
Computing Invariant Rings with Macaulay2

Takehiko Yasuda

This is lecture materials for an algebraic geometry class taught by Yasuda at the
University of Osaka in the spring/summer semester of academic year 2024. (English
translation from the Japanese original.)

1 Day 1

1.1 Reference Web Pages

• Macaulay2: https://macaulay2.com/

• Macaulay2 documentation: https://macaulay2.com/doc/Macaulay2/share/doc/
Macaulay2/Macaulay2Doc/html/

• InvariantRing package documentation: https://macaulay2.com/doc/Macaulay2/
share/doc/Macaulay2/InvariantRing/html/index.html

1.2 Let’s Start with a Simple Example

First, let’s start the program.

1 + M2 --no-readline --print -width 94

2 Macaulay2 , version 1.24.05

3 with packages: ConwayPolynomials , Elimination ,

IntegralClosure , InverseSystems ,

4 Isomorphism , LLLBases , MinimalPrimes , OnlineLookup ,

PrimaryDecomposition ,

5 ReesAlgebra , Saturation , TangentCone , Truncations ,

Varieties

Next, load the package for computing invariant rings.

1 i1 : loadPackage "InvariantRing"

2

3 o1 = InvariantRing

4

5 o1 : Package

1

This package is for computing invariant rings for linear actions of linear reductive
groups. It works well for finite groups when the characteristic and order are coprime
(tame case).

Let’s start by computing a simple invariant ring. First, prepare a polynomial ring
in two variables with rational coefficients.

1 i2 : R = QQ[x,y]

2

3 o2 = R

4

5 o2 : PolynomialRing

Next, prepare a matrix corresponding to the interchange of x and y, and define a
group action on the polynomial ring R determined by this matrix.

1 i3 : M = permutationMatrix [2,1]

2

3 o3 = | 0 1 |

4 | 1 0 |

5

6 2 2

7 o3 : Matrix ZZ <--- ZZ

8

9 i4 : myAction = finiteAction(M,R)

10

11 o4 = R <- {| 0 1 |}

12 | 1 0 |

13

14 o4 : FiniteGroupAction

To find generators of the invariant ring, use the command invariants.

1 i12 : invariants myAction

2

3 Warning: stopping condition not met!

4 Output may not generate the entire ring of invariants.

5 Increase value of DegreeBound.

6

7 2 2

8 o12 = {x + y, x + y }

9

10 o12 : List

The generators of the invariant ring are found to be x + y and x2 + y2. For some
reason, there’s an error message saying it’s unclear if these generate the invariant ring.

2

Even if we increase the DegreeBound as suggested, the same error appears, so we’ll
ignore it. The generators seem to be correctly computed.

1.3 Exercises

1. For n = 3, 4, 5, find the invariant ring for the permutation action of the symmetric
group of degree n on the polynomial ring in n variables. Hint: You can create
matrices corresponding to n−1 transpositions that generate the symmetric group
of degree n using apply(n-1, i -> permutationMatrix(n, [i+1,i+2])).

2. Do the same with alternating groups instead of symmetric groups.

3. Find the relations between the generators of each invariant ring.

4. For each invariant ring found above, compute the Hilbert (Poincaré) series using
the command hilbertSeries.

1.4 Extension of Coefficient Field

When using the rational number field as the coefficient field, the possible group actions
are limited. To handle more group actions, we need to extend the coefficient field. In
particular, to deal with diagonal actions, we need to adjoin roots of unity to the field.

Let’s try adjoining a cubic root of unity to the rational number field.

1 i1 : L = toField(QQ[a]/(a^2+a+1)) -- treat the ring as a

field

2

3 o1 = L

4

5 o1 : PolynomialRing

6

7 i3 : a^3

8

9 o3 = 1

10

11 o3 : L

Note that we should not use toField(QQ[a]/(a^3-1)). While a^3-1 is not irre-
ducible and won’t define a field, no error message will appear. However, this will lead
to incorrect results in later calculations. Let’s input the correct irreducible polynomial.

Using the newly defined field L as the coefficient field, we can compute the invariant
ring under the action of a cyclic group of order 3 as follows.

