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CHAPTER 1

Introduction

1.1. Notation, terminology and convention

Throughout the book, we fix a base field k. We denote by L a field extension
of k unless otherwise noted.

We assume that all schemes are separated.
By a k-variety, we mean an integral scheme of finite type over k.
By a ring, we mean a unital commutative ring unless otherwise noted.
For a ring R, we denote by RJtK (resp. RLtM) the ring of formal power series

(resp. Laurent power series) with coefficients in R. Note that for a domain R, RLtM
is not generally the same as the fraction field of RJtK; this is different from some
authors’ notation.

For a morphism f : Y → X of schemes and an ideal sheaf I ⊂ OX , we denote
by f−1I the pullback of I as an ideal sheaf, which was denoted by f−1I · OY or
I · OY in [Har77, p. 163]. When X is an affine scheme SpecR, we often identify
f−1I with the corresponding ideal of R.

For a k-scheme X, a k-algebra R and a subset C ⊂ X, we denote by C(R) the
subset of X(R) consisting of R-points SpecR→ X with image contained in C.
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CHAPTER 2

The Grothendieck ring of varieties and realization
maps

2.1. The Grothendieck ring of varieties

Motivic integration take values in the complete Grothendieck ring of varieties,
denoted by M̂k, or a variant of it. Elements of this ring is considered as a toy
version of motives that Grothendieck devised in order to unify various cohomology
theories.

Definition 2.1.1. We define the Grothendieck ring of k-varieties, denoted by
K0(Vark), to be the quotient group of the free abelian group

⊕
Z{X} generated

by isomorphism classes {X} of k-schemes of finite type modulo the scissor relation:
if Y is a closed subscheme of X, then

{X} = {Y }+ {X \ Y }.
Namely we take the quotient of

⊕
Z{X} by the submodule generated by the ele-

ments of the form
{X} − {Y } − {X \ Y }.

The multiplication on the additive group K0(Vark) is given by

{X} · {Y } := {X ×k Y }.
By abuse of terminology, we call the class {X} of a k-scheme X in K0(Vark) the
motive of X and denote it sometimes by M(X) (but more often keep using the
notation {X}).

Remark 2.1.2. It is more common to denote the class of a scheme X in
K0(Vark) by [X] rather than {X}. We reserve the brackets [·] to denote quotient
stacks.

It is easy to see that K0(Vark) becomes a commutative ring. The identities for
addition and multiplication are respectively 0 = {∅} and 1 = {Spec k}.

The scissor relation in particular shows that the class {X} of a scheme X in
K0(Vark) is independent of the scheme structure of X. Namely we have {X} =
{Xred} withXred the associated reduced scheme ofX. Therefore, for a locally closed
subset C of a scheme X of finite type, the class {C} ∈ K0(Vark) is well-defined.

Lemma 2.1.3. If a scheme X of finite type is the disjoint union of locally closed
subsets Ci ⊂ X, 1 ≤ i ≤ n, then {X} =

∑n
i=1{Ci}.

Proof. The proof is by Noetherian induction on the pair

p(X) := (dimX, the number of irreducible components of X) ∈ N2.

Here N2 is given the lexicographic order. Thus we need to show the lemma for a
given X, assuming that the lemma holds for every scheme X ′ with p(X ′) < p(X).

7



2.1. THE GROTHENDIECK RING OF VARIETIES 8

First consider the case where X is reducible. Let X1 ⊂ X be an irreducible
component and X2 ⊂ X its complement. From the scissor relation, {X} = {X1}+
{X2}. Let Ci,j := Ci ∩ Xj for 1 ≤ i ≤ n and j = 1, 2, which are locally closed
subsets of Xj . Since p(Xj) < p(X), we have {Xj} =

∑
i{Ci,j}. We also have

{Ci} = {Ci,1}+ {Ci,2} from the scissor relation. Thus

{X} = {X1}+ {X2} =
∑
i,j

{Ci,j} =
∑
i

{Ci}.

Next consider the case where X is irreducible. Each Ci is written as the in-
tersection Y ∩ U of a closed subset Y and an open subset U . If Ci contains the
generic point, then the closed subset Y is the whole variety X and Ci = U . Thus
exactly one of Ci’s, say C1, is an open dense subset of X. From the scissor relation,
{X} = {C1}+ {X \C1}. Since p(X \C1) < p(X), we have {X \C1} =

∑n
i=2{Ci}.

Thus

{X} = {C1}+ {X \ C1} = {C1}+

n∑
i=2

{Ci} =

n∑
i=1

{Ci}.

�

Remark 2.1.4. Every k-scheme X of finite type is the disjoint union of finitely
many integral subschemes Xi ⊂ X. It follows that K0(Vark) is in fact generated
by the classes of k-varieties. Similarly we get the same ring if we use k-varieties in
Definition 2.1.1 instead of k-schemes of finite type.

Definition 2.1.5. Let X be a k-scheme of finite type. For a locally closed
subset C ⊂ X, we can define {C} ∈ K0(Vark) by giving any scheme structure
to C. A subset C ⊂ X is said to be constructible if there exists a decomposition
C =

⊔
i Ci into finitely many locally closed subsets Ci. For such a C, we define an

element {C} ∈ K0(Vark) to be
∑
i{Ci}.

Lemma 2.1.6. The class {C} ∈ K0(Vark) of a constructible subset C is well-
defined.

Proof. Let C =
⊔
i Ci and C =

⊔
j Cj be decompositions by finitely many

locally closed subsets. If we put Ci,j := Ci∩Cj , then Ci =
⊔
j Ci,j and Cj =

⊔
i Ci,j .

By Lemma 2.1.3, {Ci} =
∑
j{Ci,j} and {Cj} =

⊔
i{Ci,j}. Thus∑

i

{Ci} =
∑
i,j

{Ci,j} =
∑
j

{Cj}.

�

Definition 2.1.7. We denote the element {A1
k} ∈ K0(Vark) associated to an

affine line A1
k by L.

Example 2.1.8. In K0(Vark), we have

{Gm,k} = L− 1,

{Ank} = Ln,
{Pnk} = Ln + Ln−1 + · · ·+ 1.

The first equality follows from the scissor relation. The second one follows from the
definition of multiplication. The third one follows from the scissor relation and the
decomposition Pnk = Ank t An−1

k t · · · t Spec k.
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Example 2.1.9. For a vector bundle V → X of rank r, we have {V } = {X}Lr.
Indeed, there exists a stratification X =

⊔
Xi into locally closed subsets such that

for each i, V |Xi ∼= Xi × Ark. Thus

{V } =
∑
i

{V |Xi} =
∑
i

{Xi × Ark} =
∑
i

{Xi}Lr = {X}Lr.

The following compactness property of constructible subsets is useful and will
be used without explicit mention.

Lemma 2.1.10. Let X be a k-scheme of finite type and let C and Ci, i ∈ I be
constructible subsets of X. If C ⊂

⋃
i∈I Ci, then there exists a finite subset I ′ ⊂ I

such that C ⊂
⋃
i∈I′ Ci. In particular, if C =

⊔
i∈I Ci is a stratification of C, then

I is finite.

Proof. The proof is by induction. If dimC ≤ 0, then C has at most finitely
many points and the lemma holds. When dimC > 0, then we take a finite set I0 ⊂ I
such that every point of C of maximum dimension is contained in some Ci, i ∈ I0
(there are only finitely many points of maximum dimension). Then C \

⋃
i∈I0 Ci

has less dimension than C. By induction hypothesis, there exists a finite subset
I1 ⊂ I such that C \

⋃
i∈I0 Ci ⊂

⋃
i∈I1 Ci. We can take the desired finite set I ′ to

be I0 ∪ I1. �

2.2. Realization maps

The ring K0(Vark) is huge and it is convenient to have maps from it to simpler
rings such as polynomial rings or the ring of integers. We call such maps realization
maps or simply realizations. We can associate a realization map to each generalized
Euler characteristic.

Definition 2.2.1. Let R be a ring and let Vark be the category of k-varieties.
A map χ : Vark → R is called a generalized Euler characteristic if the following
conditions hold:

(1) If Y is a closed subvariety of X, then χ(X) = χ(Y ) + χ(X \ Y ).
(2) For two varieties X and Y , we have χ(X ×k Y ) = χ(X)χ(Y ).

For a generalized Euler characteristic χ, from the first condition and the def-
inition of K0(Vark), we have a unique group homomorphism χ′ : K0(Vark) → R
making the following diagram commutative.

Vark
M //

χ
%%

K0(Vark)

χ′

��
R

The second condition then shows that χ′ is a ring homomorphism. Namely the
natural map

M: Vark → K0(Vark), X 7→ M(X) = {X}
is the universal generalized Euler characteristic. We will usually denote the induced
realization χ′ by the same symbol as the original map χ.

Remark 2.2.2. We can define χ(C) for a constructible subset C of a k-scheme
of finite type in the same way as defining {C}.
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Example 2.2.3. If k is a finite field, then the point counting map

] : Vark → Z, X 7→ ]X(k)

is a generalized Euler characteristic. Therefore we get the corresponding realization
map ] : K0(Vark) → Z. For each r ∈ Z>0, we also have the generalized Euler
characteristic

]r : Vark → Z, X 7→ ]X(kr)

with kr/k the extension of degree r and get a realization ]r : K0(Vark)→ Z.

Example 2.2.4. For a C-varietyX, the topological Euler characteristic etop(X) ∈
Z is given by

etop(X) :=
∑
i

(−1)i dimQ Hi
c(X(C),Q),

where H∗c(X(C),Q) are singular cohomology groups of X(C) (given with the an-
alytic topology) with compact support. For an arbitrary field k, we can similarly
define etop(X), using l-adic cohomology groups Hi

c(X⊗k ksep,Ql) instead. Here l is
the prime number different from the characteristic of k. It is known that the defini-
tion using l-adic cohomology is independent of the choice of l [Nic11, pp. 198–199]
and gives the same value as the one defined in terms of singular cohomology. If
X is smooth, then from the Poincaré duality, we may use the usual cohomology
Hi rather than the one with compact support. The map etop : Vark → Z is a
generalized Euler characteristic.

Example 2.2.5. The Poincaré polynomial of a smooth proper k-variety X is
defined to be

P(X) = P(X; t) :=
∑
i

(−1)ibi(X)ti ∈ Z[t],

where bi(X) denotes the i-th Betti number dimQl Hi(X⊗k ksep,Ql) for l-adic coho-
mology, which is known to be independent of l. There exists a (necessarily unique)
generalized Euler characteristic P: Vark → Z[t] such that for smooth proper X,
P({X}) = P(X) (see [Nic11, Appendix]). When k is a finitely generated field,
we can express P(X) for a general (not necessarily smooth or proper) variety X in
terms of weight filtration on Hi

c(X ⊗k ksep,Ql).

Example 2.2.6. If k is a subfield of C, we can also define the E-polynomial
(also called the Hodge-Deligne polynomial), denoted by E(X) = E(X;u, v) ∈ Z[u, v]
such that if X is smooth and proper, then

E(X;u, v) =
∑
p,q∈Z

(−1)p+qhp,q(X(C))upvq,

where hp,q are Hodge numbers. In the general case, E(X) can be expressed in terms
of the mixed Hodge structure on Hi

c(X(C),Q). The map E: Vark → Z[u, v] is a
generalized Euler characteristic.

Lemma 2.2.7 (Properties of P(X) and E(X)). Let X be a k-scheme of fi-
nite type. In the following assertions, those equalities and statements involving
E-polynomials are restricted to the case k ⊂ C.

(1) We have P(X; 1) = etop(X), E(X; t, t) = P(X; t) and E(X; 1, 1) = etop(X).
(2) We have dimX = (deg P(X))/2 and dimX = (deg E(X))/2, with the

convention dim ∅ = deg 0 = −∞.
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(3) If X 6= ∅, then the coefficient of T 2 dimX in P(X) is equal to the number
of irreducible components of X ⊗k ksep of maximal dimension dimX.

(4) If X 6= ∅, then the coefficient of (uv)dimX in E(X) is equal to the number
of irreducible components of X ⊗k ksep of dimension dimX and this term
is the only term of degree 2 dimX.

(5) If X is smooth and proper, then P(X) and E(X) satisfy the Poincaré
duality, that is, the following functional equations hold;

P(X; t−1)t2 dimX = P(X; t),

E(X;u−1, v−1)(uv)2 dimX = E(X;u, v).

Sketch of proof. (1) The first equality follows from the definitions of etop

and P. The second one follows from the Hodge decomposition of cohomology
groups. The first two equalities imply the last.

(2), (3) and (4) We sketch the proof only when k has characteristic zero.
See [Nic11, Prop. 8.7] for the general case. If X is smooth and proper, then
the assertions are clear. From the additivity of P(X), by compactification and
resolution, we can write

P(X) = P(X ′)− P(Y )

where X ′ is smooth and proper and Y is of dimension < dimX. The assertions for
P(X) follows by induction. Similarly for E(X).

(5) From the usual Poincaré duality, we have the following equalities of Betti
numbers and Hodge numbers

bi = b2d−i and hp,q = hd−p,d−q (d := dimX),

which show the assertion. �

Example 2.2.8. We can construct a realization map from “nice” cohomology
functors with compact support

Hi
c : Vark → A,

where A is some abelian category having tensor products. The Grothendieck ring
of A, denoted K0(A), is the quotient of the free Z-module

⊕
Z{M} generated by

isomorphism classes {M} of objects modulo the submodule generated by elements
{M1} − {M2}+ {M3} for all short exact sequences

0→M1 →M2 →M3 → 0.

The product on K0(A) is given by {M}{N} = {M ⊗N}. Let us define
χ : Vark → K0(A)

by χ(X) :=
∑

(−1)i{Hi
c(X)}. For a k-variety X and a closed subvariety Y ⊂ X,

we have the long exact sequence,

· · · → Hi
c(X \ Y )→ Hi

c(X)→ Hi
c(Y )→ Hi+1

c (X \ Y )→ · · · .
This and the Künneth formula show that χ is a generalized Euler characteristic.

If k = C, we can put A = MHS, the category of mixed Hodge structures say
over Q and Hi

c(X) = Hi
c(X(C),Q) and get a generalize Euler characteristic

χHodge : VarC → K0(MHS).

For an arbitrary k, we denote by Gk the absolute Galois group of k. We may
take A = Repl(Gk), the category of continuous representations over Ql with l a
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prime number different from the characteristic of k. Using the étale cohomology
groups Hi

c(X) = Hi
c(X ⊗k ksep,Ql), we get a generalized Euler characteristic

χl : Vark → K0(Repl(Gk)).

If k is finite, we have the well-define map

φr : K0(Repl(Gk))→ Ql, {V } 7→ Tr(F r|V ),

where F is the geometric Frobenius action. From the Grothendieck-Lefschetz trace
formula [Mil80, Th. 13.4], we have the commutative diagram.

K0(Vark)
]r //

χl

��

Z� _

��
K0(Repl(Gk))

φr

// Ql

Lemma 2.2.9. If k is a finite field, then for every positive integer r, the map
]r : Vark → Z factors through χl.

Example 2.2.10. When k has characteristic zero, there exists a realization
map K0(Vark) → K0(CHMk) to the Grothendieck ring of Chow motives, which
follows from results of [GS96,GNA02].

2.3. The localization Mk

Definition 2.3.1. We define Mk to be the localization K0(Vark)[L−1] of
K0(Vark) by L. An effective element of Mk is an element of the form {X}Ln
with X a k-scheme of finite type and n a (possibly negative) integer.

We will need effective elements with negative exponent n when defining the
motivic measure on an arc space. As a group,Mk is generated by effective elements.

Remark 2.3.2. If a realization map χ : K0(Vark)→ R sends L to an invertible
element, then it uniquely extends to a mapMk → R, which we keep denoting by
the same symbol, say χ in this case.

Lemma 2.3.3. We have:

Hi
c(Adksep ,Ql) ∼=

{
Ql(−d) (i = 2d)

0 (i 6= 2d)

Similarly, when k = C, we have:

Hi
c(Cd,Q) ∼=

{
Q(−d) (i = 2d)

0 (i 6= 2d)

Proof. From [MR073, XV, Cor. 2.2 ], we have:

Hi
c(Adksep ,Ql) ∼= Hi

c(Spec ksep,Ql) ∼=

{
Ql (i = 0)

0 (i 6= 0)

When k = C, similar isomorphisms for singular cohomology follow from the fact
that Cd is contractible. The lemma follows from the Poincaré duality [Mil80, Cor.
11.2], [PS08, Th. 6.23 and Cor. B.25]. �
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Example 2.3.4. The above lemma shows

etop(A1
k) = 1, P(A1

k) = t2, E(A1
C) = uv,

χl(A1
k) = {Ql(−1)}, χHodge = {Q(−1)}.

From Remark 2.3.2, the topological Euler characteristic realization etop : K0(Vark)→
Z (Example 2.2.4) uniquely extends to a map

etop : Mk → Z.
As for the Poincaré polynomial realization, we may extend the target ring Z[t] to
Z[t±] to get

P: Mk → Z[t±].

Similarly, from the E-polynomial realization, we induce a map

E: MC → Z[u±, v±].

Realizations χHodge and χét send L to an invertible element and induce

χHodge : MC → K0(MHS),

χl : Mk → K0(Repl(Gk))

respectively. When k is a finite field, then the maps ]r extends to

]r : Mk → Q.

2.4. The completion M̂k

We will need to consider infinite sums of effective elements and discuss their
convergence. For this purpose, we define a completion ofMk and get a topological
ring.

Definition 2.4.1. The dimension of an effective element {X}Ln is defined by

dim{X}Ln := dimX + n.

Lemma 2.4.2. The dimension of an effective element is independent of the
choice of its expression as {X}Ln.

Proof. From Lemma 2.2.7, for an effective element α = {X}Ln,

dimα = dimX + n =
1

2
deg P(X) + n =

1

2
deg P(α).

The last term is clearly independent of the choice of the expression. �

Definition 2.4.3. For m ∈ Z, we define Fm ⊂ Mk to be the subgroup gen-
erated by effective elements of dimension ≤ −m. We get a descending filtration
{Fm}m∈Z such that FmFn ⊂ Fm+n and a projective system of abelian groups
{Mk/Fm}m∈Z. We define the complete Grothendieck ring of k-varieties to be the
projective limit

M̂k := lim←−Mk/Fm.

This becomes a complete topological ring as follows. We give the discrete
topologies toMk/Fm and the limit topology to M̂k, which makes M̂k a complete
topological group. If we define F̂m to be the projective limit of {Fm/Fn}n, then
{F̂m}m is a fundamental system of open neighborhoods of 0. Since FmFn ⊂ Fm+n,
for two elements (αm)m∈Z and (βm)m∈Z of M̂k with αm, βm ∈ Mk/Fm, products
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αmβm are well-defined as elements of Mk/Fm2 . Thus the sequence (αmβm)m∈Z
defines an element of M̂k. We define the product of (αm)m∈Z and (βm)m∈Z to be
this element.

Definition 2.4.4. The image of an effective element {X}Ln ∈ Mk is again
called an effective element and denoted by {X}Ln.

In M̂k, an effective element of dimension n belongs to F̂−n. Therefore a series
(αn)n≥0 of effective elements with dimαn → −∞ converges to 0 and the infinite
sum

∑
n αn converges to some element in M̂k. More generally:

Definition 2.4.5. Let αi ∈ M̂k, i ∈ I be effective elements indexed by a
countable set. We say that the sum

∑
i∈I αi converges if for every integer m, there

are at most finitely many αi of dimension ≥ m. We call the element given by a
convergent sum

∑
i∈I αi a pseudo-effective element. We define its dimension to be

max{dimαi}. When the sum
∑
i∈I αi does not converge, we say that it diverges.

If it is the case, we formally put
∑
i∈I αi :=∞.

Thus a countable sum
∑
i∈I αn of effective elements always give an element of

M̂k ∪ {∞}. Then we can generalize all these to countable sums of pseudo-effective
elements as follows:

Definition 2.4.6. Let αi ∈ M̂k, i ∈ I be pseudo-effective elements indexed
by a countable set. We say that the sum

∑
i∈I αi converges if for every integer m,

there are at most finitely many αi’s of dimension ≥ m. If it is the case, we define
the element

∑
i∈I αi ∈ M̂k in the obvious way. Otherwise we say that the sum

diverges and we put
∑
i∈I αi :=∞.

Divergent sums don’t give an element of M̂k. When an infinite sum of pseudo-
effective elements diverges, it is sometimes useful to classify them depending on
how “large” infinities they are.

Definition 2.4.7. For a (not necessarily convergent) countable sum
∑
i∈I αi

of pseudo-effective elements, we define its dimension to be sup{dimαi} ∈ Z∪{∞}.
If the sum diverges and has dimension d, then we write∑

i∈I
αi :=∞d,

We say that the sum is dimensionally bounded if it has finite dimension.

If we write {∞∗} := {∞d | d ∈ Z ∪ {∞}}, a countable sum
∑
i∈I αi of pseudo-

effective elements thus defines an element of

M̂k ∪ {∞∗},

which refines the one defined in M̂k ∪ {∞}.
The following lemma will be used to show that motivic integrals are well-defined

in M̂k ∪ {∞∗}.
Lemma 2.4.8. Let I be an at most countable set. For each i ∈ I, let βij, j ∈ Ji

be at most countably many pseudo-effective elements such that αi :=
∑
j∈Ji βij

converges (note that this is automatic if Ji is finite). Then∑
i∈I

αi =
∑

i∈I,j∈Ji

βij in M̂k ∪ {∞∗}.
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In particular, one side converges (resp. dimensionally bounded) if and only if so
does the other side.

Proof. Since dimαi = max{dimβij | j ∈ Ji}, we have that

sup
i

dimαi = sup
i,j

dimβij .

Therefore
∑
αi is dimensionally bounded if and only if so does

∑
βij .

Let m ∈ Z. If there are at most finitely many βij ’s of dimension ≥ m, then
there are at most finitely many αi’s of dimension ≥ m. Conversely suppose that
Im := {i ∈ I | dimαi ≥ m} is a finite set. For i ∈ I \ Im, we have dimβij < m. For
i ∈ Im, since

∑
j∈Ji βij converges, Ji,m := {j ∈ Ji | dimβij ≥ m} is a finite set.

Therefore
{(i, j) | dimβij ≥ m} =

⋃
i∈Im

Ji,m,

which is a finite set. In conclusion, there are at most finitely many βij ’s of dimension
≥ m if and only if there are at most finitely many αi’s of dimension ≥ m. We have
proved that

∑
αi converges if and only if so does

∑
βij .

The equality supi dimαi = supi,j dimβij now shows the equality
∑
i αi =∑

i,j βij when these sums diverge. It remains to show that when they converge,
their limits are the same. This holds because the two sums reduce to the same
finite sum modulo F̂m for every m ∈ Z. �

2.5. Realization maps from M̂k

We can extend some of realization maps discussed above further from Mk to
M̂k by completing the target ring with respect to a filtration compatible the one
ofMk.

Example 2.5.1. Consider the Poincaré polynomial realization P: Mk → Z[t±]
(see Examples 2.2.5 and 2.3.4). The ring of Laurent power series

ZLt−1M =

{∑
i∈Z

ait
i | ai ∈ Z, ai = 0 (i� 0)

}
is the completion of Z[t±] with respect to the descending filtration {Fm}m∈Z, where
Fm := t−mZ[t−], the subgroup of Laurent polynomials of degree ≤ −m. Since
P(Fm) ⊂ F−2m, the above realization map induces the map between the comple-
tions,

P: M̂k → ZLt−1M.

Similarly, if k = C, we can extend the E-polynomial realization (see Examples 2.2.6
and 2.3.4) to get

E: M̂k → ZLu−1, v−1M.

Example 2.5.2. We can extend χHodge : MC → K0(MHS) as follows. For
m ∈ Z, we define Fm ⊂ K0(MHS) to be the subgroup generated by mixed Hodge
structures of weight ≤ −m. We then define the completion

K̂0(MHS) := lim←−K0(MHS)/Fm.
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This has a natural ring structure of ring like M̂C. Since χHodge(Fm) ⊂ F2m, the
above map χHodge induces

χHodge : M̂C → K̂0(MHS).

