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The aim of this note is to provide a list of open problems related to the wild
McKay correspondence, a generalization of the McKay correspondence to positive
and mixed characteristics. Around the summer of 2011, I started a study on this
subject. Since then, there have been considerable progress and I have wrote several
papers, two of which are joint papers with Melanie Wood; they are [24, 19, 16, 21,
20, 15] in chronological order depending on the dates when they appeared on arXiv.
By now, a number of open problems have accumulated. Some of them have been
already asked, but scattered in these papers. Therefore it would be meaningful
to collect them here in one place, in particular, for students or young researchers
looking for problems.

The wild McKay correspondence is a delightful interaction of the geometry of
singularities (in particular, from the perspective of birational geometry) and the
arithmetic problems such as counting extensions of a local field and counting ra-
tional points over a finite field. Therefore it would shed new light on both the
birational geometry and such arithmetic problems. In the birational geometry, af-
ter the recent achievement in characteristic zero [5], there is a trend toward positive
characteristics. However, it seems still hard to treat low characteristics relative to
dimension. What the wild McKay correspondence mainly concerns is such a situ-
ation of low characteristics and may bring a hope that the birational geometry as
we have in characteristic zero will be eventually carried out in arbitrary character-
istic to some extent. As for the number theory, the wild McKay correspondence
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provides a new way of counting extensions of a local field. Namely they had been
counted with weights determined by classical invariants such as discriminants. The
wild McKay correspondence produces plenty of new weights of geometric origin,
the study whose arithmetic meaning is awaited.

Problems presented in this note are not be exhaustive, but rather chosen accord-
ing to the author’s subjective viewpoint. For instance, we do not discuss recent
progress on resolution of wild quotient surface singularities (see [7] and references
therein). The McKay correspondence over a global field, discussed in [17, 18], is
also beyond the scope of the present note.

1. A brief overview

Before discussing open problems, we give here a brief overview of several versions
of the wild McKay correspondence, some of which are still conjectural.

1.1. The linear and absolute case. For several reasons, it is natural and some-
times necessary to work over a complete discrete valuation ring: we call it the
relative setting. However we first consider the absolute setting, that is, work over a
perfect field. Algebraic geometers would be mainly interested in this case. We also
restrict ourselves to linear actions on affine spaces, because non-linear ones should
be treated in the relative setting.

There are many versions of the McKay correspondence today. The one which
we generalize is the McKay correspondence in terms of stringy invariants proved by
Batyrev [2]. In the simplest form, his result is stated as follows. Let G be a finite
subgroup of SLd(C) and X the associated quotient variety Cd/G. The result is the
equality in a certain modification of the Grothendieck ring of varieties K0(VarC).

(1.1) Mst(X) =
∑

g∈Conj(G)

Lage(g).

Here Mst(X) is the stringy motif (or stringy motivic invariant, which sounds more
precise) of X, L is the class of an affine line A1

C, Conj(G) is the set of conjugacy
classes of G and age(g) is the age of g, which is determined by eigenvalues of g and
depends only on the conjugacy class (see [8]). In general, for a log terminal variety
X, if f : Y → X is a log resolution and KY/X =

∑
i∈I aiEi, ai ∈ Q, is the relative

canonical divisor with Ei prime exceptional divisors, then the stringy motifMst(X)
is given by the formula

(1.2) Mst(X) =
∑
J⊂I

[E◦J ]
∏ L− 1

L1+ai − 1
.

In particular, if Y → X is a crepant resolution, thenMst(X) = [Y ]. In fact, he used
stringy E-functions rather than motivic invariants. But it is rather straightforward
to translate his result to motivic invariants. His proof was somehow computational.
A more conceptual approach was found by Denef–Loeser [4]. Equality (1.1), in
fact, holds also for a small finite subgroup of G ⊂ GLd(C), that is a finite subgroup
without pseudo-reflection. When the group is not small, we only need to replace
Mst(X) with the stringy motif Mst(X,D) of the log pair (X,D), where D is the
branch divisor on X with standard coefficients.1 See [23].

