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Plan of the talk

Partly a joint work with Melanie Wood.

1. What is the McKay correspondence?
2. Motivation
3. The wild McKay correspondence conjectures
4. Relation between the weight function and the Artin/Swan

conductors
5. The Hilbert scheme of points vs Bhargava’s mass formula
6. Known cases
7. Possible applications
8. Future tasks
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What is the McKay correspondence?

A typical form of the McKay correspondence
For a finite subgroup G ⊂ GLn(C), the same invarinat arises in two
totally different ways:
Singularities a resolution of singularities of Cn/G

Algebra the representation theory of G and the given
representation G ↪→ GLn(C)
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For example,

Theorem (Batyrev)
Suppose

I G is small (@ pseudo-refections), and
I ∃ a crepant resolution Y → X := Cn/G (i.e. KY /X = 0) .

Define

e(Y ) := the topological Euler characteristic of Y .

Then

e(Y ) = ]{conj. classes in G} = ]{irred. rep. of G}.
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Motivation

Today’s problem
What happens in positive characteristic? In particular, in the case
where the characteristic divides ]G (the

:::
wild case).

Motivation
I To understand singularities in positive characteristic.
I wild quotient singularities = typical “bad” singularities, and a

touchstone ( ) in the study of singularities in positive
characteristic.

I [de Jong]: for any variety X over k = k̄ , ∃ a set-theoretic
modification Y → X (i.e. an alteration with K (Y )/K (X )
purely insep.) with Y having only quotient singularities.
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The wild McKay correspondence conjectures

For a perfect field k , let G ⊂ GLn(k) be a finite subgroup.
Roughly speaking, the wild McKay correspondence conjecture is an
equality between:
Singularities a stringy invariant of An

k/G .
Arithmetics a weighted count of continuous homomorphisms

Gk((t)) → G with Gk((t)) the absolute Galois group of
k((t)). Equivalently a weighted count of etale
G -extensions of k((t)).
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One precise version:

Conjecture 1 (Wood-Y)

I k = Fq

I G ⊂ GLn(k): a small finite subgroup

I Y f−→ X := An
k/G : a crepant resolution

I 0 ∈ X : the origin

Then
](f −1(0)(k)) =

1
]G

∑
ρ∈Homcont(Gk((t)),G)

qw(ρ).

Here w is the
::::::
weight

::::::::
function associated to the representation

G ↪→ GLn(k), which measures the ramification of ρ.
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More generally:

Conjecture 1’ (Wood-Y)

I K is a local field with residue field k = Fq

I G ⊂ GLn(OK ): a small finite subgroup

I Y f−→ X := An
OK
/G : a crepant resolution

I 0 ∈ X (k): the origin

Then
](f −1(0)(k)) =

1
]G

∑
ρ∈Homcont(GK ,G)

qw(ρ).
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The motivic and more general version:

Conjecture 2 (Y, Wood-Y)

I K is a complete discrete valuation field with
::::::
perfect residue

field k
I G ⊂ GLn(OK ): a small finite subgroup

I Y f−→ X := An
OK
/G : a crepant resolution

I 0 ∈ X (k): the origin

Then

Mst(X )0 =

ˆ
MK

Lw in a modified K0(Vark).

Here
I MK : the conjectural moduli space of G -covers of Spec K

defined over k .
I Mst(X )0: the stringy motif of X at 0.
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Remarks

I If K = C((t)) and G ⊂ GLn(C), thenMK consists of finitely
many points corresponding to conjugacy classes in G , and the
RHS is of the form ∑

g∈Conj(G)

Lw(g).

We recover Batyrev and Denef-Loeser’s results.
I Both sides of the equality might be ∞ (the defining motivic

integral diverges).If X has a log resolution, then this happens
iff X is not log terminal. Wild quotient singularities are NOT
log terminal in general.

I Conjectures would follow if the theory of motivic integration
over wild DM stacks is established.
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More remarks

I The assumption that the action is linear is important.
I The assumption that G is small can be removed by considering

the stringy invariant of a
::
log variety (X ,∆) with ∆ a Q-divisor.

I The ultimately general form:let (X ,∆) and (X ′,∆′) be two
K -equivalent log DM stacks and W ⊂ X and W ′ ⊂ X ′

corresponding subsets. Then

Mst(X ,∆)W = Mst(X ′,∆′)W ′ .