For a finitely generated field k, there exists a full abelian subcategory mRepl(Gk) ⊂
Repl(Gk) of mixed representations, which are equipped with weight filtration. As
in the case of mixed Hodge structures, we can define the completion K̂0(mRepl(Gk))
of the Grothendieck ring K0(mRepl(Gk)) and extend the realization map χl to

χl : M̂k → K̂0(mRepl(Gk)).

As was already noted, motivic integration take values in M̂k or some variant
of it. As a special and important case, if we integral the constant function 1 on the
whole arc space of a smooth variety X, we get the value M(X) = {X} in M̂k. It is
essential to know what information on X can be extracted from this value. Firstly
we can use realization maps P and E to extract some numerical data.

Proposition 2.5.3. Let X and Y be k-varieties such that {X} = {Y } in M̂k.
(1) We have P(X) = P(X) and etop(X) = etop(Y ).
(2) If k = C, we also have E(X) = E(Y ).
(3) If k is a finite field and if kr/k is the degree r extension, then ]X(kr) =

]Y (kr).
(4) If X and Y are smooth and proper, then they have the same Betti numbers

(either for the l-adic cohomology or the singular cohomology in the case
k ⊂ C): for every i ∈ Z, bi(X) = bi(Y ).

(5) If X and Y are smooth and proper and if k = C, then they have the same
Hodge numbers: for every p, q ∈ Z, hp,q(X) = hp,q(Y ).

Proof. (1) The equality P(X) = P(Y ) is obtained by sending {X} = {Y } by
the map P: M̂k → ZLt−1M. Note that since the completion map Z[t±]→ ZLt−1M is
injective, having P(X) = P(Y ) in ZLt−1M is equivalent to having the same equality
in Z[t±]. The other equality follows by substituting 1 for t;

etop(X) = P(X; 1) = P(Y ; 1) = etop(Y ).

(2) We can use the realization map E: M̂k → ZLu−1, v−1M to deduce this
assertion.

(3) Since K0(mRepl(Gk)) → K̂0(mRepl(Gk)) is injective [Yas06, p. 728],
we get equalities χét(X) = χét(Y ) in K0(mRepl(Gk)). From the commutative
diagram at the end of Example 2.2.8,

]X(kr) = ]r({X}) = ]r({Y }) = ]Y (kr).

.
(4) When X is smooth and proper, the Poincaré polynomial is just the gener-

ating function of Betti numbers. The assertion follows from P(X) = P(Y ).
(5) Similarly, the E-polynomial is the generating function of Hodge numbers in

the smooth and proper case. The equality E(X) = E(Y ) implies the assertion. �

Proposition 2.5.4. Let X and Y be smooth and proper k-varieties such that
{X} = {Y } in M̂k.
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(1) If k is finitely generated, then we have isomorphisms of Gk-representations

Hi(X ⊗k ksep,Ql)ss ∼= Hi(Y ⊗k ksep,Ql)ss.

Here the superscript ss means the semi-simplification.
(2) If k = C, then we have isomorphisms of Hodge structures

Hi(X(C),Q) ∼= Hi(Y (C),Q) (i ∈ Z).

Sketch of proof. Since the maps K0(mRepl(Gk))→ K̂0(mRepl(Gk)) and
K0(MHS) → K̂0(MHS) are injective [Yas06, p. 728], we get equalities χl(X) =
χl(Y ) and χHodge(X) = χHodge(Y ) respectively in the non-complete Grothendieck
ring. Since cohomology groups Hi have pure weight 2i, we can deduce degree-
wise equalities {Hi(X)} = {Hi(Y )}. In general, the equality {M} = {N} in the
Grothendieck group of an abelian category implies an isomorphism M ss ∼= N ss of
semi-simplifications. The first assertion now follows. For the second assertion, the
Hodge structure on Hi(X(C),Q) is polarizable and hence semi-simple [PS08, Cor.
2.12]. (The polarizability is well-known when X is projective. In the general case,
we can apply Chow’s lemma to embed cohomology groups into ones of a smooth
projective variety.) Thus the semi-simplification does not change Hodge structures
on cohomology groups. �

2.6. Piecewise trivial An-bundles

Definition 2.6.1. Let f : W → V be a morphism of k-schemes of finite type.
Let D ⊂ W and C ⊂ V be constructible subsets with f(D) ⊂ C. We say that
the induced map f |D : D → C is a piecewise trivial An-bundle if there exists a
stratification C =

⊔l
i=1 Ci by locally closed subsets Ci ⊂ V such that for each i,

(f |D)−1(Ci) ⊂ W is a locally closed subset and Ci-isomorphic to AnCi = Ank ×k Ci
with the reduced structures on Ci and (f |D)−1(Ci).

Lemma 2.6.2. With the above notation, if f |D : D → C is a piecewise trivial
An-bundle, then {D} = {C}Ln.

Proof. Let C =
⊔
i Ci be as above. Then

{D} =
⊔
i

{(f |D)−1(Ci)} =
⊔
i

({Ci}Ln) =

(⊔
i

Ci

)
Ln = {C}Ln.

�

The following lemma is useful to show that some map of constructible subsets
is a piecewise trivial An-bundle.

Lemma 2.6.3. We keep the above notation. Suppose that for every point c ∈ C,
(f |D)−1(c) is a closed subset of the scheme-theoretic fiber f−1(c). Then there exists
a (necessarily finite) stratification C =

⊔
Ci into locally closed subsets Ci ⊂ V such

that (f |D)−1(Ci) are locally closed subsets of W .

Proof. Let η ∈ C be a point of maximal dimension and let E be the Zariski
closure of (f |D)−1(η) in W . The sets D and E coincide when restricted to f−1(η).
Therefore there exists a locally closed subset C ′ ⊂ V such that η ∈ C ′ ⊂ C and
such that D and E coincide when restricted to (f |D)−1(C ′). In particular, f−1(C ′)
is a locally closed subset of W . It is now easy to show the lemma by induction on
the dimension and the number of points of maximal dimension. �



CHAPTER 3

Jet schemes and arc schemes

The type of motivic integration that we discuss mainly in this book is integra-
tion over arc spaces of varieties. Arc spaces are constructed as limits of jet schemes.
To define measures on arc spaces, we need properties of truncation maps between
jet schemes. Throughout the chapter, X and Y denote k-schemes of finite type.

3.1. Notation of power series rings, formal disks, etc.

For a k-algebra R, we denote by RJtK the ring of formal power series with
coefficients in R and by RLtM the localization RJtKt by t, that is, the ring of Laurent
power series with coefficients in R. In particular, if L is a field, LLtM is also a
field. We define DR := SpecRJtK and call it the formal disk over R. If R is an
algebraically closed field, we call it also a geometric formal disk. For n ∈ Z≥0,
we put DR,n := SpecRJtK/(tn+1) = SpecR[t]/(tn+1). Sometimes, following the
convention t∞ = 0, we write DR = DR,∞.

3.2. Jets

Definition 3.2.1. Let n ∈ Z≥0 and let R be a k-algebra. An n-jet of X over
R is a k-morphism DR,n → X. A geometric n-jet of X is an n-jet of X over an
algebraically closed field.

A geometric 0-jet is just a geometric point and a geometric 1-jet is a Zariski
tangent vector (over some algebraically closed field).

Remark 3.2.2. In the context of complex analytic spaces, if X = Cd, then
a morphism (C, 0) → X from the germ of C at the origin is given by a tuple
(h1, . . . , hd) of convergent power series hi. Considering an n-jet of X amounts to
looking only at the terms of hi of degree ≤ n by ignoring the terms of degree > n.

Definition 3.2.3. An n-th jet scheme of X, denoted by JnX, is (a k-scheme
representing) the functor:

(Affk)op → Set

SpecR 7→ HomSchk(DR,n, X)

For a morphism f : Y → X of k-schemes, we denote the induced morphism Jn Y →
JnX by fn.

Here we follow the usual convention of identifying a scheme with the associated
functor (Affk)op → Set (for instance, [EH00, VI]). As we will see shortly in
Proposition 3.2.8, the functor JnX is indeed representable by a scheme.

Lemma 3.2.4. We have an isomorphism

Jn(Adk) ∼= Ad(n+1)
k = Spec k[x

(j)
i | 1 ≤ i ≤ d, 0 ≤ j ≤ n]

18
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such that an R-point (r
(j)
i ) ∈ Ad(n+1)

k (R) corresponds to the n-jet:

DR,n = SpecR[t]/(tn+1)→ Adk
r

(0)
i + r

(1)
i t+ · · ·+ r

(n)
i tn ←[ xi

Proof. We have the following one-to-one correspondences, which are functo-
rial in R:

(JnAdk)(SpecR)↔ HomAlgk(k[x1, . . . , xd], R[t]/(tn+1))

↔
(
R[t]/(tn+1)

)⊕d
↔ R⊕d(n+1)

↔ Ad(n+1)
k (SpecR).

Therefore there is an isomorphism Jn(Adk) ∼= Ad(n+1)
k which induces the correspon-

dence of the lemma between points of Ad(n+1)
k and n-jets. �

Let us write k[x
(∗)
∗ ] = k[x

(j)
i | 1 ≤ i ≤ d, 0 ≤ j ≤ n]. The lemma in particular

shows that the universal n-jet

u : (JnAdk)×k Spec k[t]/(tn+1)→ Adk
is given by:

Spec k[x
(∗)
∗ ][t]/(tn+1)→ Adk

x
(0)
i + x

(1)
i t+ · · ·+ x

(n)
i tn ←[ xi

Lemma 3.2.5. For a closed subscheme X = V (f1, . . . , fl) ⊂ Adk, we define
F

(j)
λ ∈ k[x

(∗)
∗ ] (1 ≤ λ ≤ l, 0 ≤ j ≤ n) by

u∗(fλ) = fλ(u∗(x1), . . . , u∗(xd)) = F
(0)
λ + F

(1)
λ t+ · · ·+ F

(n)
λ tn,

where u is the universal n-jet. Then the isomorphism Jn(Adk) ∼= Ad(n+1)
k of Lemma

3.2.4 induces the isomorphism of subschemes,

JnX ∼= V (F
(j)
λ | 1 ≤ λ ≤ l, 0 ≤ j ≤ n).

Proof. Let γ be an n-jet of Adk over R and let (r
(j)
i )i,j ∈ Ad(n+1)

k (R) be the
corresponding point. We have

γ∗(fλ)

= fλ(γ∗(x1), . . . , γ∗(xd))

= fλ(r
(0)
1 + r

(1)
1 t+ · · ·+ r

(n)
1 tn, . . . , r

(0)
d + r

(1)
d t+ · · ·+ r

(n)
d tn)

= F
(0)
λ (r

(∗)
∗ ) + F

(1)
λ (r

(∗)
∗ )t+ · · ·+ F

(n)
λ (r

(∗)
∗ )tn.

Therefore the following conditions are equivalent:
(1) The n-jet γ gives an n-jet of X.
(2) For every λ, γ∗(fλ) = 0.
(3) For every λ and j, F (j)

λ (r
(∗)
∗ ) = 0.

(4) The point (r
(∗)
∗ ) lies in the subscheme defined by F (j)

λ ’s.

This shows that the isomorphism Jn(Adk) ∼= Ad(n+1)
k restricts to the isomorphism of

the lemma of subfunctors. �
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Example 3.2.6. Consider the plane curve X = V (y2 + x3) ⊂ A2
k. Then

u∗(f) =(y(0) + y(1)t+ · · ·+ y(n)tn)2 + (x(0) + x(1)t+ · · ·+ x(n)tn)3

=(y(0))2 + (x(0))3 +
(

2y(0)y(1) + 3(x(0))2x(1)
)
t

+
(

2y(0)y(2) + (y(1))2 + 3(x(0))2x(2) + 3x(0)(x(1))2
)
t2 + · · · .

Thus J1X is the closed subscheme of A4
k with coordinates x(0), x(1), y(0), y(1) defined

by
(y(0))2 + (x(0))3 = 2y(0)y(1) + 3(x(0))2x(1) = 0

and J2X is the closed subscheme of A6
k with coordinates x(0), x(1), x(2), y(0), y(1), y(2)

defined by

(y(0))2 + (x(0))3 = 2y(0)y(1) + 3(x(0))2x(1)

= 2y(0)y(2) + (y(1))2 + 3(x(0))2x(2) + 3x(0)(x(1))2 = 0.

We have the morphism JnX → X such that for each k-algebra R, the map
(JnX)(R)→ X(R) sends an n-jet DR,n → X to the R-point

SpecR ↪→ DR,n → X.

Lemma 3.2.7. Let f : Y → X be an étale morphism (e.g. an open immersion).
Then we have a natural isomorphism of functors (Affk)op → Set,

Jn Y ∼= (JnX)×X Y.

Proof. Giving an R-point of the right side is equivalent to giving a commu-
tative diagram of solid arrows with the vertical arrows given:

SpecR

��

// Y

f

��
DR,n

//

<<

X

From the formal étaleness (for definition, see [Gro67, Def. 17.1.1]) of f , this is in
turn equivalent to giving the dashed arrow, that is, an R-point of the left side of
the isomorphism. We have got the desired correspondence of points. �

Proposition 3.2.8. The functor JnX is a scheme of finite type which is affine
over X.

Proof. The functor is the Weil restriction

R(k[t]/(tn+1))/k

(
X ⊗k k[t]/(tn+1)

)
and hence the proposition follows from a general result [BLR90, p. 195]. But we
give a more ad-hoc proof.

Let X =
⋃
Ui be an affine open covering and let Uij := Ui∩Uj , which are again

affine (we assume that all schemes are separated). From Lemma 3.2.5, Jn Ui and
Jn Uij are affine finite type schemes. From Lemma 3.2.7, morphisms Jn Uij → Jn Ui
and Jn Uij → Jn Uj are open immersions. We can glue Jn Ui along Jn Uij to get the
scheme JnX. Since JnX×X Ui ∼= Jn Ui are affine and of finite type, the morphism
JnX → X is affine (in particular, separated) and of finite type. This shows the
proposition. �
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Lemma 3.2.9. If ι : Z → X is an immersion (resp. an open immersion, a closed
immersion), then so is the induced morphism ιn : Jn Z → JnX.

Proof. The assertion for open immersions follows from Lemma 3.2.7. The one
for closed immersions follows from the local description of jet schemes in Lemma
3.2.5. The one for general immersions follows from these two cases. �

3.3. Truncation morphisms

For integers n′ ≥ n, we have the natural surjection R[t]/(tn
′+1)→ R[t]/(tn+1),

which maps
r0 + r1t+ · · ·+ rn′t

n′ 7→ r0 + r1t+ · · ·+ rnt
n.

Namely this truncates polynomials by cutting off the terms of degree > n. The
map corresponds to the closed immersion DR,n ↪→ DR,n′ .

Definition 3.3.1. Let X be a k-scheme. We define the truncation morphism

πn
′

n : Jn′ X → JnX

by mapping an n′-jet
DR,n′

γ−→ X

to the n-jet
DR,n ↪→ DR,n′

γ−→ X.

Example 3.3.2. When X = Adk, through the isomorphism of Lemma 3.2.4,
the truncation map πn

′

n : Jn′ Adk → Jn Adk corresponds to the morphism Ad(n′+1)
k →

Ad(n+1)
k mapping

(r
(j)
i )1≤i≤d, 0≤j≤n′ 7→ (r

(j)
i )1≤i≤d, 0≤j≤n.

The corresponding k-algebra homomorphism is the inclusion

k[x
(j)
i | 1 ≤ i ≤ d, 0 ≤ j ≤ n] ↪→ k[x

(j)
i | 1 ≤ i ≤ d, 0 ≤ j ≤ n′].

Lemma 3.3.3. Truncation morphisms πn
′

n : Jn′ X → JnX are affine.

Proof. Take an affine open covering X =
⋃
i Ui. This induces affine open

coverings JnX =
⋃
i Jn Ui and Jn′ X =

⋃
i Jn′ Ui. The lemma holds, since Jn′ Ui is

the preimage of Jn Ui by the map πn
′

n : Jn′ X → JnX. �

The following proposition is essential when defining a measure on an arc space.

Proposition 3.3.4. Let X be a smooth k-variety of dimension d. Then the
morphism πn

′

n : Jn′ X → JnX is a Zariski locally trivial fibration with fiber Ad(n′−n)
k .

Namely, there exists an open covering JnX =
⋃
Ui such that (πn

′

n )−1(Ui) is Ui-
isomorphic to Ui ×k Ad(n′−n)

k . In particular, truncation morphisms are surjective.

Proof. There exists an open covering X =
⋃
Vj such that each Vj has an

étale morphism to Adk (given by a local coordinate system). From Lemma 3.2.7, we
have the Cartesian diagram:

Jn′ Vj //

��

Jn′ Adk

��
Jn Vj // Jn Adk
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Since Jn Vj form a Zariski covering of JnX, it suffices to show the proposition in
the case X = Adk. This case follows from the explicit description in Example 3.3.2.
(Note that the surjectivity of truncation morphisms follows also from the definition
of formal smoothness.) �

3.4. Arcs

Definition 3.4.1. Let R be a k-algebra. An arc of X over R is a k-morphism
DR → X from the formal disk over R. When R is an algebraically closed field, we
call it a geometric arc of X.

Definition 3.4.2. We define the arc scheme of X, denoted by J∞X, to be
the projective limit of jet schemes,

J∞X := lim←− JnX.

For a morphism f : Y → X of k-schemes, we denote the induced morphism J∞ Y →
J∞X by f∞.

Note that since truncation morphisms Jn+1X → JnX are affine, the projective
limit exists [Gro66, Prop. 8.2.3].

Remark 3.4.3. If X has positive dimension, then J∞X is neither of finite type
nor Noetherian.

Lemma 3.4.4 ( [Bha16]). The scheme J∞X represents the following functor:

J∞X : (Affk)op → Set

SpecR 7→ HomSchk(DR, X)

Proof. When X is an affine scheme SpecS, then

(J∞X)(R) = lim←−HomAlgk(S,R[t]/(tn+1))

= HomAlgk(S,RJtK)
= HomSchk(DR, X).

We refer the reader to [Bha16] for the general case. �

Remark 3.4.5. In general, the underlying set of a k-scheme X is identified
with the set of equivalence classes of geometric points SpecL→ X; two geometric
points SpecL1 → X and SpecL2 → X are equivalent if there exist an algebraically
closed field L3 and morphisms SpecL3 → SpecLi, i = 1, 2, such that the following
diagram is commutative.

SpecL3
//

��

SpecL1

��
SpecL2

// X

Applying this to J∞X (resp. JnX), we can identify the underlying set of J∞X with
the set of equivalence classes of geometric arcs DL → X. Two arcs DL1 → X and
DL2

→ X are equivalent if there exist an algebraically closed field L3 and morphisms
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SpecL3 → SpecLi, i = 1, 2, such that the following diagram is commutative.

DL3
//

��

DL1

��
DL2

// X

Definition 3.4.6. For each n ∈ Z≥0, the natural map J∞X → JnX is denoted
by πn and again called a truncation morphism.

By the identification R[t]/(tn+1) = RJtK/(tn+1), we can regard DR,n as a closed
subscheme of DR. The morphism πn sends an arc γ : DR → X to the induced n-jet
DR,n ↪→ DR

γ−→ X.

Lemma 3.4.7. Let f : Y → X be an étale morphism (e.g. an open immersion).
Then we have a natural isomorphism of functors (Affk)op → Set,

J∞ Y ∼= (J∞X)×X Y.

Proof. From Lemma 3.2.7,

J∞ Y = lim←− Jn Y ∼= lim←− ((JnX)×X Y ) .

Recall that a projective limit and a fiber product interchange [Gro66, Lem. 8.2.6],
or more generally, two limits in a category interchange [Rie17, Th. 3.8.1]. Thus
the last limit is isomorphic to(

lim←− JnX
)
×X Y = (J∞X)×X Y.

�

Lemma 3.4.8. If ι : Z → X is an immersion (resp. an open immersion, a closed
immersion), then so is the induced morphism ι∞ : J∞ Z → J∞X.

Proof. The assertion for open immersions follows from Lemma 3.4.7. As for
closed immersions, we may assume that X is affine. Then JnX are affine, say
SpecAn. From Lemma 3.2.9, we can write Jn Z = SpecAn/In for some ideal
In ⊂ An. Then J∞X = Spec lim−→An and J∞ Z = Spec lim−→(An/In). Since the
direct limit is an exact functor, the natural map lim−→An → lim−→(An/In) is surjective.
The assertion for closed immersions follows and so does the assertion for general
immersions. �

Remark 3.4.9. Since every geometric arc SpecLJtK → X factors through the
associated reduced scheme Xred, the morphism J∞Xred → J∞X is bijective and
we may identify these spaces set-theoretically.

3.5. Order functions

Definition 3.5.1. Let Z ( X be a proper closed subscheme defined by an
ideal sheaf I ⊂ OX . We define a function

ordZ = ordI : J∞X → Z≥0 ∪ {∞}
as follows: if a point γ ∈ J∞X is represented by a geometric arc γ : DL → X
(see Remark 3.4.5) and if γ−1I = (tm), then ordI(γ) := m. Here we follow the
convention that (t0) = (1) and (t∞) = (0).

Lemma 3.5.2.
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(1) We have ordZ(γ) =∞ if and only if γ ∈ J∞ Z. Namely J∞ Z = ord−1
Z (∞).

(2) For n ∈ Z≥0, ordZ(γ) ≥ n+ 1 if and only if πn(γ) ∈ Jn Z.

Proof. For the first assertion, having ordZ(γ) =∞ is by definition equivalent
to γ−1I = (0). In turn, the last equality is equivalent to that γ : DL → X factors
through Z, that is, γ ∈ J∞ Z. For the second assertion, we can show in turn that
the following conditions are equivalent:

• ordZ(γ) ≥ n+ 1.
• γ−1I ⊂ (tn+1).
• γ−1

n I = 0 with γn := πn(γ).
• γn : DL,n → X factors through Z.
• γn ∈ Jn Z.

�

We can also define order functions on jet schemes as follows:

Definition 3.5.3. Keeping the notation, we define

ordZ = ordI : JnX → {0, 1, . . . , n,∞}
as follows: if γ−1I = (tm), then ordI(γ) := m again with the convention (t0) = (1)
and (t∞) = (0).

3.6. Jacobian ideals of varieties

The Jacobian criterion characterizes smooth points of an affine variety X =
Spec k[x1, . . . , xn]/(f1, . . . , fl) in terms of the Jacobian matrix (∂fi/∂xj)i,j . The
Jacobian ideal JacX ⊂ Γ(X,OX) is generated by c-minors of the Jacobian matrix
with c the codimension of X in Ank . This gives a natural scheme structure to the
singular locus Xsing. The Jacobian ideal plays an important role in the study of jet
schemes as well as motivic integration.

For later use, it is convenient to define the Jacobian ideal in a more intrinsic
way using Fitting ideals. Let M be a finitely generated module over a Noetherian
ring R and let

F1 → F0 →M → 0

be a free presentation of it. For each j ∈ Z≥0, the map
∧j

F1 →
∧j

F0 induces the
map

∧j
F1 ⊗

∧j
F ∗0 → R, where F ∗0 denotes the dual R-module of F0. In fact, the

image of the last map is independent of the choice of the free presentation.

Definition 3.6.1. For i ∈ Z≥0, the i-th Fitting ideal of M , denoted by
Fitti(M), is defined to be the image of

∧rankF0−i F1 ⊗
∧rankF0−i F ∗0 → R.

If we fix bases of F1 and F0, then the map F1 → F0 corresponds to a matrix
A with entries in R. The ideal Fitti(M) is then generated by the minors of A of
size rankF0 − i. If M is the coherent sheaf on SpecR corresponding to M , then
i-th Fitting ideal sheaf Fitti(M) ⊂ OX is the one corresponding to Fitti(M). For
a coherent sheaf M on a general Noetherian scheme X, i-th Fitting ideal sheaves
defined on affine open subschemes glue together to give the global i-th Fitting ideal
sheaf Fitti(M) ⊂ OX . If there exists a presentation F1 → F0 →M such that F0

and F1 are locally free of constant rank, then Fitti(M) coincides with the image
of
∧rankF0−i F1 ⊗

∧rankF0−i F∗0 → OX . Basic properties of Fitting ideals are as
follows:
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Lemma 3.6.2 (see [Eis95, Section 20.2]). Let X be a Noetherian scheme and
letM be a coherent sheaf on X.

