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Abstract. We study relation between greatest common divisors of integer pairs sat-
isfying an algebraic equation and plane curve singularities.

This short manuscript is a modification of Appendix of the preprint [Yas16]. The
main body of the preprint has been published as [Yas18] after some modification.

Bugeaud, Corvaja and Zannier [BCZ03, CZ05] obtained an upper bound for gcd(a−
1, b − 1) for certain families of integer pairs (a, b). To explain their result in relation
to Vojta’s conjecture, Silverman [Sil05] observed that the greatest common divisor is
essentially a height function associated to a subscheme of codimension ≥ 2, although
he uses the blowup along the subscheme and a height function associated to the ex-
ceptional divisor instead (see also [Yas12, Yas11]). He then formulated a conjectural
generalization of the result of Bugeaud, Corvaja and Zannier.

As an application of Silverman’s observation, we relate estimation of gcd(a, b) for
integer pairs (a, b) satisfying an algebraic equation with the multiplicity of the corre-
sponding plane curve at the origin.

1. Weill functions and heights

Let k be a number field and let Mk be the set of its places. To a projective variety
X over k and a closed subscheme Z ⊂ X, we associate a Weil function

λZ : X(k̄)×Mk → [0,+∞],

following [Sil87], which is unique up to addition of Mk-bounded functions. We write

λa,v(x) := λa(x, v).

The height function hZ associated to Z on the k-point set X(k) is defined as

hZ(x) :=
∑
v∈Mk

λZ,v(x).

We recall a few basic properties of Weil functions and height functions.

Proposition 1.1 ([Sil87, Th. 2.1]). (1) For a morphism f : Y → X of varieties
and a closed subscheme Z ⊂ X, we have

λZ ◦ f = λf−1Z .

(2) For Z ⊂ Z ′ ⊂ X,
λZ ≤ λZ′ .
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(3) For closed subvarieties Z,Z ′ ⊂ X,

λZ+Z′ = λZ + λZ′ .

Here, if Z and Z ′ are defined by ideal sheaves a and a′ respectively, then Z +Z ′

is the closed subscheme defined by the product aa′.
(4) For closed subvarieties Z,Z ′ ⊂ X,

λZ∩Z′ = min{λZ + λZ′}.
Here, if Z and Z ′ are defined by ideal sheaves a and a′ respectively, then Z ∩Z ′
is the closed subscheme defined by the sum a + a′.

Let X = Pnk be a projective space of dimension n with homogeneous coordinates
x0, . . . , xn and D the Cartier divisor defined by a homogeneous polynomial f ∈ k[x0, . . . , xn]
of degree d. Then the function

λDi
((x0 : · · · : xn), v) := − log

‖f(x0, . . . , xn)‖v
max{‖x0‖v, . . . , ‖xn‖v}d

is a Weil function with respect to D.

Lemma 1.2. Let X be a projective variety and C,D ⊂ X proper closed subschemes
with C ∩ D = ∅. Let hD : X(k) → R ∪ {∞} be a height function of D. Then its
restriction hD|C(k) is a bounded function.

Proof. From the functoriality of the Weil function, hD|C(k) is a height function of D∩C
as a closed subscheme of C. In our situation, it is empty and any height function of it
is bounded. �

2. Greatest common divisors

Lemma 2.1. Let Z ⊂ PnQ be the closed subscheme defined by the ideal 〈f1, . . . , fl〉 ⊂
Q[x0, . . . , xn] generated by homogenous polynomials f1, . . . , fl ∈ Z[x0, . . . , xn]. For a
point x ∈ PnQ(Q), we write x = (x0 : x1 : · · · : xn) in terms of integers xi with
gcd(x0, x1, . . . , xn) = 1 and define fi(x) := fi(x0, . . . , xn) ∈ Z. Then

NZ(x) := log gcd(f1(x), . . . , fl(x))

is a counting function of Z with respect to S = {∞}, and

hZ(x) := log gcd(f1(x), . . . , fl(x))− max
1≤i≤l

log
|fi(x)|∞

max{|x0|∞, . . . , |xn|∞}deg fi
is a height function of Z.

Proof. We first note that for integers ai,

log gcd(a1, . . . , al) = −
∑

p∈MQ; p 6=∞

max
i
|ai|p.

From Propositions 1.1 and 1.1,

λZ,p(x) : = min
1≤i≤l

ß
− log

|fi(x)|p
max{|x0|p, . . . , |xn|p}deg fi

™
(p ∈MQ)
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is a Weil function of Z. For p 6=∞, since gcd(x0, . . . , xn) = 1, we have

max{|x0|p, . . . , |xn|p} = 1

and
λZ,p(x) = − log max

i
|fi(x)|p.

