6}$ and $\widehat{\xi}^{\alpha}([0], \Theta[1/3]) = {}^1E^{16}_{6,2}$. If $\alpha \not\equiv 1$, Then $\widehat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0)$ consists only of a trivial class $\Theta[0]$ and $\widehat{\xi}^{\alpha}([0], \Theta[0])$ corresponds to ${}^2E^2_{6,4}$.

If $F = \mathbb{R}$, then ξ is surjective, but not bijective. The set $H^1(F, \operatorname{Aut} C)$ has two elements, a trivial class [0] and a nontrivial class [1] corresponding to a division Cayley algebra. By [2, p.114], one obtains the following classification. If $\alpha \equiv 1$, $\hat{H}^1(\mathbb{R}, (\operatorname{Aut} J_{\alpha})^0)$ consists only of a trivial class $\Theta[0]$ and one has $\hat{\xi}^{\alpha}([0], \Theta[0]) = {}^{1}E^{0}_{6,6}$ and $\hat{\xi}^{\alpha}([1], \Theta[0]) = {}^{1}E^{28}_{6,2}$. On the other hand, if $\alpha \not\equiv 1$, then $\hat{H}^1(\mathbb{R}, (\operatorname{Aut} J_{\alpha})^0)$ consists of a trivial class $\Theta[0]$ and a non-trivial class $\Theta[1]$ corresponding to the reduced Freudenthal algebra $\{x \in M_3(\mathbb{C}) : {}^t\overline{x} = x\}$. One has $\hat{\xi}^{\alpha}([0], \Theta[0]) = \hat{\xi}^{\alpha}([0], \Theta[1]) = {}^{2}E^{2}_{6,4}, \hat{\xi}^{\alpha}([1], \Theta[0]) = {}^{2}E^{16}_{6,2}$ and $\hat{\xi}^{\alpha}([1], \Theta[1]) = {}^{2}E^{78}_{6,0}$.

Let F be an algebraic number field. Ferrar proved the following

Theorem. ([1,II,Theorem(6.4),Proposition(7.1)]) The map ξ is surjective and $\xi([a], [b]) = \xi([a'], [b'])$ implies [a] = [a']. If $\alpha \equiv 1$, then $\widehat{\xi}^{\alpha}$ is bijective.

By the surjectivity of ξ , any Lie algebra of type E_6 over F is F-isomorphic to some $T_{b,c}^{\alpha}(F)$. In what follow, we give a refinement of this theorem. We fix $[a] \in H^1(F, \operatorname{Aut} C)$, $\Theta[c] \in \widehat{H}^1(F, (\operatorname{Aut} J_{\alpha})^0)$ and put $\Theta[d] = \widehat{\xi}^{\alpha}([a], \Theta[c])$. From the commutative diagram (7), it follows that $V_f^s(E_{\alpha})_c = V_f^s(E_{\alpha})_d$, $M_c^{\alpha} = M_d^{\alpha}$ and $\widehat{\xi}^{\alpha}([a], \sigma\Theta[c]) = \sigma\widehat{\xi}^{\alpha}([a], \Theta[c])$ holds for any $\sigma \in M_c^{\alpha}$.

Theorem 1. The map

$$\Lambda(J_{\alpha,c}(F)) \longrightarrow \Lambda(T_{a,c}^{\alpha}(F)) \colon [J_{\alpha,c'}(F)] \mapsto [T(C_a(F), J_{\alpha,c'}(F))]$$

is bijective. In particular, one has $h(T^{\alpha}_{a,c}(F)) = h(J_{\alpha,c}(F))$.

Proof. In Section 1 and the first paragraph of this section, we showed that the map $\sigma \mapsto \sigma \Theta[c]$ (resp. $\sigma \mapsto \sigma \Theta[d]$) gives rise to a bijection from $\{\pm 1\} \setminus M_c^{\alpha}$ to $\widehat{\lambda}^{-1}(\widehat{\lambda}(\Theta[c]))$ (resp. $\widehat{\lambda}^{-1}(\widehat{\lambda}(\Theta[d]))$). \Box