(Y-: the tame case with a base k (not OK ))
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Relation between the weight function and the Artin/Swan
conductors

Definition (the weight function (Y, Wood-Y))
ρ↔ L/K the corresponding etale G -extension
Two G -actions on O⊕n

L :
I the G -action on L induces the diagonal G -action on O⊕n

L ,
I the induced representation G ↪→ GLn(OK ) ↪→ GLn(OL).

Put
Ξ := {x | g ·1 x = g ·2 x} ⊂ O⊕n

L .

Define

w(ρ) := codim (kn)ρ(IK ) − 1
]G
· length

O⊕n
L

OL · Ξ
.

Here IK ⊂ GK is the inertia subgroup.
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To GK
ρ−→ G ↪→ GLn(K ), we associate the Artin conductor

a(ρ) =

the tame part︷︸︸︷
t(ρ) +

the wild part (Swan cond.)︷︸︸︷
s(ρ) ∈ Z≥0.

Proposition (Wood-Y)
If G ⊂ GLn(OK ) is a

:::::::::::
permutation representation, then

w(ρ) =
1
2

(t(ρ)− s(ρ)) .
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The Hilbert scheme of points vs Bhargava’s mass formula

I K : a local field with residue field k = Fq

I G = Sn: the n-th symmetric group
I Sn ↪→ GL2n(OK ): two copies of the standard representation
I X := A2n/Sn = SnA2: the n-th symmetric product of the

affine plane (over OK )
I Y := Hilbn(A2): the Hilbert scheme of n points (over OK )

I Y f−→ X : the Hilbert-Chow morphism, known to be a crepant
resolution (Beauville, Kumar-Thomsen, Brion-Kumar)
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Theorem (Wood-Y)
In this setting,

](f −1(0)(Fq)) =
n−1∑
i=0

P(n, n − i)qi =
1
n!

∑
ρ∈Homcont(GK ,Sn)

qw(ρ).

Here P(n, j) := ]{partitions of n into exactly j parts}.

Bhargava’s mass formula

n−1∑
i=0

P(n, n − i)q−i =
∑

L/K : etale
[L:K ]=n

1
]Aut(L/K )

q−vK (disc(L/K))

Kedlaya
=

1
n!

∑
ρ∈Homcont(GK ,Sn)

q−a(ρ).
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Known cases

1 2 3 4
tame wild

B, D-L, Y, W-Y W-Y Y W-Y

group any Z/3Z ⊂ GL3 Z/pZ Sn ⊂ GL2n

k or OK k (char - ]G) OK (char k 6= 3) k (char p) any

Conj 1 ! ! ! !

Conj 1’ ! !

Conj 2 ! !
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Possible applications

](f −1(0)(k)) =
1
]G

∑
ρ∈Homcont(Gk((t)),G)

qw(ρ)

Mst(X )0 =

ˆ
MK

Lw

I Can compute the LHS’s (singularities) by computing the
RHS’s (arithmetics), and vice versa.

I In low (resp. high) dimensions, the LHS’s (resp. RHS’s) seems
likely easier.

I ∃ a log resolution of X = An/G
⇒ rationality and duality of the LHS’s
⇔ rationality and duality of the RHS’s!!! (hidden structures
on the set/space of G -extensions of a local field)
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Problem
Compute the RHS’s using the number theory and check whether
these properties holds.

If the properties do not hold, then @ a log resolution of X .



Future problems

I Non-linear actions on possibly singular spaces (work in
progress)

I Global fields
I Hilbn(A2

Z/Z)
??←→ {L/Q | [L : Q] = n}

I curve counting on wild orbifolds

I Explicit (crepant) resolution of wild quotients in low
dimensions
⇒ many new mass formulas

I Explicit computation of 1
]G

∑
qw(ρ) and check the rationality

or duality.
I Prove these properties in terms of the number theory.
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One more problem

Problem
Does Batyrev’s theorem holds also in the wild case? Namely, if

I K is a complete discrete valuation field with perfect residue
field k

I G ⊂ GLn(OK ): a small finite subgroup

I Y f−→ X := An
OK
/G : a crepant resolution,

then do we have the following equality?

e(Y ⊗OK k) = ]{conj. classes in G}

Remark
This holds in a few cases we could compute. However, for now, I
do not see any reason that this holds except the tame case.
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