Computing Invariant Rings with Macaulay2

Takehiko Yasuda

This is lecture materials for an algebraic geometry class taught by Yasuda at the University of Osaka in the spring/summer semester of academic year 2024. (English translation from the Japanese original.)

1 Day 1

1.1 Reference Web Pages

- Macaulay2: https://macaulay2.com/
- Macaulay2 documentation: https://macaulay2.com/doc/Macaulay2/share/doc/ Macaulay2/Macaulay2Doc/html/
- InvariantRing package documentation: https://macaulay2.com/doc/Macaulay2/ share/doc/Macaulay2/InvariantRing/html/index.html

1.2 Let's Start with a Simple Example

First, let's start the program.

```
    + M2 --no-readline --print-width 94
    Macaulay2, version 1.24.05
    with packages: ConwayPolynomials, Elimination,
IntegralClosure, InverseSystems,
    Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PrimaryDecomposition,
    ReesAlgebra, Saturation, TangentCone, Truncations,
Varieties
```

Next, load the package for computing invariant rings.

```
1 i1 : loadPackage "InvariantRing"
2
3 o1 = InvariantRing
4
5 o1 : Package
```

This package is for computing invariant rings for linear actions of linear reductive groups. It works well for finite groups when the characteristic and order are coprime (tame case).

Let's start by computing a simple invariant ring. First, prepare a polynomial ring in two variables with rational coefficients.

```
1 i2 : R = QQ[x,y]
2
3 o2 = R
4
5 o2 : PolynomialRing
```

Next, prepare a matrix corresponding to the interchange of x and y, and define a group action on the polynomial ring R determined by this matrix.

```
i3 : M = permutationMatrix [2,1]
1
2
  o3 = | 0 1 |
3
        4
\mathbf{5}
                   2
                             2
6
  o3 : Matrix ZZ
                    <--- ZZ
7
8
  i4 : myAction = finiteAction(M,R)
9
10
  o4 = R < - \{| 0 1 |\}
11
               12
13
  o4 : FiniteGroupAction
14
```

To find generators of the invariant ring, use the command invariants.

```
i12 : invariants myAction
1
2
  Warning: stopping condition not met!
3
  Output may not generate the entire ring of invariants.
4
  Increase value of DegreeBound.
5
6
                   2
                        2
7
  o12 = \{x + y, x + y\}
8
9
  o12 : List
10
```

The generators of the invariant ring are found to be x + y and $x^2 + y^2$. For some reason, there's an error message saying it's unclear if these generate the invariant ring.

Even if we increase the **DegreeBound** as suggested, the same error appears, so we'll ignore it. The generators seem to be correctly computed.

1.3 Exercises

- 1. For n = 3, 4, 5, find the invariant ring for the permutation action of the symmetric group of degree n on the polynomial ring in n variables. Hint: You can create matrices corresponding to n-1 transpositions that generate the symmetric group of degree n using apply(n-1, i -> permutationMatrix(n, [i+1,i+2])).
- 2. Do the same with alternating groups instead of symmetric groups.
- 3. Find the relations between the generators of each invariant ring.
- 4. For each invariant ring found above, compute the Hilbert (Poincaré) series using the command hilbertSeries.

1.4 Extension of Coefficient Field

When using the rational number field as the coefficient field, the possible group actions are limited. To handle more group actions, we need to extend the coefficient field. In particular, to deal with diagonal actions, we need to adjoin roots of unity to the field.

Let's try adjoining a cubic root of unity to the rational number field.

```
i1 : L = toField(QQ[a]/(a^2+a+1)) -- treat the ring as a
1
      field
2
  o1 = L
3
4
  o1 : PolynomialRing
5
6
  i3 : a^3
7
8
  03 = 1
9
10
  o3 : L
11
```

Note that we should not use toField(QQ[a]/(a^3-1)). While a^3-1 is not irreducible and won't define a field, no error message will appear. However, this will lead to incorrect results in later calculations. Let's input the correct irreducible polynomial.

