Perspectives on the wild McKay correspondence

Takehiko Yasuda

Osaka University

Plan of the talk

Partly a joint work with Melanie Wood.

1. What is the McKay correspondence?
2. Motivation
3. The wild McKay correspondence conjectures
4. Relation between the weight function and the Artin/Swan conductors
5. The Hilbert scheme of points vs Bhargava's mass formula
6. Known cases
7. Possible applications
8. Future tasks

References

1. T. Yasuda, The p-cyclic McKay correspondence via motivic integration. arXiv:1208.0132, to appear in Compositio Mathematica.
2. T. Yasuda, Toward motivic integration over wild Deligne-Mumford stacks. arXiv:1302.2982, to appear in the proceedings of "Higher Dimensional Algebraic Geometry - in honour of Professor Yujiro Kawamata's sixtieth birthday".
3. M.M. Wood and T. Yasuda, Mass formulas for local Galois representations and quotient singularities I: A comparison of counting functions.
arXiv:1309:2879.

What is the McKay correspondence?

A typical form of the McKay correspondence
For a finite subgroup $G \subset G L_{n}(\mathbb{C})$, the same invarinat arises in two totally different ways:
Singularities a resolution of singularities of \mathbb{C}^{n} / G
Algebra the representation theory of G and the given representation $G \hookrightarrow G L_{n}(\mathbb{C})$

For example,
Theorem (Batyrev)
Suppose

- G is small (\exists pseudo-refections), and
- \exists a crepant resolution $Y \rightarrow X:=\mathbb{C}^{n} / G$ (i.e. $K_{Y / X}=0$).

Define
$e(Y):=$ the topological Euler characteristic of Y.

Then

$$
e(Y)=\sharp\{\text { conj. classes in } G\}=\sharp\{\text { irred. rep. of } G\} \text {. }
$$

Motivation

Today＇s problem

What happens in positive characteristic？In particular，in the case where the characteristic divides $\sharp G$（the wild case）．

Motivation

－To understand singularities in positive characteristic．
－wild quotient singularities＝typical＂bad＂singularities，and a touchstone（試金石）in the study of singularities in positive characteristic．
－［de Jong］：for any variety X over $k=\bar{k}, \exists$ a set－theoretic modification $Y \rightarrow X$（i．e．an alteration with $K(Y) / K(X)$ purely insep．）with Y having only quotient singularities．

The wild McKay correspondence conjectures

For a perfect field k, let $G \subset G L_{n}(k)$ be a finite subgroup. Roughly speaking, the wild McKay correspondence conjecture is an equality between:
Singularities a stringy invariant of \mathbb{A}_{k}^{n} / G.
Arithmetics a weighted count of continuous homomorphisms $G_{k((t))} \rightarrow G$ with $G_{k((t))}$ the absolute Galois group of $k((t))$. Equivalently a weighted count of etale G-extensions of $k((t))$.

One precise version:

Conjecture 1 (Wood-Y)

- $k=\mathbb{F}_{q}$
- $G \subset G L_{n}(k):$ a small finite subgroup
- $Y \xrightarrow{f} X:=\mathbb{A}_{k}^{n} / G:$ a crepant resolution
- $0 \in X$: the origin

Then

$$
\sharp\left(f^{-1}(0)(k)\right)=\frac{1}{\sharp G} \sum_{\rho \in \operatorname{Hom}} \sum_{\text {cont }\left(G_{k((t))}, G\right)} q^{w(\rho)} .
$$

Here w is the weight function associated to the representation $G \hookrightarrow G L_{n}(k)$, which measures the ramification of ρ.

More generally:

Conjecture 1' (Wood-Y)

- K is a local field with residue field $k=\mathbb{F}_{q}$
- $G \subset G L_{n}\left(\mathcal{O}_{K}\right)$: a small finite subgroup
- $Y \xrightarrow{f} X:=\mathbb{A}_{\mathcal{O}_{K}}^{n} / G:$ a crepant resolution
- $0 \in X(k)$: the origin

Then

$$
\sharp\left(f^{-1}(0)(k)\right)=\frac{1}{\sharp G} \sum_{\rho \in H_{\text {om }}^{\text {cont }}\left(G_{K}, G\right)} q^{w(\rho)} .
$$

The motivic and more general version:

Conjecture 2 (Y, Wood-Y)