1The divisor should be chosen so that the morphism Cd → (X,D) is crepant. In general, by a
morphism (Y,E) → (X,D) of pairs, we simply mean a morphism Y → X of underlying varieties.
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Next consider a finite subgroup G ⊂ GLd(k) with k a perfect field of arbitrary
characteristic. For brevity, suppose that it has no pseudo-reflection. The quo-
tient variety is normal and Q-Gorenstein. Hence one can define the stringy motif
Mst(X), not by using a resolution, but by the integral expression over the arc
space of X given in [4]. On the other hand, the right hand side of (1.1) needs
a considerable change. The idea is to replace Conj(G) with the conjectural mod-
uli space G-Cov(k((t))) of G-covers (étale G-torsors) of the formal punctured disk
Spec k((t)). This should be defined over k and for each k-algebra A, its A-points
corresponds to G-torsors over SpecA((t)). In precise, this should be a stack not
algebraic but close to being algebraic. By an abuse of terminology and notation,
we say that L is a G-cover of k((t)) is SpecL is a G-cover of Spec k((t)) and write
L ∈ G-Cov(k((t))). To each L ∈ G-Cov(k((t))), we define v(L) ∈ Q as follows. Let
OL be the integral closure of k[[t]] in L, which has a natural G-action. Consider two
G-actions on O⊕dL , then one is the diagonal action induced from the G-action on OL
and the other is the one induced from the embedding G ⊂ GLd(k) ⊂ GLd(OL).2

We define the tuning submodule ΞL ⊂ O⊕dL to be the subset of those elements where
the two actions coincide. We then put

v(L) :=
1

]G
colengh(OL · ΞL ⊂ O⊕dL ).

This defines a function v : G-Cov(k((t)))→ Q and conjecturally have constructible
subsets as fibers.

Conjecture 1.1. We have

Mst(X) =

ˆ
G-Cov(k((t)))

Ld−v.

The integral on the right hand is defined as∑
r∈Q

[v−1(r)]Lr.

If k = C, then there is a one-to-one correspondence between Conj(G) andG-Cov(C((t))),
and the functions age and d− v correspond to each other by this correspondence.
In this way, we see that this is indeed a generalization of Batyrev’s McKay corre-
spondence (1.1).

The conjecture holds for G = Z/pZ [24].

1.2. The relative setting. There are a few advantages in the relative setting, in
which we work over a complete discrete valuation ring OK with perfect residue
field k. Firstly it is more general than the absolute setting: to switch from the
absolute to the relative, we merely take the scalar extension (base change) from k
to OK = k[[t]]. In the relative setting, we can take, in particular, the p-adic integer
ring Zp or a finite extension of it as OK , which is more interesting for number-
theorists. Secondly the untwisting technique, which was the key for proofs of main
results in [4, 20], is carried out only in the relative setting. Thirdly, to formulate

We identify a normal Q-Gorenstein variety X with the pair (X, 0). We say that a generically étale
morphism f : (Y,E) → (X,D) is crepant if f∗(KX +D) = KY + E.

2Here we need to be careful about how to define G-actions on Adk and its coordinate ring; on
which do matrices in G acts, Adk or the coordinate ring?; from which does it act, left or right?
These are not unified through my papers [16, 15, 24, 20, 19, 21]. In this note, we ignore this
problem, avoiding detailed description of actions.
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the wild McKay correspondence for non-linear actions, we need the untwisting
technique, and hence need to work in the relative setting.

Let K be a complete discrete valuation field with perfect residue field k and let
OK be its integer ring (valuation ring). For instance, K = k((t)) for a perfect field
k or K is a finite extension of Qp. We now suppose that G is a finite subgroup of
GLd(OK). We denote by X the quotient scheme AdOK/G. We used the script X
rather than the roman X, indicating that it is a scheme over OK rather than k.
We can define Mst(X ) as a motivic integral on the space of arcs SpecOK → X .3 If
there is a log resolution f : Y → X , then we can expressMst(X ) in a way similar to
(1.2), but a little more involved. For brevity, suppose that the quotient morphism
AdOK → X is étale in codimension one. Let G-Cov(K) be the conjectural moduli
space defined over k of G-covers of SpecK.4 The function v : G-Cov(K)→ Q can
be defined in the same way as in the absolute setting.