Using the newly defined field L as the coefficient field, we can compute the invariant ring under the action of a cyclic group of order 3 as follows.

```
^{4}
  o20 : PolynomialRing
5
6
  i21 : myAction = finiteAction(matrix{{a,0},{0,a^2}},R)
7
8
  o21 = R < - \{| a 0\}
                          |}
9
                | 0 -a-1 |
10
11
  o21 : FiniteGroupAction
12
13
  i22 : invariantRing myAction
14
15
  Warning: stopping condition not met!
16
  Output may not generate the entire ring of invariants.
17
  Increase value of DegreeBound.
18
19
  o22 =
                       3
                  3
20
         L[x*y, y , x ]
21
22
  o22 : RingOfInvariants
23
```

We can verify that the obtained invariant ring is normal (integrally closed) using the command isNormal.

```
i67 : T = invariantRing myAction;
1
\mathbf{2}
  Warning: stopping condition not met!
3
  Output may not generate the entire ring of invariants.
4
  Increase value of DegreeBound.
5
6
  i69 : I = definingIdeal T
7
8
                 3
9
  o69 = ideal(u)
                   - u u )
10
                       2 3
                 1
11
12
  o69 : Ideal of L[u ..u ]
13
                       1
                            3
14
15
  i70 : T2 = (ring I)/I -- represent the invariant ring as a
16
      quotient ring
17
  070 = T2
18
19
```

```
20 070 : QuotientRing
21
22 i72 : isNormal T2
23
24 072 = true
```

Various commands like isNormal cannot be applied directly to instances of the RingOfInvariants class output by invariantRing. We need to create an instance of the QuotientRing class as shown above.

1.5 Exercises

- 1. Compute invariant rings for diagonal actions of cyclic groups with various numbers of variables and orders of cyclic groups.
- 2. For each case, verify the number of generators and relations.
- 3. Confirm that all obtained invariant rings are normal.
- 4. Calculate the Hilbert-Poincaré series and verify that Molien's formula holds.
- 5. (Advanced) Try to determine whether the invariant rings are Cohen-Macaulay and/or Gorenstein. (Hint: Look for packages needed to check these properties.)

Actually, for diagonal actions, we can compute invariant rings without extending the coefficient field. (Note: In scheme theory, this can be interpreted as the invariant ring under the action of the group scheme μ_l . The same monomials generate the ring regardless of the coefficient field.)

```
i31 : R = QQ[x,y]
1
2
  o31 = R
3
4
  o31 : PolynomialRing
5
6
  i32 : A = diagonalAction(matrix{{1,2}},{3},R)
7
8
  o32 = R < - ZZ/3 via
9
10
         11
12
  o32 : DiagonalAction
13
14
  i33 : invariantRing A
15
16
```

17 033 = 3 3
18 QQ[x*y, y , x]
19
20 033 : RingOfInvariants

1.6 Quotient Map

The embedding map from the invariant ring to the polynomial ring

$$k[x_1,\ldots,x_n]^G \hookrightarrow k[x_1,\ldots,x_n]$$

corresponds to the quotient map

$$\mathbb{A}^n_k \to \mathbb{A}^n_k/G$$

For the invariant ring T2 created above, we can define the embedding map in M2 as follows.

The following calculations can only be performed over the rational number field, so let's prepare the invariant ring over the rational field again and represent it as a quotient ring.

```
i112 : R = QQ[x,y]
1
\mathbf{2}
   o112 = R
3
^{4}
   o112 : PolynomialRing
5
\mathbf{6}
   i113 : A = diagonalAction(matrix{\{1,2\}}, \{3\}, R)
7
8
   o113 = R <- ZZ/3 via
9
10
            | 1 2 |
11
12
   o113 : DiagonalAction
13
14
   i115 : I = definingIdeal invariantRing A
15
16
                     З
17
   o115 = ideal(u)
                        - u u )
18
                     1
                           2 3
19
20
   o115 : Ideal of QQ[u ..u ]
^{21}
                             1
                                  3
22
23
```

```
i116 : T = (ring I)/I
^{24}
25
   0116 = T
26
27
   o116 : QuotientRing
28
29
   i117 : describe T
30
31
            QQ[u ..u ]
32
                  1
                       3
33
   o117 =
34
               3
35
              u
                  - u u
36
               1
                      2 3
37
```

Next, define a map from T to R by specifying where the variables map to.

```
i120 : use R
\mathbf{1}
2
   o120 = R
3
4
   o120 : PolynomialRing
\mathbf{5}
6
   i121 : f = map(R,T, \{x*y, y^3, x^3\})
\overline{7}
8
                                     3
                                           3
9
   o121 = map (R, T, {x*y, y , x })
10
11
   o121 : RingMap R <-- T
12
13
   i122 : isWellDefined f
14
15
   o122 = true
16
```

When the domain is a quotient ring rather than a polynomial ring, there's no guarantee that the map will be well-defined, so we check just to be sure.