Next, we give an isomorphism condition for $T^{\alpha}_{a,c}(F)$ and $T^{\alpha'}_{a',c'}(F)$. Let $V^r_{\infty,1}(E_{\alpha})_a$ be the subset consisting of $v \in V^r_{\infty,1}(E_{\alpha})$ such that $C_a(F_v) \cong C(F_v)$. We say that $J_{\alpha,c'}(F)$ is congruent to $J_{\alpha,c}(F)$ modulo $V^r_{\infty,1}(E_{\alpha})_a$ if $(\operatorname{inv}_v(c'))_{v \in V_f} = \epsilon(\operatorname{inv}_v(c))_{v \in V_f}$ with $\epsilon = \pm 1$ and $J_{\alpha,c'}(F_v) \cong J_{\alpha,c}(F_v) \text{ for all } v \in V_{\infty,1}^r(E_\alpha) - V_{\infty,1}^r(E_\alpha)_a. \text{ We denote this case by } J_{\alpha,c}(F) \cong J_{\alpha,c'}(F) \mod V_{\infty,1}^r(E_\alpha)_a. \text{ Clearly, by (3), one has that } J_{\alpha,c}(F) \cong J_{\alpha,c'}(F) \text{ if and only if } J_{\alpha,c'}(F) \simeq J_{\alpha,c}(F) \mod V_{\infty,1}^r(E_\alpha)_a \text{ and } J_{\alpha,c}(F_v) \cong J_{\alpha,c'}(F_v) \text{ for all } v \in V_{\infty,1}^r(E_\alpha)_a.$

Theorem 2. $T^{\alpha}_{a,c}(F) \cong T^{\alpha'}_{a',c'}(F)$ if and only if $\alpha' = \alpha$, [a'] = [a] and $J_{\alpha,c'}(F) \simeq J_{\alpha,c}(F)$ mod $V^r_{\infty,1}(E_{\alpha})_a$.

Proof. If $T_{a',c'}^{\alpha'}(F)$ is F-isomorphic to $T_{a,c}^{\alpha}(F)$, then one has obviously $\alpha' = \alpha$, and by Ferrar's theorem, [a'] = [a]. It follows from the diagram (7) that $(\operatorname{inv}_v(c'))_{v \in V_f} = \pm(\operatorname{inv}_v(c))_{v \in V_f}$. Let $v \in V_{\infty,1}^r(E_\alpha) - V_{\infty,1}^r(E_\alpha)_a$. Since $C_a(F_v)$ is a division Cayley algebra, $T_{a,c'}^{\alpha}(F_v) \cong T_{a,c}^{\alpha}(F_v)$ implies $J_{\alpha,c'}(F_v) \cong J_{\alpha,c}(F_v)$. Conversely, let $\alpha' = \alpha$, [a'] = [a] and $J_{\alpha,c'}(F) \simeq J_{\alpha,c}(F) \mod V_{\infty,1}^r(E_\alpha)_a$. We may assume a' = a. If $v \in V_{\infty,1}^r(E_\alpha)_a$, then $T_{a,c}^{\alpha}(F_v)$ is always quasi-split and its F_v -isomorphism class is independent of [c]. By this and the definition of congruence, one has $T_{a,c'}^{\alpha}(F_v) \cong T_{a,c}^{\alpha}(F_v)$ for all $v \in V_{\infty,1}$ and $(\operatorname{inv}_v(c'))_{v \in V_f} = \pm(\operatorname{inv}_v(c))_{v \in V_f}$. This concludes $T_{a,c'}^{\alpha}(F) \cong T_{a,c}^{\alpha}(F)$. \Box

As a result, the cardinal number of the fiber $\xi^{-1}(\xi([a], [b]))$ is equal to $2^{|V_{\infty,1}^r(E_{\varepsilon(b)})_a|}$. Since $V_{\infty,1}^r(E_{\varepsilon(b)})_a$ is empty for all [a], [b] if and only if $V_{\infty,1}$ is empty, we obtain

Corollary. The map ξ is bijective if and only if F is totally imaginary.

References

- J. C. Ferrar, *Lie algebras of type E*₆, J. of Algebra **13** (1969), 57 72; II, J. of Algebra **52** (1978), 201 209.
- [2] N. Jacobson, Exceptional Lie algebras, Marcel Dekker, 1971.
- [3] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, *The Book of Involutions*, Amer. Math. Soc. Colloquium Publ. 44, 1998.
- [4] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1994.
- [5] J.-J. Sansuc, Groupe de Brauer et arithmetique des groupes algebriques lineares sur un corps de nombres, J. reine und angew. 327 (1981), 12-80.
- [6] I. Satake, Classification Theory of Semi-Simple Algebraic Groups, Marcel Dekker, 1971.
- [7] _____, On classification of semisimple algebraic groups, The-7th MSJ Int. Res. Inst, Class Field Theory (to appear).
- [8] J. Tits, Classification of algebraic simisimple groups, Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., vol. 9, 1966, pp. 33-62.

E-mail address: twatanabe@math.sci.osaka-u.ac.jp