We conclude that

NZ(x) : =
∑

p∈MQ; p 6=∞

λZ,p(x)

= −
∑

p∈MQ; p 6=∞

log max
i
|fi(x)|p

= log gcd(f1(x), . . . , fl(x))

is a counting function of Z and

hZ(x) := NZ(x) + λZ,∞(x)

= log gcd(f1(x), . . . , fl(x))− max
1≤i≤l

log
|fi(x)|∞

max{|x0|∞, . . . , |xn|∞}deg fi
is a height function of Z. �

Example 2.2. For l < n, let Z be the linear subspace defined by

x0 = x1 = · · · = xl = 0.

Then
NZ(x) = log gcd(x0, . . . , xl)

is a counting function of Z. Since

max
0≤i≤l

|xi|∞
max{|x0|∞, . . . , |xn|∞}

=
max{|x0|∞, . . . , |xl|∞}
max{|x0|∞, . . . , |xn|∞}

= min

ß
1,

max{|x0|∞, . . . , |xl|∞}
max{|xl+1|∞, . . . , |xn|∞}

™
,

the function

hZ(x) = log gcd(x0, . . . , xl)− log min

ß
1,

max{|x0|∞, . . . , |xl|∞}
max{|xl+1|∞, . . . , |xn|∞}

™
is a height function of Z.

Lemma 2.3. Let X be an irreducible projective variety of dimension one over a number
field k and π : X̃ → X the normalization. Let Z ⊂ X be a proper closed subscheme and
l ∈ Z the degree of the scheme-theoretic pull-back π−1Z naturally regarded as a divisor.
Let D be a divisor of X of degree l supported in the smooth locus of X. Then, for every
ε > 0, their exist constants C1, C2 > 0 such that for all x ∈ (X \ Z)(k̄),

(2.1) (1− ε)hD(x)− C1 ≤ hZ(x) ≤ (1 + ε)hD(x) + C2.
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Moreover, if X is rational (that is, birational to P1
k), then

hZ(x) = hD(x) +O(1).

Proof. Let Z̃ := π−1Z and D̃ := π∗D. Since they are divisors of equal degree, height
functions hZ̃ and hD̃ are quasi-equivalent (see [Lan83, Cor. 3.5, Ch. 4]), hence so are hD
and hZ ; it exactly means (2.1). If X is rational, then Z̃ and D̃ are linearly equivalent.
Therefore hZ̃ and hD̃ differs only by a bounded function, and the same holds for hZ
and hD. �

Theorem 2.4. Let X ⊂ P2
k be an integral plane curve of degree d and let O := (0 : 0 :

1) ∈ P2
k(k). Suppose that X has multiplicity m at O, that is, m is the largest integer

n such that IX,O ⊂ mn
O, where IX ⊂ OP2

k
is the defining ideal sheaf of X, IX,O is its

stalk at O and mO is the maximal ideal of the local ring OP2
k,O

. Let h be the standard
logarithmic height on P2

k given by

h((x : y : z)) =
∑
w∈ML

log max{‖x‖w, ‖y‖w, ‖z‖w}

for so large finite extention L/k that x, y, z ∈ L. Then, for every ε > 0, their exist
constants C1, C2 > 0 such that for all x ∈ (X \ {O})(k̄),(m

d
− ε
)
h(x)− C1 ≤ hO(x) ≤

(m
d

+ ε
)
h(x) + C2.

Moreover, if X is rational, then

hO(x) =
m

d
h(x) +O(1).

Proof. The standard height h is a height function of a line in P2
k. Take a general line L

which does not meet any singularity of X. We regard the closed point O as a reduced
scheme and apply Lemma 2.3 to Z = O and D = L ∩ X. To see the assertion, we
need to show that m is equal to l as in Lemma 2.3. Since these numbers are stable
under extension of the base field, we consider a plane curve germ X̂ = Spec k̄[[x, y]]/〈f〉
defined over k̄. The multiplicity is then equal to the order of f . If X̂i, i = 1, . . . , r, are
the irreducible components of X̂ and if mi and li are the numbers similarly defined for
X̂i, then

m =
r∑
i=1

mi and l =
r∑
i=1

li.

Therefore, we may assume that X̂ is irreducible. Then X̂ ∼= Spec k̄[[g, h]], where
g, h ∈ k̄[[t]] are power series of distinct orders such that Spec k̄[[t]] → X̂ is birational.
Now it is easy to see that

m = min{ord(g), ord(f)} = l.

We have completed the proof. �

Note that the theorem is valid even if O /∈ X; thenm = 0 and hO is bounded (Lemma
1.2). The theorem asserts that a singular point has more rational points around it more
than a smooth point does and that its extent is determined by the multiplicity, the most
fundamental invariant of plane curve singularities.