Next, take the point (1,2) in the affine plane $\mathbb{A}_k^2 = k^2$, and compute its image under f and its preimage.

```
1 i127 : m1 = ideal(x-1,y-2)

2 o127 = ideal (x - 1, y - 2)

4 o127 : Ideal of R

6
```

```
i128 : m2 = preimage(f, m1)
\overline{7}
8
  o128 = ideal (u - 2, u - 1, u
                                   - 8)
9
                 1
                         3
                                 2
10
11
  o128 : Ideal of T
12
13
  i129 : m3 = f(m2)
14
15
                          3
16
  o129 = ideal (x*y - 2, x - 1, y - 8)
17
18
  o129 : Ideal of R
19
20
  i130 : decompose m3
21
22
23
  24
    4)
25
  o130 : List
26
```

From the above calculation, we can see that the image of (1,2) under the quotient map is the point (2,8,1) in k^3 . Also, we found that the preimage of the point (2,8,1)under the quotient map is given by the ideal $(xy - 2, x^3 - 1, y^3 - 8)$. This ideal has two minimal associated primes $(x - 1, y - 2), (2x + y + 2, y^2 + 2y + 4)$. The second ideal cannot be further decomposed over the rational field, but corresponds to the pair of points $(\zeta, \zeta^2 2), (\zeta^2, \zeta 2)$.

2 Day 2

Today, let's perform calculations related to Du Val singularities using Macaulay2!

2.1 Computing Invariant Rings

Du Val singularities are the singularities that appear in quotient varieties \mathbb{C}^2/G by finite subgroups of $SL_2(\mathbb{C})$. The finite subgroups of $SL_2(\mathbb{C})$ have been classified, and we know exactly which matrices generate them.

Reference: Graham Leuschke, The McKay correspondence, p.15, https://www.leuschke.org/uploads/McKay-total.pdf

Let's calculate the coordinate ring of a Du Val singularity. As an example, let's consider type D_4 . In this case, the corresponding finite group is generated by the following two matrices:

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

To calculate in M2, we prepare as follows:

```
i1 : loadPackage "InvariantRing" -- Load InvariantRing
1
     package
\mathbf{2}
  o1 = InvariantRing
3
4
  o1 : Package
5
6
  i2 : L = toField(QQ[w]/(w^2+1)) -- Adjoin fourth root of
7
     unity to QQ
8
  o2 = L
9
10
  o2 : PolynomialRing
11
12
  i3 : R = L[x, y]
13
14
  o3 = R
15
16
  o3 : PolynomialRing
17
```

Next, we define the group action and compute the invariant ring.

i21 : X1 = matrix{{w,0},{0,-w}}; X2 = matrix{{0,w},{w,0}}; 1 $\mathbf{2}$ 2 2 3 o21 : Matrix (L[u..w]) <-- (L[u..w]) 4 $\mathbf{5}$ 2 2 6 o22 : Matrix (L[u..w]) <-- (L[u..w]) 7 8 i23 : action1 = finiteAction({X1,X2},R) -- Define the 9 action of finite group generated by two matrices 10 $o23 = R < - \{ | w 0 |, | 0 w | \}$ 11 | 0 - w | | w 0 | 1213o23 : FiniteGroupAction 14 15i24 : A = invariantRing action1 16

172 2 o24 = 4 4 5 5 18 + y , x y , x y - x*y] -- May not display like L[x 19 this depending on version. In that case, you can display generators using "generators" 20o24 : RingOfInvariants 21 22i25 : definingIdeal A -- The ideal when expressing the 23invariant ring as a quotient of polynomial ring 242 3 2 25o25 = ideal(u u)- 4u u) -26 1 2 2 3 2728 o25 : Ideal of L[u ..u] 291 3 30

From the last calculation result, we found that the quotient variety in this case is isomorphic to an affine algebraic variety in \mathbb{C}^3 defined by the equation $u_1^2u_2 - 4u_2^3 - u_3^2 = 0$. After the coordinate transformation

$$x = u_3, \quad z = 4^{1/3}u_2, \quad y = (-1)^{1/2}4^{1/6}u_1$$

we get the well-known D_4 type singularity equation $x^2 + y^2 z + z^3 = 0$.

2.2 Exercises

- 1. Find the invariant ring for type D_6 using M2 and verify that the quotient variety is isomorphic to an affine algebraic variety defined by $x^2 + y^2 z + z^5 = 0$.
- 2. Similarly verify for types E_6 and E_7 . (The calculation might take some time.)