Conjecture 1.2. We have

Mst(X ) =

ˆ
G-Cov(K)

Ld−v.

Again, if AdOK → X is not étale in codimension one, then we need to replace
Mst(X ) with Mst(X , D), where D is a Q-divisor on X such that AdOK → (X , D) is
crepant (the pull-back of KX/OK +D is KAdOK/OK

).

1.3. The untwisting technique and the non-linear case. We now review the
untwisting technique (developed in [4, 19, 21]) and generalize the last conjecture
to non-linear actions by using it. We continue to work over the ring OK as above.
Let V := AdOK . For each L ∈ G-Cov(K), we can construct another affine space
V |L| ∼= AdOK over OK in a canonical manner. It is isomorphic to V |L|, but not
canonically. In precise, V |L| is defined so that its coordinate ring is the symmetric
algebra of the dual HomOK (ΞL,OK) of the tuning module ΞL. We define V〈L〉 :=
V |L| ⊗OK OL ∼= AdOL . There exists the canonical commutative diagram:

V〈L〉

}} ""
V

!!

V |L|

{{
X

The key fact in the untwisting is that the diagram induces a one-to-one correspon-
dence between G-equivariant OL-points of V and OK-points of V |L|.

V(OL)G ↔ V(OK)

If v(L) 6= 0, then the morphism V |L| → X contracts the closed subscheme V |L|k :=

V |L|⊗OKk ∼= Adk into a lower dimensional subvariety and makes the pair (V |L|,−v(L)·

3In precise, we need to use the Greenberg functor. See [12] for motivic integration over varieties
defined over OK .

4To define the moduli functor precisely, we would need Witt rings. However, at least, k-points
of G-Cov(K) should corresponds to G-covers of SpecK.
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V |L|k ) crepant over X , or the pair (X , D) crepant to V if G is not small. We note
that Ld−v(L) = Mst(V |L|,−v(L) · V |L|k ).

Let us consider a normal affine OK-variety W and a Q-divisor E on it such
that KW/OK +E is Q-Cartier. Suppose that a finite group G acts on W faithfully
and that E is preserved by the action. Let Y := W/G. There exists a unique
Q-divisor D on Y such that (W, E)→ (Y, D) is crepant. The invariant Mst(Y, D)
is one side of the equality we are formulating. To get the other side, we fix an
affine space V = AdOK with a faithful G-action and a G-equivariant immersion
W → V. Such an immersion always exists. For each L ∈ G-Cov(K), there exists
the corresponding subvarietyW |L| of V |L|: it is defined as the preimage of the image
ofW → X = V/G. LetW |L|,ν be its normalization. There exists a unique Q-divisor
EL on it such that the natural map (W |L|,ν , EL)→ (Y, D) is crepant. Let Aut(L)
be the automorphism group of the G-cover SpecL→ SpecK. If H is the stabilizer
of a connected component of SpecL, then Aut(L) is isomorphic to CG(H)op, the
opposite group of the centralizer of H. There is a natural Aut(L)-action on the
pair (W |L|,ν , EL). We can consider the quotient Mst(W |L|,ν , EL)/Aut(L).5

Conjecture 1.3. We have

Mst(Y, D) =

ˆ
G-Cov(K)

Mst(W |L|,ν , EL)

Aut(L)
.

Considering the stringy motif along a constructible subset, we can make this even
more general. For a pair (Z, F ) and a constructible subset B ⊂ Zk = Z ⊗OK k,
we define Mst(Z, F )B to be the motivic integral with the same integrand as in the
definition of Mst(Z, F ) and the set of arcs SpecOK → Z sending the closed point
of SpecOK into B as the domain of integral. Let C ⊂ Wk be a constructible subset
which is stable under the G-action, and C its image in Yk and CL the preimage of
C in W |L|,νk .

Conjecture 1.4 ([21]). We have

Mst(Y, D)C =

ˆ
G-Cov(K)

Mst(W |L|,ν , EL)CL
Aut(L)

.

1.4. The point counting realization. The main obstacle to proving the conjec-
tures mentioned above is the lack of moduli spaces such as G-Cov(K) (see Section
9). It would need quite an effort to get it over. However, if we take their point
count realization, this obstacle will disappear.

