Computational Algebraic Geometry with
Macaulay2

Takehiko Yasuda

This is an English traslation from lecture notes “Macaulay2 niyoru keisandaistikika” writ-
ten in Japanese for an intensive lecture which the author gave at Tokyo Metropolitan Univer-
sity in October 2012. The translation was made in November 2024 with the aid of machine

translation. Some codes may not work with the latest version of Macaulay2 and some de-
scriptions may be outdated.

CHAPTER 1

Introduction

These notes were for an intensive lecture at Tokyo Metropolitan University in October
2012.

1. Goals

The goals of this lecture are as follows:

(1) Become familiar with Macaulay?2.

(2) Gain a rough understanding of what can be computed.

(3) Learn to write functions and perform simple programming.

(4) Learn how to look up the manual and continue improving your skills independently.

I have never systematically studied Macaulay2 myself; I learned it gradually by trial and
error, and now I use it frequently in my research. Generally, this method seems to be a
shortcut to mastering programming (though it might be different for those aiming to become
professional programmers). In this lecture, I plan to develop skills by dealing with examples of
calculations that are likely to be performed in algebraic geometry and commutative algebra.

Each individual’s required calculations are different, and there are time constraints, so
there is a limit to what can be taught. After this lecture, I hope you will read the manual and
refer to other people’s programs to improve your skills. As references, I recommend [2, 5].
There is also a Japanese reference included in Knoppix/Math, [7]."

2. Recommendations for Experiments

The use of computers in mathematical research is gradually increasing, but the image
of “mathematics being done solely with paper and pencil” is still strong. However, I highly
recommend numerical experiments using computers. Here are some things you can do with
a computer:

(1) To verify conjectures: Especially for conjectures that can be quickly shown to be
incorrect through computation, this prevents wasting time trying to prove them.

(2) To formulate conjectures: Observing computational results and discovering patterns
is the essence of mathematics. To explore unknown areas, observation is essential.

(3) To support proofs: Many modern mathematical proofs are complex and leave doubts
about their correctness. Numerical experiments can help reinforce these proofs.

These points also apply to manual calculations, but the scope of what computers can
handle is entirely different from that of manual calculations. On the other hand, there are

L“KNOPPIX/Math is a project to archive free mathematical software and free mathematical docu-
ments and offer them on KNOPPIX. It provides a desktop for mathematicians that can be set up easily
and quickly.” (T. Hamada and Knoppix/Math committers, “KNOPPIX/Math,” http://www.math.kobe-
u.ac.jp/HOME /taka/2008 /knoppix-en-2008.pdf) There is a direct descendant of KNOPPIX/Math Project,
called MathLibre. (https://www.mathlibre.org/index.html)

3

4 1. INTRODUCTION

many theories that cannot be captured by computer calculations. Mathematics often deals
with infinities, which must be cleverly avoided in computations. In the future, mathematics
will likely become more like the natural sciences, with theory and experimentation forming
two pillars.

3. Prerequisites

Basic knowledge of commutative algebra and algebraic geometry is assumed. If there are
any unclear points, please refer to standard textbooks as needed.

4. Exercise Solutions

For the exercises marked with an asterisque * in the notes, solutions are provided at the
end of the notes.

5. Starting and Exiting

In this lecture, we will use Macaulay2 within Emacs.

To start Macaulay2, in Knoppix/Math (which the students in this lecture should be
using), select Macaulay2 from the mathematics software menu to launch both Emacs and
Macaulay2. Alternatively, you can start Emacs alone and then press the F12 key to launch
Macaulay?2.

When Macaulay?2 starts, the following screen will appear, with the cursor blinking to the
right of i1 : | indicating that it is ready for input.

+ M2 --no-readline --print-width 88

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
PrimaryDecomposition, ReesAlgebra, TangentCone

il
For example, if you enter 141 and press the return key, the result of the calculation will be
displayed as follows.

il: 1+1

ol =2
To exit the program, type quit.
i2 : quit
Process M2 finished
EXERCISE 1. Restart Macaulay2 with F12 and exit with quit.

If you need any further assistance, feel free to ask!

6. Manual

When using Macaulay2 (hereafter abbreviated as M2), you may need to look up how to
use function names or find functions that perform the calculations you want. For this, you
need to refer to the manual. By using viewHelp, a browser will open, allowing you to view
the online manual. It is convenient to bookmark this page. Additionally, if you want to look

6. MANUAL 5

up a specific function name, such as quit, you can use viewHelp quit. The Index page of
the manual (accessible via a link at the top of the manual’s main page) is also frequently
used to find functions.

Moreover, the M2 website (url: http://www.math.uiuc.edu/Macaulay2/) contains useful
information, so it is worth checking out. You can also access it through links from the online
manual.

EXERCISE 2. (1) Use viewHelp quit to view the online manual for quit. Compare
it with help quit.
(2) From the online manual, find the function that calculates binomial coefficients. Also,
find the function that computes the remainder of integer division.
(3) Using the search box at the top left of the M2 website, find information related to
Emacs.

CHAPTER 2

Fields, Polynomial Rings, Ideals, Quotient Rings — Essential
Preparations

1. Fields

Many calculations in M2 require first setting up a ring (usually a quotient ring of a
polynomial ring) to be considered. Let’s go through the steps to set up a quotient ring.
First, let’s look at the field that will serve as the coefficient field. Try entering QQ.

il : QQ
ol =QQ

ol : Ring

This represents the field of rational numbers. You can perform calculations within the field
of rational numbers as follows.

i2 : 2/3+6/7
32

02 = —-
21

o2 : QQ

Finite fields can also be used. For example, the field with 5 elements is
i3 : ZZ/5

YA

03 : QuotientRing
To perform calculations within this field, do the following.
i10 : R = ZZ/5

010 = R
010 : QuotientRing

i1l : 4_R

8 2. FIELDS, POLYNOMIAL RINGS, IDEALS, QUOTIENT RINGS — ESSENTIAL PREPARATIONS

oll = -1
oll : R
i12 : 3_R75
012 = -2
012 : R

(Oops, the numbering skipped. In the future, please don’t mind if the input/output numbers
skip or go back a bit, even if it looks a bit awkward.) Here, by adding _R, we are considering
elements of R.

EXERCISE 3. Using finite fields, verify Fermat’s Little Theorem (a’~' = 1 mod p) for
various values.

1.0.1. Notes on Coefficient Fields. In M2, the base fields most commonly used are the
prime fields Q and F,,. Although finite extensions of these fields can also be used, they are less
frequently employed. Real and complex number fields can be used, but many calculations
cannot be performed over these fields, so they are rarely used. Since many calculations
are performed over fields that are not algebraically closed, some caution is needed. Basic
knowledge of commutative algebra and scheme theory is desirable.