1 i20 : R = L[x,y]

2

3 o20 = R

3

4

5 o20 : PolynomialRing

6

7 i21 : myAction = finiteAction(matrix {{a,0},{0,a^2}},R)

8

9 o21 = R <- {| a 0 |}

10 | 0 -a-1 |

11

12 o21 : FiniteGroupAction

13

14 i22 : invariantRing myAction

15

16 Warning: stopping condition not met!

17 Output may not generate the entire ring of invariants.

18 Increase value of DegreeBound.

19

20 o22 = 3 3

21 L[x*y, y , x]

22

23 o22 : RingOfInvariants

We can verify that the obtained invariant ring is normal (integrally closed) using
the command isNormal.

1 i67 : T = invariantRing myAction;

2

3 Warning: stopping condition not met!

4 Output may not generate the entire ring of invariants.

5 Increase value of DegreeBound.

6

7 i69 : I = definingIdeal T

8

9 3

10 o69 = ideal(u - u u)

11 1 2 3

12

13 o69 : Ideal of L[u ..u]

14 1 3

15

16 i70 : T2 = (ring I)/I -- represent the invariant ring as a

quotient ring

17

18 o70 = T2

19

4

20 o70 : QuotientRing

21

22 i72 : isNormal T2

23

24 o72 = true

Various commands like isNormal cannot be applied directly to instances of the
RingOfInvariants class output by invariantRing. We need to create an instance of
the QuotientRing class as shown above.

1.5 Exercises

1. Compute invariant rings for diagonal actions of cyclic groups with various numbers
of variables and orders of cyclic groups.

2. For each case, verify the number of generators and relations.

3. Confirm that all obtained invariant rings are normal.

4. Calculate the Hilbert-Poincaré series and verify that Molien’s formula holds.

5. (Advanced) Try to determine whether the invariant rings are Cohen-Macaulay
and/or Gorenstein. (Hint: Look for packages needed to check these properties.)

Actually, for diagonal actions, we can compute invariant rings without extending
the coefficient field. (Note: In scheme theory, this can be interpreted as the invariant
ring under the action of the group scheme µl. The same monomials generate the ring
regardless of the coefficient field.)

1 i31 : R = QQ[x,y]

2

3 o31 = R

4

5 o31 : PolynomialRing

6

7 i32 : A = diagonalAction(matrix {{1,2}},{3},R)

8

9 o32 = R <- ZZ/3 via

10

11 | 1 2 |

12

13 o32 : DiagonalAction

14

15 i33 : invariantRing A

16

5

17 o33 = 3 3

18 QQ[x*y, y , x]

19

20 o33 : RingOfInvariants

1.6 Quotient Map

The embedding map from the invariant ring to the polynomial ring

k[x1, . . . , xn]
G ↪→ k[x1, . . . , xn]

corresponds to the quotient map

An
k → An

k/G

For the invariant ring T2 created above, we can define the embedding map in M2 as
follows.

The following calculations can only be performed over the rational number field,
so let’s prepare the invariant ring over the rational field again and represent it as a
quotient ring.

1 i112 : R = QQ[x,y]

2

3 o112 = R

4

5 o112 : PolynomialRing

6

7 i113 : A = diagonalAction(matrix {{1,2}},{3} ,R)

8

9 o113 = R <- ZZ/3 via

10

11 | 1 2 |

12

13 o113 : DiagonalAction

14

15 i115 : I = definingIdeal invariantRing A

16

17 3

18 o115 = ideal(u - u u)

19 1 2 3

20

21 o115 : Ideal of QQ[u ..u]

22 1 3

23

6

24 i116 : T = (ring I)/I

25

26 o116 = T

27

28 o116 : QuotientRing

29

30 i117 : describe T

31

32 QQ[u ..u]

33 1 3

34 o117 = ----------

35 3

36 u - u u

37 1 2 3

Next, define a map from T to R by specifying where the variables map to.

1 i120 : use R

2

3 o120 = R

4

5 o120 : PolynomialRing

6

7 i121 : f = map(R,T,{x*y,y^3,x^3})

8

9 3 3

10 o121 = map (R, T, {x*y, y , x })

11

12 o121 : RingMap R <-- T

13

14 i122 : isWellDefined f

15

16 o122 = true

When the domain is a quotient ring rather than a polynomial ring, there’s no guar-
antee that the map will be well-defined, so we check just to be sure.

Next, take the point (1,2) in the affine plane A2
k = k2, and compute its image under

f and its preimage.