(1) For x ∈ X, we have x ∈ V (Fittr(M)) if and only if the stalkMx cannot
be generated by r elements as an OX,x-module.

(2) For a morphism f : Y → X of Noetherian schemes, we have

f−1 Fittr(M) = Fittr(f
∗M).

Definition 3.6.3. Let X be a k-scheme of finite type of pure dimension d.
We define the Jacobian ideal sheaf JacX ⊂ OX to be Fittd(ΩX/k). We denote the
associated order function ordJacX by jX .

For an affine variety X = SpecR with R = k[x1, . . . , xn]/(f1, . . . , fl), we have
the free presentation

Rl
(∂fj/∂xi)i,j−−−−−−−−→ Rn → ΩR/k → 0.

See [Mat89, p. 195] or [Eis95, p. 390]. Using this, we see that the last definition
of the Jacobian ideal coincides with the one given by the Jacobian matrix.

A version of the Jacobian criterion says that X is k-smooth at a point x if and
only if the stalk ΩX/k,x is a free OX,x-module of rank d [Gro67, Prop. 17.15.5].
From a property of Fitting ideals, the closed subset defined by JacX is exactly the
non-smooth locus of X.

3.7. Hensel’s lemma and lifting of jets

Hensel’s lemma is intimately related to the geometry of jet schemes and arc
schemes. We first recall the following simple version:

Proposition 3.7.1 (cf. [Eis95, Theorem 7.3]). Let f(x) ∈ kJtKJxK and let
a ∈ (t) ⊂ kJtK. Let e := ord(df/dx)(a). If

f(a) ≡ 0 (mod t2e+1),

then there exists b ∈ kJtK such that

f(b) = 0 and b ≡ a (mod te+1).

This is generalized to a system of multivariate power series, which is a slightly
weaker form of [CLNS18, Lemma 1.3.3] (cf. [Bou85, chap. III, §4, p. 271, Cor.
3]):

Proposition 3.7.2 (Hensel’s lemma). Let f1, . . . , fl ∈ kJtKJx1, . . . , xdK with
l ≤ d. Let a = (a1, . . . , ad) ∈ kJtKd with ord ai > 0 and let e be the order of

det

(
∂fj
∂xi

(a)

)
1≤i,j≤l

∈ kJtK.

Let n be an integer ≥ e. If we have

f1(a) ≡ · · · ≡ fl(a) ≡ 0 (mod tn+e+1),

then there exists b = (b1, . . . , bd) ∈ kJtKd such that

f1(b) = · · · = fl(b) = 0 and b ≡ a (mod tn+1).

To recover Proposition 3.7.1, we put l = d = 1 and n = e. We can interpret
Hensel’s lemma in terms of jets and arcs from a more geometric viewpoint:
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Corollary 3.7.3 (a geometric version of Hensel’s lemma). Let X be a k-
scheme of finite type which is a local complete intersection. Let α : DL,n → X be an
n-jet with e := jX(α) ≤ n. If α lifts to an (n+e)-jet DL,n+e → X, then α lifts to an
arc DL → X. In particular, if we define a closed subscheme Z := V (JacX) ⊂ X,
then

π2n
n (J2nX) \ Jn Z ⊂ πn(J∞X).

Proof. By base change, we may suppose that L = k. We may also assume that
X is a complete intersection V (f1, . . . , fl) in an affine space Adk with coordinates
x1, . . . , xd and that the image of α is the origin of Adk. For a suitable order of
coordinates, α∗ det(∂fi/∂xj)1≤i,j≤l has order e. Then any tuple a ∈ kJtKd giving
α satisfies the condition in Proposition 3.7.2. Then there exists b = (b1, . . . , bd) ∈
kJtKd such that

f1(b) = · · · = fl(b) = 0 and b ≡ a (mod tn+1).

The arc corresponding to b is a lift of α. �

As an application of Hensel’s lemma, we obtain the following result of Greenberg
[Gre66]. It looks similar to Hensel’s lemma, but has no condition on Jacobian
order.

Proposition 3.7.4 (Greenberg lifting theorem). Let X be a finite type k-
scheme. There exist integers a ≥ 1 and b ≥ 0 such that for every n ∈ Z≥0, if
an n-jet α : DL,n → X lifts to an (an+ b)-jet DL,an+b → X, then α lifts to an arc
DL → X. In particular, πn(J∞X) = πan+b

n (Jan+bX).

Sketch of Proof. We prove this only when k is a perfect infinite field and
X has pure dimension. For the general case, we refer the reader to the original
paper of Greenberg cited above. The proof uses reduction to the case where X is
reduced, reduction to the case where X is a complete intersection and induction on
dimension.

Reduction to the reduced case: If I ⊂ OX is the nilradical, then for some
m > 0, Im = 0. If α is a geometric (mn+m− 1)-jet of X, then (α−1I)m = 0 and
hence α−1I ⊂ (tn+1). Therefore the n-jet πnm+m−1

n (α) is a jet of Xred. If a′n+ b′

is a function as in the proposition for Xred, then we can take a function for X as
m(a′n+ b′) +m− 1. Indeed, if an n-jet β of X lifts to an (m(a′n+ b′) +m− 1)-jet
β̃, then it induces an (a′n + b′)-jet β̃a′n+b′ of Xred which is a lift of β. Thus the
assertion for X follows from the one for Xred. This also shows the proposition in
the case dimX = 0.

Reduction to complete intersections: We can locally embed X into a reduced
complete intersection Y of the same dimension and write Y = X ∪W with W the
union of extra irreducible components. Suppose that the proposition holds for Y .
Let Z denote the scheme-theoretic intersection X ∩W . Let an+ b and a′n+ b′ be
functions for Y and Z as in the proposition respectively. Suppose that a geometric
n-jet β of X lifts an (a′n + b′)-jet β′. If β′ is a jet of Z, then β lifts to an arc of
Z, which is also an arc of X. Otherwise, if β′ lifts to a a(a′n + b′) + b-jet, then it
lifts to an arc β̃ of Y . Since β′ is a jet of X but not one of Z, it is not a jet of W .
Therefore β̃ is an arc of X.

Complete intersections: If X is a reduced scheme of pure dimension d > 0
which is a complete intersection, then we can take a closed subscheme Y ⊂ X of
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pure dimension d − 1 which contains V (JacX). Let an + b be a function for Y
as in the proposition, which exists by the assumption of induction. Moreover we
can choose one such that a ≥ 2. Suppose that a geometric n-jet β of X lifts an
(an+ b)-jet β′. If β′ is a jet of Y , then β lifts to an arc of Y , which is also an arc of
X. Otherwise, if β′ lifts to a 2(an+ b)-jet, then from the geometric Hensel lemma,
β′ lifts to an arc of X. �

Corollary 3.7.5. Let X be a finite type k-scheme. For every n, πn(J∞X) is
a constructible subset of JnX.

Proof. From the Greenberg lifting theorem, πn(J∞X) = πn
′

n (Jn′ X) for some
n′ ≥ n. The right side is a constructible subset from Chevalley’s theorem below. �

Proposition 3.7.6 (Chevalley’s theorem (see [Har77, Ch. II, Exercise 3.19])).
Let W,V be k-schemes of finite type, let f : W → V be a morphism and let C ⊂W
be a constructible subset. Then f(C) is a constructible subset of V .

3.8. Cylinders

Definition 3.8.1. Let X be a k-scheme of finite type and let n ∈ Z≥0. A
subset C ⊂ J∞X is called a cylinder of level n if there exists a constructible subset
C ′ ⊂ JnX such that π−1

n (C ′) = C. A subset C ⊂ J∞X is called a cylinder if it is
a cylinder of some level.

Below are basic properties of cylinders.

Lemma 3.8.2. (1) If C is a cylinder of level n, then it is a cylinder of
level n′ for every n′ ≥ n.

(2) If C is a cylinder of level n, then C = π−1
n (πn(C)).

(3) If C is a cylinder, then πn(C) is constructible for every n.
(4) Cylinders in J∞X form a finitely additive class, that is, they are closed

under taking finite unions and complements.

Proof. (1), (2) Obvious.
(3) Let C ′ ⊂ JmX be a constructible subset such thatm ≥ n and C = π−1

m (C ′).
Then πn(C) = πmn (C ′)∩πn(J∞X). From Corollary 3.7.5 and Chevalley’s theorem,
this is constructible.

(4) This easily follows from the fact that constructible subsets of a finite type
scheme form a finitely additive class. �

Lemma 3.8.3. Let A and Ci, i ∈ I be cylinders in J∞X. If A ⊂
⋃
i∈I Ci, then

A ⊂
⋃
i∈J Ci for some finite subset J ⊂ I.

Proof. We first claim that the same statement holds for constructible subsets
A and Ci, i ∈ I of a finite type scheme. Indeed we can find a finite subset I ′ such
that A \

⋃
i∈I′ Ci has less dimension than A does. Induction on dimension shows

the claim.
Now we switch to the situation of the lemma. To prove the lemma by contra-

diction, we suppose that there is no such finite subset J . Let m be a level of A and
let ni, i ∈ I be levels of Ci respectively. For n ∈ Z≥0, we set In := {i ∈ I | ni ≤ n}
so that for i ∈ In, Ci is a cylinder of level n. For n ≥ m, let

Bn := πn(A) \
⋃
i∈In

πn(Ci) = πn

(
A \

⋃
i∈In

Ci

)
.
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Every Bn is nonempty. (Indeed, if it was not the case, then the above claim would
show that πn(A) is covered by a finite subcollection of πn(Ci), i ∈ In and that A
is covered by a finite subcollection of Ci, i ∈ In, a contradiction.) For n′ ≥ n ≥ m,
since In ⊂ In′ , we have

πn
′

n (Bn′) = πn

A \ ⋃
i∈In′

Ci

 ⊂ πn(A \ ⋃
i∈In

Ci

)
= Bn.

From the lemma below,
⋂
n′≥n π

n′

n (Bn′) 6= ∅. Therefore there exists a sequence of
k̄-points bn ∈ Bn(k), n ≥ m such that for n′ ≥ n ≥ m, πn

′

n (bn′) = bn. This defines
the limit point b∞ ∈ A(k). This point is contained some of Ci’s, say Ci0 . For
n ≥ max{m,ni0}, the point bn = πn(b∞) lies in πn(Ci0). At the same time, since
bn lies in Bn, it does not lie in Ci0 . This is a contradiction and we have proved the
lemma. �

Lemma 3.8.4. Let X be a scheme of finite type over k and let C1 ⊃ C2 ⊃ · · ·
be a descending chain of nonempty constructible subsets of X. Then

⋂∞
i=1 Ci 6= ∅.

Proof. On the contrary, suppose that
⋂∞
i=1 Ci = ∅. Then, for j � i, every

generic point of Ci is not contained in Cj and hence dimCj < dimCi. This shows
that for i� 0, Ci is empty, which contradicts the assumption. �



CHAPTER 4

Motivic integration over smooth varieties

In this chapter, we discuss motivic integration over smooth varieties. Restric-
tion to the smooth case allows us to grasp the essence of the theory quickly. Note
however that most results in these sections will be eventually generalized in later
chapters to the singular case with suitable modification.

Throughout the chapter, X and Y denote smooth k-varieties of dimension d.

4.1. Motivic measures

Definition 4.1.1. We define the motivic measure on J∞X to be the map

µX : {cylinders in J∞X} → M̂k

defined as follows: for a cylinder C ⊂ J∞X of level n,

µX(C) := {πn(C)}L−dn.

We call µX(C) the measure or volume of C.

Note that µX(C) is always an effective element (see Definition 2.3.1).

Lemma 4.1.2. The measure µX(C) is independent of the choice of the level n.

Proof. Let n′ ≥ n be two levels of C. From Lemma 3.3.4, there exists a
stratification πn(C) =

⊔
iBi into locally closed subsets Bi such that for every i,

(πn
′

n )−1(Bi) ∼= Bi ×k Ad(n′−n)
k ,

in particular, {(πn′n )−1(Bi)} = {Bi}Ld(n′−n) in M̂k. Since πn′(C) =
⊔
i(π

n′

n )−1(Bi),
we have

{πn′(C)}L−dn
′

=
∑
i

{(πn
′

n )−1(Bi)}L−dn
′

=
∑
i

{Bi}Ld(n′−n)L−dn
′

=
∑
i

{Bi}L−dn

= {πn(C)}L−dn.

�

Definition 4.1.3. Let A ⊂ J∞X be a subset. A function h : A → Z is said
to be cylindrical if there exists countably many cylinders Ai, i ∈ I such that
A =

⊔
i∈I Ai and h is constant on each Ai.

29
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Example 4.1.4. Let W ( X be a proper closed subscheme. The function

ordW |J∞X\J∞W : J∞X \ J∞W → Z

is cylindrical. To see this, we observe that for γ ∈ J∞X and for n ∈ Z>0, ordW (γ) ≥
n if and only if πn−1(γ) ∈ Jn−1W . Namely, for n > 0, we have

ord−1
W (≥ n) := ord−1

W (Z≥n ∪ {∞}) = π−1
n−1(Jn−1W ).

These as well as ord−1
W (≥ 0) = J∞X are cylinders. Therefore ord−1

W (n) = ord−1
W (≥

n)\ord−1
W (≥ n+1) are cylinders. The stratification J∞X \J∞W =

⊔
n∈N ord−1

W (n)
is a desired one.

Definition 4.1.5. For a cylindrical function h : A→ Z, we define the integral
of Lh to be ∫

A

Lh dµf :=
∑
i∈I

µX(Ai)Lh(Ai) ∈ M̂k ∪ {∞∗}.

Note that each term in the above sum is an effective element of M̂k. From
Definition 2.4.6, the sum converges and defines an element of M̂k if for every
m ∈ Z, there are only finitely many terms with dimµX(h−1(n))Ln < m. Otherwise
it diverge and defined to be ∞.

Lemma 4.1.6. The definition of the integral above is independent of the choice
of the stratification A =

⊔
i∈I Ai.

Proof. Let A =
⊔
j∈J Bj be another such stratification. We have

Ai =
⊔
j∈J

Ai ∩Bj and Bj =
⊔
i∈I

Ai ∩Bj .

From 3.8.3, these are finite stratifications. Therefore∑
i∈I

µX(Ai)Lh(Ai) =
∑
i∈I

∑
j∈J

µX(Ai ∩Bj)Lh(Ai∩Bj)

=
∑
j∈J

∑
i∈I

µX(Ai ∩Bj)Lh(Ai∩Bj)

=
∑
i∈J

µX(Bj)Lh(Bj).

�

Example 4.1.7. The whole arc scheme J∞X is a cylinder of level 0. Therefore

µX(J∞X) = {X}.

By taking the constant function h ≡ 0 on J∞X, we get the following integral
expression of the motive M(X) = {X}:∫

J∞X

1 dµX :=

∫
J∞X

L0 dµX = µX(J∞X) = {X}.

Note that these are not true for singular varieties. But, when X has only mild sin-
gularities (in precise, Q-Gorenstein singularities), we can define the stringy motive
Mst(X) (Definitions ?? and 6.3.6) as an integral over J∞X which coincides with
M(X) if X is smooth.
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For a proper closed subscheme Z ( X, J∞ Z is not generally a cylinder as a
subset of J∞X, but a negligible subset (see Definition 5.6.1). Namely it has measure
zero in a sense which will be justified later. We can ignore such a subset, as far as
measures and integrals are concerned. In particular, we have the following lemma:

Lemma 4.1.8. Let Z ( X be a proper closed subscheme and let h : A→ Z be a
cylindrical function with A ⊂ J∞X. Then the restriction of h to A \ J∞ Z is also
cylindrical and ∫

A

Lh dµX =

∫
A\J∞ Z

Lh dµX .

We don’t prove this lemma now, but will prove a more general statement later
(Lemma 5.7.2). This enables us to slightly generalize motivic integrals as follows.

4.2. Almost bijectivity

The most important theorem in motivic integration is the change of variables
formula (Theorem 4.4.6). It describes how a motivic integral is transformed under
a birational transform of the given variety. In the first place, this formula is based
on the following result.

Proposition 4.2.1 (Almost bijectivity). Let f : Y → X be a birational (resp.
proper birational) morphism. Let W ⊂ Y and V ⊂ X be proper closed subvarieties
such that f induces the isomorphism Y \W → X \ V . For every extension L/k,
the map

(J∞ Y \ J∞W )(L)→ (J∞X \ J∞ V )(L)

is injective (resp. bijective).

Proof. Let γ ∈ (J∞ Y \ J∞W )(L). Since Y is separated over k, from the
valuative criterion for separatedness, the γ is determined by the induced morphism
SpecLLtM → X \ V = Y \W. This shows the injectivity of (J∞ Y \ J∞W )(L) →
(J∞X \ J∞ V )(L). Let β ∈ (J∞X \ J∞ V )(L). If f is proper, then from the
valuative criterion for properness, we have a unique lift γ ∈ (J∞ Y \ J∞W )(L) of
β as indicated in the following diagram.

SpecLLtM //
� _

��

Y

f

��
SpecLJtK

∃!

;;

// X

This shows the bijectivity of (J∞ Y \ J∞W )(L)→ (J∞X \ J∞ V )(L) in the proper
case. �

Remark 4.2.2. In the situation of Proposition 4.2.1, also the map J∞ Y \
J∞W → J∞X\J∞ V (of underlying topological spaces) is injective (resp. bijective).
This follows from the proposition and the description of the point set of a scheme
in terms of its geometric points in Remark 3.4.5.
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4.3. Jacobian ideals of morphisms

Definition 4.3.1. Let Y,X be smooth k-varieties of the same dimension d
and let f : Y → X be a generically étale morphism (that is, étale on an open dense
subset of Y ). Let ωY := ΩdY/k be the canonical sheaf of Y and similarly for ωX .
By the natural injective map, we regard f∗ωX as a subsheaf of ωY . We define the
Jacobian ideal sheaf Jacf ⊂ OY by the equality

f∗ωX = Jacf · ωY .

We denote the associate order function ordJacf by jf .

Since f∗ωX and ωY are invertible sheaves, such an ideal uniquely exists and is
locally principal. In terms of local coordinates, if f is locally given by a tuple

(f1(y1, . . . , yd), . . . , fd(y1, . . . , yd))

of d functions, then Jacf is locally generated by the Jacobian determinant,

det (∂fi/∂yj)i,j .

The closed subset defined by Jacf is the locus where f is not étale.

Definition 4.3.2. We call the effective divisor on Y defined by Jacf the relative
canonical divisor for f : Y → X and denote it by KY/X .

Remark 4.3.3. It is customary to writeKY/X = KY −f∗KX somehow ambigu-
ously (sometimes symbols “≡” or “∼Q” are used instead of “=”), as canonical divisors
are determined only up to linear equivalence. But we can justify it using the canon-
ical map between canonical sheaves as in the above definition (see [Kol13, Notation
2.6]).

4.4. The change of variables formula

In this subsection, we prove the change of variables formula for a proper bi-
rational morphism f : Y → X of smooth varieties. As in Proposition 4.2.1, the
map f∞ : J∞ Y → J∞X is almost bijective (bijective outside negligible subsets).
Thanks to this, we may expect to be able to transform motivic integrals on J∞ Y
to ones on J∞X and vice versa. To realize it, we need to understand how mea-
sures of subsets change under the almost bijection. It turns out that the change is
controlled by the Jacobian of f , as in the case of the change of variables formula
for integrals in multivariate calculus.

We begin with proving auxiliary results. The following lemma roughly says
that for two arcs γ, γ′ of Y , if f∞(γ) and f∞(γ′) are close to each other (t-adically),
then so are γ and γ′.

Lemma 4.4.1 (Fiber inclusion lemma). Let f : Y → X be a proper birational
morphism. Let γ, γ′ ∈ (J∞ Y )(L) with L/k an extension. Let n ∈ Z≥0 and suppose
that fnπn(γ) = fnπn(γ′). Suppose that jf (γ) =: e ≤ n/2 for the function jf given in
Definition 4.3.1. Then πn−e(γ) = πn−e(γ

′). Namely, the fiber of fn : Jn Y → JnX
over fnπn(γ) is contained in the fiber of πnn−e : Jn Y → Jn−e Y over πn−e(γ).

Proof. We claim that there exists δ ∈ (J∞ Y )(L) such that f∞(δ) = f∞(γ)
and πn−e(δ) = πn−e(γ

′). If Z = V (Jacf ) ⊂ Y is the exceptional locus of f ,
then assumption jf (γ) < ∞ in particular shows that γ /∈ J∞ Z. From the almost



4.4. THE CHANGE OF VARIABLES FORMULA 33

bijectivity (Proposition 4.2.1), we have δ = γ. Thus the lemma follows from the
above claim.

To show the claim, we may suppose that L = k by base change. Let y :=
π0(γ) ∈ Y and x := f(y). Choosing local coordinates, we express f by a tuple

f = (f1, . . . , fd) (fi ∈ ÔY,y = kJy1, . . . , ydK)

and γ by a tuple
γ = (γ1, . . . , γd) ∈ kJtKd.

Namely f∗ : ÔX,x → ÔY,y is given by xi 7→ fi and γ∗ : ÔY,y → kJtK is given by
yi 7→ γi. Similarly for γ′. The system of equations

f(y) = f(γ′)

has the approximate solution y = γ modulo tn+1. From the Hensel lemma (Propo-
sition 3.7.2), there exists a genuine solution y = δ such that δ ≡ γ (mod tn−e+1).
The corresponding arc δ ∈ (J∞ Y )(k) satisfies the claim. �

Lemma 4.4.2 (The Ae-fibration lemma). With the notation as in Lemma 4.4.1,
the fiber of Jn Y → JnX over fnπn(γ) is isomorphic to AeL over L. Moreover, if
Hn,e denotes the locus in Jn Y with jf = e, then

fn|Hn,e : Hn,e → fn(Hn,e)

is a piecewise trivial Ae-bundle.

Proof. Let F denote this fiber. This is included in the fiber of πen−e : Jn Y →
Jn−e Y over πn−e(γ), which is isomorphic to AedL , where d = dimY . The L-points
of F correspond to solutions δ ∈ (LJtK/(te))d of the system of equations expressed
with the multi-index notation,

f(γ + δtn−e+1) ≡ f(γ) (mod tn+1).

Let J := (∂fj/∂ti(γ)) ∈ Mn(LJtK) be the Jacobian matrix of f evaluated at γ.
Since 2(n− e+ 1) ≥ n+ 1, by Taylor expansion, this is equivalent to

f(γ) + tn−e+1Jδ ≡ f(γ) (mod tn+1)

and hence to the LJtK-linear equation(
tn−e+1J

)
δ ≡ 0 (mod tn+1).

For some invertible matrices P,Q ∈ GLn(LJtK), we have

P−1JQ = diag(te1 , . . . , ted)

with
∑
ei = e (see [Bou81, VII. 21]). Thus, if we put ε := Q−1δ ∈ (LJtK/(te))d,

then we are reduced to solving the equation

tn−e+ei+1εi ≡ 0 (mod tn+1) (1 ≤ i ≤ d).

Thus the solution space is

{ε | ord εi ≥ e− ei} ∼= Le,

which is an L-linear subspace of (LJtK/(te))d ∼= Lde. Thus we have identification
F (L) = AeL(L). To get an isomorphism F ∼= AeL of L-schemes, consider an arbitrary
L-algebra R. By the same argument, the R-points of F also correspond to the
solutions in (RJtK/(te))d of any of the above systems of equations. Therefore the
solution set is identified with Re, functorially in R. As a consequence, we get an
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isomorphism F ∼= AeL of functors (AffL)op → Set. The first assertion of the lemma
follows.