Although I don’t use it often, even for problems of characteristic 0, M2 sometimes per-
forms calculations over I, for a large prime p to speed up the computations. In many cases,
the results match those in characteristic 0. In Schenck’s book [5], the prime 101 is mainly
used, while in Eisenbud’s article in [2], the largest usable prime 32749 is used.

EXERCISE 4. Check the online manual to find out how to handle finite fields other than
prime fields.

2. Polynomial Rings

Let’s consider polynomial rings.
i14 : S = QQlx,y,z]

ol4 = 8

014 : PolynomialRing

This is a polynomial ring in three variables with rational coefficients. You can input polyno-
mials in this ring as follows.

119 @ f = (2xxxy~3%z"2-5%xx"6)* (x-y+z) "2

8 7 6 2 7 6 6 2 332 242 52
019 =-5x +10xy-5xy - 10xz + 10x y*z - 56xz +2xy z -4xy z + 2x¥y z + 4x

3. IDEALS 9

0l9 : S

Note that you cannot omit the multiplication symbol * between coefficients and variables.
Next, let’s perform calculations with a finite field as the coefficient.

i20 : T = ZZ/7[x,y,2];
i21 @ g = (3*xx+y-z)"7
7 7 7

021 =3x +y -z

o021 : T

The output was suppressed with a semicolon ;. To return to the previous polynomial
ring, use use S.

i22 : use S; (x+y)~°7

7 6 5 2 4 3 3 4 25 6 7
023 =x +T7xy+2lxy +35xy +35xy +2lxy + 7xxy +y

023 : 8

You can connect multiple statements with a semicolon. If there is no semicolon at the
end, the last statement will be evaluated and output.

EXERCISE 5. (1) Type x"3+3*x"2*y+3xx*y~2+y~3 == (x+y)~3 and confirm that
true is output. Look up == in the manual.
(2) Find and use the function that returns the degree of a polynomial from the manual.*

3. Ideals

If the symbols you have set become cluttered, reset them.
i24 : clearAll
Let’s consider ideals in a polynomial ring.
i25 : S = QQ[x,y]; I = ideal (x+y)~3

3 2 2 3
026 = ideal(x + 3x y + 3xxy +y)

026 : Ideal of S
Let’s compute the radical of this ideal.
i27 : radical I

027 = ideal(x + y)

027 : Ideal of S
Verify that cubing this returns to the original ideal.

10 2. FIELDS, POLYNOMIAL RINGS, IDEALS, QUOTIENT RINGS — ESSENTIAL PREPARATIONS

i28 : I == 00”3

028 = true

Here, I forgot to name the radical ideal, so I reused the previous result with oo. You can
explicitly specify the number, such as 027, to use earlier results. You can also
use ooo and oooo for results two and three steps back.

EXERCISE 6. (1) Use M2 to verify that the ideal (zy,2?) C k[z,y] is not a radical
ideal .*
(2) Look up the usage of isSubset and verify that the ideal (zy, z?) is contained in ().
(3) Find out how to compute a Grébner basis from an ideal. How can you change the
monomial order used for computation?

4. Quotient Rings

Let’s use quotient rings of polynomial rings.
i29 : S/I

029

X +3xy+ 3xxy +y
029 : QuotientRing
i30 : dim oo

030 =1
The dimension of this quotient ring is 1. You can also write it directly as follows.
i31 : R = ZZ/13[x,y,z]/(x+y-z"3, y 4-8*x"2+z"2)

031 = R

031 : QuotientRing
In this ring, z +y — 23 = 0.
132 : x+y-z"3

032 =0
032 : R
EXERCISE 7. (1) Use describe S to check the data contained in the polynomial
ring S.

(2) Define various quotient rings and use dim to compute their dimensions, confirming
that the values are as expected. Also, use M2 to check whether they are normal
rings (Hint: package).

(3) Look up the function ambient. How does this function work on quotient rings?

(4) Similarly, look up Spec.

5. SAVING AND REUSING CALCULATION RESULTS 11

5. Saving and Reusing Calculation Results

To save M2 calculation results in Emacs, use C-x, C-w to save the file as a text file, or click
the toolbar to save. For example, name the file with the extension .m2, such as abcde.m2.

When you reopen the saved file in Emacs, it will be displayed with syntax highlighting.
To reuse the calculation results (or rather the previous inputs), do the following: Start M2
in a separate frame with F12. Press F11 on any input line in the opened file to input it into
the currently running M2 session.

EXERCISE 8. Try the above steps.

CHAPTER 3

Singularities and Inflection Points of Plane Curves — Getting
Started

1. Singularities

First, let’s consider a curve called Pascal’s Limagon.
il : limacon = QQ[x,yl/((x"2+y~2-2%x)"2-(x"2+y"2))

ol = limacon

ol : QuotientRing
Let’s compute the singularities of this plane curve.

i2 : singularLocus limacon

QQlx, yl

(x +2xy +y -4x - 4xxy +3x -y, 4x + 4xxy - 12x - 4y + 6x, 4x y + 4y

02 : QuotientRing
This is in the form of a quotient ring, and the ideal in the denominator may not be radical.

i3 : radical ideal oo
03 = ideal (y, x)

03 : Ideal of QQ[x, y]

This shows that the singularity is only at the origin. Here, oo allows you to reuse the previous
output. The composed command radical ideal applies the function ideal to oo and then
applies radical. Next, let’s consider the projective closure of this curve.

i5 : Plimacon = QQ[x,y,z]/((x"2+y~2-2*x*z) "2-(x"2+y~2) *2"2)
o5 = Plimacon

05 : QuotientRing

We homogenized with the variable z. Let’s compute the singularities again. This time, we
apply three functions at once.

i6 : radical ideal singularLocus Plimacon

2 2
13

14 3. SINGULARITIES AND INFLECTION POINTS OF PLANE CURVES - GETTING STARTED

06

ideal (y*z, x*z, x +y)
06 : Ideal of QQ[x, y, z]
i7 : dim oo

o7 =1
The dimension is 1. This makes sense because we are considering an affine cone. Typing
singularLocus can be tedious, but you can use the TAB key to autocomplete after
typing sing. If there are multiple candidates, they will be displayed in a separate frame, and
you can click the desired one (this applies when using Emacs). You can also reuse previous
inputs with Control+up/down keys.