1 i127 : m1 = ideal(x-1,y-2)

2

3 o127 = ideal (x - 1, y - 2)

4

5 o127 : Ideal of R

6

7

7 i128 : m2 = preimage(f,m1)

8

9 o128 = ideal (u - 2, u - 1, u - 8)

10 1 3 2

11

12 o128 : Ideal of T

13

14 i129 : m3 = f(m2)

15

16 3 3

17 o129 = ideal (x*y - 2, x - 1, y - 8)

18

19 o129 : Ideal of R

20

21 i130 : decompose m3

22

23 2

24 o130 = {ideal (y - 2, x - 1), ideal (2x + y + 2, y + 2y +

4)}

25

26 o130 : List

From the above calculation, we can see that the image of (1,2) under the quotient
map is the point (2,8,1) in k3. Also, we found that the preimage of the point (2,8,1)
under the quotient map is given by the ideal (xy− 2, x3− 1, y3− 8). This ideal has two
minimal associated primes (x − 1, y − 2), (2x + y + 2, y2 + 2y + 4). The second ideal
cannot be further decomposed over the rational field, but corresponds to the pair of
points (ζ, ζ22), (ζ2, ζ2).

2 Day 2

Today, let’s perform calculations related to Du Val singularities using Macaulay2!

2.1 Computing Invariant Rings

Du Val singularities are the singularities that appear in quotient varieties C2/G by
finite subgroups of SL2(C). The finite subgroups of SL2(C) have been classified, and
we know exactly which matrices generate them.

Reference: Graham Leuschke, The McKay correspondence, p.15, https://www.

leuschke.org/uploads/McKay-total.pdf

Let’s calculate the coordinate ring of a Du Val singularity. As an example, let’s
consider type D4. In this case, the corresponding finite group is generated by the
following two matrices:

8

(
i 0
0 −i

)
,

(
0 i
i 0

)
To calculate in M2, we prepare as follows:

1 i1 : loadPackage "InvariantRing" -- Load InvariantRing

package

2

3 o1 = InvariantRing

4

5 o1 : Package

6

7 i2 : L = toField(QQ[w]/(w^2+1)) -- Adjoin fourth root of

unity to QQ

8

9 o2 = L

10

11 o2 : PolynomialRing

12

13 i3 : R = L[x,y]

14

15 o3 = R

16

17 o3 : PolynomialRing

Next, we define the group action and compute the invariant ring.

1 i21 : X1 = matrix {{w,0},{0,-w}}; X2 = matrix {{0,w},{w,0}};

2

3 2 2

4 o21 : Matrix (L[u..w]) <-- (L[u..w])

5

6 2 2

7 o22 : Matrix (L[u..w]) <-- (L[u..w])

8

9 i23 : action1 = finiteAction ({X1 ,X2},R) -- Define the

action of finite group generated by two matrices

10

11 o23 = R <- {| w 0 |, | 0 w |}

12 | 0 -w | | w 0 |

13

14 o23 : FiniteGroupAction

15

16 i24 : A = invariantRing action1

9

17

18 o24 = 4 4 2 2 5 5

19 L[x + y , x y , x y - x*y] -- May not display like

this depending on version. In that case , you can

display generators using "generators"

20

21 o24 : RingOfInvariants

22

23 i25 : definingIdeal A -- The ideal when expressing the

invariant ring as a quotient of polynomial ring

24

25 2 3 2

26 o25 = ideal(u u - 4u - u)

27 1 2 2 3

28

29 o25 : Ideal of L[u ..u]

30 1 3

From the last calculation result, we found that the quotient variety in this case is
isomorphic to an affine algebraic variety in C3 defined by the equation u2

1u2−4u3
2−u2

3 =
0. After the coordinate transformation

x = u3, z = 41/3u2, y = (−1)1/241/6u1

we get the well-known D4 type singularity equation x2 + y2z + z3 = 0.

2.2 Exercises

1. Find the invariant ring for type D6 using M2 and verify that the quotient variety
is isomorphic to an affine algebraic variety defined by x2 + y2z + z5 = 0.

2. Similarly verify for types E6 and E7. (The calculation might take some time.)

2.3 Computing Blowups

First, let’s copy and paste the following code into M2 and press Enter.

1 affineCharts = S ->(

2 -- affine charts of a blowup without simplification

3 T := (flattenRing S)_0;

4 U := ambient T;

5 I := ideal T;

6 varsOfS := apply(flatten entries vars S,i->sub(i,U));

7 apply(varsOfS , i-> U / (I + ideal(i - 1)))) ;

8

10

9 isBlowupSmooth = S ->(

10 -- checks if the Rees algebra of an ideal is smooth.