For the second assertion, we first note that from the fiber inclusion lemma,
f−1
n fn(Hn,e) = Hn,e. It suffices to show that for any irreducible locally closed
subvariety V ⊂ JnX, the morphism W := f−1

n (V ) → V is a piecewise trivial
Ae-fibration. For a generic point η ∈ V , we have an isomorphism Aeκ(η)

∼= Wη,
where κ(η) denotes the residue field of η and Wη denotes the fiber of W → V over
η. By spreading out (see Lemma 4.4.3 below), we get an isomorphism morphism
φ : AeU → WU over some open neighborhood η ∈ U ⊂ W . The second assertion
follows by induction. �

Lemma 4.4.3 (Spreading out an affine space). Let V be a k-variety with the
generic point η and let f : W → V be a morphism of finite type such that the generic
fiber f−1(η) is isomorphic to Anη over η (with identifying η with Specκ(η)). Then
there exists an open dense subvariety U ⊂ V such that f−1(U) is isomorphic to AnU
over U .

Proof. The isomorphism f−1(η) → Anκ(η) extends to a morphism f−1(U) →
AnU for some open subvariety U ⊂ V . Its non-étale locus is a closed subset which
does not dominate U . Shrinking U , we may suppose that f−1(U) → AnU is étale.
Its image is an open subset of AnU containing Anκ(η). Therefore, shrinking U further,
we may suppose that f−1(U) → AnU is also surjective. Now it is étale surjective
morphism of degree one, hence an isomorphism. (Indeed, since the morphism is
étale of degree one, from the lower semi-continuity of the cardinality of a fiber
[Gro66, Prop. 15.5.1], every geometric fiber has at most one point, that is, the
morphism is universally injective (also called radiciel) [Gro60, Chap. I, (3.5.4) and
(3.5.5)]. From [Gro67, Th. 17.9.1], a universally injective and étale morphism is
an open immersion. A surjective open immersion is an isomorphism.) �

Corollary 4.4.4. Let f : Y → X be a proper birational morphism and let
C ⊂ J∞X be a cylinder such that jf takes a constant value e < ∞ on f−1

∞ (C).
Then

µY (f−1
∞ (C)) = LeµX(C).

Proof. Suppose that C is a cylinder of level n with n ≥ 2e and let D :=
πn(C) ⊂ JnX. Then the map

πn(f−1
∞ (C)) = f−1

n (D)→ D

is a piecewise trivial Ae-bundle from Lemma 4.4.2. Thus

µY (f−1
∞ (C)) = {πn(f−1

∞ (C))}L−nd

= {D}LeL−nd

= LeµX(C).

�

Corollary 4.4.5. Let f : Y → X be a proper birational morphism and let
C ⊂ J∞ Y be a cylinder such that C ∩ j−1

f (∞) = ∅. Then f∞(C) is a cylinder.

Proof. Note that for every e ∈ Z≥0, j−1
f (≤ e) is a cylinder. From 3.8.3, there

exists e0 such that jf |C ≤ e0. Similarly we may assume that ordf−1I |C ≤ e0 for
the defining ideal sheaf I of the closed subset f(V (Jacf )). Suppose that C is a
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cylinder of level n− e0 for an integer n ≥ e0. We claim that f∞(C) is a cylinder of
level n. Indeed, πn(f∞(C)) = fn(πn(C)) is a constructible subset from 3.7.5 and
Chevalley’s theorem. Let β ∈ (J∞ Y )(L) be a geometric arc of Y lying on C and let
α ∈ (J∞X)(L) be a geometric arc with πn(α) = fnπn(β). It suffices to show that
α lies on f∞(C). We have ordI(α) ≤ e0 < ∞, in particular, α /∈ J∞(V (I)). From
the almost bijectivity (Proposition 4.2.1), we have the corresponding geometric arc
α̃ of Y . From the fiber inclusion lemma, we have πn−e0(α̃) = πn−e0(β). Since C is
a cylinder of level n− e0, α̃ lies on C and α lies on f∞(C). �

Theorem 4.4.6 (The change of variables formula). Let f : Y → X be a proper
birational morphism of smooth k-varieties. Let B ⊂ J∞ Y be a subset and let
h : f∞(B)→ Z be a cylindrical function. Then∫

f∞(B)

Lh dµX =

∫
B

Lh◦f∞−jf dµY in M̂k ∪ {∞∗}.

Proof. Replacing B with B \ j−1
f (∞), we may assume that jf |B takes only

finite values. Let f∞(B) =
⊔
Ai be a stratification into countably many cylinders

such that h|Ai are constant. Let Bi := f−1
∞ (Ai) and let Bi,e := Bi ∩ j−1

f (e) for
e ∈ Z≥0. From Corollary 4.4.5, Ai,e := f∞(Bi,e) are also cylinders. From Corollary
4.4.4,

µY (Bi,e) = µX(Ai,e)Le.
We have ∫

f∞(B)

Lh dµX =
∑
i,e

µX(Ai,e)Lh(Ai,e)

=
∑
i,e

µY (Bi,e)Lh(Ai,e)−e

=

∫
B

Lh◦f∞−jf dµY .

�

4.5. Strong K-equivalence

The first application of the change of variables formula is a theorem of Batyrev
and Kontsevich, the invariance of Hodge numbers of smooth and proper complex
varieties by K-equivalence. First, Batyrev proved the invariance of Betti numbers
in the case of Calabi-Yau varieties by using mod p reduction, the Weil conjecture
and p-adic integration. Then Kontsevich invented motivic integration as an analog
of p-adic integration and used it to prove the invariance of Hodge numbers in a
more natural way so that one can avoid the use of mod p reduction and the Weil
conjecture.

Later it was found another proof in terms of the weak factorization theorem.
However the proof by motivic integration is still meaningful, because it can be
generalized to positive and mixed characteristics and to Deligne-Mumford stacks.

Definition 4.5.1. Smooth k-varieties X and Y are said to be strongly K-
equivalent if there exist a smooth k-variety Z and proper birational morphisms
f : Z → X and g : Z → Y such that KZ/X = KZ/Y .
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Remark 4.5.2. We will introduce the more general notion of K-equivalence
by loosening the assumption that Z is smooth. The two notions coincide in the
situation where resolution of singularities is available, in particular, in characteristic
zero.

Example 4.5.3. Let k be a field of characteristic zero. We say that a smooth
proper k-variety X is a Calabi-Yau variety if ωX ∼= OX . A more general notion
is that of minimal models; a smooth proper k-variety X is a minimal model if
KX is nef, that is, for any curve C ⊂ X, we have KX · C ≥ 0. If X and Y are
two minimal models birational to each other, then they are strongly K-equivalent
(see [KM98, Prop. 3.51]).

Theorem 4.5.4. Let X and Y be smooth k-varieties which are strongly K-
equivalent. Then {X} = {Y } in M̂k.

Proof. Let f : Z → X and g : Z → Y be proper birational morphisms as in
Definition 4.5.1. The equality KZ/X = KZ/Y shows that Jacf = Jacg and jf = jg.
Let V ⊂ Z be the common exceptional locus of f and g and let W ⊂ X be its
image. Then

{X} =

∫
J∞X

L0 dµX (Example 4.1.7)

=

∫
J∞X\J∞W

L0 dµX (Lemma 4.1.8)

=

∫
J∞ Y \J∞ V

L−jf dµX . (Theorem 4.4.6)

Similarly {Y } is also equal to the last integral. �

Corollary 4.5.5. Let X and Y be smooth k-varieties which are strongly K-
equivalent.

(1) We have P(X) = P(Y ) and etop(X) = etop(Y ).
(2) If k ⊂ C, then E(X) = E(Y ).
(3) If k is a finite field, then for every finite extension k′/k, ]X(k′) = ]Y (k′).

Moreover, if X and Y are proper, then:
(1) We have bi(X) = bi(Y ), i ∈ Z.
(2) If k is a finitely generated field, then we have isomorphisms of Gk-representations

Hi(X ⊗k ksep,Ql)ss ∼= Hi(Y ⊗k ksep,Ql)ss, i ∈ Z. Here the superscript ss
means semisimplification.

(3) If k ⊂ C, we have hp,q(X) = hp,q(Y ), p, q ∈ Z.
(4) If k ⊂ C, we have isomorphisms of Hodge structures Hi(X(C),Q) ∼=

Hi(Y (C),Q), i ∈ Z.

Proof. These follow from Theorem 4.5.4 and Proposition 2.5.3. �

Remark 4.5.6. The assumption of strong K-equivalence in Theorem 4.5.4 and
Corollary 4.5.5 can be weakened to the one of K-equivalence (Corollary 6.4.8).

4.6. Fractional powers of L

We will consider Q-divisors (that is, divisors with rational coefficients). The
order functions associated to them take values in Q. This gives rise to functions of
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the form Lh for a Q-valued function h. Thus we first need to add fractional powers
of L to the Grothendieck ring of varieties. For the sake of simplicity, we just add
the power L1/r for some sufficiently factorial r rather than adding all the powers
La, a ∈ Q; we choose r so that all the relevant rational numbers lie in 1

rZ. We then
modify the ring further by localization and completion as before. The notions of
effective elements and their dimensions generalize to this setting in a natural way.

Definition 4.6.1. For r ∈ Z>0, we define

K0(Vark)r := K0(Vark)[x]/(xr − L)

and denote the class of x in this ring by L1/r. We defineMk,r to be the localization
of K0(Vark)r by L (or equivalently by L1/r). Elements of the form {X}La, a ∈ 1

aZ
are called effective. The dimension of {X}La is defined to be dimX + a. For
m ∈ 1

rZ, we define Fm to be the subgroup ofM generated by effective elements of
dimension ≤ −m. We define the completion

M̂k,r := lim←−Mk,r/Fm.

For every r, there exists a natural map M̂k → M̂k,r. Using this, we may
redefine the motivic measure µX for a smooth variety X to take values in M̂k,r.
We denote it again by µX . We can define 1

rZ-valued cylindrical functions in the
same way as Z-valued ones as in Definition 4.1.3. For a smooth variety X, a subset
A ⊂ J∞X and a cylindrical function h : A→ 1

rZ, we similarly define the integral∫
A

Lh dµX ∈ M̂k,r ∪ {∞∗}.

Here

{∞∗} :=

{
∞d | d ∈

1

r
Z ∪ {∞}

}
.

The change of variables formula (Theorem 4.4.6) holds also for a 1
rZ-valued cylin-

drical function h.
The Poincaré polynomial realization P: M̂k → ZLt−1M in Example 2.5.1 uniquely

extends to

P: M̂k,r → ZLt−1/rM

by sending L1/r to t2/r. Similarly, if k = C, we have the E-polynomial realization

E: M̂C,r → ZLu−1/r, v−1/rM.

We can also extend the realizastion χHodge to

χHodge : M̂C,r → K̂0(MHS1/r),

where MHS1/r denotes the category of 1
rZ-indexed Hodge structures [Yas06, Sec-

tion 3.8]. As for the l-adic realization χl, if we replace k with a finite extension
of it, then we can construct fractional Tate twists Ql(a), a ∈ 1

rZ as Galois repre-
sentations with fractional weight filtration [Ito04, Section 5.3]. This enables us to
extend χl to M̂k,r after a finite extension of k.
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4.7. Explicit formula

In this subsection, we show an explicit formula for the motivic integral associ-
ated to a Q-divisor with simple normal crossing support.

Let X be a smooth k-variety and let D =
∑
i∈I aiDi (ai ∈ Q) be a Q-divisor,

where I is a finite set and Di, i ∈ I are prime divisors such that
⋃
i∈I Di is simple

normal crossing.

Definition 4.7.1. We define the order function

ordD : J∞X \
⋃
i

J∞Di → Q

by

ordD(γ) :=
∑
i∈I

ai ordDi(γ).

This is a cylindrical function.

Definition 4.7.2. For a subset J ⊂ I, we define

D◦J :=
⋂
j∈J

Dj \
⋃
i∈I\J

Di.

Namely D◦J consists of points that are contained in Dj , j ∈ J but not in Di, i /∈ J .
By convention, we put D◦∅ = X \

⋃
i∈I Di.

We have the stratification

X =
⊔
J⊂I

D◦J .

Lemma 4.7.3. For m = (mi) ∈ (Z≥0)I , we have

µX

(⋂
i∈I

ord−1
Di

(mi)

)
= {D◦Supp(m)}(L− 1)] Supp(m)L−

∑
i∈I mi .

Here Supp(m) := {i ∈ I | mi > 0}. More generally, for a constructible subset
C ⊂ X, we have

µX

(⋂
i∈I

ord−1
Di

(mi) ∩ π−1
0 (C)

)
= {D◦Supp(m) ∩ C}(L− 1)] Supp(m)L−

∑
i∈I mi .

Proof. We first consider the case where X = Adk with coordinates x1, . . . , xd,
I = {1, . . . , c} ⊂ {1, . . . , d} and Di = V (xi). Then the k-points of

⋂
i∈I ord−1

Di
(mi)

is identified with

{γ ∈ kJtK | ∀i ∈ {1, . . . , c}, ord(γi) = mi}.

For n ≥ max{mi}, the image of this set in JnX is

{γ ∈ k[t]/(tn+1) | ∀i ∈ {1, . . . , c}, ord(γi) = mi}
∼= (k∗)c × k

∑
i≤c(n−mi) × k

∑
i>c(n+1).
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Similarly for R-points for any k-algebra R. Thus we see

πn

(⋂
i∈I

ord−1
Di

(mi)

)
∼= Gcm,k × A

d(n+1)−c−
∑
i≤cmi

k

∼=
(
Gc−] Supp(m)
m,k × Ad−ck

)
×G] Supp(m)

m,k × Adn−
∑
mi

k

∼= D◦Supp(m) ×G] Supp(m)
m,k × Adn−

∑
mi

k .

This shows the lemma in this case.
For the general case, from the additivity of both sides, we may assume that

X admits a system of coordinates x1, . . . , xd ∈ Γ(X,OX), that I is a subset of
{1, . . . , d}, say {1, . . . , c}, and that Di = V (xi). In other words, we have an étale
morphism X → Adk and each Di is the pullback of some coordinate hyperplane.
Since jet schemes are compatible with étale morphisms (Lemma 3.2.7), from the
above case of affine space, we have

πn

(⋂
i∈I

ord−1
Di

(mi)

)
∼= D◦J ×G] Supp(m)

m,k × Adn−
∑
mi

k .

For a constructible subset C ⊂ X, we also have

πn

(⋂
i∈I

ord−1
Di

(mi) ∩ π−1
0 (C)

)
∼= (D◦J ∩ C)×G] Supp(m)

m,k × Adn−
∑
mi

k .

The lemma follows. �

The following proposition allows us to compute stringy motive explicitly. Note
that for b ∈ 1

rZ>0, we have

1

Lb − 1
=

L−b

1− L−b
= L−b + L−2b + · · · in M̂k,r.

Proposition 4.7.4 (Explicit formula). Let C ⊂ X be a constructible subset.
Consider the following integral

S :=

∫
π−1

0 (C)\
⋃
i∈I J∞Di

LordD dµX .

This integral converges (resp. is dimensionally bounded) if and only if for every
i ∈ I with C ∩Di 6= ∅, we have ai < 1 (resp. ≤ 1). When it converges, we have

S =
∑
J⊂I
{D◦I ∩ C}

∏
i∈J

L− 1

L1−ai − 1
∈ M̂k,r.
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Proof. We have

S =
∑

m∈(Z≥0)I

µX

(⋂
i∈I

ord−1
Di

(mi) ∩ π−1
0 (C)

)
L
∑
aimi

=
∑
J⊂I

∑
Supp(m)=J

µX

(⋂
i∈I

ord−1
Di

(mi) ∩ π−1
0 (C)

)
L
∑
aimi

=
∑
J⊂I

∑
Supp(m)=J

{D◦J ∩ C}(L− 1)]JL
∑
i∈I(ai−1)mi

=
∑
J⊂I
{D◦J ∩ C}(L− 1)]J

∏
i∈J

∑
m>0

L(ai−1)m.(4.7.1)

Therefore the integral converges if and only if the geometric series
∑
m>0 L(ai−1)m

converges for every J ⊂ I with D◦J ∩C 6= ∅ and every i ∈ J . Using Di =
⊔
i∈J D

◦
J ,

the last condition is equivalent to that the geometric series
∑
m>0 L(ai−1)m con-

verges for every i ∈ J with Di ∩C 6= ∅. Similarly for the dimensional boundedness.
If the integral converges, then the formula of the proposition follows from

(L− 1)]J
∏
i∈J

∑
m>0

L(ai−1)m =
∏
i∈J

L− 1

L1−ai − 1
.

�

For future application to singularities, we also give a formula for the dimension
of the integral S which applies also to the dimensionally bounded case.

Proposition 4.7.5. We keep the notation of Proposition 4.7.4. We assume
that S is dimensionally bounded. Then

dimS = max

{
dim(D◦J ∩ C) +

∑
i∈J

ai

∣∣∣∣∣ J ⊂ I
}
.

Moreover, if C =
⋃
i∈K Di for some subset K ⊂ I, then

dimS = max {d− 1 + ai | i ∈ K} .

Proof. From Proposition 4.7.4, if D◦J ∩ C 6= ∅, then for every i ∈ J , we have
ai − 1 ≤ 0. Therefore, for every J ⊂ I, we have

dim{D◦J ∩ C}(L− 1)]J
∏
i∈J

∑
m>0

L(ai−1)m = dim{D◦J ∩ C}+ ]J +
∑
i∈J

(ai − 1)

= dim{D◦J ∩ C}+
∑
i∈J

ai.

Note that if D◦J ∩ C = ∅, then the both sides are −∞. The first assertion now
follows from formula (4.7.1).

Suppose that C =
⋃
i∈K Di for some K ⊂ I. We need to show

(4.7.2) max

{
dim(D◦J ∩ C) +

∑
i∈J

ai

∣∣∣∣∣ J ⊂ I
}

= max {d− 1 + ai | i ∈ K} .

We have

D◦J ∩ C =

{
D◦J 6= ∅ (DJ 6= ∅ and J ∩K 6= ∅)
∅ (otherwise).
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In particular, for i ∈ K,

dim(D◦{i} ∩ C) + ai = d− 1 + ai.

This shows the inequality ≥ in (4.7.2).
To show the opposite inequality, we need to show the inequality

dim(D◦J ∩ C) +
∑
i∈J

ai ≤ max {d− 1 + ai | i ∈ K}

for every J ⊂ I be such that DJ 6= ∅ and J ∩K 6= ∅. If J is a singleton, then this
is obvious. Suppose that J has at least two elements and let j ∈ J ∩K. For any
i ∈ J \ {i}, we have

∅ 6= DJ ⊂ Di ∩Dj ⊂ Di ∩ C.
From the assumption of dimensional boundedness and Proposition (4.7.4), we have
ai − 1 ≤ 0. Therefore

dim(D◦J ∩ C) +
∑
i∈J

ai = d− ]J +
∑
i∈J

ai

= d+
∑
i∈J

(ai − 1)

≤ d+ aj − 1.

Thus the inequality ≤ in (4.7.2) holds. �



CHAPTER 5

Motivic integration over singular varieties

Throughout this chapter, X denotes a geometrically reduced k-schemes of finite
type which have pure dimension d.

5.1. Jacobian orders in terms of modules of differentials

To reduce notational complexity, we introduce the following notation.

Definition 5.1.1. For a ring R, we denote the ideal (t) of RJtK or R[t]/(tn+1)

by t. We also write tmm′ := tm/tm
′
for m′ ≥ m. When we need to specify the ring

R, we also write them as tR and tmm′,R respectively.

Lemma 5.1.2. Let α ∈ (J∞X)(L) be an arc over a field L. We have that
jX(α) <∞ if and only if rankLJtK α

∗ΩX/k = d. Moreover, if it is the case, then

jX(α) = dimL(α∗ΩX/k)tors.

Here (−)tors means the torsion part.

Proof. We first note that if η denotes the generic point of DL and if x =
α(η) ∈ X, then

rankLJtK α
∗ΩX/k = dimLLtM(α|η)∗ΩX/k = dimκ(x) ΩX/k ⊗OX κ(x) ≥ d.

Here the last inequality follows from the upper semicontinuity [Har77, Ch. 2, Ex.
5.8] and the fact that ΩX/k has rank d. Recall that jX is the order of the ideal
α−1JacX and that JacX is the d-th Fitting ideal of ΩX/k. By a property of Fit-
ting ideals (Proposition 3.6.2), we have α−1JacX = Fittd(α

∗ΩX/k). Let us write
α∗ΩX/k ∼=

⊕l
j=1 LJtK/tej ⊕LJtK⊕r with ej ∈ Z>0. Then we have the free presenta-

tion
LJtK⊕l → LJtK⊕l+r → α∗ΩX/k → 0

given by the matrix
M = (teiδij)1≤i≤l+r, 1≤j≤l.

Here δij denotes the Kronecker delta. The ideal Fittd(α
∗ΩX/k) is generated by

(l + r − d)-minors of M . Thus

Fittd(α
∗ΩX/k) =

{
t
∑
i ei (r = d)

0 (r > d)

and

jX(α) =

{∑
i ei (r = d)

∞ (r > d).

This shows the lemma. �

42
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5.2. The derivation induced by two jets

In defining motivic measure or in proving the change of variables formula, it
is the key to show that some maps of spaces of the form πn(J∞X), spaces of jets
liftable to arcs, have fibers isomorphic to affine spaces of expected dimension. We
will show such a result by realizing those fibers as a linear subspace of a larger
subset of JnX also isomorphic to an affine space. To do so, we relate jets with
derivation and with the module of differentials.

Suppose that X is an affine scheme SpecS. Let n ∈ Z≥0, let R be a k-
algebra and let α, β ∈ (J2n+1X)(R) be two (2n + 1)-jets of X over R such that
π2n+1
n (α) = π2n+1

n (β) ∈ (JnX)(R). Then the map

β∗ − α∗ : S → RJtK/t2n+2

has image included in tn+1.

Proposition 5.2.1. Let us regard R[t]/t2n+2 as an S-module by the map α∗ : S →
R[t]/t2n+2. Then the map

β∗ − α∗ : S → tn+1
2n+2

is a k-derivation. Similarly for the induced map S → tn+1
m+1 for n ≤ m ≤ 2n+ 1.

Proof. For u, v ∈ S, since (β∗−α∗)(v) ∈ tn+1 and α∗(u) ≡ β∗(u) (mod tn+1),
we have, modulo t2(n+1),

α∗(u)(β∗ − α∗)(v) + α∗(v)(β∗ − α∗)(u)

= β∗(u)(β∗ − α∗)(v) + α∗(v)(β∗ − α∗)(u)

= β∗(u)β∗(v)− α∗(u)α∗(v)

= (β∗ − α∗)(uv).

Thus β∗ − α∗ is a derivation, which is clearly k-linear. It is easy to see that the
induced maps S → tn+1

m+1, n ≤ m ≤ 2n+ 1 are also k-derivations. �

The converse is also true:

Proposition 5.2.2. Let m ∈ Z be such that n ≤ m ≤ 2n + 1 and let δ : S →
tn+1
m+1 be a k-derivation, where we again regard tn+1

m+1 as an S-module by α∗. Then
there exists a unique m-jet β such that δ = β∗ − α∗ and πmn (β) = πmn (α).

Proof. We claim that the map

β∗ := δ + α : S → R[t]/tm+1

is a k-algebra homomorphism. Indeed this is clearly k-linear. For u, v ∈ S, since δ
is a derivation,

β∗(uv) = δ(uv) + α∗(uv)

= α∗(u)δ(v) + α∗(v)δ(u) + α∗(u)α∗(v).

Since δ(u)δ(v) = 0 modulo t2n+2 as well as modulo tm+1, we can continue the above
equalities as

= (δ(u) + α∗(u))(δ(v) + α∗(v))

= β∗(u)β∗(v).
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Thus β∗ is a k-algebra homomorphism and corresponds to an m-jet β. The unique-
ness is obvious. �

From this proposition, the map β∗ − α∗ corresponds to an S-linear map

ΩX/k → tn+1
2n+2.

In turn, it corresponds to an RJtK-module homomorphism

α∗ΩX/k → tn+1
2n+2.

When α lifts to an arc α̃ over R, then we also get the RJtK-module homomorphism

α̃∗ΩX/k � α∗ΩX/k → tn+1
2n+2.