Let’s perform a primary decomposition.

i8 : decompose 06

2 2
08 = {ideal (x + vy , z), ideal (y, x)}

08 : List
I reused the sixth output with 06. The ideal (y,z) corresponds to the singularity at the

origin. The other ideal gives two points defined by 2% + y? = 0 on the line at infinity z = 0
(homogeneous coordinates z,y). These two points are not defined over reals.

EXERCISE 9. (1) Automatize the homogenization of defining equations.*
(2) Find all singularities of the projective closure of Cayley’s sextic curve 4(x?+y*—x)3 =
27(2? + y*)2.
(3) Find the non-normal locus of the Roman surface z%y* + y%2? + 2222 + 2yz = 0 using
M2 (Hint: package, homogenization).*

2. Inflection Points

Consider a plane curve C' = (f = 0) C P?. A point p € C is an inflection point if it is
a non-singular point and the tangent line L to C at p intersects C' at p with multiplicity at
least 3. Inflection points can be found using the Hessian determinant

det(of)
Or;0x; i,j=0,1,2

To compute partial derivatives, you can search the manual and find the function jacobian.

137 : jacobian ideal Plimacon

037 = {1} | 4x3+4xy2-12x2z-4y2z+6xz2 |
{1} | 4x2y+4y3-8xyz-2yz2 |
{1} | -4x3-4xy2+6x2z-2y2z |

3 1
037 : Matrix (QQ[x, y, z]) <-—— (QQ[lx, y, zI)

2. INFLECTION POINTS 15

i38 : jacobian transpose oo

038 = {-3} | 12x2+4y2-24xz+6z2 8xy-8yz -12x2-4y2+12xz |
{-3} | 8xy-8yz 4x2+12y2-8xz-2z2 -8xy-4yz |
{-3} | -12x2-4y2+12xz -8xy-4yz 6x2-2y2 |

3 3

038 : Matrix (QQ[x, y, z]) <-—— (QQ[lx, y, zI)
i39 : hess = det oo

6 4 2 24 6 5 32 4 4 2
039 = - 288x - 864x y - 864x y - 288y + 11562x z + 2304x y z + 11562x*y z - 1440x z -

33 23 2 4 2 4
576x z + B76xxy z + 216x z - T2y z

039 : QQlx, y, z]
Next, compute the points where the Hessian determinant vanishes on the curve.
i41 : J = ideal Plimacon + ideal hess; decompose J

041 : Ideal of QQ[x, y, z]

2 2 2 2
042 = {ideal (y, x), ideal (z, x +y), ideal (x - 3z, y + 5z)}

042 : List

Among the obtained list, the first two correspond to singular points. The last one corresponds
to two inflection points.

EXERCISE 10. (1) Find the inflection points of Cayley’s sextic curve.
(2) Let f =x—2(xz+y?)y— (xz+y?)*z and g = y+ (2 +y?*)z. Compute the Jacobian
determinant of the automorphism of C[xz,y, z] defined by — f,y — g, z — 2
(Keywords: Nagata’s automorphism, Jacobian conjecture).

CHAPTER 4

Frobenius Maps, Kunz’s Theorem, and Peskine-Szpiro’s Theorem
— Using Ring Homomorphisms and Modules

1. Frobenius Maps and Kunz’s Theorem

In this chapter, we will practice handling ring homomorphisms and modules in Macaulay2
using Frobenius maps and Kunz’s theorem as examples. First, let’s consider a surface called
Whitney’s umbrella in characteristic 3.
i89 : whitney = ZZ/3[x,y,z, Degrees => {3,2,2}]/(x"2-y~2*z);

For later use, we set the degrees of z,y, z to 3, 2,2 to make it a graded ring.
EXERCISE 11. Use singularLocus to confirm that the singular locus of thisis x =y = 0.

Let’s calculate this singular locus in another way.

In general, for a ring R of characteristic p, the Frobenius map F: R — R, f + fPis a
ring homomorphism. Note that the Frobenius map of the prime field [, is the identity map.
In Macaulay2, a ring homomorphism is defined as follows:

i90 : whitney’ = ZZ/3[x,y,z, Degrees => {9,6,6}]/(x"2-y"2%z);
i91 : use whitney; F = map(whitney, whitney’, {x73,y"3,z"3})

2 3 3
092 = map(whitney,whitney’,{xxy z, y , z })

092 : RingMap whitney <--- whitney’
195 : isWellDefined F

095 = true

196 : isHomogeneous F

096

For later use, we prepared another ring whitney’ with changed degrees to ensure the ring ho-
momorphism preserves degrees. We define the ring homomorphism by specifying the images
of z,y,z as 27, y", 27. However, for quotient rings, we need to separately check if it is well-
defined. We also confirmed that it is a homogeneous homomorphism using isHomogeneous.

Kunz’s theorem states that “a ring R is regular (non-singular) < the Frobenius
map is flat”. This means that for the map F : R — R, when considering the right R as a
module over the left R (i.e., push-forward F,R), it is flat (locally free). There is a function
pushForward to compute the push-forward of a module, which can be applied when the ring,

true

17

18 FROBENIUS MAPS, KUNZ’'S THEOREM, AND PESKINE-SZPIRO’S THEOREM - USING RING HOMOMORPHISMS AN]

ring homomorphism, and module are all homogeneous. (Even if not homogeneous, there
is a function on my website to compute the pushforward by the Frobenius map (with the
coefficient field being a prime field). URL: http://www4.math.sci.osaka-u.ac.jp/ takehikoya-
suda/codes/MyPackage.m2) Let’s compute F,R.

i97 : FR = pushForward (F, whitney~1)

097 = cokernel {0} |
{3} |

{5} |

{7} |

{7} |

{9} |

{5} |

{7} |

{2} |
|

|

|

|

|

|

|

O O O O
O O O O o
O O O
N
O O OO OO OOY OO
o O O O
O O O O o
o O O

|
i

O OO O O O
|
<

|
<
O O O O O OO
|
N
N
I O OO O O O
»
|
i
O O O O O OO
|
be

|
<
O O O OO OY OO oo

O O OO OO MK OO OO
|
i

|
<
O OO OO OO OO oo

MO OOOOOO OO oo
N

{4}
{6}
{8}
{4}
{6}
{2}
{4}

N

O OO O OO OO XKW OO
OOOOO*ﬁ O O O O

O O O O OO O OO OO XN O
O O O OO OO OO0 O

S O |
<
O O O O |
<
O OO OO OO W O
O OO OO MHM OO OO
O OO X OO OO
S O |
i
O O O O |
"
O O OO OO OYw O
OOO‘;}]OOOO
<
N

16
097 : whitney’-module, quotient of whitney’

whitney~1 represents a rank 1 free module over the ring whitney. The matrix represents
the map between free modules, and the module is displayed as the cokernel.