We now suppose that k is finite. For a k-variety X, we denote by ]X the number
of k-points of X. In the same way as definingMst fromM , we can define the string
point count ]st(X , D) ∈ R≥0 ∪ {∞} of the pair of a normal OK-variety X and a
Q-divisor D with KX/OK + D Q-Cartier. We can do it by replacing the motivic
integration by the p-adic integration. By a slight abuse of notation, we denote the
set (not the moduli space) of G-covers of K again by G-Cov(K).

5The quotient is taken in the following sense: if Z is a k-variety with an action of a finite
group H, then [Z]/H := [Z/H]. In a few examples computed in [21], we had Mst(W|L|,ν , EL) =
Mst(W|L|,ν , EL)/Aut(L) and taking the quotient did not change the invariant. We need to
distinguish Mst(W|L|,ν , EL)/Aut(L) with the stringy invariant of a pair of the quotient variety
W|L|,ν/Aut(L) and some divisor.
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Theorem 1.5 ([20]). With the notation as in Conjecture 1.4, we have

]st(Y, D)C =
∑

L∈G-Cov(K)

]st(W |L|,ν , EL)CL
]Aut(L)

.

It is convenient to have a slightly different expression of the right hand side.
Let SK,G be the set of continuous homomorphisms Gal(Ksep/K) → G from the
absolute Galois group of K to G. For an arbitrary function f : SK,G → R≥ ∪ {∞},
we define

m(K,G, f) :=
1

]G

∑
ρ∈SK,G

f(ρ)

and for an arbitrary function c : SK,G → R, we define

M(K,G, c) :=
1

]G

∑
ρ∈SK,G

q−c(ρ).

They are related by

M(K,G, c) = m(K,G, q−c) and m(K,G, f) = M(K,G,− logq f).

There is a natural map SK,G → G-Cov(K), which is surjective. The fiber over
L has cardinality ]G/]Aut(L).

Corollary 1.6. With the same assumption as above, we have

]st(Y, D)C = m(K,G, f),

where f = ]st(W |ρ|,ν , Eρ)Cρ , changing the super and subscripts from L to ρ in the
obvious manner.

If W is an affine space AdOK with a linear G-action and C =Wk, then

]st(W |ρ|,ν , Eρ)Cρ = ]st(AdOK ,−v(ρ) · Adk) = qd−v(ρ).

Therefore the equality of the corollary means

(1.3) ]st(Y, D) = m(K,G, qd−v(ρ)) = M(K,G,v) · qd.

If we instead put C := {o} with o ∈ Wk = Adk the origin, then we see that

]st(W |ρ|,ν , Eρ)Cρ = qw(ρ),

defining w as follows: let F be the fiber of W〈ρ〉 →W over o and

w(ρ) := dimF − v(ρ).

Thus we get

(1.4) ]st(Y, D){o} = M(K,G,−w).

This is basically what was conjectured in [16], with w slightly modified later. Two
formulas (1.3) and (1.4) are closely related by dualities as discussed in [15]. See
Section 12.
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2. Convention

In what follows, we often consider problems in the absolute setting if possible.
Usually the same problems can be asked in the relative setting as well. We often
restrict ourselves to linear actions, even if the problem makes sense in the non-linear
case too.

We denote by k a perfect field and K a complete discrete valuation field with
residue field k. We denote by OK the valuation ring of K. We suppose that a finite
group action on a variety is always faithful. We denote by p the characteristic of k.
When k is finite, we denote its cardinality by q.

We denote by V an affine space Adk over k and by V an affine space over OK . By
X and X , we denote their quotients by some finite group action respectively. We
denote by (X,D) and (X , D) the log pairs such that the quotient maps V → (X,D)
and V → (X , D) are crepant.

3. Log terminal singularities and convergence

Problem 3.1 ([21]). When is the quotient variety X = Adk/G (resp. the log pair
(X,D)) log terminal (resp. Kawamata log terminal)?