11 all(affineCharts(S),isSmooth2)) ;

12

13 isSmooth2 = R -> (

14 -- checks if an affine ring is smooth

15 if (isPolynomialRing R) then true else

16 (

17 S := ambient R;

18 I := ideal R;

19 (ideal singularLocus I) == ideal(1_S)

20)

21) ;

22

23 isBlowupNormal = S ->(

24 -- checks if the Rees algebra of an ideal is normal.

25 all(affineCharts(S),isNormal)) ;

These are part of the Macaulay2 functions that Yasuda previously wrote for his
research and published http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/

codes/MyPackage.m2. (However, the published function “affineCharts” stopped work-
ing, so “affineCharts2” was replaced with “affineCharts” this time. “isSmooth” was
changed to “isSmooth2” to avoid conflict with the built-in function of the same name.)

As an example, let me explain what the function ”isSmooth2” does. When it receives
input R (assuming R is a quotient ring of a polynomial ring by an ideal), it first checks if
R is a polynomial ring, and if so, returns true. If R is not a polynomial ring, it sets S as
the polynomial ring used to define R and I as the ideal, then computes the defining ideal
of the singular locus using ideal singularLocus I and checks if it equals the trivial
ideal ideal(1 S). For details on how to create functions in M2, refer to Section 5.1
“Creating Functions” in http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/

pdfs/CompAG-en.pdf. By creating your own functions, you can perform more complex
calculations.

Now, let’s compute the blowup at the origin of an A2 singularity.

1 i5 : R = QQ[x,y,z]/(x*y-z^3)

2

3 o5 = R

4

5 o5 : QuotientRing

6

7 i6 : A = reesAlgebra ideal(x,y,z)

8

9 o6 = A

10

11

11 o6 : QuotientRing

Explanation for those who know scheme theory: For an ideal I of ring R, the graded
ring called the Rees algebra is defined as follows:

A := R[It] =
⊕
n≥0

In

Its Proj is the blowup of SpecR along ideal I. When generators f1, . . . , fl of I are fixed,
it can be written as a quotient ring R[x1, . . . , xl]/J . The blowup is covered by l affine
open sets, and for each i ∈ {1, . . . , l},

Bi := R[x1, . . . , xl]/(J + (xi − 1))

becomes the coordinate ring of an affine open set.
Let’s check if the blowup at the origin of an A2 singularity is smooth.

1 i7 : isBlowupSmooth A

2

3 o7 = true

This calculation shows that the blowup at the origin of an A2 singularity is smooth
and provides a resolution of singularities.

Each affine open chart can be computed as:

1 i8 : affineCharts A

2

3 QQ[w ..w , x..z]

4 0 2

5 o8 =

{---,

6 3 2 2

7 (- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -

1)

8 1 2 0 1 0 2 0 2 0 1 2 0

9 ---

10 QQ[w ..w , x..z]

11 0 2

12 ---,

13 3 2 2

14 (- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -

1)

15 1 2 0 1 0 2 0 2 0 1 2 1

16 ---

12

17 QQ[w ..w , x..z]

18 0 2

19 ---}

20 3 2 2

21 (- z + x*y, w x - w y, w y - w z, w x - w z, w z - w y, w z - w w , w -

1)

22 1 2 0 1 0 2 0 2 0 1 2 2

23

24 o8 : List

25

26 i9 : singularLocus o8_0 -- the singular locus of the 1st ring

27

28 QQ[]

29 o10 = ---- -- The singular locus is empty.

30 1

31

32 o10 : QuotientRing

The exceptional set can be calculated as follows:

1 i11 : specialFiber ideal(x,y,z)

2

3 QQ[w ..w]

4 0 2

5 o11 = ----------

6 w w

7 0 1

8

9 o11 : QuotientRing

We found that the exceptional set is defined by

w0w1 = 1

in the projective plane P2 with homogeneous coordinates w0, w1, w2. From this, we can
see that the exceptional set consists of two projective lines intersecting orthogonally at
one point.

2.4 Exercises

1. Let’s try similar calculations for A3 and D4 singularities.

2. If you have extra time, look at http://www4.math.sci.osaka-u.ac.jp/~takehikoyasuda/
pdfs/CompAG3.pdf and try various calculations. If you think you might use M2 in
the future, read Section 5.1 “Creating Functions” to learn how to create functions.

13