EXERCISE 12. Use M2 to confirm that the rank of this module is 32 = 9.

If we can identify the places where this module FR is not flat, it should coincide with
the singular locus. For this, we can use Fitting ideals. In general, for a module M and a
non-negative integer ¢, the i-th Fitting ideal of M determines the places where M is not
locally generated by 4 elements. In our example, F,R has rank 32 = 9, so the 9th Fitting
ideal determines the places where it is not flat.

i98 : radical fittingIdeal(9,FR)
098 = ideal (y, x)

098 : Ideal of whitney’

The expected result was obtained. This calculation takes time. If you are using a less
powerful computer, the calculation may not finish quickly. In that case, press Control4+C
twice to interrupt the calculation.

EXERCISE 13. (1) Use M2 and Kunz’s theorem to verify the location of the singu-
larity for the cusp curve y* = 2% in characteristic 3.

2. PESKINE-SZPIRO’S THEOREM 19

(2) For the surface y(y — x)(y — 2x) — x2* = 0 (a simple elliptic singularity) in char-
acteristic 0, construct the module of differential forms 2z, in M2. Also, compute
A’ Qg (Hint: Use jacobian and exteriorPower.)

2. Peskine-Szpiro’s Theorem

THEOREM 1 (Peskine-Szpiro’s Theorem). Let R be a Noetherian ring of positive charac-
teristic, and M a finitely generated R-module. Assume that the projective dimension of M

is finite. Then, Tor®(M, F,R) =0 fori > 0.
Let’s verify this with a concrete example.
il : cusp = ZZ/3[x,y,Degrees=>{2,3}]1/(y"2-x"3); cusp’ = newRing(cusp,Degrees=>{6,9});

We define the cusp singularity. Then, we define the Frobenius map as before and compute
F.R (intermediate steps are omitted).

i8 : FR = pushForward(F,cusp”1)

08 = cokernel {0} | y 0 0 x20 0 |
{2y 10 y 0 0 x20 |
{410 0 y 0 0 x2 |
{7310 0 -x0 0 -y |
{510 -=x0 0 -yoO |
{31 -x0 0 -yo 0 |

08 : cusp’-module, quotient of cusp’
Here, we consider two modules.
i9 : use cusp’; M1 = coker matrix{{x,y}}; M2 = coker matrix{{x}};

i15 : res(M1,LengthLimit => 10)

1 2 2 2 2 2 2
015 = cusp’ <--- cusp’ <-—-- cusp’ <-—- cusp’ <-——- cusp’ <--- cusp’ <--- cusp’ <—-

0 1 2 3 4 5 6 7
015 : ChainComplex
i16 : res(M2,LengthLimit => 10)

1 1
0l6 = cusp’ <-—- cusp’ <-—- 0

0 1 2

016 : ChainComplex

It is inferred that M1 has infinite projective dimension, while M2 has a projective dimension of
1. Note that if LengthLimit is not set, the free resolution is truncated at the length

20 FROBENIUS MAPS, KUNZ’S THEOREM, AND PESKINE-SZPIRO’S THEOREM - USING RING HOMOMORPHISMS AN]

of the number of variables. The same caution applies to pdim, which calculates
the projective dimension. This is not a concern when considering polynomial rings.

EXERCISE 14. (1) Refer to a textbook on commutative algebra to understand why

M2 has infinite projective dimension.

(2) Calculate the Tor modules of the two modules and verify that Peskine-Szpiro’s the-
orem holds. Refer to the manual for Tor calculations.

(3) For a ChainComplex C, you can view the boundary operators with C.dd. Observe
the periodicity of the boundary operators in the free resolution of M1.

(4) Perform similar calculations for simple singularities in dimension 3 in characteristic
2.

CHAPTER 5

Powers of Ideals and Associated Prime Ideals — Creating Functions

In this chapter, we will learn basic programming in M2. Trying to learn programming
systematically from the beginning can be time-consuming and discouraging. Therefore, in
this lecture, we will keep the preparation to a minimum and aim to get accustomed to
practical examples quickly. Those who want to learn more can read the manual or imitate
the examples in [2, 5] to gradually improve their skills.

1. Creating Functions

In research, you often encounter situations where you need to repeat similar calculations
with slightly different data. Repeating the same operations every time can be tedious, so
it’s better to have the computer do it automatically. For this, you can write functions.
Programming in M2 essentially involves writing many functions.

First, let’s set up the calculation target.

i36 : R = ZZ/3[t,x,y]/ (x"4+t*xx" 2%y~ 2+y~4) ;
i41 : I = ideal(x,y);

041 : Ideal of R
(This example is taken from the paper [6].)

EXERCISE 15. Use isPrime to confirm that R is an integral domain and I is a prime
ideal.

Now, let’s write a simple function. Define a function to calculate the square as shown
below.

117 : square = 1 -> 172
0l7 = square

017 : FunctionClosure

square is the function name, and it returns i"2 when given i. A new function is defined
as follows:

functionName = input -> output

Function names and variable names (not polynomial ring variables, but names given to
calculation targets like cusp) can use (half-width) alphanumeric characters and apostrophes
“27_The first character must not be a number. Apart from naming rings or modules as R or
M, it is customary to start with lowercase letters and use uppercase letters to indicate word
boundaries, like fittingIdeal.

The defined function can be used as follows.

21

22 5. POWERS OF IDEALS AND ASSOCIATED PRIME IDEALS — CREATING FUNCTIONS

i21 : square(-3)

021 9

i42 : square I

2 2

042 = ideal (x , x*y, y)

042 : Ideal of R

EXERCISE 16. (1) Create a function to find the remainder when a given integer is
divided by 5.*

(2) Create a function to compute the square of the radical of a given ideal.

2. Composition of functions

By combining multiple functions, you can define more complex functions.

You can compose functions you have defined yourself, but here we will use the existing
function associatedPrimes to find the associated prime ideals of an ideal. A function that
squares an ideal and then finds its associated prime ideals can be defined as follows, though
it is a bit verbose.
i46 : £ =1 -> (

J := square I;
associatedPrimes J);

i47 . £ 1
047 = {ideal (y, x)}

047 : List

In this function, we first compute the square of I and assign it to the local variable (valid only
within the function) J with J :=. This does not become the function’s output and continues
to the next calculation with a semicolon ;. The result of the final associatedPrimes J
becomes the function’s output.

