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Plan of the talk

Partly a joint work with Melanie Wood.
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What is the McKay correspondence?

A typical form of the McKay correspondence

For a finite subgroup G C GL,(C), the same invarinat arises in two
totally different ways:

Singularities a resolution of singularities of C"/G

Algebra the representation theory of G and the given
representation G — GL,(C)
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For example,

Theorem (Batyrev)
Suppose

» G is small (} pseudo-refections), and

» 3 a crepant resolution Y — X :=C"/G (i.e. Ky;x =0).
Define

e(Y) := the topological Euler characteristic of Y.

Then

e(Y) = t{conj. classes in G} = t{irred. rep. of G}.
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Motivation

Today's problem

What happens in positive characteristic? In particular, in the case
where the characteristic divides #G (the wild case).

Motivation

» To understand singularities in positive characteristic.

» wild quotient singularities = typical “bad" singularities, and a
touchstone (#%£%) in the study of singularities in positive
characteristic.

> [de Jong]: for any variety X over k = k, 3 a set-theoretic
modification Y — X (i.e. an alteration with K(Y)/K(X)
purely insep.) with Y having only quotient singularities.
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The wild McKay correspondence conjectures

For a perfect field k, let G C GL,(k) be a finite subgroup.
Roughly speaking, the wild McKay correspondence conjecture is an
equality between:

Singularities a stringy invariant of A7 /G.

Arithmetics a weighted count of continuous homomorphisms
Gi((¢)) — G with Gy((¢)) the absolute Galois group of

k((t)). Equivalently a weighted count of etale
G-extensions of k((t)).
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One precise version:

Conjecture 1 (Wood-Y)

> k e ]Fq
» G C GLp(k): a small finite subgroup

» Yy Lox = A7 /G: a crepant resolution
» 0 € X: the origin

Then )
GRCTO S SRS

pEHomcont (Gi((1)),G)

Here w is the weight function associated to the representation
G < GL,(k), which measures the ramification of p.
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More generally:

Conjecture 1' (Wood-Y)

v

K is a local field with residue field kK = IF,
G C GLy(Ok): a small finite subgroup

v

v

vy Lox = Ap,/G: a crepant resolution
0 € X(k): the origin
Then

v

ﬁ(fl(O)(k))=ﬁ1G S g,

pe Homcont( Gk, G)
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The motivic and more general version:

Conjecture 2 (Y, Wood-Y)

» K is a complete discrete valuation field with perfect residue
field k

» G C GL,(Ok): a small finite subgroup
f P n . H
> Y—X=Ap /6 —acrepantresolution
» 0 € X(k): the origin
Then

Ms:(X)o :/ L in a modified Ko(Vary).
Mgk

Here

» My: the conjectural moduli space of G-covers of Spec K
defined over k.

> Ms:(X)o: the stringy motif of X at 0.
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Remarks

» If K=C((t)) and G C GL,(C), then Mk consists of finitely
many points corresponding to conjugacy classes in G, and the
RHS is of the form

Z Lw(e).

g€ Conj(G)

We recover Batyrev and Denef-Loeser's results.

» Both sides of the equality might be oo (the defining motivic
integral diverges).If X has a log resolution, then this happens
iff X is not log terminal. Wild quotient singularities are NOT
log terminal in general.

» Conjectures would follow if the theory of motivic integration
over wild DM stacks is established.
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More remarks

» The assumption that the action is linear is important.

» The assumption that G is small can be removed by considering
the stringy invariant of a log variety (X, A) with A a Q-divisor.

» The ultimately general form:let (X, A) and (X', A’) be two
K-equivalent log DM stacks and W C X and W/ C X’
corresponding subsets. Then

Mst(Xa A)W = Mst(le A,)W“

(Y-: the tame case with a base k (not Ok))
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Relation between the weight function and the Artin/Swan

conductors

Definition (the weight function (Y, Wood-Y))

p <> L/K the corresponding etale G-extension

Two G-actions on Oie":
» the G-action on L induces the diagonal G-action on Oie",

> the induced representation G — GL,(Ok) — GL,(OL).

Put
Z:i={x|g1x=g2x}COP.
Define
1 on
w(p) := codim (k")PUk) — c length OLL' =

Here Ix C G is the inertia subgroup.
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To Gk & G <= GL,(K), we associate the Artin conductor

the tame part  the wild part (Swan cond.)

a(p) = tlp) + s(p) € Z>o.

Proposition (Wood-Y)
If G C GL,(Ok) is a permutation representation, then

w(p) = 5 (t(p) — s(p))
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The Hilbert scheme of points vs Bhargava's mass formula

v

K: a local field with residue field k = Fq
G = S,: the n-th symmetric group

v

v

Sn — GLp(Ok): two copies of the standard representation
X 1= A?"/S, = S"A?: the n-th symmetric product of the
affine plane (over O)

Y := Hilb"(A2): the Hilbert scheme of n points (over Ok)

v

v

v

Y £ X: the Hilbert-Chow morphism, known to be a crepant
resolution (Beauville, Kumar-Thomsen, Brion-Kumar)
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Theorem (Wood-Y)
In this setting,

n—1
1
_1 _ Ng' = v
H(FH(0)(Fg)) = 3 P(nin—i)q' = — 2. av
i=0 peE Homcont(GK 7511)

Here P(n,j) := #{partitions of n into exactly j parts}.

Bhargava's mass formula

n—1
. 1 .
oy i _ —vk (disc(L/K))
2 Fnn=ia 2 R’
i=0 L/K: etale
[L:K]=n
Kedlaya 1 —a
ak: = Z q ()

’ pPE Homcont(GK asn)
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Known cases

1 \ 2 3 4
tame wild
B, D-L, Y, W-Y W-Y Y W-Y
group any Z/3Z C GL3 7/pZ Sn C GLz,
k or Ok k (char { 1G) Ok (char k# 3) | k (char p) any
Conj 1 v v v v
Conj 1’ v v
Conj 2 v v
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Possible applications

(O = Y g

pE Homcont( Gk((t)) R G)

Ms(X)o = / L*

Mk

» Can compute the LHS's (singularities) by computing the
RHS's (arithmetics), and vice versa.

> In low (resp. high) dimensions, the LHS's (resp. RHS's) seems
likely easier.

» 3 a log resolution of X = A"/G
= rationality and duality of the LHS's
< rationality and duality of the RHS's!!!' (hidden structures
on the set/space of G-extensions of a local field)
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Problem
Compute the RHS's using the number theory and check whether

these properties holds.

If the properties do not hold, then # a log resolution of X.



Future problems

» Non-linear actions on possibly singular spaces (work in
progress)
» Global fields
> Hilb"(A2/Z) <% {L/Q | [L: Q] = n}

» curve counting on wild orbifolds

» Explicit (crepant) resolution of wild quotients in low
dimensions
= many new mass formulas

» Explicit computation of ﬁ% S~ q"(?) and check the rationality
or duality.

» Prove these properties in terms of the number theory.

20/21



One more problem

Problem
Does Batyrev's theorem holds also in the wild case? Namely, if

» K is a complete discrete valuation field with perfect residue

field k
» G C GLy(Ok): a small finite subgroup

f .
» Y = X:=Ap, /G: a crepant resolution,

then do we have the following equality?

e(Y ®o, k) = t{conj. classes in G}

Remark
This holds in a few cases we could compute. However, for now, |
do not see any reason that this holds except the tame case.
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