Definition 5.2.3. For m ∈ Z with n ≤ m ≤ 2n + 1, we denote the induced
maps α∗ΩX/k → tn+1

m+1 and α̃∗ΩX/k → tn+1
m+1 by δα(β)m and δα̃(β)m respectively.

Fixing α or α̃, we often abbreviate them as δ(β)m.

Propositions 5.2.1 and 5.2.2 show:

Corollary 5.2.4. Let α ∈ (J2n+1X)(R), let m ∈ Z be such that n ≤ m ≤
2n+ 1 and let

F := (πmn )−1(πn(α)) = (JmX)×JnX SpecR,

where the fiber product is taken for the truncation πmn : JmX → JnX and the
morphism π2n+1

n (α) : SpecR → JnX. Then, for R-algebras Q, we have functorial
bijections:

F (Q)→ HomRJtK(α
∗ΩX/k, t

n+1
m+1,Q)

β 7→ δα(β)m

Proposition 5.2.5. We keep the assumption of Corollary 5.2.4. In addition,
we suppose that α∗ΩX/k is of the form

⊕l
i=1RJtK/tei , 0 ≤ ei ≤ 2n + 2 (this is

automatic if R is a field).
(1) Let ω1, . . . , ωl be the corresponding generators of α∗ΩX/k. Then we have

functorial bijections:

HomRJtK(α
∗ΩX/k, t

n+1
m+1,Q)→

l⊕
i=1

Q⊕si = Q⊕s

δ 7→ (δ(ω1), . . . , δ(ωl))

Here si := min{ei,m− n} and s =
∑
si.

(2) We have an isomorphism F = (πmn )−1(πn(α)) ∼= AsR over R.

Proof. (1) The identifications

HomRJtK

(
l⊕
i=1

RJtK/tei , tn+1
m+1,Q

)
=

l⊕
i=1

HomRJtK

(
RJtK/tei , tn+1

m+1,Q

)
=

l⊕
i=1

tm−si+1
m+1,Q =

l⊕
i=1

Q⊕si

show this assertion.
(2) This follows from (1) and Corollary 5.2.4. �
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Remark 5.2.6. In the situation of the last proposition, if α lifts to α̃ ∈
(J∞X)(R), then we have

HomRJtK(α
∗ΩX/k, t

n+1
m+1,Q) = HomRJtK(α̃

∗ΩX/k, t
n+1
m+1,Q).

5.3. Bundle structure of truncation maps

Definition 5.3.1. For 0 ≤ e ≤ n ≤ ∞, we define a subset J(e)
n X ⊂ JnX to be

j−1
X (e) and a subset J(≤e)

n X to be j−1
X (Z≤e).

Lemma 5.3.2. Let e, n ∈ Z≥0 with e ≤ n.
(1) J(≤e)

n X is a closed subset of JnX.
(2) J(e)

n X is a locally closed subset of JnX.
(3) πn(J(≤e)

∞ X) and πn(J(e)
∞ X) are constructible subsets of JnX.

Proof. (1) Consider the universal n-jet

u : (JnX)×k Dn,k → X.

Since the source of this morphism shares the underlying topological space with
JnX, we may think of its structure sheaf as the coherent sheaf of OJnX -algebras
and denote it by A. We denote by T the ideal sheaf generated by t in A and let
I := u−1JacX . The subset J(≤e)

n X is the locus where I properly contains T e+1,
which is expressed as the support of the coherent sheaf (I+T e+1)/T e+1. Therefore
it is closed.

(2) This is because J(e)
n X = J(≤e)

n X \ J(≤e−1)
n X.

(3) This follows from Corollary 3.7.5 and the first two assertions. �

Definition 5.3.3. Let α : DL → X be an arc over a field L. We define the flat
pullback α[ΩX/k to be the free LJtK-module α∗ΩX/k/(α∗ΩX/k)tors.

Proposition 5.3.4. Let m ≥ n be non-negative integers such that m ≤ 2n +
1− e (e.g.m = n+ 1 such that n ≥ e).

(1) Let L be a field and let α ∈ (J(≤e)
∞ X)(L). Let F and F [ be the fibers of

JmX → JnX and
πm(J∞X)→ πn(J∞X)

over πn(α) respectively. Then we have

F [(L) = HomLJtK(α
[ΩX/k, t

n+1
m+1,L)

under the identification given in Proposition 5.2.5 and Remark 5.2.6.
Moreover, F [ is a d(m − n)-dimensional L-linear subspace (in particu-
lar, a closed subscheme) of F = AsL.

(2) The map
πm(J(≤e)

∞ X)→ πn(J(≤e)
∞ X)

is a piecewise trivial Ad(m−n)-bundle.

Proof. The problem is local in X. We may assume that X is an affine scheme
so that we can apply results of Section 5.2.
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(1) We first consider the case whereX is a complete intersection V (f1, . . . , fl) ⊂
Ank with l = n− d. If β ∈ F (L) lifts to an arc, in particular, lifts to a (2n+ 1)-jet,
then the corresponding map

δ : α∗ΩX/k → tn+1
m+1,L

is induced from a map
δ̃ : α∗ΩX/k → tn+1

2n+2,L.

Since the torsion part of α∗ΩX/k is killed by te and since (2n + 2) − (m + 1) ≥ e,
the map δ kills the torsion and factors through α[ΩX/k.

Conversely, if a map δ : α∗ΩX/k → tn+1
m+1,L kills the torsion, then it lifts to a

map δ̃ : α∗ΩX/k → tn+1
2n+2,L, which means that the m-jet β ∈ F (L) corresponding to

δ lifts to a (2n+1)-jet β̃. Since n ≥ e, from the geometric Hensel lemma (Corollary
3.7.3), β lifts to an arc. As a consequence, the subset

HomLJtK(α
[ΩX/k, t

n+1
m+1,L)

corresponds to F [(L), the set of jets liftable to arcs. Since α[ΩX/k is a free LJtK-
module of rank d, F [(L) is a d(m− n)-dimensional L-linear subspace of F (L).

For an algebraic closure L of L, the same argument shows that F [(L) ⊂ F (L)
is a d(m− n)-dimensional L-linear subspace. It follows that F [ ⊂ F is a d(m− n)-
dimensional L-linear subspace, in particular, isomorphic to Ad(m−n)

L . We have
proved assertion (1) when X is a complete intersection.

Next we consider the case where X is a general affine variety V (f1, . . . , fm) ⊂
Ank . Since the Jacobian ideal JacX is generated by minors of the Jacobian matrix
(∂fi/∂xj) of size l = n − d, reordering f1, . . . , fm and x1, . . . , xn if necessary, we
may suppose that

(α∗ det(∂fi/∂xj)1≤i,j≤l) = te
′

L (e′ := jX(α) ≤ e).
Let Y = V (f1, . . . , fl). This contains X and is a local complete intersection of
dimension d around the image of α such that jY (α) = jX(α) = e′. Moreover the
natural map α∗ΩY/k → α∗ΩX/k is an isomorphism, because it is surjective and the
two modules have the same rank and the torsion parts of the same length. Thus we
get an isomorphism α[ΩY/k → α[ΩX/k and can identify HomLJtK(α

[ΩX/k, t
n+1
m+1,L)

with HomLJtK(α
[ΩY/k, t

n+1
m+1,L). It suffices to show the claim that the fibers of

πm(J∞ Y ) → πn(J∞ Y ) and πm(J∞X) → πn(J∞X) over πn(α) are identical. In
turn, it suffices to show that the fiber H of J∞ Y → Jn Y over πn(α) is contained
in J∞X. From the Hensel lemma and assertion (1) for complete intersections, for
n′ ≥ n, every fiber of πn′+1(J(≤e)

n Y ) → πn′(J
(≤e)
n Y ) is isomorphic to an affine

space of dimension d. It follows that the fiber H of J∞ Y → Jn Y over πn(α)
is irreducible. Let us write Y = X ∪ W with W a k-scheme of the same pure
dimension. Then J∞ Y = J∞X ∪ J∞W and H is contained in either J∞X or
J∞W . Since jY (α) < ∞, α does not factor through the singular locus of Y . In
particular, α does not factor through X ∩W . Therefore α is not an arc of W . Thus
W cannot be contained in J∞W . We conclude that H is contained in J∞X. We
have completed the proof of assertion (1).

(2) From assertion (1) and Lemma 2.6.3, there exists a stratification πn(J(≤e)
∞ X) =⊔

Ci into finitely many locally closed subsets such that

Di := (πmn )−1(Ci) ∩ πm(J∞X)
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are locally closed in JmX. From Lemma 4.4.3 (spreading out), it suffices to show
that for every point c ∈ Ci(L) with L a field, the fiber F [ of Di → Ci over c is
isomorphic to Ad(m−n)

L over L. To show this, we first claim that there exists a finite
Galois extension M/L such that the induced M -point cM ∈ Ci(M) lifts to an arc
α. Let us take a finite Galois extension M/L such that cM lifts to an an + b-jet
for a and b as in Proposition 3.7.4, Greenberg lifting theorem. Then cM also lifts
to an arc, thus the above claim holds. Then, from assertion (1), the fiber F [M
over cM is isomorphic to Ad(m−n)

M . We see that F [M has a natural structure of a
Gal(M/L)-equivariant vector bundle over SpecM because the Galois action on F [M
is induced from the one on the MJtK-module α[ΩX/k. By the Galois descent (see
Corollary A.2.5), we see that the fiber F [ is a vector bundle over SpecL, that is,
Ad(m−n)
L . �

5.4. Boundedness of fiber dimensions

Lemma 5.4.1. Every fiber of πn+1(J∞X)→ πn(J∞X) has dimension ≤ d.

Proof. By the standard base change argument, we may assume that k is
algebraically closed and it is enough to show that the fiber over every k-point of
πn(J∞X) has dimension ≤ d. We may also assume X is affine, say V (f1, . . . , fl) ⊂
Ank . Let α ∈ (J∞X)(k) be an arc given by a tuple α ∈ kJtKn. The fiber of
πn+1(J∞X)(k)→ πn(J∞X)(k) over πn(α) is identified with

F := {(βmod t) ∈ kn | β ∈ kJtKn and f(α+ βtn+1) = 0}.
Let

X := Spec kJtK[x]/(f1(α+ xtn+1), . . . , fl(α+ xtn+1))

and let 0, η ∈ Spec kJtK be the closed and generic points respectively. The generic
fiber Xη of X is isomorphic to X ⊗k kLtM, in particular, has dimension d. Indeed,
Xη ⊂ AnkLtM is sent to X ⊗k kLtM by the coordinate change x 7→ α + xtn+1. Let X ′

be the Zariski closure of Xη in X , which is a flat kJtK-scheme of relative dimension
d. The above set F consists of the points s(0) with s ranging over all sections
Spec kJtK→ X and thus is a subset of X ′0(k) with X ′0 the special fiber of X ′. Since
X ′0 has dimension ≤ d, so does F . �

The following is a direct consequence of this lemma.

Corollary 5.4.2. We have

dimπn(J∞X) ≤ (n+ 1)d.

5.5. Ordinary cylinders

Definition 5.5.1. We say that a geometric arc α : DL → X is ordinary if the
generic point of DL maps into the smooth locus Xsm, equivalently, if the corre-
sponding L-point of J∞X lies on J(<∞)

∞ X = J∞X \ J∞(Xsing). We say that a
cylinder C ⊂ J∞X is ordinary if every point of C corresponds to an ordinary arc,
that is, C is included in J(<∞)

∞ X.

Lemma 5.5.2. Every ordinary cylinder C ⊂ J∞X is included in J(≤e)
∞ X for

e� 0.

Proof. This follows from Lemma 3.8.3. �
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Lemma 5.5.3. Let C ⊂ J∞X be an ordinary cylinder. Then, for n � 0, the
map πn+1(C)→ πn(C) is a piecewise trivial Ad-bundle.

Proof. This follows from the last lemma and Proposition 5.3.4. �

Definition 5.5.4. Let C ⊂ J∞X be an ordinary cylinder. We define the
measure of C to be

µX(C) := {πn(C)}L−nd (n� 0).

This is well-defined thanks to Lemma 5.5.3.

5.6. Negligible subsets

Definition 5.6.1. A subset N ⊂ J∞X is said to be negligible if it is included
in the arc space J∞ Z of some closed subscheme Z ⊂ X of positive codimension.

Lemma 5.6.2. Let e ∈ Z≥0 and N ⊂ J(≤e)
∞ X be a negligible subset. For every

m ∈ Z, there exists an ordinary cylinder C such that dimµX(C) ≤ m and N ⊂ C.

Proof. For n ≥ e, let
Cn := π−1

n (πn(N)),

which are ordinary cylinders with N ⊂ Cn. From 5.4.2, we have

dim{πn(N)} ≤ (n+ 1)(d− 1)

and

dimµX(Cn) = dim{πn(N)} − nd
≤ (n+ 1)(d− 1)− nd
= −n+ d− 1.

For n� 0, Cn becomes a desired ordinary cylinder. �

Lemma 5.6.3. Let I be a set which is at most countable. Let S and Ti, i ∈ I
be ordinary cylinders of J∞X and let N be a negligible subset of J∞X. Suppose
that S =

⊔
i∈I Ti tN . Then the sum

∑
i∈I µX(Ti) converges to µX(S).

Proof. Let e ∈ Z≥0 be such that S ⊂ J(≤e)
∞ X. Let m be any integer. From

Lemma 5.6.2, there exists an ordinary cylinder C such that dimµX(C) ≤ m and
N ⊂ C. Then

S \ C =
⊔
i∈I

(Ti \ C).

From Lemma 3.8.3, this is a finite disjoint union. It shows that Ti ⊂ C and
dimµX(Ti) ≤ m for all but finitely many i. We conclude that the sum

∑
i∈I µX(Ti)

converges and

µX(S) ≡
∑
i∈I

µX(Ti) (mod F̂−m).

Since the equality holds for any m, we have µX(S) =
∑
i∈I µX(Ti). �
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5.7. Admissible functions and motivic integrals

Definition 5.7.1. Let A ⊂ J∞X be a subset, let r ∈ Z>0 and let f : A →
1
rZ∪{∞}. We say that f is admissible if there exists a stratification A =

⊔
i∈I AitN

into countably many ordinary cylinders Ai, i ∈ I and a negligible subset N such
that for every i, the restriction f |Ai is constant with value different from∞. (Thus
the value ∞ is taken only on N .) For such f , we define the integral of Lf to be∫

A

Lf dµX :=
∑
i∈I

µX(Ai)Lf(Ai) ∈ M̂k,r ∪ {∞}.

It is clear that a Q-linear combination of finitely many admissible functions is
again admissible.

Lemma 5.7.2. The integral of Lf is independent of the stratification A =⊔
i∈I Ai tN .

Proof. Let A =
⊔
j∈J Bj t O be another such stratification. For each i ∈ I,

we have

Ai =
⊔
j∈J

(Ai ∩Bj) t (Ai ∩O).

From Lemma 5.6.3, we have

µX(Ai) =
∑
j∈J

µX(Ai ∩Bj).

From Lemma 2.4.8 (or its obvious generalization to M̂k,r), we have∑
i∈I

µX(Ai)Lf(Ai) =
∑

(i,j)∈I×J

µX(Ai ∩Bj)Lf(Ai∩Bj).

Similarly ∑
j∈J

µX(Bj)Lf(Bj) =
∑

(i,j)∈I×J

µX(Ai ∩Bj)Lf(Ai∩Bj).

�

Lemma 5.7.3. Let Z ⊂ X be a closed subscheme of positive codimension with
the defining ideal sheaf I ⊂ OX . The order function ordI = ordZ as well as its
restriction to any cylinder is admissible.

Proof. Let C ⊂ J∞X be a cylinder. For e, n ∈ Z≥0, we define ordinary
cylinders Ce,n := C ∩ (ordZ)−1(n) ∩ j−1

X (e) and a negligible subset N := C ∩
((ordZ)−1(∞) ∪ j−1

X (∞)). We have

C =
⊔
e,n

Ce,n tN.

Since ordZ take the constant value n on each Ce,n, the function ordZ |C is admis-
sible. �
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5.8. Jacobian orders for morphisms

Let Y be another geometrically reduced k-schemes of finite type which have
pure dimension d and let f : Y → X be a generically étale morphism. Throughout
the rest of the present chapter, we will keep this setting.

Definition 5.8.1. We say that an arc α : DL → Y is f-ordinary if Y is smooth
at α(η) and f is étale at α(η), where η is the generic point of DL. A subset
C ⊂ J∞ Y is said to be f -ordinary if every point of C is f -ordinary.

Clearly, being f -ordinary implies being ordinary. Note also that for an f -
ordinary arc α, X is smooth at f ◦ α(η). If Z ⊂ Y is the union of the non-smooth
locus of Y and the non-étale locus of f , then α is f -ordinary if and only if α /∈ J∞ Z.

For an f -ordinary arc α, the flat pullbacks α[ΩdY/k and (f ◦α)[ΩdX/k (see Defi-
nition 5.3.3) are free LJtK-modules of rank 1 and the map

(f ◦ α)[ΩdX/k → α[ΩdY/k

is injective. We regard (f ◦ α)[ΩdX/k as a submodule of α[ΩdY/k by this injection.

Definition 5.8.2. We define the Jacobian order of f at an f -ordinary arc α
to be

jf (α) := dimL

α[ΩdY/k

(f ◦ α)[ΩdX/k
.

Putting jf (α) :=∞ for ones not f -ordinary, we get the Jacobian order function of
f ,

jf : J∞ Y → Z≥0 ∪ {∞}.

Definition 5.8.3. Suppose that Y is smooth. Then we define the Jacobian
ideal sheaf Jacf ⊂ OX of f to be the 0-th Fitting ideal sheaf of ΩY/X .

Lemma 5.8.4. If Y is smooth, then jf = ordJacf .

Proof. If α is not f -ordinary, then jf (α) = ordJacf (α) =∞. Suppose that α
is f -ordinary. We have the exact sequence of LJtK-modules

(f ◦ α)∗ΩX/k → α∗ΩY/k → α∗ΩY/X → 0.

Since α∗ΩY/k is free, the left map kills the torsion part of (f ◦α)∗ΩX/k and we get
the exact sequence

(f ◦ α)[ΩX/k → α∗ΩY/k → α∗ΩY/X → 0.

Choosing bases of (f ◦ α)[ΩX/k and α∗ΩY/k, the map (f ◦ α)[ΩX/k → α∗ΩY/k is
given by a square matrix A ∈Md(LJtK). We see that both jf (α) and ordJacf (α) are
the order of det(A) ∈ LJtK. �

5.9. Fiber inclusion lemma

Lemma 5.9.1. Let n ∈ Z≥0 and let β ∈ (J∞ Y )(L) and α ∈ (J∞X)(L) be
such that fnπn(β) = πn(α). Let e := jf (β), eX := jX(f∞(β)) and eY := jY (β).
Suppose that n ≥ max{2e + eY , eX}. Then there exists γ ∈ (J∞ Y )(L) such that
πn−e(γ) = πn−e(β) and f∞(γ) = α.
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Proof. From n ≥ eX and Proposition 5.3.4, we can identify the fiber F [(L)
of the map

(πn+1(J∞X)) (L)→ (πn(J∞X)) (L)

over πnf∞(α) with
HomLJtK((f ◦ β)[ΩX/k, t

n+1
n+2,L).

By assumption, the (n + 1)-jet πn+1(α) belongs to F [(L) and corresponds to the
map

δf∞(β)(α)n+1 : (f ◦ β)[ΩX/k → tn+1
n+2,L,

according to the notation of Definition 5.2.3. For some bases, the map

(f ◦ β)[ΩX/k → β[ΩY/k

is represented by a diagonal matrix diag(te1 , . . . , ted) with
∑
ei = e, in particular,

ei ≤ e for every i. Therefore the map δf∞(β)(α)n+1 is induced from a map

δ̃ : β[ΩY/k → tn−e+1
n+2,L .

The assumption n ≥ 2e+ eY is equivalent to

n+ 1 ≤ 2(n− e) + 1− eY .

Again from Proposition 5.3.4, the map δ̃ is of the form δβ(γ(1))n+1 for some γ(1) ∈
(J∞ Y )(L). By construction, we have

πn−e(γ
(1)) = πn−e(β) and πn+1f∞(γ(1)) = πn+1(α).

Note that jf (γ(1)) = jf (β) and jX(f∞(γ(1))) = jX(f∞(β)). Applying the same
argument to γ(1), α, n + 1 in place of β, α, n, we see that there exists some γ(2) ∈
(J∞ Y )(L), which satisfies

πn+1−e(γ
(2)) = πn+1−e(γ

(1)) and πn+2f∞(γ(2)) = πn+2(α).

Repeating this, we get a sequence γ(i) ∈ (J∞ Y )(L), i ∈ Z>0 such that

πn+i−1−e(γ
(i)) = πn+i−1−e(γ

(i−1)) and πn+if∞(γ(i)) = πn+i(α).

The limit γ ∈ (J∞ Y )(L) of γ(i)’s has the desired property. �

Definition 5.9.2. Let C ⊂ J∞ Y be a subset. We say that f∞|C is geo-
metrically injective if for every field L, the induced map C(L) → f∞(C(L)) is
injective, equivalently, if for every algebraically closed field L, the induced map
C(L)→ f∞(C(L)) is injective.

Lemma 5.9.3 (Fiber inclusion lemma; the singular case). Let L be a field,
let β, β′ ∈ (J∞ Y )(L). Let n ∈ Z≥0 and suppose that fnπn(β) = fnπn(β′). Let
e := jf (β), eX := jX(f∞(β)) and eY := jY (β). Suppose that n ≥ max{2e+eY , eX}.
Suppose also that β, β′ ∈ C(L) for a cylinder C of level n − e and that f∞|C is
geometrically injective. Then πn−e(β) = πn−e(β

′).

Proof. For α := f∞(β′), let γ ∈ (J∞ Y )(L) as in Lemma 5.9.1. Since C is a
cylinder of level n − e and πn−e(β) = πn−e(γ), we see that γ ∈ C(L). From the
geometric injectivity, the equality f∞(γ) = f∞(β′) implies γ = β′, which shows the
lemma. �
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5.10. Preservation of cylinders under f∞

Lemma 5.10.1. Let C ⊂ J∞ Y be a cylinder of level n − e. Suppose that
the inequalities jf ≤ e, jX ◦ f∞ ≤ eX and jY ≤ eY hold on C and that n ≥
max{2e+ eY , eX}. Then f∞(C) is a cylinder of level n.

Proof. We first note that πn(f∞(C)) = fn(πn(C)) is a constructible subset
of JnX. Let β ∈ C(L) be a geometric point and let α ∈ (J∞X)(L) be such
that fnπn(β) = πn(α). From Lemma 5.9.1, there exists γ ∈ (J∞ Y )(L) such that
πn−e(γ) = πn−e(β) and f∞(γ) = α. Since C is a cylinder of n−e, we have γ ∈ C(L).
Therefore f∞(γ) = α ∈ (f∞(C)) (L). This shows that f∞(C) is a cylinder of level
n. �

Corollary 5.10.2. Let C ⊂ J∞ Y be an f -ordinary cylinder. Then f∞(C) is
an ordinary cylinder.

Proof. From Lemma 3.8.3, the functions jf and jX ◦ f∞ are bounded on C.
The corollary follows from Lemma 5.10.1. �

5.11. The Ae-fibration lemma

Lemma 5.11.1 (The Ae-fibration lemma; the singular case). Let n, e, eX , eY ∈
Z≥0 be such that n ≥ max{2e + eY , eX}. Let C ⊂ J∞ Y be a cylinder of level
n − e such that jf |C ≤ e, (jX ◦ f∞)|C ≤ eX and jY |C ≤ eY . Suppose that f∞|C is
geometrically injective. Then

fn|πn(C) : πn(C)→ fn(πn(C))

is a piecewise trivial Ae-bundle. In particular,

µY (C) = µX(f∞(C))Le.

Proof. From Lemma 5.10.1, f∞(C) is a cylinder of level n. Consider an L-
point

αn ∈ (fn(πn(C))) (L).

For an extension M/L, let αn,M denotes the induced M -point. For a suitable finite
Galois extensionM/L, there exists β ∈ C(M) such that fn(πn(β)) = αn,M . Indeed
we can lift αn to a point of πn(C) after a finite extension of L. In turn, from
Proposition 5.3.4, this point lifts to C without further extension of the field. By
enlarging M if necessary, we may take M/L to be Galois.