The same function can also be defined using the function composition operator @@ as
follows.

i60 : f = associatedPrimes @@ square;

However, I personally do not use this method often. For slightly more complex functions, it
seems easier to define local variables one after another with semicolons rather than using @a@.

EXERCISE 17. (1) Write a function to find the irreducible components of the singular
locus of a given quotient ring.*
(2) Write a function to compute the Hessian determinant from a polynomial.
(3) Create a function to find the number of associated prime ideals of a given ideal.
(Hint: What is the function to find the number of elements in a list?)
(4) Create a function to find the dimension of the support of a given module.

4. SAVING AND REUSING FUNCTIONS 23

3. Multivariable Functions

You can also define functions with multiple inputs. Let’s write a function to find the
associated prime ideals of the n-th power of an ideal.

i55 : assPrimePower = (I,n) —-> associatedPrimes (I°n);
i57 : assPrimePower (I,3)
057 = {ideal (y, x)}

o57 : List

EXERCISE 18. Use this function to investigate the associated prime ideals that appear as
you vary n. (According to Brodmann, the set of associated prime ideals that appear becomes
constant as n increases.)

Next, let’s consider Frobenius powers instead of ordinary powers. The e-th Frobenius
power of an ideal I, denoted IP is the ideal generated by f?* for f € I. If I is generated
by fi,..., fi, then I is generated by f¥",..., f”". Let’s write a function to compute the
Frobenius power.

i69 : frobeniusPower = (I,e) -> (

p := char ring I;

G := flatten entries gens I;
G’ := apply(G, i -> i~ (p~e));
ideal G’);

G is the list of generators of the ideal. apply(list, function) returns a list where the
function is applied to each element of the list.

EXERCISE 19. (1) Check the manual to understand the functions used in the above
definition and confirm that they work as expected. In particular, try apply with
your own examples. (The function gens is an abbreviation for generators.)

(2) Define a function to find the associated prime ideals of Frobenius powers, similar to
assPrimePower. Then, confirm that the number of associated prime ideals increases
as e becomes larger. (According to [6], the number of associated prime ideals that
appear is known to be infinite. The first example of an ideal with infinitely many
associated prime ideals in Frobenius powers was given by Katzman.)

4. Saving and Reusing Functions

You would want to use the functions you created even after restarting a Macaulay?2 session.
To do this, create a text file like the one below and save it in an appropriate location with a
name like MyFuncs.m2.

assPrimePower = (I,n) -> associatedPrimes (I"n);

frobeniusPower = (I,e) -> (
p := char ring I;
G := flatten entries gens I;
G’ := apply(G, 1 -> i~ (p~e));
ideal G’);

24 5. POWERS OF IDEALS AND ASSOCIATED PRIME IDEALS — CREATING FUNCTIONS

Then, after restarting the session, you can load the file to use the functions.

i7 : load "/Users/highernash/MyFuncs.m2"

If you save the file in the directory where Macaulay2 is running, which you can check with
currentDirectory(), you can simply use load "MyFuncs.m2".

EXERCISE 20. Try it out.

CHAPTER 6

Q-Cartier Divisors — More Functions, and if, for, while

1. if, for, while — Conditional Branching and Loops

Like many programming languages, M2 also has basic constructs like if, for, and while.
You can use “if” for conditional branching and “for” and “while” for loops to repeat the
same calculations. Let’s briefly look at how to use these.

1.0.1. #f. Given an ideal I C R, a function that finds the fraction field of the integral
domain R/I if I is a prime ideal, and returns an error message otherwise, can be written as
follows.
i24 : quotField = I -> (

if isPrime I

then frac(ring I / I)

else "This is not a prime ideal.");
Note that the line breaks are for readability and are not necessary. In the structure “if p
then x else y”, if p evaluates to true, x is evaluated and returned; if false, y is evaluated and
returned. The else part is optional. (If omitted and p is fdalse, null is returned.)

EXERCISE 21. Create a function that, given an input k, returns the univariate polynomial
ring k[t] if k is a field, and “This is not a field” otherwise.

1.0.2. for. First, an example.
i5 : for 1 from 1 to 10 list 271

o5 = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

ob : List
As you can see, this creates a list of 2¢ for ¢ from 1 to 10.
Another example.

i1l @ j =1; for i to 10 do (j = j~2+1); j

013 = 2067332040424216771816347187340368893772743793833577167934058658233170953687756572
6781635914484312173817557988370878548961245582641826131216636641404794790451610519
2113611309425141433175164838870296570198482099598937133539604307050417213011286620
8032616591791135372780375257785844367023767613423607865994296575429774169891418160

Starting from j = 1, this operation squares it and adds 1, repeating this 11 times. (If “from”
is omitted, it starts from 0, so it repeats 11 times.)

EXERCISE 22. (1) Create a list of prime numbers under 300. (Hint: continue)*
(2) Write a function that, given two univariate polynomials f and g, returns the pair of
polynomials f’, ¢’ obtained after applying the Euclidean algorithm n times. If the
greatest common divisor is obtained within n steps, return it.

25

26 6. Q-CARTIER DIVISORS - MORE FUNCTIONS, AND IF, FOR, WHILE

1.0.3. while.
i22 : i = 0; while i < 10710 list (i=i"2+1;1i)

023 = {1, 2, 5, 26, 677, 458330, 210066388901}

023 : List

Starting with i = 0, as long as i < 101, it repeats the operation of squaring ¢ and adding 1,
returning the list of resulting numbers. The structure “while p list x do y” evaluates x and
lists the result as long as the condition p is satisfied, and then executes y.

In the next example, the condition part is set to true, so the condition is always satisfied.
The loop is exited with if ... break.

i30 : smoothSingularCenter = I -> (

R := ring I;
currentl := I;
while true do (
singl := radical ideal singularLocus currentI;

if singl == ideal (1_R) then break;
currentI = singl);
currentI);

EXERCISE 23. Understand what this function is calculating.

2. 2-Cartier Check

Consider the following quadratic cone and its ideal.
i101 : qCone = QQ[x,y,z]/ideal (x*y-z"2)

0101

gCone
0101 : QuotientRing
i102 : I = radical ideal(y)

0102

ideal (z, y)

0102 : Ideal of qCone

The irreducible divisor D defined by this ideal is not Cartier. This can be confirmed as
follows.

1105 : M = module I
0105 = image | z y |

1
0105 : gCone-module, submodule of gCone

i106 : radical fittingIdeal(1,M)

3. CALCULATING THE CARTIER INDEX 27

0106 = ideal (z, y, x)

0106 : Ideal of qCone

It is found that the ideal, viewed as a module, is not flat at the origin. However, 2D is
Cartier. This can be confirmed by checking that (M®?)¥V is flat as follows.