Log terminal singularities are an important class of singularities in the birational
geometry. It is well-known that quotient singularities in characteristic zero are log
terminal and that the quotient log pair (X,D) is always Kawamata log terminal.
This is no longer true in positive characteristic. Note that X or (X,D) is, by
definition, (Kawamata) log terminal if its discrepancy at every divisor over X is >
−1. The definition is valid in an arbitrary characteristic. Log terminal singularities
are related to the convergence/divergence of stringy invariants and hence the ones
of total masses. Indeed, if there exists a log resolution of X, then the following are
equivalent:

(1) (X,D) is Kawamata log terminal,
(2) ]st(X,D) = M(G,K ′,v) <∞ for all unramified extension K ′/K.

Furthermore, these conditions would be equivalent to that
´
G-Cov(K)

L−v 6= ∞,
once we could properly define this integral. Without assuming a log resolution, the
second condition implies the first. Following , we call (X,D) stringily log terminal
if the second condition holds.

WhenG is the cyclic group of prime order p = char(k), then a simple representation-
theoretic characterization was found in [24]. The G-representation Adk, identified
with the vector space kd, decomposes into indecomposable representations, say of
dimensions d1, . . . , dr with 1 ≤ di ≤ p. We define

DG :=
r∑
i=1

(di − 1)di
2

.

Remark 3.2. This invariant was denoted as DV in [24]. We use D to distinguish it
from divisors.

Then (X,D) is stringily log terminal if and only if DG ≥ p. Note that if p ≥ 2,
then G has no pseudo-reflection and D = 0.

Problem 3.3. Can we generalize this invariant DG for other groups?

Once we could solve these problems, we may consider the following refined prob-
lem.
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Problem 3.4. What is the minimal discrepancy of (X,D)?

When (X,D) is not stringily log terminal, then ]st(X,D) = M(K,G,v)qd =∞
at least after a finite unramified base change. The invariants then contain much
less information than the other case.

Problem 3.5 ([21]). Can we assign finite values to ]st(X,D) and M(K,G,v) even
in such a case by a certain “renormalization”?

Veys [14, 13] made such an attempt for stringy invariants in characteristic zero.

4. Rationality and admissibility

Problem 4.1. Suppose that k is algebraically closed. Suppose that Conjecture 1.1
holds. Is Mst(X,D) =

´
G-Cov(k((t)))

Ld−v a rational function in L1/]G whenever it
is not the infinity?

In the tame case, the answer is positive, because the integral is a finite sum of
powers of L1/]G. In the wild case, there seems, a priori, no reason that it is a
rational function. However, in all examples I know, the integral turns out to be
a rational function. Note that if k is not algebraically closed, the motif is not a
rational function in L even in characteristic zero.

The rationality is closely related to the admissibility in the sense of [15]. Suppose
now that k is finite and denote the degree r unramified extension of k by kr.
Consider the function in the variable r ∈ Z>0,

r 7→ ]st(X ⊗k kr) = M(kr((t)), G, d− v).

Problem 4.2 ([15]). Is this function admissible, that is, is it of the form∑l
i=1 ni · αri
qcr − 1

,

where ni ∈ Z, αi ∈ C and c ∈ Q×.

If X admits a log resolution, then the admissibility is a consequence of an explicit
formula for ]st. This means that if the function was not admissible, then X would
not admit any log resolution and hence we would get a counterexample for the
Hironaka theorem in positive characteristic. Since the absolute Galois group of
a local field is well understood, it may be possible to prove the admissibility of
M(kr((t)), G, d−v) without referring to a resolution. On the other hand, modular
representations (linear representations of G in the wild case) are very complicated.
For instance, it is known that the irreducible representations of a fixed group G are
not parametrized by a finite dimensional space. This fact contrasts that there are
only finitely many irreducible representations in the tame case. It would not be so
surprising if a pathological example was found among them.

5. The function v and ramification filtration

For L ∈ G-Cov(K), let H be the stabilizer of a connected component of SpecL.
It is determined up to conjugacy inG. This group has a natural descending filtration
called the ramification filtration,

H = H−1 ⊃ H0 ⊃ H1 ⊃ · · ·
with Hi = 1 for i� 0.
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Problem 5.1. Fix G ⊂ GLd(k). Is the value v(L) determined by the conjugacy
class of H and the ramification filtration?