- K is a complete discrete valuation field with perfect residue field k
- $G \subset G L_{n}\left(\mathcal{O}_{K}\right):$ a small finite subgroup
- $Y \xrightarrow{f} X:=\mathbb{A}_{\mathcal{O}_{K}}^{n} / G:$ a crepant resolution
- $0 \in X(k)$: the origin

Then

$$
M_{s t}(X)_{0}=\int_{\mathcal{M}_{K}} \mathbb{L}^{w} \quad \text { in a modified } K_{0}\left(\operatorname{Var}_{k}\right)
$$

Here

- \mathcal{M}_{K} : the conjectural moduli space of G-covers of Spec K defined over k.
- $M_{s t}(X)_{0}$: the stringy motif of X at 0 .

Remarks

- If $K=\mathbb{C}((t))$ and $G \subset G L_{n}(\mathbb{C})$, then \mathcal{M}_{K} consists of finitely many points corresponding to conjugacy classes in G, and the RHS is of the form

$$
\sum_{g \in \operatorname{Conj}(G)} \mathbb{L}^{w(g)}
$$

We recover Batyrev and Denef-Loeser's results.

- Both sides of the equality might be ∞ (the defining motivic integral diverges). If X has a \log resolution, then this happens iff X is not log terminal. Wild quotient singularities are NOT log terminal in general.
- Conjectures would follow if the theory of motivic integration over wild DM stacks is established.

More remarks

- The assumption that the action is linear is important.
- The assumption that G is small can be removed by considering the stringy invariant of a \log variety (X, Δ) with Δ a \mathbb{Q}-divisor.
- The ultimately general form:let (X, Δ) and $\left(X^{\prime}, \Delta^{\prime}\right)$ be two K-equivalent $\log \mathrm{DM}$ stacks and $W \subset X$ and $W^{\prime} \subset X^{\prime}$ corresponding subsets. Then

$$
M_{s t}(X, \Delta)_{w}=M_{s t}\left(X^{\prime}, \Delta^{\prime}\right) w^{\prime}
$$

(Y-: the tame case with a base $\left.k\left(\operatorname{not} \mathcal{O}_{K}\right)\right)$

Relation between the weight function and the Artin/Swan conductors

Definition (the weight function (Y , Wood- Y))
$\rho \leftrightarrow L / K$ the corresponding etale G-extension
Two G-actions on $\mathcal{O}_{L}^{\oplus n}$:

- the G-action on L induces the diagonal G-action on $\mathcal{O}_{L}^{\oplus n}$,
- the induced representation $G \hookrightarrow G L_{n}\left(\mathcal{O}_{K}\right) \hookrightarrow G L_{n}\left(\mathcal{O}_{L}\right)$.

Put

$$
\equiv:=\left\{x \mid g \cdot{ }_{1} x=g \cdot{ }_{2} x\right\} \subset \mathcal{O}_{L}^{\oplus n} .
$$

Define

$$
w(\rho):=\operatorname{codim}\left(k^{n}\right)^{\rho\left(I_{k}\right)}-\frac{1}{\sharp G} \cdot \text { length } \frac{\mathcal{O}_{L}^{\oplus n}}{\mathcal{O}_{L} \cdot \Xi} .
$$

Here $I_{K} \subset G_{K}$ is the inertia subgroup.

To $G_{K} \xrightarrow{\rho} G \hookrightarrow G L_{n}(K)$, we associate the Artin conductor

$$
a(\rho)=\overbrace{t(\rho)}^{\text {the tame part }}+\overbrace{s(\rho)}^{\text {the wild part (Swan cond.) }} \in \mathbb{Z}_{\geq 0}
$$

Proposition (Wood-Y)
If $G \subset G L_{n}\left(\mathcal{O}_{K}\right)$ is a permutation representation, then

$$
w(\rho)=\frac{1}{2}(t(\rho)-s(\rho))
$$

The Hilbert scheme of points vs Bhargava's mass formula

- K: a local field with residue field $k=\mathbb{F}_{q}$
- $G=S_{n}$: the n-th symmetric group
- $S_{n} \hookrightarrow G L_{2 n}\left(\mathcal{O}_{K}\right)$: two copies of the standard representation
- $X:=\mathbb{A}^{2 n} / S_{n}=S^{n} \mathbb{A}^{2}$: the n-th symmetric product of the affine plane (over \mathcal{O}_{K})
- $Y:=\operatorname{Hilb}^{n}\left(\mathbb{A}^{2}\right)$: the Hilbert scheme of n points (over \mathcal{O}_{K})
- $Y \xrightarrow{f} X$: the Hilbert-Chow morphism, known to be a crepant resolution (Beauville, Kumar-Thomsen, Brion-Kumar)