2.3 Computing Blowups

First, let's copy and paste the following code into M2 and press Enter.

```
affineCharts = S ->(
         -- affine charts of a blowup without simplification
        T := (flattenRing S)_0;
        U := ambient T;
        I := ideal T;
        varsOfS := apply(flatten entries vars S,i->sub(i,U));
        apply(varsOfS, i-> U / (I + ideal(i - 1))));
        8
```

```
isBlowupSmooth = S \rightarrow (
9
       -- checks if the Rees algebra of an ideal is smooth.
10
       all(affineCharts(S), isSmooth2) );
11
12
  isSmooth2 = R \rightarrow (
13
     -- checks if an affine ring is smooth
14
     if (isPolynomialRing R) then true else
15
       (
16
           := ambient R;
         S
17
         I := ideal R;
18
         (ideal singularLocus I) == ideal(1_S)
19
       )
20
     );
21
22
  isBlowupNormal = S ->(
23
      -- checks if the Rees algebra of an ideal is normal.
24
         all(affineCharts(S),isNormal)) ;
25
```

These are part of the Macaulay2 functions that Yasuda previously wrote for his research and published http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/codes/MyPackage.m2. (However, the published function "affineCharts" stopped working, so "affineCharts2" was replaced with "affineCharts" this time. "isSmooth" was changed to "isSmooth2" to avoid conflict with the built-in function of the same name.)

As an example, let me explain what the function "isSmooth2" does. When it receives input R (assuming R is a quotient ring of a polynomial ring by an ideal), it first checks if R is a polynomial ring, and if so, returns true. If R is not a polynomial ring, it sets S as the polynomial ring used to define R and I as the ideal, then computes the defining ideal of the singular locus using ideal singularLocus I and checks if it equals the trivial ideal ideal(1_S). For details on how to create functions in M2, refer to Section 5.1 "Creating Functions" in http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/pdfs/CompAG-en.pdf. By creating your own functions, you can perform more complex calculations.

Now, let's compute the blowup at the origin of an A_2 singularity.

```
i5 : R = QQ[x,y,z]/(x*y-z^3)
1
2
  o5 = R
3
4
      : QuotientRing
  ο5
5
6
      : A = reesAlgebra ideal(x,y,z)
  i6
7
8
  o6 = A
9
10
```

11 06 : QuotientRing

Explanation for those who know scheme theory: For an ideal I of ring R, the graded ring called the Rees algebra is defined as follows:

$$A := R[It] = \bigoplus_{n \ge 0} I^n$$

Its Proj is the blowup of Spec R along ideal I. When generators f_1, \ldots, f_l of I are fixed, it can be written as a quotient ring $R[x_1, \ldots, x_l]/J$. The blowup is covered by l affine open sets, and for each $i \in \{1, \ldots, l\}$,

$$B_i := R[x_1, \dots, x_l]/(J + (x_i - 1))$$

becomes the coordinate ring of an affine open set.

Let's check if the blowup at the origin of an A_2 singularity is smooth.

1 i7 : isBlowupSmooth A

o7 = true

3

This calculation shows that the blowup at the origin of an A_2 singularity is smooth and provides a resolution of singularities.

Each affine open chart can be computed as:

i8 : affineCharts A 1 $\mathbf{2}$ QQ[w ..w , x..z] 3 0 2 4o8 = $\mathbf{5}$ _____ {-----3 2 2 $\mathbf{6}$ (- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -7 1) 1 2 0 1 0 2 0 2 0 1 2 0 8 9 $QQ[w \dots w, x \dots z]$ 100 2 11123 2 2 13 (- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -141) 1 2 0 1 0 2 0 2 0 1 2 1 15_____ 16

 $QQ[w \dots w, x \dots z]$ 170 2 18 _____ ----} 19 3 2 2 20(- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -211) 1 2 0 1 0 2 0 2 0 1 2 2 2223 o8 : List 2425i9 : singularLocus o8_0 -- the singular locus of the 1st ring 2627 QQ [] 28- -- The singular locus is empty. 29010 = --1 30 31 o10 : QuotientRing 32

The exceptional set can be calculated as follows:

1	i11	:	specialFiber	ideal(x,y,z)
2				
3			QQ[ww]	
4			0 2	
5	o11	=		
6			W W	
7			0 1	
8				
9	o11	:	QuotientRing	

We found that the exceptional set is defined by

 $w_0 w_1 = 1$

in the projective plane \mathbb{P}^2 with homogeneous coordinates w_0, w_1, w_2 . From this, we can see that the exceptional set consists of two projective lines intersecting orthogonally at one point.

2.4 Exercises

- 1. Let's try similar calculations for A_3 and D_4 singularities.
- 2. If you have extra time, look at http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/pdfs/CompAG3.pdf and try various calculations. If you think you might use M2 in the future, read Section 5.1 "Creating Functions" to learn how to create functions.