If G = Z/pZ, then the ramification filtration is determined by a single integer j
called the ramification jump and v is explicitly written as a function in j (see [24]).

If G consists of permutation matrices, then v(L) is equal to half the Artin con-
ductor of the associated representation Gal(Ksep/K) → G ↪→ GLd(k) (see [16]),
which is, in turn, determined by the ramification filtration by definition.

6. Crepant resolutions

6.1. Existence.

Problem 6.1 ([19]). When does X = V/G have a crepant resolution?

For a finite subgroup G ⊂ SLd(C) with d = 2 or 3, there exists a crepant reso-
lution of Cd/G. In dimension two, the minimal resolution is a crepant resolution.
In dimension three, this was proved by a case-by-case analysis by Roan, Ito and
Markushevich (see [11] and references therein).

In the wild case, only a handful of examples are known. We note that every wild
finite subgroup G of GL2(k) always has pseudo-reflections. If one does not want
pseudo-reflections, the simplest case is dimension three.

When k has characteristic p > 0 and G is the cyclic group of order p, then we
have the invariant DG mentioned in Section 3. There is no peudo-reflection iff
DG ≥ 2. It was proved in [24] that if DG ≥ 2 and a crepant resolution of X exists,
then DG = p. For instance, for p ≥ 3, suppose that G ⊂ SL3(k) is generated byÑ

1 1 0
0 1 1
0 0 1

é
.

Then DG = 3. Therefore, for p > 3, a crepant resolution does not exist. For
p = 3, we can construct a crepant resolution. Thus the result of Roan, Ito and
Markushevich does not hold in positive characteristic. However, the characteristic
three might be exceptional and it might be interesting to ask:

Problem 6.2. Suppose that k has characteristic three. For every small (no pseudo-
reflection) finite subgroup of SL3(k), is there a crepant resolution of X?

It is also interesting to specialize the problem to

Problem 6.3 ([24]). Suppose that G = Z/pZ and DG = p. In which case is there
a crepant resolution of X?

We know the answer only in the following two cases. The first case is that p = 2
and G is generated by Å

1 1
0 1

ã⊕2
and the second case is that p = 3 and G is generated byÑ

1 1 0
0 1 1
0 0 1

é
.

In these cases, there is a crepant resolution of X. Indeed X is then a hypersurface
and an easy computation of blowup shows this. For every other case, we do not
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know whether there is a crepant resolution. Then X is not Cohen-Macaulay, in
particular, not a local complete intersection. Therefore it would be difficult to
compute blowups explicitly. The first case we should tackle might be the following
one:

Problem 6.4 ([24]). For an arbitrary prime number p, consider the group G ⊂
SL2p(k) generated by Å

1 1
0 1

ã⊕p
.

Does there exist a crepant resolution of X?

This singularity seems (at least for me) the wild counterpart of the cyclic quotient
singularity in characteristic zero of type 1

p (1, . . . , 1) of dimension p. The latter
singularity admits a crepant resolution.

As for other examples of crepant resolution, we mention two cases. Firstly let
G = Sn act on A2n

OK by two copies of the standard permutation representation,
the quotient A2n

OK/Sn is identical to the symmetric product SnA2
OK of the affine

plane over OK . It admits a special crepant resolution, namely the Hilbert scheme
Hilbn(A2

OK ) of n points. This is wild if n ≥ p and provides an infinite series of
examples of crepant resolutions.

The other case is similar. Suppose that char(k) 6= 2. Let G ⊂ GLd(OK) be the
group of signed permutation matrices and consider its diagonal action on A2n

OK =

AnOK ×SpecOK AnOK . We can construct a crepant resolution of A2n
OK/G by using the

Hilbert scheme of points. See [15] for details.

Problem 6.5. Find more examples of crepant resolutions constructed as moduli
spaces.

The ones mentioned above are all I know as examples of crepant resolutions in
the wild case, excepting the non-linear ones. Any new example is very welcome.

6.2. Euler characteristics.

Problem 6.6. Let G ⊂ GLd(k) be a small subgroup and Y → X = V/G a crepant
resolution. Is the Euler characteristic of Yk (with respect to l-adic étale cohomology)
equal to ]Conj(G)?