Let HM be the fiber of πn(C)→ fn(πn(C)) over αn,M = fn(πn(β)) and let F [M
be the fiber of πn(C) → πn−e(C) over πn−e(β). From the fiber inclusion lemma,
we have HM ⊂ F [M . Since n ≤ 2(n − e) + 1 − eY , we can apply Proposition 5.3.4
so that for any extension N/M , we may identify

F [M (N) = HomMJtK(β
[ΩY/k, t

n−e+1
n+1,N ).

We see that HM (N) is then identified with the kernel of

HomMJtK(β
[ΩY/k, t

n−e+1
n+1,N )→ HomMJtK((f ◦ β)[ΩX/k, t

n−e+1
n+1,N ).

For some bases, the map

MJtK⊕d = (f ◦ β)[ΩX/k → β[ΩY/k = MJtK⊕d
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is represented by a diagonal matrix diag(te1 , . . . , ted) with
∑
ei = e. Therefore the

above map of Hom modules is identified with the map(
tn−e+1
n+1,N

)⊕d
→
(
tn−e+1
n+1,N

)⊕d
represented by the same matrix. It has the kernel⊕

i

tn−ei+1
n+1,N

∼= N⊕e.

This shows that HM is an e-dimensional M -linear subspace of F [M and a closed
subset of (Jn Y )⊗kM . Moreover, HM is a Gal(M/L)-equivariant vector subbundle
of F [M over SpecM . By the Galois descent (Corollary A.2.5), the fiber HL of
πn(C)→ fn(πn(C)) over αn is isomorphic to AeL. From Lemma 2.6.3 and spreading
out (Lemma 4.4.3), the map πn(C) → fn(πn(C)) is a piecewise trivial Ae-bundle.
This shows

µY (C) = {πn(C)}L−nd

= {fn(πn(C))}L−nd+e

= µX(f∞(C))Le.

�

5.12. Preservation of admissible functions

Proposition 5.12.1. (1) Let A ⊂ J∞X be a subset and let h : A→ 1
rZ∪

{∞} be an admissible function. Then h ◦ f∞ : f−1
∞ (A) → 1

rZ ∪ {∞} is
admissible.

(2) Let B ⊂ J∞ Y be a subset such that f∞|B is geometrically injective. Let
h : B → 1

rZ ∪ {∞} be an admissible function. Then the function induced
from h,

h′ : f∞(B)
(f∞)−1

−−−−−→ B
h−→ 1

r
Z ∪ {∞},

is admissible.

Proof. (1) Let Z ⊂ Y be the non-étale locus of f and let W be the Zariski
closure of f(Z)∪Xsing. There exists a stratification A =

⊔
iAi tN into countably

many ordinary cylinders Ai and a negligible subset N such that each restriction
h|Ai is constant. Replacing N with N ∪(f∞(B)∩ord−1

W (∞)) and Ai with countably
many cylinders Ai ∩ ord−1

W (j), we may take Ai to be disjoint from ord−1
W (∞). Then

Bi := f−1
∞ (Ai) are ordinary cylinders and f−1

∞ (N) is negligible. Therefore h ◦ f∞ is
admissible.

(2) Let B =
⊔
Bi t N be a stratification as in the definition of admissible

functions. By a similar argument as above, we may suppose that Bi are f -ordinary.
From Corollary 5.10.2, f∞(Bi) are ordinary cylinders. It is easy to see that f∞(N)
is negligible. We conclude that h′ : f∞(B)→ 1

rZ ∪ {∞} is admissible. �

Proposition 5.12.2. The Jacobian order function of f , jf : J∞ Y → Z≥0 ∪
{∞}, is admissible. The same is true for the restriction jf |C to any cylinder C.

Proof. There exists a proper birational morphism g : Z → Y such that the
torsion-free pullbacks g[ΩdY/k := g∗ΩdY/k/(g

∗ΩdY/k)tors and (f ◦ g)[ΩdX/k := (f ◦
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g)∗ΩdX/k/((f ◦ g)∗ΩdX/k)tors are locally free (for instances, see [OZ91,VU06]). Let
I ⊂ OZ be the ideal sheaf given by

(f ◦ g)[ΩdX/k = I · g[ΩdY/k.

Then the equality jf ◦ g∞ = ordI holds for g-ordinary arcs γ such that g∞(γ) is
f -ordinary. In particular, the equality holds outside a negligible subset. Since ordI
is admissible by Lemma 5.7.3, so is jf ◦ g∞. It follows that jf ◦ g∞|J∞ Y \j−1

g (∞)

is also admissible. From Proposition 5.12.1, jf is admissible outside g∞(j−1
g (∞)).

Since g∞(j−1
g (∞)) is negligible, the whole function jf is also admissible. The second

assertion is now obvious. �

5.13. The change of variables formula

Definition 5.13.1. Let C ⊂ J∞ Y be a subset. We say that f∞|C is almost
geometrically injective if there exists a negligible subset N such that f∞|C\N is
geometrically injective (Definition 5.9.2).

Theorem 5.13.2 (The change of variables formula for singular varieties). Let
B ⊂ J∞ Y be a subset such that f∞|B is almost geometrically injective. Let
h : f∞(B)→ 1

rZ ∪ {∞} be an admissible function. Then∫
f∞(B)

Lh dµX =

∫
B

Lh◦f∞−jf dµY .

Proof. Removing a negligible subset from B, we may assume that B is f -
ordinary, f∞|B is geometrically injective and there exists a stratification f∞(B) =⊔
iAi into countably many ordinary cylinders such that h|Ai are constant. Then

Bi := f−1
∞ (Ai) are f -ordinary cylinders. If we put Bi,e := Bi ∩ j−1

f (e), e ∈ Z≥0, we
have Bi =

⊔
e≥0Bi,e and Ai =

⊔
e≥0 f∞(Bi,e). From Lemma 5.11.1, we have

µX(f∞(Bi,e)) = µY (Bi,e)L−e.
Therefore ∫

f∞(B)

Lh dµX =
∑
i

µX(Ai)Lh(Ai)

=
∑
i,e

µX(f∞(Bi,e))
h(f∞(Bi,j))

=
∑
i,e

µY (Bi,e)
h(f∞(Bi,e))−jf (Bi,e)

=

∫
B

Lh◦f∞−jf dµY .

�

5.14. Group actions

We now consider the situation where a finite group G acts on our k-variety
X. For simplicity, we suppose that every G-orbit in X is contained in an affine
open subset. This implies that the quotient X/G is a scheme. Then every G-
orbit in JnX, n ∈ Z≥0 ∪ {∞}, is also contained in an affine open subset and the
quotients (JnX)/G exist as schemes. We define the motivic measure on the set
| J∞X|/G = |(J∞X)/G|.



CHAPTER 6

Stringy motives

In section 4.5, we saw that the motive M(X) = {X} of a smooth variety X is
invariant under strong K-equivalences. To generalize this fact to varieties having
mild singularities, we introduce in this chapter the notion of stringy motives, a
variant of motives incorporating information of singularities.

We work over a perfect field k in this chapter except the last section 6.7. This
assumption in particular implies that a k-variety is geometrically reduced and a
normal k-variety is smooth in codimension one.

6.1. Singularities in the minimal model program

To develop the minimal model program in dimension ≥ 3, it was essential to
allow varieties to have mild singularities. Among others, four important classes of
singularities are terminal singularities, canonical singularities, klt singularities and
log canonical singularities in the order of mildness. We briefly recall these notions.
We refer the reader to [Kol13, Section 2.1] for details.

Let X be a normal k-variety of dimension d. We begin with fixing our termi-
nology on divisors as follows:

Definition 6.1.1. A divisor (resp. Q-divisor) on X means a Weil divisor,
that is, a Z-linear combination (resp. Q-linear combination) of prime divisors. We
identify a Cartier divisor onX with the (Weil) divisor associated to it in the obvious
way. Thus Cartier divisors form a subclass of divisors. For a positive integer r,
a divisor D on X is said to be r-Cartier if rD is Cartier. A divisor is said to be
Q-Cartier if it is r-Cartier for some r > 0. A Q-divisor D is said to be Q-Cartier
if for some positive integer r, rD has coefficients in Z and is Cartier.

For a Q-Cartier Q-divisor D and for a dominant morphism of normal varieties
f : Y → X, we can define the pull-back f∗D to be the Q-divisor 1

rf
∗(rD) for a

positive integer as above.

Definition 6.1.2. The canonical sheaf of X, denoted by ωX , is defined to be
the double dual (ΩdX/k)∨∨ of ΩdX/k, that is, the unique reflexive sheaf F such that
F|Xsm

∼= ΩdXsm/k
(see Remark 6.1.3 for reflexive sheaves). A canonical divisor of X,

denoted by KX , is a Weil divisor D on X such that OX(D) ∼= ωX . This is unique
modulo linear equivalence and we may call this divisor the canonical divisor.

Remark 6.1.3 (Reflexive sheaves [Har80]). Let X be a normal variety. A
coherent sheaf F on X is said to be reflexive if the natural map F → F∨∨ to the
double dual is an isomorphism. This is equivalent to that there exists an open
subset U ⊂ X with the inclusion map ι : U ↪→ X such that the complement U c
has codimension ≥ 2, F|U is locally free and the natural map F → ι∗F|U is an
isomorphism. The dual F∨ := HomOX (F ,OX) of a coherent sheaf F is always

55
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reflexive and so is the double dual F∨∨ = (F∨)∨. The double dual F∨∨ is also call
the reflexive hull of F . If F is locally free in codimension one, then F∨∨ is the
unique reflexive sheaf which coincide with F in codimension one.

The coherent sheaf OX(D) associated to a divisor D is defined as a subsheaf
of the constant sheaf K(X) in terms of orders of poles and zeroes along prime
divisors appearing in D, just like in the case of a smooth variety. This sheaf
OX(D) is reflexive and sending D to OX(D) gives a one-to-one correspondence of
divisors and reflexive subsheaves of K(X). A divisor D is Cartier if and only if
OX(D) is invertible. Moreover, two divisors are linearly equivalent if and only if
the corresponding sheaves are isomorphic.

Definition 6.1.4. Let r ∈ Z>0. We say that X is r-Gorenstein if rKX is a
Cartier divisor, equivalently if the r-th reflexive power ω[r]

X := (ω⊗rX )∨∨ is invertible.
We say that X is Q-Gorenstein if it is r-Gorenstein for some r, that is, KX is Q-
Cartier.

Let f : Y → X be a generically étale morphism of normal varieties. Suppose
that X is r-Gorenstein. By the natural map, we may regard f∗ω[r]

X as an invertible
subsheaf of ω[r]

Y ⊗K(Y ).

Definition 6.1.5. With the above notation, we define the relative canonical
divisor KY/X to be the Q-divisor on Y given by

KY/X = KY − f∗KX .

In precise, this means that for r > 0 as above, we have f∗ω[r]
X ⊗OY (rKY/X) = ω

[r]
Y

as subsheaves of ω[r]
Y ⊗K(Y ).

Definition 6.1.6. For a prime divisor E on Y , the discrepancy a(E;X) ∈
Q of E over X is defined to be the multiplicity of E in KY/X so that we can
write KY/X =

∑
E a(E;X)E with E running over prime divisors on Y . The log

discrepancy alog(E;X) is then defined to be a(E;X) + 1.

Definition 6.1.7. Let X be a k-variety. A modification of X is a proper
birational morphism Y → X or a variety Y given with such a morphism. We say
that a modification Y → X is normal if Y is normal. A divisor over a variety X
means a prime divisor on some normal modification Y of X. The center of a divisor
E over X, denoted by centerX(E), is the image of E on X, which is an irreducible
closed subset of X. We say that a divisor E over X is exceptional if centerX(E)
has codimension ≥ 2. Two divisors E,E′ over X, say lying on normal modifications
Y, Y ′ respectively, are said to be equivalent if they correspond to each other by the
natural birational map between Y and Y ′.

A divisor over a varietyX gives a discrete valuationK(X)∗ → Z on the function
field K(X), associating to a rational function its vanishing order or minus the order
of pole along the divisor. Two divisors over X are equivalent if and only if they give
the same valuation. We usually identify equivalent divisors over the given variety.
Two equivalent divisors over X share the discrepancy as well as the center.

Definition 6.1.8. Let X be a normal Q-Gorenstein variety with the singu-
lar locus Xsing and let W ⊂ X be a closed subset. We define the minimal log
discrepancy of X along W to be

mld(W ;X) := inf
centerX(E)⊂W

alog(E;X),
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where E runs over divisors over X with centerX(E) ⊂W .

It is known that we have either mld(W ;X) ≥ 0 or mld(W ;X) = −∞ [KM98,
Cor. 2.31].

Definition 6.1.9. Let X be a normal Q-Gorenstein variety. We say that X is
terminal (mld(Xsing;X) > 1)

canonical (mld(Xsing;X) ≥ 1)

klt (mld(Xsing;X) > 0)

log canonical (mld(Xsing;X) ≥ 0).

We also say that X has only terminal (resp. canonical, klt, log canonical) singular-
ities.

6.2. Log pairs

It is also customary in birational geometry to consider not only singular varieties
but also pairs of singular varieties and Q-divisors.

Definition 6.2.1. A log pair X means the pair (X,D) of a normal k-variety
and a Q-divisor on X such that KX +D is Q-Cartier. The divisor D is called the
boundary or boundary divisor of the log pair.

Remark 6.2.2. Although boundary divisors are often supposed to be effective
in the literature, we don’t impose this restriction in this book.

Remark 6.2.3. We think of log pairs as generalization of Q-Gorenstein vari-
eties, identifying a Q-Gorenstein varietyX with the pair (X, 0). The divisorKX+D
is then regarded as the canonical divisor of the pair (X,D) and sometimes called a
log canonical divisor.

Definition 6.2.4. Let (X,D) be a log pair and let f : Y → X be a normal
modification. We define a Q-divisor KY/(X,D) on Y by

KY = f∗(KX +D) +KY/(X,D).

The multiplicity of a prime divisor E in KY/(X,D) is denoted by a(E;X,D) and
called the discrepancy of E with respect to (X,D). The log discrepancy alog(E;X,D)
is then defined to be a(E;X,D) + 1. For a nonempty closed subset W ⊂ X, we
define the minimal log discrepancy of (X,D) along W to be

mld(W ;X,D) := inf
centerX(E)⊂W

alog(E;X,D)

with E running over divisors over X with centerX(E) ⊂W .

Remark 6.2.5. There seem to be two slightly different definitions of the min-
imal log discrepancy in the literature. Our definition above coincides, for example,
with the one in [EM06], but not with the one in [Kol13]. In the latter reference,
the infimum is taken over E with centerX(E) = W .

Definition 6.2.6. We say that a log pair (X,D) is{
klt (mld(X;X,D) > 0)

log canonical (mld(X;X,D) ≥ 0).
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If we define the singular locus (X,D)sing of (X,D) to be Xsing∪Supp(D), then
the above inequalities are equivalent to

mld ((X,D)sing;X,D) > 0 (resp. ≥ 0).

Therefore this definition is compatible with the one of a normal Q-Gorenstein va-
riety; X is klt (resp. log canonical) if and only if the pair (X, 0) is so.

Remark 6.2.7. For a prime divisor E on X, if E has multiplicity e in D, then

alog(E;X,D) = −e+ 1.

Therefore, for a log pair being klt (resp. log canonical), all the coefficients of the
boundary must be < 1 (resp. ≤ 1).

A priori, it would be necessary to look at all the modifications of the given
variety in order to compute the minimal log discrepancy. The following propositions
enable us to compute it with a single resolution.

Proposition 6.2.8 ( [Kol13, Cor. 2.12]). Let X be a Q-Gorenstein variety
and let f : Y → X be a resolution. Then X is terminal (resp. canonical) if and
only if for every exceptional prime divisor E on Y , alog(E;X) > 1 (resp. ≥ 1).

Definition 6.2.9. Let (X,D) be a log pair, let W ⊂ X be a closed subset and
let f : Y → X be a resolution. We say that f is a log resolution of (X,D) if f−1D,
Exc(f) and f−1D ∪ Exc(f) are all simple normal crossing divisors. We say that
f is a log resolution of the triple (X,D,W ) if W = X and f is a log resolution
of (X,D) or if f−1D, f−1W , Exc(f) and f−1D ∪ f−1W ∪ Exc(f) are all simple
normal crossing divisors.

Proposition 6.2.10 (cf. [Kol13, Cor. 2.13]). Let (X,D) be a log pair, let
W ⊂ X be a closed subset and let f : Y → X be a log resolution of (X,D).

[Kol13, Cor. 2.13] Then (X,D) is klt (resp. lc) if and only if alog(E;X,D) > 0 (resp. ≥ 0).
(1) LetW ⊂ X be a closed subset. Suppose that f is also a log resolution of the

triple (X,D,W ) and that (X,D) is log canonical in a open neighborhood
of W . Then

mld(W ;X,D) = min
E⊂f−1(W )

alog(E;X,D),

where E runs over prime divisors on Y contained in f−1(W ).

The second assertion follows from Propositions 4.7.5, 6.4.6 and 6.6.1.

6.3. Stringy motives

Definition 6.3.1. Suppose that X is r-Gorenstein. Let IX,r ⊂ OX be the
ideal sheaf given by

Im
(

(ΩdX/k)⊗r → ω
[r]
X

)
= IX,r · ω[r]

X .

For a constructible subset C ⊂ X, we then define the stringy motive of X along C
to be the integral

Mst(X)C :=

∫
π−1

0 (C)

L
1
r ordIX,r dµX ∈ M̂k,r ∪ {∞∗}.

When C = X, we just call it the stringy motive of X and often omit the subscript
C.
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Remark 6.3.2. Note that for n ≥ 0, we have IX,rn = (IX,r)n. Thus the
function 1

r ordIX,r is independent of the choice of r. It follows that Mst(X)C is
essentially independent of r. More precisely, if Mr ∈ M̂k,r ∪ {∞∗} and Mr′ ∈
M̂k,r′ ∪ {∞∗} are the ones defined for r and r′, then they have the same image
in M̂k,rr′ ∪ {∞∗} via the canonical maps. In practice, we will fix a sufficiently
factorial r so that all Q-Gorenstein varieties under consideration be r-Gorenstein
and all Q-divisors have coefficients in 1

rZ.

Roughly speaking, the function 1
r ordI measures the difference between ΩdX/k

and the canonical divisor KX ; the former is directly related to the change of vari-
ables formula, while the latter is more important in the birational geometry.

To generalize stringy motives to log pairs, we need to consider fractional ideal
sheaves.

Definition 6.3.3. A coherent fractional ideal sheaf on X is a nonzero coherent
OX -submodule I of the constant function field sheaf K(X).

For a coherent fractional ideal sheaf I on X, there exists an open dense subset
U ⊂ X such that I|U = OU as subsheaves of K(X). Indeed, if I is generated
by rational functions f1, . . . , fl ∈ K(X) on an open subset V ⊂ X, then we only
need to remove their poles to get such an open subset U . Moreover there exists the
largest open subset with this property; for the sake of uniqueness, we choose it as
U . Let α : DL → X be an arc such that α(η) ∈ U . The equality I|U = OU induces
the injection

α[I ↪→ α∗I ⊗LJtK LLtM = (α|η)∗OU = LLtM.
Thus the flat pullback α[I is regarded as a fractional ideal of LJtK; we denote this
fractional ideal as α−1I.

Definition 6.3.4. For an arc α : DL → X with α(η) ∈ U , we define ordI(α)
to be an integer n such that α−1I = tn ·LJtK. If α(η) /∈ U , we define ordI(α) :=∞.
We get a function

ordI : J∞X → Z ∪ {∞}.

Lemma 6.3.5. For a coherent fractional ideal I, the function ordI is admissible.

Proof. By means of an affine open covering, the problem is reduced to the
case where X is affine. Then I is generated by rational functions f1/g1, . . . , fl/gl,
where fi and gi are regular functions on X. Let D be the effective Cartier divisor
defined by g1g2 · · · gl = 0. Then I ⊂ OX(−D). Thus there exists an ideal sheaf J
with I = JOX(−D). We see that

ordI = ordJ − ordD

outside the negligible subset J∞ Z with Z = D ∪ V (J ). Since ordJ and ordD are
admissible, ordI is also admissible. �

Definition 6.3.6. Let (X,D) be a log pair such that r(KX + D) is Cartier.
We regard OX(rKX) and OX(r(KX +D)) as submodules of the constant sheaf

OX(rKX)⊗K(X) = (ΩdX/k)⊗r ⊗K(X).

We define a coherent fractional ideal sheaf IX,D,r ⊂ K(X) by

Im
(

(ΩdX/k)⊗r → OX(rKX)
)

= IX,D,r · OX(r(KX +D)).
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For a constructible subset C ⊂ X, we then define the stringy motive of (X,D)
along C to be the integral

Mst(X,D)C :=

∫
π−1

0 (C)

L
1
r ordIX,D,r dµX ∈ M̂k,r ∪ {∞}.

Remark 6.3.7. If X is smooth, then IX,D,r is the defining ideal sheaf of the
divisor rD. In particular,

1

r
ordIX,D,r = ordD .

WhenD has simple normal crossing support, we have explicit formulas for Mst(X,D)C
and its dimension (Propositions 4.7.4 and 4.7.5). In particular, we have a criterion
for whether or not Mst(X,D)C converges and one for whether or not it is dimen-
sionally bounded.

6.4. Basic properties of stringy motives

Proposition 6.4.1. If X is smooth, then Mst(X)C = Mst(X, 0)C = {C}.

Proof. In this case, the function 1
r ordIX,r = 1

r ordIX,0,r is constant zero. Thus

Mst(X)C = Mst(X, 0)C =

∫
π−1

0 (C)

dµX = µX(π−1
0 (C)) = {C}.

�

Definition 6.4.2. A morphism f : (Y,E) → (X,D) of log pairs means just a
morphism f : Y → X of underlying varieties. We say that a morphism f : (Y,E)→
(X,D) is generically étale (resp. proper, birational, being a modification) if it is so
as a morphism of varieties.

Definition 6.4.3. We say that a generically étale morphism f : (Y,E) →
(X,D) of log pairs is crepant if KY + E = f∗(KX + D). (Note that this no-
tion depends on not only underlying varieties but also boundary divisors.) We say
that two log pairs (Y,E) and (X,D) are K-equivalent if there exist crepant mod-
ifications (Z,F ) → (Y,E) and (Z,F ) → (X,D) from a third log pair (Z,F ). (In
other words, (X,D) and (Y,E) are K-equivalent if there are normal modifications
Z → X and Z → Y such that KZ/(X,D) = KZ/(Y,E).)

Unlike the case of strong K-equivalence (Definition 4.5.1), we don’t assume
the above Z to be smooth. Thus K-equivalence is a weaker condition than strong
K-equivalence.

Example 6.4.4. Two crepant resolutions of the same normalQ-Gorenstein vari-
eties are clearly K-equivalent. Two birational Calabi-Yau varieties are K-equivalent.
Here a Calabi-Yau variety means a smooth proper variety X with ωX ∼= OX . More
generally, two minimal models of the same log pair are K-equivalent [Kol13, Prop.
1.21].

Lemma 6.4.5. Let (Y,E)→ (X,D) be a crepant morphism of log pairs. Then

1

r
ordIX,D,r ◦f∞ − jf =

1

r
ordIY,E,r .
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Proof. Let α be a geometric arc of Y and let

a :=
1

r
ordIX,D,r ◦f∞(α), b :=

1

r
ordIY,E,r (α) and e := jf (α).

Suppose that all these values are finite. It holds for α’s outside a negligible subset.
We have

tre · α[(ΩdY/k)⊗r = (f ◦ α)[(ΩdX/k)⊗r

= tra · (f ◦ α)∗OX(r(KX +D))

= tra · α∗OY (r(KY + E))

= tra−rb · α[(ΩdY/k)⊗r.

Thus e = a− b and the claim holds. �

Proposition 6.4.6. Let (Y,E)→ (X,D) be a crepant modification of log pairs
and let C ⊂ X be a constructible subset. Then

Mst(Y,E)f−1(C) = Mst(X,D)C .