GREATEST COMMON DIVISORS AND PLANE CURVES 5

Remark 2.5. Theorem 2.4 is non-trivial only when X has infinitely many k-points; it
means from Faltings’ theorem that X has a geometric irreducible component birational
to P1 or an elliptic curve. If X is smooth, then this is possible only when d ≤ 3.
However, if we allow singularities, then there exist plane curves of arbitrary degree
having infinitely many k-points.

Specializing the theorem to the case k = Q and to Q-rational points, we obtain:

Corollary 2.6. Let f(x, y) ∈ Q[x, y] be an irreducible polynomial and let d and m
be the degree and the order of f respectively. Then, for every ε > 0, their exist pos-
itive constants C1, C2 such that for all triplets (x, y, z) 6= (0, 0, 0), (0, 0, 1) of integers
satisfying gcd(x, y, z) = 1 and f(x, y, z) = 0, we have

(2.2)
(m
d
− ε
)

log max{|x|, |y|, |z|} − C1 ≤ log gcd(x, y)− log min

ß
1,

max{|x|, |y|}
|z|

™
≤
(m
d

+ ε
)

log max{|x|, |y|, |z|}+ C2.

Moreover, if X is rational, then

log gcd(x, y)− log min

ß
1,

max{|x|, |y|}
|z|

™
=
m

d
log max{|x|, |y|, |z|}+O(1).

Furthermore, excluding points close to the origin relative to the Euclidean topology,
we obtain the following simpler estimation.

Corollary 2.7. With the same notation as above, for every ε, δ > 0, their exist pos-
itive constants C ′1, C ′2 such that for all triplets (x, y, z) 6= (0, 0, 0), (0, 0, 1) of integers
satisfying gcd(x, y, z) = 1, f(x, y, z) = 0 and max{|x/z|, |y/z|} ≥ δ, we have

C ′1 max{|x|, |y|}m/d−ε ≤ gcd(x, y) ≤ C ′2 max{|x|, |y|}m/d+ε.
Moreover, if X is rational, then we can replace ε with zero.

Proof. From the condition max{|x/z|, |y/z|} ≥ δ, the term

− log min

ß
1,

max{|x|, |y|}
|z|

™
in (2.2) is bounded and hence can be eliminated. If δ ≥ 1, then the condition
max{|x/z|, |y/z|} ≥ δ implies

log max{|x|, |y|, |z|} − log max{|x|, |y|} = 0.

If δ < 1, then

0 ≤ log max{|x|, |y|, |z|} − log max{|x|, |y|}
≤ − log max{|x/z|, |y/z|} ≤ − log δ.

Therefore log max{|x|, |y|, |z|} in (2.2) can be replaced with log max{|x|, |y|}. Writing
the resulting inequalities mutliplicatively, we obtain the corollary. �

Note that the condition imposed in the last corollary on triplets (x, y, z) are satisfied
by (x, y, 1) for integer pairs (x, y) with f(x, y) = 0.
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Example 2.8. Let X ⊂ A2
Q be the affine plane curve defined by xd = ym for coprime

positive integers d,m with d > m. This curve is rational and has degree d and multi-
plicity m at O. An integral point p of X is of the form (am, ad) for an integer a. With
O = (0, 0), we have

gcd(am, ad) = |am| = max{|am|, |ad|}m/d.
Next consider the affine plane curve Y defined by (x+1)d = (y+1)m for the same d,m

as above. This is a translation of X. Note that Y contains O as a smooth point, namely
Y has multiplicity one at O. An integral point p of Y is of the form (am − 1, ad − 1)
for an integer a. We claim that for |a| > 1,

gcd(am − 1, ad − 1) = |a− 1|.
To show this, we need to show that

gcd(am−1 + am−1 + · · ·+ 1, ad−1 + ad−1 + · · ·+ 1) = 1,

which can be proved by induction and using the fact that
gcd(am−1 + am−1 + · · ·+ 1, ad−1 + ad−1 + · · ·+ 1)

= gcd(am−1 + am−1 + · · ·+ 1, a(d−m)−1 + a(d−m)−1 + · · ·+ 1).

From the claim,

gcd(am − 1, ad − 1) ∼ max{|am − 1|, |ad − 1|}1/d (|a| → ∞).

Finally consider the curve Z defined by xd = (y + 1)m. This curve does not pass
through the origin, equivalently it has multiplicity m = 0 at O. An integral point p of
Z is of the form (am, ad − 1) for an integer a. Clearly

gcd(am, ad − 1) = 1 = max{|am|, |ad − 1|}0/d.
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