1117 : dual dual (Mx*xM)
0117 = image {1} | 1 |

1
0117 : gCone-module, submodule of gCone

EXERCISE 24. Confirm that the irreducible divisor defined by the ideal \/(z +y) C R in
the cubic Fermat hypersurface R = Clx,y, 2]/ (2% + 3 + 2®) is not 2-Cartier.

Write a function is2Cartier to check if an ideal I defining a divisor is 2-Cartier. The
function checks if the ideal is 2-Cartier using the same operations as above.

i10 : is2Cartier = I -> (
M := module I;
M2 := MxxM;

DDM2 := dual dual M2;

J := fittingIdeal(1,DDM2);
R := ring M;
== ideal 1_R);

In this way, it is good to assign intermediate calculation results to easily understandable
variable names with := and proceed with the calculations step by step. The final == checks
if both sides are equal, returning a Bool value (true or false). If both sides are ideals of the
same ring, it judges them as equal if they are the same ideal, even if their representations
(generators) are different. Here, using Grobner bases allows this, but for the theoretical
background, please refer to an appropriate textbook.

Below are examples of applying the above function.

i11 : is2Cartier I

0oll = true

i23 : R = QQ[x,y,z]/ideal(x*y-z"5); I = radical ideal y;
024 : Ideal of R

125 : is2Cartier I

025 = false

3. Calculating the Cartier Index

Next, let’s write a function to check sequentially whether an ideal is r-Cartier for each
natural number r.

28 6. Q-CARTIER DIVISORS - MORE FUNCTIONS, AND IF, FOR, WHILE

i40 : cartierIndex = (I,N) —> (
M := module I;

r:=1;
while r <= N do (
Mr := M *x*r;

DDMr := dual dual Mr;
J := fittingIdeal(1,DDMr);

R := ring M;
if J == ideal 1_R then break;
r =r+l);

if r <= N then r else 0);
i41 : cartierIndex(I,6)

041 =5
The function above uses a while loop. It has the form
while condition do Z

As long as condition is satisfied, Z continues to be evaluated. In the example above, starting
from r = 1, r is incremented by 1 each time the loop runs. If » = N + 1 is reached or if
it becomes r-Cartier in the middle, the loop is exited with break. After the loop ends, if
r < N, the value of r is returned; if r = N + 1, 0 is returned.

EXERCISE 25. (1) Rewrite cartierIndex using for instead of while.
(2) Write a function to find the Gorenstein index of a given normal quotient ring (or
normal projective variety in the next chapter).
(3) Given an algebraic variety X C C", write a function that repeatedly projects X via
the map C" 3 (z1,...,2,) — (71,...,2,-1) € C"! and finds the first image that
becomes singular. (Projection corresponds to variable elimination algebraically.)*

CHAPTER 7

Resolution of Curve Singularities — Algorithms

1. Resolution of a Cusp Singularity

The blowup of SpecR at an ideal I C R is defined as Proj(€,-,1"). The ring that
appears here (a graded R-algebra) is called the Rees algebra. Let’s compute the blowup at
the origin of a cusp.

i2 : R = ZZ/101[x,y]1/(y"2-x"3);

i3 : reesAlgebra ideal(x,y)

0 1 0 1 0 1

03 : QuotientRing

As it is, it is difficult to examine the properties of the blowup (such as whether it is non-
singular), so let’s take an affine cover. In this example, it is covered by two affine open sets,
each obtained by setting w; = 1. For example, setting wy = 1:

i6 : Bl = 03; use Bl; RO = Bl / ideal(w_0 - 1)
o8 = RO
08 : QuotientRing

i9 : describe RO

Rlw , w1
0 1
2 2 2
(y*w - X*W , X W — J*W , X*¥W - W)
0 1 0 1 0 1
09 = ———— -
w -1
0

29

30 7. RESOLUTION OF CURVE SINGULARITIES — ALGORITHMS

i27 : minimalPresentation RO

7
027 = ——-[w]
101 1

027 : PolynomialRing

This affine open set is isomorphic to an affine line, and in particular, it is non-singular.

For the data of the resolution of singularities, we need not only the coordinate rings of
the affine open sets but also the data of the maps from the affine open sets to the original
curve.

i35 : f = map(RO,R)

035 = map(RO,R,{x, y})
035 : RingMap RO <--- R

i42 : g = RO.minimalPresentationMap

ZZ 2 3
042 = map(-—-[w],RO0,{1, w , w , w })
101 1 1 1 1
/A
042 : RingMap ---[w] <--- RO
101 1
i43 : gxf
Z7Z 2 3
043 = map(-—-[w]1,R,{w , w })
101 1 1 1
/A
043 : RingMap ---[w] <-—- R
101 1

EXERCISE 26. Given an ideal I C R, create a function that returns a list of homomor-
phisms R — S; for the coordinate rings 5; of the affine cover of the blowup at I. Use
minimalPresentation*

2. Creating and Implementing Algorithms

By blowing up and computing the affine charts, and blowing up again if singularities
remain, you can resolve the singularities. However, to compute this with a computer, you
need to write down the detailed steps more precisely. Instead of starting to write the program
immediately, let’s first write down the algorithm in Japanese.

2. CREATING AND IMPLEMENTING ALGORITHMS 31

Input: Quotient ring R (integral domain)

Output: A collection of ring homomorphisms f; : R — R; such that Spec R; is an affine
cover of some resolution of singularities, and f; is determined by that resolution.
Algorithm:

(1) Set SmoothCharts =), SingularCharts = (), WaitingCharts = {(R, idg)}.

(2) If WaitingCharts is empty, go to step 4. Otherwise, select the first f: R — S from
WaitingCharts and remove it from WaitingCharts. Compute the radical ideal
J C S defining the singular locus. If J = (1), add f to SmoothCharts; otherwise,
add (f,J) to SingularCharts. Go to step 3.

(3) If SingularCharts is empty, go to step 2. Otherwise, select one (f,) from
SingularCharts and remove it from SingularCharts. Blow up S at I. Compute the
affine cover and the maps. Add all the obtained maps to WaitingCharts.

(4) Output SmoothCharts.

EXERCISE 27. Implement the above algorithm as a function in M2.*

EXERCISE 28. Modify the created function as follows:

(1) Blow up at one maximal ideal at a time.
(2) Record how many times each affine chart was obtained by blowing up.