Theorem (Wood-Y)

In this setting,

$$
\sharp\left(f^{-1}(0)\left(\mathbb{F}_{q}\right)\right)=\sum_{i=0}^{n-1} P(n, n-i) q^{i}=\frac{1}{n!} \sum_{\rho \in \operatorname{Hom}_{\text {cont }}\left(G_{K}, S_{n}\right)} q^{w(\rho)} .
$$

Here $P(n, j):=\sharp\{$ partitions of n into exactly j parts $\}$.
Bhargava's mass formula

$$
\begin{aligned}
\sum_{i=0}^{n-1} P(n, n-i) q^{-i} & =\sum_{\substack{L / K: \text { etale } \\
[L: K]=n}}^{\sharp \operatorname{Aut}(L / K)} q^{-v_{K}(\operatorname{disc}(L / K))} \\
& \stackrel{1}{=} \frac{1}{n!} \sum_{\rho \in \operatorname{Hom}_{\text {cont }}\left(G_{K}, S_{n}\right)} q^{-a(\rho)}
\end{aligned}
$$

Known cases

	1	2	3	4
	tame		wild	
	B, D-L, Y, W-Y	$\mathrm{W}-\mathrm{Y}$	Y	$\mathrm{W}-\mathrm{Y}$
group	any	$\mathbb{Z} / 3 \mathbb{Z} \subset G L_{3}$	$\mathbb{Z} / p \mathbb{Z}$	$S_{n} \subset G L_{2 n}$
k or \mathcal{O}_{K}	$k($ char $\uparrow \sharp G)$	$\mathcal{O}_{K}($ char $k \neq 3)$	$k($ char $p)$	any
Conj 1	\checkmark	\checkmark	\checkmark	\checkmark
Conj $1 '$		\checkmark		\checkmark
Conj 2	\checkmark		\checkmark	

Possible applications

$$
\begin{gathered}
\sharp\left(f^{-1}(0)(k)\right)=\frac{1}{\sharp G} \sum_{\rho \in \operatorname{Hom}_{\text {cont }}\left(G_{k((t))}, G\right)} q^{w(\rho)} \\
M_{s t}(X)_{0}=\int_{\mathcal{M}_{K}} \mathbb{L}^{w}
\end{gathered}
$$

- Can compute the LHS's (singularities) by computing the RHS's (arithmetics), and vice versa.
- In low (resp. high) dimensions, the LHS's (resp. RHS's) seems likely easier.
- \exists a \log resolution of $X=\mathbb{A}^{n} / G$
\Rightarrow rationality and duality of the LHS's
\Leftrightarrow rationality and duality of the RHS's!!! (hidden structures on the set/space of G-extensions of a local field)

Problem

Compute the RHS's using the number theory and check whether these properties holds.

If the properties do not hold, then $\nexists \mathrm{a} \log$ resolution of X.

Future problems

- Non-linear actions on possibly singular spaces (work in progress)
- Global fields
- $\operatorname{Hilb}^{n}\left(\mathbb{A}_{\mathbb{Z}}^{2} / \mathbb{Z}\right) \stackrel{? ?}{\longleftrightarrow}\{L / \mathbb{Q} \mid[L: \mathbb{Q}]=n\}$
- curve counting on wild orbifolds
- Explicit (crepant) resolution of wild quotients in low dimensions
\Rightarrow many new mass formulas
- Explicit computation of $\frac{1}{\sharp G} \sum q^{w(\rho)}$ and check the rationality or duality.
- Prove these properties in terms of the number theory.

One more problem

Problem

Does Batyrev's theorem holds also in the wild case? Namely, if

- K is a complete discrete valuation field with perfect residue field k
- $G \subset G L_{n}\left(\mathcal{O}_{K}\right):$ a small finite subgroup
- $Y \xrightarrow{f} X:=\mathbb{A}_{\mathcal{O}_{K}}^{n} / G:$ a crepant resolution, then do we have the following equality?

$$
e\left(Y \otimes_{\mathcal{O}_{K}} k\right)=\sharp\{\text { conj. classes in } G\}
$$

Remark

This holds in a few cases we could compute. However, for now, I do not see any reason that this holds except the tame case.