In the tame case, this is a direct consequence of (1.1). Roughly speaking, the
Euler characteristic of Y is obtained by substituting 1 for L and the right hand
side of (1.1) becomes ]Conj(G) by this substitution. In fact, this shows that the
stringy Euler characteristic of X is always equal to ]Conj(G) in the tame case,
without assuming a crepant resolution. These are no longer true in the wild case.
For instance, the stringy Euler characteristic is not generally an integer but only a
rational number (see [24] for an example). There seems no reason that the answer
to the problem is positive. However, it is actually positive for G = Z/pZ and also
for all computed examples so far.

7. Log resolutions

Problem 7.1. Compute explicitly log resolution of singularities for some class of
wild quotient singularities?
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Desired are not only crepant resolutions but also log resolutions in general. Once
we could computed a log resolution of X explicitly, then we would have an explicit
formula forMst(X) and ]st(X), and for

´
G-Cov(K)

Ld−v andM(K,G,v); the latters
are quantities interesting from the number-theoretic perspective.

8. Untwisting

8.1. Singularities of untwisting varieties. LetW be an affine OK-variety with
a G-action and W ⊂ V an equivariant embedding into an affine space V = AdOK as
in section 1.3. Even if W is regular or smooth over OK , the untwisting varieties
W |L| and their normalizations W |L|,ν are not generally so. A general question we
would like to ask is:

Problem 8.1 ([21]). What kind of singularities do varieties W |L|, W |L|,ν and the
pair (W |L|,ν , EL) have?

As more specific problems, we firstly consider the following:

Problem 8.2 ([21]). If W is normal, then are W |L| normal?

If this is the case, then we do not need to take the normalization W |L|,ν .
If W is a hypersurface in V, then W |L| is also so in V |L| by the reason of dimen-

sion.

Problem 8.3 ([21]). If W ⊂ V is a complete intersection, then are W |L| ⊂ V |L|
so?

Problem 8.4. If (W, E) is stringily log terminal, then are (W |L|,ν , EL) so?

If this is true, then in the sum of Theorem 1.5, at least each term ]st(W|L|,ν ,EL)CL
]Aut(L)

is finite.
In one example computed in [21], k has characteristic two andW ⊂ V = A2

k[[t]] is
a hypersurface stable under the transposition of coordinates. In this example, the
untwisting varieties W |L|, whose total dimension is two, have some rational double
points, which one can find in Artin’s classification [1].

Problem 8.5. Determine singularities appearing onW |L| for more examples where
W is a hypersurface in V = A2

OK , and compute stringy invariants of (W |L|,ν , EL)
explicitly.

8.2. An intrinsic untwisting.

Problem 8.6. Can we construct untwisting varieties W |L| or their alternatives in
an intrinsic manner?

The untwisting technique, as presented in section 1.3, is extrinsic by nature: we
need to embed the given affine varietyW into an affine space. This makes it difficult
to generalize the wild McKay correspondence to the non-affine case. Therefore an
intrinsic construction is desired.

9. The moduli space G-Cov(K)

Problem 9.1 ([19]). Construct the moduli space (stack) G-Cov(K) and describe
its geometry.
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When K = k((t)) with k algebraically closed and G is a p-group, Harbater [6]
showed that the coarse moduli space is the direct limit of affine spaces Ank with
respect to the composite morphisms Ank → An+1

k of the standard inclusions and the
Frobenius morphisms.

We would like to have fine moduli stacks for generalK, which would be necessary
to have the motivic integration over Deligne-Mumford stacks in full generality (see
Section 10).

Problem 9.2. Show that every fiber of v : G-Cov(K)→ Q is a finite dimensional
constructible set.

If values of v are determined by ramification filtration (see Section 5), then the
problem reduced to the following problem.

Problem 9.3. Fix a subgroup H ⊂ G and a filtration H ⊃ H0 ⊃ H1 ⊃ · · · . The
moduli space ofG-covers ofK with this ramification filtration is a finite-dimensional
k-variety or at least a constructible subset.

