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1. Stringy motifs
andad
the McKay correspondence

- Wild group actions are not too much wild. -



Stringy motifs

X: Q-Gorenstein the stringy motif of X along W

N> P Fx
W C X: a closed subset M (X)w /(J o L™ *dux

" coming from
arcs meeting w _ J o
singularities

"he M contains a lot of information on resolutions:

1. minimal discrepancy
2. topology of the exceptional set of a resolution
3. non-existence of resolution



f:Y— X aresolution

U change of variables

My (X)w = My (Y, —Kf) -1y = / L% duy
(Jooy)f—lw

1
explicit if Kris a SNC divisor

IT f1s crepant | ‘
W



Mgy (X)W = M (Ya —Kf)f—lw

Conjecture A

. This holds even if Yis a DM stack,

. If the RHS is suitably defined as a motivic integral over
the space of twisted arcs.

. This will follow from the change of variables formula.

Theorem [Y]

Conjecture holds if Y is a tame DM stack




The McKay correspondence

settieng:
. G C GL4(k) a finite group without reflection

- X := k9/G the quotient variety
- X :=[k%/G] the quotient stack
- X — X a stacky crepant resolution

.f: Y — X a crepant resolution as a variety
U Conjecture A

[f_lw: — St(Y)f—lvV — Mst(X)W — Mst(X)W

"he (wild) McKay correspondence



[fTIW] = Mo (X)wy

U if char(k)+#G

ewp(f 1(0)) =#Con)(G) (0 € X)

the tame McKay correspondence

(conjectured by Relid,
proved by Batyreyv,
our approach essentially
due to Denef-Loeser.)




fTW] = My (X)w
Y] U chark) = #G=p >0

eop(F10) =p (0EX)

the p-cyclic McKay correspondence



Other consequences in the p-cyclic case

G C GL4«(k) » a numerical invariant
Dc €7

Mst(X)Q#OO < Dg =D

| f3logres.
log terminal

d crepant res. = Dg=p



_ crepant _
Non-existence of resolution

X. not necessarily linear
Mst(Y7 ;Kf)f—lw — Mst(X)W — Mst(X)W
1}

explicit formula compute

crepant /

J f= Properties of the invariant: f contradict
* rationality polynomial
* Poincaré duality / N\

(* topology of the dual complex of
the exceptional set [Kerz-Saito])

af

crepant
* D¢ =p (the p-cyclic case)



2. Motivic integration
over wild DM stacks

- T'wist arcs wildly! -



Expect that stringy motitfs of stacks will be defined as
motivic integrals over spaces of twisted arcs.

Spaces of (twisted) arcs

X: a variety Jso X = Hom(Spec kl[t]], X)

Xoatame | 7,X =| |Hompep([Speck[[t"/]]/ ], X)
DM stack (=1

v a wilg JoX 3 Infinitely many E’s

DM stack | = |_| Hom,ep (| £/ Gall, X)

FE—Spec k[[t]]: Gal. cov.




Change of variables for
varieties

f:Y— X a proper birational morphism of varieties

foo 1 JY = JX the Induced map of arc spaces

Theorem [Kontsevich, Denef-Loeser, Sebaqg]

measurable fn on C Jac. order fn of f

v / |
F — Fofo—ord Jacy
/c B = oo Uty

M
Joo X



Change of variables for
stacks

f: Y — X a proper birational morphism of (tame or wild) DM stacks

fo: Jo Y = JoX the induced map of twisted arc spaces

Conjecture B

welight Tns coming from

/ local group actions \

F—+wWxy — / Fofo —ord Jacs+Wy
/C L d“X fo_ol(C’)L d”y

Known for the tame and p-cyclic cases [Y]



group actions

smgularltles /

Mst(X)W . / LF;(-I-deluX
(JToo X)W

the change of variables

U
Conjecture A

Y — X a proper birational morphism with Y a DM stack

Mst(X)W — Mst(yv _Kf)f—



3. Counting extensions
ot local fields

- Singularities encode the number theory. -



Setting

a finite group G
~ G-Cov(D) the (hypothetical) space of
G-covers of D = Spec k[[1]]

+ G acts on G-Cov(D) by conjugation

Go back to the situation:
.G C GL4(k) a finite group without reflection

- X := k4/G the quotient variety
. X :=[k%/G] the quotient stack



Conjecture C
WG
wx factors as wx: JoX— G-Cov(D)/G — Q

&
Mg (X )g = Mg (X))o
:/ LdeMX
(JoX)o
=) [(G-Cov(D)/G)wg=w]L"
weEQ T

a welghted “count” of extensions of
the local field k((?))



> (G-Cov(D)/G)wg=w]L"

weQ
¢ analogous

K a local field with residue field having g elements

Z 1 . q—vK(DiSC(L)) __ q—n—l—l
fAut(L/K)

[Serre]
L:K|=n
totally ramified

Generalized by Bhargava (étale extensions),
Kedlaya and Wood (Galois representations)

Note: We can use Z, instead of k((?)).



f:Y— X a crepant resolution, E = 1-1(0)

U

E] = ) [(G-Cov(D)/G)wg=w|L"
weQ

The tame case
ewop(F) = #Conj(G) = #(G-Cov(D)/G)

The p-cyclic case

— 1
{E(Fy) =1+ - S g

P
L:Fq((t))]=p
Galois, totally ramified




4. Future tasks and
summary



Future tasks

1. The motivic integration over DM stacks:
. Construct the space of twisted arcs.
. Prove the change of variables tformula.
2. Compute stringy invariants by computing
. G-Cov(D)/G and wg, Or
. a resolution of k4/G.

3. What quotient singularity admits a crepant resolution?

4. The wild categorical McKay correspondence?



Summary

1. The motivic integration over wild DM stacks
would prove the wild McKay correspondence.

2. A quotient singularity would encode a
welghted count of a local field.

3. Computing stringy invariants, one might be
able to disprove resolution.