Proof. This follows from Lemma 6.4.5 and the change of variables formula.
�

The following corollary is a direct consequence of this proposition:

Corollary 6.4.7. Let (Y,E) and (X,D) be K-equivalent log pairs. Then

Mst(Y,E) = Mst(X,D).

More generally, if g : Z → Y and f : X → Y are normal modifications with
KZ/(X,D) = KZ/(Y,E) and if C ⊂ Y and B ⊂ X are constructible subsets with
g−1(C) = f−1(B), then

Mst(Y,E)C = Mst(X,D)B .

The following corollary strengthens Theorem 4.5.4 by weakening the strong
K-equivalence condition to K-equivalence condition.

Corollary 6.4.8. Let X and Y be K-equivalent smooth varieties. Then {X} =

{Y } in M̂k.

Proof. From Corollary 6.4.7, we have

{X} = Mst(X) = Mst(Y ) = {Y }

in M̂k,r for some r > 0. We show that we can take r to be 1. There exists a log
pair (Z,D) and crepant modifications f : (Z,D) → X and g∗ : (Z,D) → Y . Since
KX , KY and KZ +D = f∗KX are all Cartier, we can take r to be 1 when we define
Mst(X), Mst(Y ) and Mst(Z,D) and prove that they are equal. �

Corollary 6.4.9. Corollary 4.5.5 holds with strong K-equivalence replaced
with K-equivalence.

Proof. This follows from Proposition 2.5.3. �
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6.5. Special local uniformization

To apply stringy motives to minimal log discrepancy in arbitrary characteristic,
we show a version of local uniformization, which plays a role of log resolution in
characteristic zero.

Let C ⊂ J∞X be an irreducible ordinary cylinder, let c ∈ C be its generic
point with the corresponding arc α : DL → X with L the residue field of c. This
arc sends the generic point of DL to the generic point of X. For, if it was sent to
a point x ∈ X of dimension ≤ d − 1, then C would be contained in the negligible
subset J∞ {x}, where {x} is the Zariski closure. This is impossible. Therefore, for
every modification Y → X, there exists a unique lift

β : DL → Y

of α.

Lemma 6.5.1. Suppose that the arc α sends the closed point to a point of X
of codimension ≥ 2. Then there exists a coherent ideal sheaf I ⊂ OX such that, if
f : Y = BlI(X) → X is the associated blowup and β is the lift of α to Y , then we
have jf (β) > 0.

Proof. Let x ∈ X be the image of the closed point DL and let a ≥ 2 be its
codimension. Let κ(x) and mx denote the residue field and the maximal ideal of
the local ring OX,x respectively. Since our base field k is perfect, the extension
κ(x)/k is separable [Eis95, Cor. A1.7] and has transcendental degree d − a . The
κ(x)-vector space Ωκ(x)/k has dimension d − a [Eis95, Th. 16.14]. Consider the
conormal exact sequence

mx/m
2
x → κ(x)⊗OX,x ΩOX,x/k → Ωκ(x)/k → 0.

There are elements x1, . . . , xd−a ∈ OX,x and w1, w2, . . . , wb ∈ mx such that dx1, . . . , dxd−a
map to a basis of Ωκ(x)/k and dx1, . . . , dxd−a, dw1, . . . , dwb map to a basis of
κ(x)⊗OX,x ΩOX,x/k. By Nakayama’s lemma, dx1, . . . , dxd−a, dw1, . . . , dwb generate
ΩOX,x/k. By reordering x1, . . . , xd−a and w1, . . . , wb if necessary, we may assume
that α[ΩdX/d is generated by the element

α∗(dw1 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l)

for some l ≥ a such that w1, . . . , wl, x1, . . . , xd−l are algebraically independent over
k; the last condition ensures that the above d-form is not a torsion. Let I ⊂ OX
be an ideal sheaf such that Ix = 〈w1, w2〉 and let f : Y → X be the blowup
along I. We identify K(Y ) with K(X) so that the maps α∗ : K(X) → LLtM and
β∗ : K(Y )→ LLtM become identical. Let y ∈ Y be the image of the closed point by
β. Either w1/w2 or w2/w1 is a regular function on an open neighborhood U of y;
say v := w1/w2 is so. Then

dw1 ∧ dw2 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l
= d(vw2) ∧ dw2 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l
= (vdw2 + w2dv) ∧ dw2 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l
= w2dv ∧ dw2 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l.
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It follows that

α[ΩdX/k

= 〈α∗(dw1 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l)〉
= 〈β∗(w2dv ∧ dw2 ∧ · · · ∧ dwl ∧ dx1 ∧ · · · ∧ dxd−l)〉

⊂ β∗w2 · β[ΩdY/k.
From the definition of x, we have

β∗w2 = α∗w2 ∈ α−1mx ⊂ 〈t〉 ⊂ LLtM.

We conclude that
jf (β) = dimL β

[ΩdY/k/α
[ΩdX/k > 0.

�

Proposition 6.5.2 (cf. [Reg09, Prop. 3.7 (vii)]). Suppose that α sends the
closed point to a point of positive codimension. Then there exists a normal projective
modification f : Y → X such that the lift β : DL → Y of α sends the closed point of
DL to a point of codimension 1.

Proof. Let x ∈ X be the image of the closed point by α. If this is a point
of codimension 1, we are done. Otherwise, consider the projective modification
f : X1 = BlI(X) → X as in the last lemma and let α1 : DL → X1 be the lift of
α. Let m := ordI(α) and let e := jf (α1). Removing the loci with ordI > m and
jf > e, we get irreducible cylinders C ′ ⊂ C and C1 := f−1

∞ (C ′) such that jf |C1 has
constant value e. From Lemma 5.11.1,

dimµX1(C1) > dimµX(C ′) = dimµX(C).

Note that from Proposition 4.2.1, the generic point of C1 corresponds to α1, in
particular, it has the same residue field L as the residue field of the generic point
c of C. If α1 sends the closed point to a point x1 ∈ X1 of codimension > 1, then
we apply the same procedure as above to α1 and get a projective modification
g : X2 → X1, the lift α2 of α1 and an irreducible cylinder C2 ⊂ J∞X2 such that
the generic point of C2 corresponds to α2 and

dimµX2
(C2) > dimµX1

(C1).

We repeat this procedure until we get a point xn ∈ Xn of codimension 1. From
Corollary 5.4.2, for m� 0, we have

dimµXi(Ci) ≤ dimπm(J∞X)− dm = d.

Therefore the procedure stops after finitely many steps and indeed get a point
xn ∈ Xn of codimension 1. It remans to take the normalization of Xn. �

Remark 6.5.3. A version of local uniformization says that for a variety X
and a valuation v on K(X), there exists a modification Y → X such that Y is
regular at the center of v. This can be regarded as a weak version of resolution
of singularities. In positive characteristic, it is still an open problem whether local
uniformization in this sense is always possible or not. The above proposition says
that local uniformization is valid for the discrete valuation

K(X)∗
α∗−−→ LLtM∗ ord−−→ Z

associated to an arc α as above.
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Corollary 6.5.4. For an irreducible ordinary cylinder C ⊂ J∞X, there ex-
ists a normal modification f : Y → X and a prime divisor D ⊂ Y such that
f∞
(
π−1

0 (Dsm ∩ Ysm)
)
contains the generic point of C.

Proof. Let α : DL → X be the arc corresponding to the generic point of C.
We take a normal modification f : Y → X as in the last proposition and let β to be
the lift of α to Y . Then the image y ∈ Y of the closed point by β has codimension
one. We see that the prime divisor D := {y} has the desired property. �

6.6. The minimal log discrepancy via stringy motives

Proposition 6.6.1. Let (X,D) be a log pair and let C ⊂ X be a non-empty
closed subset. Then

mld(C;X,D) = d− dim Mst(X,D)C ∈ Q ∪ {−∞}.
Here we follow the convention dim∞s = s.

Proof. Let f : Y → X be a normal modification such that f−1(C) of pure
dimension d− 1. Any normal modification Y ′ → X is dominated by such a normal
modification. Let Y ◦ ⊂ Y be the largest open subset such that Y ◦ is smooth and
the subvarieties of Y ,

f−1(C) ∩ Y ◦ and(
f−1(C) ∪ SuppKY/(X,D)

)
∩ Y ◦,

are both smooth. Then Y \ Y ◦ has codimension ≥ 2. Let us write

f−1(C) ∪ SuppKY/(X,D) =
⋃
i∈I

Ei

with Ei distinct prime divisors on Y ◦, and write

KY/(X,D)|Y ◦ =
∑
i∈I

aiEi,

where ai are (possibly zero) rational numbers. Note that ai+1 is the log discrepancy
of Ei with respect to (X,D). The restrictions Ei|Y ◦ are mutually disjoint from the
smoothness condition. From Proposition 4.7.4, we have

dim Mst(X,D)C = dim Mst(Y,−KY/(X,D))f−1(C)

≥ dim Mst(Y
◦,−KY/(X,D)|Y ◦)f−1(C)∩Y ◦ .

If mld(C;X,D) = −∞, then for some f and i, we have ai < −1. For such f , from
Proposition 4.7.4,

dim Mst(Y
◦,−KY/(X,D)|Y ◦)f−1(C)∩Y ◦ =∞.

Thus, in this case, we have dim Mst(X,D)C =∞ and the equality of the proposition
holds.

We suppose that mld(C;X,D) ≥ 0. Then, for f as above, ai ≥ −1 and from
Proposition 4.7.4, Mst(Y

◦,−KY/(X,D)|Y ◦)f−1(C)∩Y ◦ is dimensionally bounded. From
Proposition 4.7.5, we have

dim Mst(Y
◦,−KY/(X,D)|Y ◦)f−1(C)∩Y ◦ = sup {d− 1− ai | i ∈ K} ,

where K is the subset of I such that f−1(C) =
⋃
i∈K Di. Since the inequality

(6.6.1) dim Mst(X,D)C ≥ sup {d− 1− ai | i ∈ K}
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holds for an arbitrary normal modification Y → X, we conclude

dim Mst(X,D)C ≥ d−mld(C;X,D).

We will show the opposite inequality. Let us write

Mst(X,D)C =
∑
i∈I

∫
Ai

L
1
r ordI dµX ,

where I = IX,D,r (see Definition 6.3.6) and Ai are irreducible ordinary cylinders
with ordI |Ai constant. From Corollary 6.5.4, for each i, there exists a normal
modification f : Y → X and an f -ordinary cylinder B ⊂ J∞ Y ◦ such that f∞(B) is
contained in Ai and contains the generic point of Ai. Here Y ◦ is similarly defined
as above. Then

dim

∫
Ai

L
1
r ordI dµX = dim

∫
f∞(B)

L
1
r ordI dµX

= dim

∫
B

L− ordKY/(X,D) dµY

≤ dim

∫
J∞ Y ◦

L− ordKY/(X,D) dµY

= dim Mst(Y
◦,−KY/(X,D)|Y ◦)f−1(C)∩Y ◦

= d− inf {1 + ai | i ∈ K}
≤ d−mld(C;X,D).

This shows

dim Mst(X,D)C = sup dim

∫
Ai

L
1
r ordI dµX

≤ d−mld(C;X,D).

�

Proposition 6.6.2. Let (X,D) be a log pair.
(1) If Mst(X,D) converges, then (X,D) is klt. The coverse is also true if

(X,D) is K-equivalent to a log pair (Y,E) such that Y is smooth and
Supp(E) is simple normal crossing, in particular, if (X,D) has a log res-
olution.

(2) The following are equivalent:
(a) Mst(X,D) is dimensionally bounded.
(b) dim Mst(X,D) ≤ dimX.
(c) (X,D) is log canonical.

Proof. (1) First suppose that Mst(X,D) converges. Let f : Y → X be an
arbitrary normal modification and let E := f∗(KX + D) − KY so that (Y,E) →
(X,D) is crepant. Thus Mst(Y,E) = Mst(X,D), where E = f∗(KX + D) − KY .
Let U ⊂ Y be the largest open subset such that U is smooth and E|U has simple
normal crossing support. Note that Y \ U has codimension ≥ 2 in Y and every
prime divisor on Y meets U . Since Mst(Y,E) converges, so does Mst(U,E|U ). From
Proposition 4.7.4, all the coefficients of E are < 1. This is equivalent to that every
prime divisor on Y has log discrepancy > 0 with respect to (X,D). Since this is
true for every normal modification of X, we conclude that (X,D) is klt.
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Next suppose that (X,D) is klt and that (X,D) is K-equivalent to (Y,E) such
that Y is smooth and Supp(E) is simple normal crossing. Then (Y,E) is also klt
and all the coefficients of E are < 1. Again from Proposition 4.7.4, Mst(X,D) =
Mst(Y,E) converges.

(2) Obviously (b) implies (a). A similar argument as above shows (a) im-
plies (c). It remains to show (c) implies (b). Suppose on the contrary that
dim Mst(X,D) > dimX. Then there exists an irreducible ordinary cylinder C ⊂
J∞X such that ordIX,D,r is constant on C and

dim

∫
C

L
1
r ordIX,D,r dµX > dimX.

For such C, we take a normal modification f : Y → X and a prime divisor F ⊂ Y
as in Corollary 6.5.4. Let U ⊂ Ysm be a sufficiently small open neighborhood of the
generic point of F so that (U, (1−a)F )→ (X,D) is crepant, where a := a(F ;X,D).
Since f∞(π−1

0 (F ∩ U)) contains the generic point of C, we have

dim Mst(U, (1− a)F |U ) = dim

∫
f∞(π−1

0 (F∩U))

L
1
r ordIX,D,r dµX

> dim

∫
C

L
1
r ordIX,D,r > dimX.

From Proposition 4.7.4, a < 0. Thus (X,D) is not log canonical. �

Corollary 6.6.3. Let (X,D) be a log pair and let C ⊂ X be a constructible
subset such that (X,D) is klt in a neighborhood of C. Suppose that that there exists
a resolution f : Y → X such that KY/(X,D) = KY −f∗(KX +D) has simple normal
crossing support and is written as

∑l
i=1 aiEi with Ei prime divisors and ai 6= 0.

Then
Mst(X,D)C =

∑
J⊂I
{D◦I ∩ C}

∏
i∈J

L− 1

L1+ai − 1
.

6.7. Imperfect fields and non-normal varieties

In this section, we do not suppose that the base field k is perfect or that X is
normal.

Definition 6.7.1. A weak log pair is the pair (X,L) of a k-variety X which
is generically smooth over k and an invertible subsheaf of (ΩdX/k)⊗r ⊗OX K(X) for
some r ∈ Z>0. We call r the index of (X,L). A morphism (Y,L′) → (X,L) of
weak log pairs is just a morphism Y → X of k-varieties. We say that a dominant
morphism (Y,L′) → (X,L) is crepant if (L′)⊗r = L⊗r′ in (ΩdX/k)⊗rr

′ ⊗OX K(X),
where r′ and r are the indices of (Y,L′) and (X,L) respectively.

The sheaf L plays the role of OX(r(KX +D)) in the case of log pairs.

Definition 6.7.2. Let (X,L) be a weak log pair. We define a fractional ideal
sheaf IX,L,r by

Im
(

(ΩdX/k)⊗r → (ΩdX/k)⊗r ⊗OX K(X)
)

= IX,L,r · L.

We then define

Mst(X,L)C :=

∫
π−1

0 (C)

L
1
r ordIX,L,r dµX ∈ M̂k,r ∪ {∞}.
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Remark 6.7.3. IfX is normal and k-smooth in codimension one, then a log pair
(X,D) (over a possibly imperfect field k) gives a weak log pair (X,OX(r(KX+D))).
Clearly they have the same stringy motive along any constructible subset. If X is
smooth and D has simple normal crossing support, then Mst(X,D)C is computed
in Propositions 4.7.4 and 4.7.5 (even if k is imperfect).

Proposition 6.7.4. Let f : (Y,L′) → (X,L) be a crepant proper birational
morphism of weak log pairs. Let C ⊂ X be a constructible subset. Then

Mst(X,L)C = Mst(Y,L′)f−1(C).

Proof. Similar to the proof of Proposition 6.4.6. �



CHAPTER 7

Working over a formal disk

In this chapter, we generalize the theory in earlier chapters to Dk-schemes.
Most arguments are parallel to ones in the case of k-schemes. Except a few places
where a little caution is required, we omit repeating proofs and just refer to the
corresponding results for k-schemes.

7.1. Jet schemes and arc schemes

Definition 7.1.1. A good Dk-scheme means a Dk-scheme X satisfying the
following conditions:

(1) X → Dk is flat, of finite type and of pure relative dimension,
(2) there exists an open dense subscheme U ⊂ X which is smooth over Dk.

In what follows, X and Y denote good Dk-schemes of relative dimension d. A good
Dk-scheme has an open dense subscheme which is smooth over Dk. Note that for
a Dk-scheme, there are two different notions of Dk-smooth and regular; the former
implies the latter, but the converse doesn’t hold.

Definition 7.1.2 (cf. Definition 3.2.3). We define the n-th jet scheme of a
Dk-scheme X, denoted by Jn(X/Dk), to be the Weil restriction

RDk,n/ Spec k(X ×Dk Dk,n).

(In later chapters, we sometimes abbreviate Jn(X/Dk) as JnX, if there does not
occur any confusion.)

This is by definition a k-scheme (rather than a Dk-scheme) such that for a
k-algebra R, we have

(Jn(X/Dk))(R) = HomDk,n(DR,n, X ×Dk Dk,n)

= HomDk(DR,n, X).

In particular, k-points of Jn(X/Dk) correspond to sections Dk,n → X of the struc-
ture morphism X → Dk on the closed subscheme Dk,n ⊂ Dk.

X

��
Dk,n

� � //

<<

Dk

From [BLR90, Ch. 7, Prop. 5], Jn(X/Dk) is of finite type over k. The 0-th jet
scheme is the special fiber;

J0(X/Dk) = X0 := X ×Dk Spec k.

By base change, we can associate the Dk-scheme W ×k Dk to each k-scheme
W . But not all Dk-schemes are constructed in this way. In this sense, we can

68
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think of Dk-schemes as generalization of k-schemes. That being said, jet schemes
of Dk-schemes defined above are generalization of jet schemes of k-schemes. More
precisely:

Lemma 7.1.3. For a scheme W of finite type over k, the n-th jet scheme JnW
is canonically isomorphic to Jn(W ×k Dk/Dk).

Proof. For a k-algebra R, the R-point sets of JnW and Jn(W ×k Dk/Dk) are
both HomDk(DR,n, X). Thus the two schemes are identical as functors Affop

k →
Set. �

We can prove basic properties of jet schemes of Dk-schemes in the same way as
proving the ones of jet schemes of k-schemes. For instance, we have Jn(AdDk/Dk) ∼=
Ad(n+1)
k (cf. Lemma 3.2.4). For a closed subscheme X = V (f1, . . . , fl) ⊂ AdDk , we

have an explicit description of Jn(X/Dk) as in Lemma 3.2.5. For n′ ≥ n, we have
the truncation morphism

πn
′

n : Jn′(X/Dk)→ Jn(X/Dk).

They are affine morphisms (cf. Lemma 3.3.3).

Definition 7.1.4 (cf. Definitions 3.4.1 and 3.4.2). For a k-algebra R, an arc
of X over R means a Dk-morphism DR → X. A geometric arc of X means an arc
of X over an algebraically closed field. We define the arc scheme of X to be

J∞(X/Dk) ∼= lim←− Jn(X/Dk).

We denote the morphism J∞(X/Dk) → Jn(X/Dk) by πn and call it again by a
truncation morphism.

In particular, an arc over k is just a section of the structure morphism X → Dk.
For a k-algebra R, R-points of J∞(X/Dk) are identified with arcs DR → X over R
(cf. Lemma 3.4.4).

Two key results, a geometric version of Hensel’s lemma (Corollary 3.7.3) and
the Greenberg lifting theorem (Proposition 3.7.4) hold also for good Dk-schemes.

7.2. Motivic integration

For a good Dk-scheme X, we can develop motivic integration on J∞(X/Dk) in
the same way as we did for k-schemes. But note that we use the sheaf of differentials
ΩX/Dk over Dk rather than ΩX/k. This sheaf is locally free of rank d on an open
dense subset, since X is generically Dk-smooth.

For example, we define the Jacobian ideal sheaf of X, denoted by JacX/Dk , to
be the d-th Fitting ideal Fittd(ΩX/Dk) of ΩX/Dk (cf. Definition 3.6.3 ) and denote
its order function by jX . For a generically étale morphism f : Y → X, we define
the Jacobian order of f at an f -ordinary arc α to be

jf (α) := dimL

α[ΩdY/Dk
(f ◦ α)[ΩdX/Dk

(cf. Definition 5.8.2).
Cylinders and negligible subsets are defined in the same way as in Definitions

3.8.1 and 5.6.1 respectively. For an ordinary cylinder C ⊂ J∞(X/Dk), we define its
measure by µX(C) to be

µX(C) := {πn(C)}L−nd ∈ M̂k (n� 0).
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Then we can define admissible functions

h : J∞(X/Dk) ⊃ A→ 1

r
Z ∪ {∞}

as well as the associted integrals∫
A

Lh dµX ∈ M̂k,r ∪ {∞∗}

exactly as in Definition 5.7.1

Remark 7.2.1. Since jet schemes are k-schemes, measures and integrals above
take values in the ring M̂k,r constructed from k-schemes rather than the one con-
structed from kJtK-schemes.

For a generically étale morphism f : Y → X of good Dk-schemes, we can prove
the change of variables formula in the same way as in the case of k-schemes. Al-
though it is exactly the same as before, we restate it here:

Theorem 7.2.2 (The change of variables formula; cf. Theorem 5.13.2). Let
f : Y → X be a generically étale morphism of good Dk-schemes. Let B ⊂ J∞(Y/Dk)
be a subset such that f∞|B is almost geometrically injective. Let h : f∞(B) →
1
rZ ∪ {∞} be an admissible function. Then∫

f∞(B)

Lh dµX =

∫
B

Lh◦f∞−jf dµY .

7.3. Stringy motives

It is also straightforward to generalize the definition of weak log pairs (X,L)
(Definition 6.7.1) to the context of Dk-schemes. For a weak log pair (X,L) and for
a constructible subset C of the special fiber X0, we can define the stringy motive
along C as

Mst(X,L)C :=

∫
π−1

0 (C)

L
1
r ordIX,L,r dµX ∈ M̂k,r ∪ {∞}.

Here the fractional ideal sheaf IX,L,r is given by

Im
(

(ΩdX/Dk)⊗r → (ΩdX/Dk)⊗r ⊗OX K(X)
)

= IX,L,r · L.

When X is normal and Dk-smooth in codimension one, then a weak log pair
corresponds to a log pair (X,D), where D is a Q-divisor such that KX/Dk + D is
Q-Cartier. In this case, we write Mst(X,L)C also as Mst(X,D)C . In particular, if
KX/Dk is Q-Cartier, or equivalently if ω[r]

X/Dk
:= (ΩdX/Dk)∨∨ is invertible for some

positive integer r, then

Mst(X)C = Mst(X, 0)C = Mst(X,ω
[r]
X/Dk

)C .

Remark 7.3.1. The above definition generalizes stringy motives of weak log
pairs over k. To a weak log pair (W,L) over k, we can associate a weak log
pair (W ×k Dk, π

∗L) over Dk, where π is the projection W ×k Dk → W . For
a constructible subset C ⊂ W = (W ×k Dk)0, we have Mst(W,L)C = Mst(W ×k
Dk, π

∗L)C .

Lemma 7.3.2. Suppose that X is regular. Let γ : DL → X be an arc for a
separable field extension L/k. Then X is Dk-smooth along the image of γ.
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Proof. Since L/k is separable, XL := X ⊗k L is also regular [Gro65, Prop.
6.7.4]. Let x ∈ XL be the image of the closed point of DL by the morphism
DL → XL induced by γ. The map γ∗ : OXL,x → LJtK induces a surjection

Ld ∼= mx/m
2
x � 〈t〉/〈t2〉 ∼= L.