10. Deligne-Mumford stacks and finite group schemes

Problem 10.1 ([19]). Generalize the motivic integration theory to Deligne-Mumford
stacks over OK and prove Conjecture 1.4.

This would be a natural strategy to prove Conjecture 1.4. This would also prove
a generalization of them: for a proper birational crepant morphism f : (Y, E) →
(X , D) of log Deligne-Mumford stacks over OK (pairs of stacks and Q-divisors) and
for a constructible subset of Xk, we have the equality of suitably defined stringy
invariants of the pairs,

(10.1) Mst(X , D)C = Mst(Y, E)f−1C .

Moreover this invariant should be defined in such a way that if X is the quotient
stack [V/G], then Mst(X ) is easily expressed as

´
G-Cov(G)

Ld−v.
In the tame case, generalization as in the problem has been accomplished to a

considerable extent in [23], after special cases had been studied in [22, 10].
For this problem problem, the first thing to do would be construction of an

appropriate space of arcs and jets.

Problem 10.2 ([19]). Construct the moduli stacks of twisted arcs/jets as did in
[23] in the tame case.

Roughly, for a Deligne-Mumford stack X overOK , a twisted arc is a representable
morphism of the form

[SpecOL/G]→ X ,
where G is a finite group and SpecL → SpecK is a G-cover. The stack should
have the functoriality: if J∞X denotes the moduli stack of twisted arcs of X and if
Y → X is a morphism of Deligne-Mumford stacks, then we would have a morphism
J∞Y → J∞X .

The invariant Mst(X , D)C should be expressed asˆ
(J∞X )C

LFX ,D ,

where (J∞X )C is the moduli stack of twisted arcs sending the closed point into
C with an appropriate motivic measure and FX ,D is a function on it canonically
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determined by the pair (X , D). Equality (10.1) would become a direct consequence
of the change of variables formula, once it was proved as a part of the theory.

11. The derived wild McKay correspondence

Problem 11.1 ([24]). Generalize the McKay correspondence at the level of derived
categories as studied in [9, 3] to the wild case.

Suppose that there exists a crepant resolution Y → X = Adk/G. The derived
McKay correspondence means the equivalence

Db(Coh(Y )) ∼= Db(CohG(Adk)),

between the bounded derived category of coherent sheaves of Y and the one of
equivariant coherent sheaves of Adk. This was proved under some conditions in
characteristic zero.

However, the category CohG(Adk) always has infinite global dimension in the
wild case [25], while it has global dimension d in the tame case. Therefore, the
equivalence above never holds in the wild case. We need to find an alternative to
CohG(Adk).

12. Dualities and equisingularities

Suppose that k is finite. ForG ⊂ GLd(OK), considering all unramified extensions
Kr, r ≥ 1 ofK, we get two functionsM(Kr, G,v) andM(Kr, G,−w) in the variable
r. Assuming they are admissible functions, we can define their duals D(−) in such a
way that the dual of the function qr is q−r. We consider the following two equalities:

D(M(Kr, G,v)) = M(Kr, G,−w),(12.1)

M(Kr, G,v)qrd −M(Kr, G,−w) = D(M(Kr, G,−w))qrd −M(Kr, G,v).(12.2)

When the former (resp. the latter) holds, we say that the strong (resp. weak) duality
holds. The strong duality implies the weak duality.

Problem 12.1 ([15]). If K = k((t)) and the G-action on Adk[[t]] is defined over k
(that is, it is the base change of a G-action on Adk), then does the strong duality
always holds? What about the weak duality?

In all the examples computed at the present, the strong duality as well as the
weak duality holds. If Adk/G has a Gm-equivariant log resolution, then the weak
duality holds as a consequence of the Poincaré duality for ]st. On the contrary,
if one found an example without satisfying the weak duality, the corresponding
k-variety Adk/G does not have any Gm-equivariant log resolution.

Problem 12.2 ([15]). Suppose that G acts on AdOK by permutation of coordinates.
Does the weak duality always hold? DoesX = AdOK/G always admit a simultaneous
resolution over OK?

The problem is interesting when OK has mixed characteristic. The second prob-
lem may be expressed as: is X an equisingular family over OK? In computed
examples, the weak duality always holds but the strong duality does not.
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