CHAPTER 8

Projective Varieties and Sheaf Cohomology

1. Hodge Numbers

As a subject for calculation, let’s consider the Fermat quartic hypersurface (x§+- - -+x3 =
0) C P3. Let’s write its homogeneous coordinate ring in a slightly different way than before.

i5 : R = QQ[x_0..x_3]/(sum(4,i->x_i"4))
o5 = R

05 : QuotientRing

For polynomial rings with many variables, you can write them more concisely using sub-
scripts. sum(n,f(i)) calculates f(0) + f(1) +---+ f(n —1).

Now, given a homogeneous ring, you can create the corresponding projective variety with
Proj.

i6 : X = Proj R
06 = X

06 : ProjectiveVariety

While it can be easier to handle the ring directly, for calculations involving sheaf cohomology;,
it is better to use the projective variety.
First, let’s confirm that X is non-singular.

i7 : singularLocus X

/QQlx , x, x, x]\

o7 : ProjectiveVariety

Since the denominator is 1, we know that the singular locus is empty.
Let’s calculate the Hodge numbers of X. You can use hh”~(p,q) for this. To find all the
Hodge numbers at once, do the following.

i10 : for p to 2 list (for q to 2 list hh~(p,q) (X))
o10 = {{1, o0, 1}, {0, 20, 0}, {1, O, 1}}

010 : List
33

34 8. PROJECTIVE VARIETIES AND SHEAF COHOMOLOGY

This calculates the dimensions of H?(2%). By taking appropriate alternating sums of these,
you can find the topological Euler characteristic, which can be calculated in M2 with euler.
However, you must confirm for yourself that X is non-singular for this to be valid. The
arithmetic genus can also be calculated with genus, and this does not require X to be non-
singular (I believe).

EXERCISE 29. (1) Change the dimension, degree, and defining equations of the va-
riety and calculate the Hodge numbers. Observe which examples finish quickly and
which do not.

(2) Improve hh to return an error message if the variety is singular.

2. Cohomology of Coherent Sheaves

Several standard coherent sheaves can be easily created from a projective variety. First,
the (twisted) structure sheaf.

i13 : 00_X

013 = 00
X

013 : SheafOfRings
i14 : 00_X(3)
1

00 (3)
X

ol4

014 : coherent sheaf on X, free

The notation should be self-explanatory.
Next, the tangent sheaf, cotangent sheaf, and exterior powers of the cotangent sheaf.

i20 : TX = tangentSheaf X

020 = image {-2} | -x_0x_2"3 x_1x_2"3 X_274+x_.374 0 x_1x_373 -x_0x_3
{-2} | x_174+x_2"4 x_0"3x_1 x_073x_2 -x_1x_3"3 0 x_2x_3"
{-2} | x_0x_1"3 -x_174-x_3"4 -x_173x_2 -x_0x_3"3 x_2x_3"3 0
{-2} | -x_1"3x_3 -x_073x_3 0 X_274+x_3"4 x_0"3x_2 x_173x_
{-2} | x_2"3x_3 0 x_07"3x_3 x_1x_273 x_073x_1 x_174+x
{23 1 0 x_273x_3 -x_1"3x_3 x_0x_2"3 -x_174-x_2"4 x_0x_1"
6
020 : coherent sheaf on X, subsheaf of 00 (2)
X

i21 : cotangentSheaf X;

i22 : cotangentSheaf (2,X);

3. CREATING COHERENT SHEAVES FROM MODULES 35

To twist any coherent sheaf, you can use, for example, TX(3) (the tensor product of the
tangent sheaf and Ox(3)).

You can create new coherent sheaves from the obtained sheaves F' and G using F ++ G,
F xx G, F ~ n, exteriorPower(n,F), dual F, sheafHom(F,G), and sheafExt n(F,G). The
first two mean direct sum and tensor product, and n copies of the direct sum. The rest
should be inferred from the notation.

The cohomology groups of coherent sheaves can be calculated with HH n.

i130 : HH"1(TX)

20
0130 = QQ

0130 : QQ-module, free

EXERCISE 30. Verify Serre’s duality theorem, vanishing theorem, and Kodaira’s vanishing
theorem with examples of your choice.

3. Creating Coherent Sheaves from Modules

If you want to create more coherent sheaves, you can do so from graded modules over
the homogeneous coordinate ring. As an example, let’s construct the structure sheaf of the
intersection Hy; N Hy of two general hyperplane sections Hy, Hy C X (as an Ox-module).
Randomly take two degree 1 homogeneous elements from the homogeneous coordinate ring
R as follows.

i31 : f=random(1,R)

1 5
o3l =x + -x + -x + 8x
0 21 8 2 3

o031 : R

i32 : g=random(1,R);

Next, define the cokernel of the map R? — R defined by the matrix (f,g), and take the
associated coherent sheaf to obtain the desired result.

i34 : M = coker matrix{{f,g}}

034 cokernel | x_0+1/2x_1+5/8x_2+8x_3 1/5x_0+7/3x_1+2/9x_2+5/4x_3 |

1
034 : R-module, quotient of R

i38 : F = sheaf M

038 cokernel | x_0+1/2x_1+5/8x_2+8x_3 1/5x_0+7/3x_1+2/9x_2+5/4x_3 |

36 8. PROJECTIVE VARIETIES AND SHEAF COHOMOLOGY

038 : coherent sheaf on X, quotient of 00

X
139 : HH"O(F)
4
039 = QQ
039 : QQ-module, free
EXERCISE 31. (1) Create a module by taking only the parts of the coordinate ring

R of degree 3 or higher. Use truncate.
(2) Create a coherent sheaf F from this module and calculate HH~0(F (*)).
(3) Compare with module F.

EXERCISE 32. Show that the canonical sheaf wx = Q% of X treated in this chapter is a
trivial invertible sheaf without using the adjunction formula, following these steps:

(1) Create a corresponding graded module over the homogeneous coordinate ring from
wyx using module.

(2) Use this module to find the restriction of wx to a general hyperplane.

(3) Show that the restriction of wyx to the hyperplane has degree 0 using the Riemann-
Roch formula and cohomology calculations.

(4) Confirm that dim H°(wx) = 1.

EXERCISE 33. (Research Task) Create a function to determine whether two given coherent
sheaves are isomorphic. (There seems to be an algorithm for finite-dimensional modules, so
you might be able to do this by referring to it: [4][1])

CHAPTER 9

Miscellaneous

In this chapter, we will touch on some topics that were not covered in the lectures but
might be good to know. For more details, please read the “The Macaulay2 language” section
of the manual.

1. Hash Tables

A hash table is a collection of key-value pairs, where you can specify a key to retrieve its
corresponding value.

il : legends = new HashTable from
{"Hilbert" => "David", "Euler"=>"Leonhard", "Newton"=>"Issac"}

ol

HashTable{Euler => Leonhard}
Hilbert => David
Newton => Issac

ol : HashTable

i2 : legends#"Hilbert"

02

David

EXERCISE 34. Create a hash table with countries as keys and their capitals as values.

2. Using Packages

Functions that handle specialized calculations are organized into packages. In version
1.4 of M2, the packages ConwayPolynomials, Elimination, IntegralClosure, LLLBases, Pri-
maryDecomposition, ReesAlgebra, and TangentCone are loaded at startup, so you can use
the functions included in these packages. However, note that the descriptions of these func-
tions are in the respective package sections of the manual and are not listed in the Index of
Macaulay2Doc.

If you want to use packages other than these, you need to load them with a command. For
example, to use the Depth package, which deals with depth and Cohen-Macaulay properties,
you can check if a quotient ring is Cohen-Macaulay as follows:

il : loadPackage "Depth";
i3 : isCM (QQ[x,y]l/ideal (x*y))

03 = true

37

38 9. MISCELLANEOUS
i4 : isCM (QQ[x,y,z]/intersect(ideal(x,y),ideal(z)))

o4 = false

You can also create your own packages. I don’t know how to do it, but it’s written in the
manual.

3. Classes

In M2, everything has a class (type).
i5 : class (QQ[x1)

o5

PolynomialRing
o5 : Type
i6 : class {1,2,3}

06 List

06 : Type

The behavior of functions depends on the class of the variables (inputs). For example,
the function ideal returns the ideal that defines a quotient ring when applied to a quotient
ring, and the ideal generated by a polynomial when applied to a polynomial.

You can also create your own classes. A good example is in “Macaulay2Doc > mathe-
matical examples > Tutorial: Divisors,” where a new class for handling divisors on algebraic
varieties is created.

4. Reading and Writing Files

You can write calculation results to a file or read a file and apply functions to it. However,
I have never done it. Please read the manual.

CHAPTER 10

Exercise Solutions

Exercise 5.2

Use the function degree.
Exercise 6.1
i10 : QQlx,yl; I = ideal(xxy,x"2);
o1l : Ideal of QQ[x, y]
112 : I == radical I

012 = false

Exercise 9.1

(Example) Move an element f of the polynomial ring in two variables to the polynomial
ring in three variables using substitute, and homogenize it with the new variable z using
substitute(f,z):

i13 @ QQlx,yl; f = x"2+y+1;
i15 : f = substitute(f,QQ[x,y,z]);
i16 : homogenize (f,z)

2 2
0l6 = x + y*xz + z

ol6 : QQlx, y, z]
Exercise 9.3

The conductor ideal of the integral closure map defines the non-normal locus. However,
since the function conductor can only be used in the homogeneous case, we consider the
homogenized Roman surface.

136 : homoRoman = QQ[x,y,z,w]/(x"2%y 2+y 242" 2+2" 2%x " 2+x*y*Z*W) ;
i37 : I = conductor icMap homoRoman

037 = ideal (y*z, x*z, x*y)
By setting w = 1, we obtain the desired ideal.
39

40 10. EXERCISE SOLUTIONS

Exercise 16.1

il : divb =n -> n % 5;

Exercise 17.1

i32 : singularComponents = R -> (
singR := singularLocus R;
singldeal := ideal singR;
decompose singlIdeal);

Exercise 22.1

i2 : for i to 300 list (if isPrime i then i else continue)

o2 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,

139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,

Exercise 25.3

isSmooth = I -> (
R := ring I;
singl := radical ideal singularLocus I;
singl == ideal 1_R);

singularProjection = I -> (

R := ring I;
J = 1;
while true do (
R := ring J;
Vs := flatten entries vars R;

if length Vs == 1 then break;
lastVar := last Vs;

J = radical eliminate(lastVar,J);

Vs’ := drop(Vs,-1);

KK = coefficientRing R;

R = KK[Vs’];

J = sub(J,R);

if not isSmooth J then break;

);

EXERCISE 77 41

J);

Exercise 26

blowupCharts = {Variable => w} >> o -> I -> (

R := ring I;

rees := reesAlgebra(I,Variable => o.Variable);
reesAmb := ambient rees;

G := gens reesAmb;

1 := length G;

charts := for w in G list rees/ideal (w-1_rees);

RToCharts := for T in charts list map(T,R);
for T in charts list (minimalPresentation T);

minMaps := for T in charts list T.minimalPresentationMap;
for i to 1-1 list ((minMaps_i) * (RToCharts_i))
);

For the next exercise, the variable name can be changed with an option.

Exercise 27

desing = R —> (
smCharts := {};
singCharts := {};
waitingCharts := {id_R};
numBlowups := O;

while waitingCharts != {} do (

f := waitingCharts_O;

waitingCharts = drop(waitingCharts,1);

S := target f;

singIdeal := radical(sub(ideal singularLocus S,S));

if singldeal == ideal(1_S)
then smCharts = append(smCharts,f)
else singCharts = append(singCharts, (f,singIdeal));

while singCharts != {} do (
(g,J) := singCharts_O;
singCharts = drop(singCharts,1);
numBlowups = numBlowups + 1;

newMaps = for h in blowupCharts(J,Variable=> vars(numBlowups))
list (h*g);
waitingCharts = join(waitingCharts, newMaps) ;

);
);

42

smCharts

);

10. EXERCISE SOLUTIONS

1]

Bibliography

P. A. Brooksbank and E. M. Luks. Testing isomorphism of modules. J. Algebra, 320(11):4020-4029,
2008.

D. Eisenbud, D. R. Grayson, M. Stillman, and B. Sturmfels, editors. Computations in algebraic ge-
ometry with Macaulay 2, volume 8 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 2002.

D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry.
Available at http://www.math.uiuc.edu/Macaulay?2/.

K. M. Lux and M. Sz6ke. Computing decompositions of modules over finite-dimensional algebras. Ex-
periment. Math., 16(1):1-6, 2007.

H. Schenck. Computational algebraic geometry, volume 58 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 2003.

A. K. Singh and I. Swanson. Associated primes of local cohomology modules and of Frobenius powers.
Int. Math. Res. Not., (33):1703-1733, 2004.

H. Yokota. Macaulay2 no shokai. Available at http://durian2.math.kobe-u.ac.jp/KnoppixMath-
doc/ponpoko/Macaulay2.pdf

43