Let x1, . . . , xd−1 ∈ mx be generators of the kernel of this map. Then t, x1, . . . , xd
are a regular system of parameters. Therefore ÔXL,x ∼= LJt, x1, . . . , xdK as LJtK-
algebras, which shows that XL is DL-smooth at x. Since being DL-smooth is an
open condition, XL is DL-smooth also at the image of the generic point of DL. The
lemma follows again from [Gro65, Prop. 6.7.4]. �

Proposition 7.3.3. Let C ⊂ X0 be a constructible subset.
(1) If X is Dk-smooth, then Mst(X)C = {C}.
(2) Suppose that X is regular and that k is perfect. Let Xsm ⊂ X be the Dk-

smooth locus. Then we have J∞(X/Dk) = J∞(Xsm/Dk) and Mst(X)C =
{C ∩Xsm}.

Proof. (1) The function 1
r ordIX,0,r in the definition of Mst(X)C = Mst(X, 0)C

is constantly zero. Therefore

Mst(X)C =

∫
π−1

0 (C)

dµX = µX(π−1
0 (C)).

Truncation maps πn
′

n : Jn′(X/Dk)→ Jn(X/Dk) are Zariski locally trivial Ad-bundles.
Therefore µX(π−1

0 (C)) = {C}.
(2) Lemma 7.3.2 shows that J∞(X/Dk) = J∞(Xsm/Dk), which implies

Mst(X)C = Mst(Xsm)C∩Xsm
= {C ∩Xsm}.

�

The most important property of stringy motives, invariance under crepant
proper birational morphisms, is still valid in the present generalized situation:

Proposition 7.3.4 (cf. Proposition 6.4.6). Suppose that f : (Y,L′) → (X,L)
is a crepant, proper and birational morphism of weak log pairs over Dk. Then

Mst(X,L)C = Mst(Y,L′)f−1(C).

7.4. Explicit formula

Recall that for a smooth k-variety W and a Q-divisor D on W with simple
normal crossing support, the stringy motive Mst(W,D) :=

∫
π−1

0 (C)
LordD dµW is

described by the explicit formula, Proposition 4.7.4 (see also Remark 6.3.7). We
now generalize it to Dk-schemes. To do so, we have to be careful about a distinction
between regularity and smoothness and one between vertical prime divisors and
horizontal prime divisors; a prime divisor on a Dk-scheme is called vertical if it is
contained in the special fiber, otherwise called horizontal.

Example 7.4.1. The special fiber X0 is defined, as a closed subscheme of X,
by the ideal sheaf OX · t ⊂ OX , where t is the given parameter of Dk = Spec kJtK.
Therefore the order function ordX0

: J∞(X/Dk) → Z≥0 ∪ {∞} is constantly 1. If
X is Dk-smooth, then for each a ∈ Q, we have

Mst(X, aD)C =

∫
π−1

0 (C)

La dµX = µX(π−1
0 (C))La = {C}La.
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Consider a good Dk-scheme X which is regular, a Q-divisor D on X and a
constructible subset C ⊂ X0. Let Xsm ⊂ X be the Dk-smooth locus. From
Lemma, we have J∞(X/Dk) = J∞(Xsm/Dk) and

Mst(X,D)C = Mst(Xsm, D|Xsm
)C∩Xsm

.

Let us write

D|Xsm =
∑
h∈H

ahAh +
∑
i∈I

biBi,

where ah and bi are rational numbrers, Ah are vertical prime divsors of Xsm and
Bi are horizontal prime divisors of Xsm. Suppose that (X0 ∩ Xsm) ∪

⋃
i∈I Bi is

a simple normal crossing divisor. Namely, each Bi is Dk-smooth and for each
geometric point x ∈ X(L) and for some local coordinates t, x1, . . . , xd ∈ OXL,x,
this divisor is defined by tx1 . . . xl = 0, l ≤ d in a neighborhood of x.

Proposition 7.4.2. With the above notation, if bj < 1 for every j, then we
have

Mst(X,D)C =
∑
h∈H

Lah
∑
J⊂I
{B◦J ∩Ah ∩ C}

∏
j∈J

L− 1

L1−bj − 1
.

Proof. By a similar argument, Lemma 4.7.3 is generalied as follows: For
m = (mi) ∈ (Z≥0)I and for any constructible subset C ′ ⊂ X0,

µX

(⋂
i∈I

ord−1
Bi

(mi) ∩ π−1
0 (C ′)

)
= {B◦Supp(m) ∩ C

′}(L− 1)] Supp(m)L−
∑
i∈I mi .

The same computation as in the proof of Proposition 4.7.4 shows that for each
h ∈ H,

Mst

(
X,
∑
i∈I

biBi

)
Ah∩C

=
∑
J⊂I
{B◦J ∩Ah ∩ C}

∏
j∈J

L− 1

L1−bj − 1
.

Note that since Ah, h ∈ H are vertical prime divisors of Xsm, they are mutually
disjoint. Moreover each Ah is defined by t = 0 in a neighborhood of it. Thus ordAh
is constantly 1 on π−1

0 (Ah), which implies

Mst

(
X, ahAh +

∑
i∈I

biBi

)
Ah∩C

= Lah Mst

(
X,
∑
i∈I

biBi

)
Ah∩C

.

It follows that

Mst(X,D)C = Mst(Xsm, D|Xsm
)C∩Xsm

=
∑
h∈H

Lah Mst

(
X,
∑
i∈I

biBi

)
Ah∩C

=
∑
h∈H

Lah
∑
J⊂I
{B◦J ∩Ah ∩ C}

∏
j∈J

L− 1

L1−bj − 1
.

�
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7.5. Mixed characteristics

7.6. p-adic measures

Let K be a non-archimedian local field, that is, a finite extension of FpJtK or
Zp and let OK be its integer/valuation ring. If X is a smooth OK-scheme of pure
relative dimension d, then the OK-point set X(OK) has a structure of K-analytic
manifold. A local generator ω of ΩdX/OK on an open scheme U ⊂ X defines a
measure νω on U(OK) by

νω(V ) :=

∫
V

|ω| (V ⊂ U(OK)).

Local measures defined in this way glue together to give a global measure νX on
the total space X(OK). This measure νω is called a p-adic or t-adic measure. It
satisfies

νX(X(OK)) = ]X(k)/qd,

where k is the residue field of K and q is its cardinality. We can regard this as an
analogue of the fact that µX(J∞(X/OK)) = {X0}. Indeed, if the motivic measure
µX(J∞(X/OK)) was defined in Mk rather than in its completion M̂k, then the
p-adic (or t-adic) measure νX(X(OK)) is the image of the motivic measure by the
point-counting realization ] : Mk → Q followed by multiplication with qd.

Unfortunately the realization map ] does not extend to a map from the complec-
tion M̂k and we cannot get p-adic measures directly from motivic measures, see dis-
cussion in [R1̈1]. However, we can define the point-counting version of stringy mo-
tives by parallel arguments in the context of p-adic measures instead of motivic mea-

sures as follows. Let us (X,L) be a weak log pair with L ⊂
(

ΩdX/OK

)⊗r
⊗OXK(X).

We can define a measure νL on X(OK)◦ := X(OK)∩Xsm(K) as follows: for a local
generator ω of L, we define a local measure νω by

νω(V ) :=

∫
V

|ω|1/r

and define νL by gluing local measures νω.

Remark 7.6.1. Cluckers and Loeser [CL15,CL10,CL08] have developped
a new model-theoretic framework of motivic integration in charactertic zero and
mixed characteristic, which avoids the completion of the Grothendieck ring and
thus specializes to p-adic integration. However, in the present book, we stick to the
traditional framework, that is, the so-called geometric motivic integration, since
positive characterics are one of our main interests and since it appears very laborious
to combine the model-theoretic approach with the theory of algebraic stacks.

Definition 7.6.2. Let (X,L) be a weak log pair. For a constructible subset
C ⊂ X0, let X(OK)◦C ⊂ X(OK)◦ be the subset of OK-points which sends the closed
point SpecOK into C. We define the stringy point count of (X,L) along C to be

]st(X,L)C := qd · νL(X(OK)◦C) ∈ R≥0 ∪ {∞}.

Morally the stringy point count ]st(X,L)C would be interpreted as the point
counting realization of the stringy motive Mst(X,L)C , which is not rigorously jus-
tified because of the completion problem mentioned above.
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Proposition 7.6.3. (1) If X is regular, then ]st(X)C = ](Xsm ∩ C)(k).
(2) If (Y,L′)→ (X,L) is crepant, then ]st(X,L)C = ]st(Y,L′)f−1(C).
(3) If a log pair (X,D) satisfies the situation of Propotision 7.4.2, then

]st(X,D)C =
∑
h∈H

qah
∑
J⊂I

](B◦J ∩Ah ∩ C)(k)
∏
j∈J

q − 1

q1−bj − 1
.

Remark 7.6.4. If a weak log pair (X,L) is K-equivalent to a log pair (Y,E)
satisfying the situation of Propotision 7.4.2, then Mst(X,L) = Mst(Y,E) lies in

R := Im

(
Mk,r

[
1

Le − 1
| e ∈ 1

r
Z
]
→ M̂k,r

)
.

The point counting realization ] : Mk → Q extends to a map ] : R→ Q and get

](Mst(X,L)C) = ]st(X,L)C .

However, to construct such a log pair (Y,E), we would need resolution of singular-
ities for schemes over OK , which has not been obtained yet.



CHAPTER 8

The McKay correspondence: the tame case

We follow the following convenion on group actions: groups act on schemes from
left and on rings and modules from right, unless otherwise noted. When a group G
acts on an affine scheme SpecR, theG-action on R is given by r·g := g∗(r), where g∗
is the pull-back map R→ R associated to the automorphism g : SpecR→ SpecR.

In this section, G always denotes a finite group. We assume that the base field
k contains the l-th roots of unity with l the exponent of G.

8.1. The original McKay correspondence

Consider a finite subgroup 1 6= G ⊂ SL2(C). It acts on A2
C = SpecC[x, y] say

through the action on the linear part C[x, y]1 = Cx ⊕ Cy = C2 of C[x, y] by right
multiplication of matrices. Note that since it has finite order, each element g ∈ G
can be diagonalized say to (

ζ 0
0 ζ ′

)
.

Since ζζ ′ = 1, if g 6= 1, then neither ζ or ζ ′ is eqaul to 1. This shows that the
G-action on A2

C/G is free and the quotient variety X := A2
C/G = SpecC[x, y]G has

an isolated singularity at the image of the origin. Singularities appearing by this
construction are known by many different names; rational double points, Du Val
singularities, Kleinian singularities, ADE singularities, and so on.

The exceptional locus of the minimal resolution Y → X is a union of projective
lines which are normal crossing (for example, see [Ish18, Theorem 7.5.1] ). The
associated dual graph has vertices corresponding to these projective lines and edges
corresponding to intersection of two projective lines. It is known that the resulting
dual graph is one of Dynkin diagrams of types An (n ≥ 1), Dn (n ≥ 4) and En
(n = 6, 7, 8) (see Figure 8.1.1).

An

Dn

E6

E7

E8

Figure 8.1.1. Dynkin diagrams

McKay [McK80] observed that the same graph is obtained in a purely represen-
tation theoretic way. LetW be the two-dimensional G-representation induced from

75
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the inclusion G ⊂ SL2(C) and let V1, . . . , Vl be the irreducible G-representations.
Here representations are defined over C. For each i ∈ {1, . . . , l}, we can write

Vi ⊗W =

l⊕
j=1

V
⊕nij
j .

In our situation, we have that nij = nji and nij ∈ {0, 1}. The McKay graph
associated to the represetationW has vertices v1, . . . , vl corresponding to irreducible
representations V1, . . . , Vl respectively. We connect two vertices vi and vj by an edge
when nij = nji = 1. The resulting graph is the one of extended Dynkin diagrams
(Figure 8.1.2) that corresponds to the Dykin diagram constructed above in terms
of the minimal resolution of A2

C/G. The extra vertex, the circle “◦” in the figure,
corresponds to the trivial irreducible representation of dimension one.

Ãn

D̃n

Ẽ6

Ẽ7

Ẽ8

Figure 8.1.2. Extended Dynkin diagrams

Let us now recall the following result from representation theory.

Lemma 8.1.1 ( [CR06, (27.22)]). Let G be a finite group and let k be an
algebraically closed field such that char(k) - ]G. Then the number of irreducible
G-representations over k is equal to ]Conj(G), where Conj(G) denotes the set of
conjugacy classes of G.

As an easy consequence of the above observation, we obtain the following propo-
sition, which will be generalized to higher dimensions later:

Proposition 8.1.2. With notation as above, etop(Y ) = ]Conj(G).

Proof. Let E ⊂ Y be the exceptional locus of f . Since A2
C \ {o} → X \ {ō} is

an étale finite cover of degree ]G, we have

etop(Y \ E) = etop(X \ {ō})
= (]G)−1 · etop(A2

C \ {o})
= (]G)−1

(
etop(A2

C)− etop({o})
)

= 0.

Let n be the number of irreducible representations of G. From Lemma 8.1.1,
this is also the number of conjugacy classes in G. From McKay’s observation above,
E has (n−1)-irreducible components. Moreover it has (n−2) nodes, corresponding
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to edges of the Dynkin diagram. Therefore

etop(E) = (n− 1) · etop(P)− (n− 2)

= 2(n− 1)− (n− 2)

= n.

Thus
etop(Y ) = etop(Y \ E) + etop(E) = n.

�

8.2. Pseudo-An-bundles

For the rest of this chapter, we work over a field k. Later we will add extra
conditions on k when necessary.

For a piecewise trivial An-bundle Y → X, we have {Y } = {X}Ln in K0(Vark)

and in M̂k. In application to situations involving finite group actions such as
the McKay correspondenced, we need to have the same equality for more general
bundles, that is, pseudo-An-bundles.

Definition 8.2.1. A morphism f : Y → X of schemes is called a universal
homeomorphism if for every morphism X ′ → X of schemes, the induced morphism
Y ×X X ′ → X ′ gives a homeomorphism of underlying topological spaces.

Definition 8.2.2. Let f : Y → X be a morphism of k-varieties. We say that
f is a pseudo-An-bundle if for every geometric point x : SpecL → X, there exists
a universal homeomorphism AnL/H → f−1(x) over L, where AnL/H is the quotient
variety for some finite group action H y AnL. More generally, consider a morphism
f : W → V of k-varieties and let D ⊂ W and C ⊂ V be constructible subsets
with f(D) ⊂ C. The map f |D : D → C is a pseudo-An-bundle if there exists a
stratification C =

⊔l
i=1 Ci by locally closed subsets Ci ⊂ V such that for each

i, the preimage (f |D)−1(Ci) ⊂ W is a locally closed subset and the morphism
(f |D)−1(Ci)→ Ci is a pseudo-An-bundle.

Definition 8.2.3. We denote by M̂′k,r the quotient ring of M̂k,r modulo the
following relation: if a morphism Y → X of k-varieties is a pseudo-An-bundle, then
{Y } = {X}Ln. When r = 1, we usually omit the subscript r and simply write M̂′k.

Since every universal homeomorphism Y → X of k-varieties is a pseudo-A0-
bundle, we have {Y } = {X} in M̂′k. The following proposition shows that the new
relation imposed in this definition is reasonable.

In what follows, we denote by X the base change X⊗k ksep of X to a separable
closure ksep of k.

Lemma 8.2.4. Let G be a finite group acting on Adk and let X := Adk/G. Then,
for every i ∈ Z, we have isomorphisms of Gk-representations:

Hi
c(X,Ql) ∼=

{
Ql(−d) (i = 2d)

0 (i 6= 2d)

If k = C, we also have isomorphisms of mixed Hodge structures:

Hi
c(X,Q) ∼=

{
Q(−d) (i = 2d)

0 (i 6= 2d)
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Proof. First consider the case k = C. As is well-known, we have

Hi
c(X,Q) ∼= Hi

c(X, (π∗QCd)G) ∼= Hi
c(AdC,Q)G.

Indeed, this follows from [Gro57, p. 202] and the isomorphism of sheaves QX ∼=
(π∗QCd)G. From Lemma 2.3.3 and the fact that the G-action on on H2d

c (AdC,Q)

is trivial, we get that Hi
c(X,Q) = 0 for i 6= 2d and H2d

c (X,Q) is one-dimensional.
Since H2d

c (X,Q) → H2d
c (Cd,Q) is an isomorphism of mixed Hodge structures, we

conclude H2d
c (X,Q) ∼= Q(−d).

Next consider the case of a general field k. From [Mil80, Prop. 11. 8], we have

H2d
c (X,Ql) ∼= H2d

c (Adksep ,Ql) ∼= Ql(−d).

We also have

Hi
c(X, f∗f

∗Ql,X) ∼= Hi
c(X, f∗Ql,Ad

ksep
) ∼= Hi

c(Adksep ,Ql).

Here the right isomorphism follows from the fact that Ri f!Ql = Ri f∗Ql = 0 for
i 6= 0 and the spectral sequence Ei,j2 = Hi

c(X,Rj f!Ql) ⇒ Hi+j
c (Adksep ,Ql). Let m

be the degree of f . From [MR073, XVII, 6.2.5 and 6.2.6], the composite map

Ql,X → f∗f
∗Ql,X

Trf−−→ Ql,X
of Ql-sheaves on X is multiplication by m. We get maps

Hi
c(X,Ql)→ Hi

c(Adksep ,Ql)→ Hi
c(X,Ql)

whose composition is multiplication bym. This shows that the map Hi
c(Adksep ,Ql)→

Hi
c(X,Ql) is surjective. It follows that Hi

c(X,Ql) = 0 for i 6= 2d. �

Lemma 8.2.5. Let f : Y → X be a universal homeomorphism of k-varieties.
Then

Hi
c(Y ,Ql) ∼= Hi

c(X,Ql).
If k = C, we also have

Hi
c(Y,Q) ∼= Hi+2n

c (X,Q).

Proof. The second assertion is clear, as f is a homeomorphism in the ananlytic
topology. For the first assertion, Ri f!Ql,Y = 0 for i 6= 0 and from [MR073, XVII,
6.2.5], we have a map

f!Ql,Y → Ql,X .
It is easy to see that the last map is an isomorphism. The desired isomorphism
follows from the spectral sequence Ei,j2 = Hi

c(X,Rj f∗Ql)⇒ Hi+j
c (Y ,Ql). �

Lemma 8.2.6. Let f : Y → X be a flat morphism of k-varieties which is a
pseudo-An-bundle. Then

Hi
c(Y ,Ql) ∼= Hi+2n

c (X,Ql)⊗Ql(−n).

Similarly, if k = C and if the smooth locus of f in Y surjects onto X, then

Hi
c(Y,Q) ∼= Hi+2n

c (X,Q)⊗Q(−n).

Proof. From [MR073, XVIII, Th. 2.9], we have the trace map

(8.2.1) Trf : R2n f!Ql,Y → Ql(−n)X .

For each geometric point x of X, this induces the trace map of f−1(x),

H2n
c (f−1(x),Ql)→ Ql(−n),
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which is an isomorphism from [Mil80, Lem. 11.3]. It follows that (8.2.1) is an
isomorphism. From Lemmas 8.2.4 and 8.2.5, Ri f!Ql,Y = 0 for i 6= 2n. From the
spectral sequence

Ei,j2 = Hi
c(X,Rj f!Ql,Y )⇒ Hi

c(Y ,Ql),
we get

Hi
c(Y ,Ql) ∼= Hi+2n

c (X,R2n f!Ql,Y ) ∼= Hi+2n
c (X,Ql)⊗Ql(−n).

The proof of the second assertion is parallel except that there seems no reference
for the trace map corresponding to (8.2.1) in the same generality; we only have a
reference in the case of smooth morphisms [Bil17, Prop. 4.1.5.4]. We show that
the trace map exists in our situation by reducing to the smooth case. Let U ⊂ Y
be the smooth locus of f . From the result mentioned above, we have the trace map
R2n f!QU → Q(−n)X of mixed Hodge modules. We also have the exact sequence

0 = R2n−1 f!QY \U → R2n f!QU → R2n f!QY → R2n f!QY \U = 0.

Here the two equalities hold, because every fiber of Y \ U → X has dimension
< n. Thus we have R2n f!QU ∼= R2n f!QY and get the desired trace morphism
R2n f!QY → Q(−n)X . The second assertion is then proved by parallel arguments
using mixed Hodge modules. �

Proposition 8.2.7. Let f : Y → X be a pseudo-An-bundle of either k-varieties
or constructible subsets. Then

χl(Y ) = χl(X ×k Adk) in K0(Repl(Gk)).

If k = C, we also have

χHodge(Y ) = χHodge(X ×k Ank ) in K0(MHS).

Proof. We first consider the first assertion. From the additivity of χl, it
suffices to consider the case where f is a morphism of k-varieties. From the generic
flatness, we may also assume that f is flat. In this situation, the assertion follows
from Lemma 8.2.6. For the second assertion, let U ⊂ Y be the smooth locus of f .
Then f(U) is an open dense subset of X. From Lemma 8.2.6, we have

χHodge(U) = χHodge(f(U)×k Ank ).

We can show the desired equality by induction. �

Corollary 8.2.8. Consider realization maps P, E, χHodge and χl from M̂k

in Section 2.5 uniquely factor through M̂′k.

Proof. The uniqueness follows from the fact that M̂′k is a quotient of M̂k. If
χ denote any of these realization maps, then we claim that for a pseudo-An-bundle
Y → X, χ({Y }) = χ({X}Ln), which proves the corollary.

For χHodge and χl, the claim follows from the last proposition. For E, the
claim follows from the one for χHodge. For P, if k is finitely generated, the claim
follows from the one for χl. For a general field k, every pseudo-An-bundle Y → X
is the base change of a morphism Y ′ → X ′ of k′-varieties such that k′ is a finitely
generated subfield of k. The morphism Y ′ → X ′ is again a pseudo-An-bundle and
P({Y ′}) = P({X ′}Ln). Since the Poincaré polynomial is stable under the bsae
change [Nic11, Lem. 8.9], we get the equality for Y → X. �
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8.3. The motivic McKay correspondence: the tame case

In this section, we generalize Proposition 8.1.2 to higher dimensions under the
tameness assumption. Let k be a field of characteristic p ≥ 0 and let G ⊂ GLd(k)
be a finite subgroup. The G-action on the affine space Adk = Spec k[x1, . . . , xd] is
then defined in the same way as in Section 8.1. Let X denote the quotient variety
Adk/G.

Definition 8.3.1. An element g ∈ GLd(k) of finite order is called tame if its
order is not divisible by p; we follow the convention that 0 does not divide any
positive integer so that everything is tame in characteristic zero. We say that a
subgroup G ⊂ GLd(k) and its action on Adk are tame if all the elements of G are
tame, or equivalently, if ]G is not divisible by p.

Definition 8.3.2. An element g ∈ G is called a pseudo-reflection if the fixed
point locus (Adk)g has codimension one. We say that G ⊂ GLd(k) is a small subgroup
if G has no pseudo-reflection.

Lemma 8.3.3. The following are equivalent:
(1) G is a small subgroup.
(2) The quotient morphism Adk → X is étale in codimension one.
(3) The relative canonical divisor KAdk/X

is zero.

Proof. The equivalence (1)⇔(2) follows from the fact that the ramification
locus of π is exactly

⋃
g∈G\{1}(Adk)g, the locus of points which are fixed by some

nontrivial group element. Since KAdk/X
is supported in the ramification locus, we

have (2)⇒(3). To show (3)⇒(2), it suffices to show that, outside a closed subset of
codimension ≥ 2, KAdk/X

coincides with the ramification locus of π . Let V ⊂ Adk
be the preimage of the smooth locus Xsm. Note that X \ Xsm and Adk \ V has
codimension ≥ 2 in X and Adk respectively. Indeed, when k is algebraically closed,
this follows from the normality of X. For a general field k, we only need to take the
base change to an algebraically closure k. Now KV/Xsm

= KAdk/X
|V is the effective

divisor defined by the Jacobian ideal Jacπ, which is the 0-th Fitting ideal of ΩV/Xsm
.

In particular, the support of KV/Xsm
is identical to that of ΩV/Xsm

. The latter is
exactly the ramification locus of V → Xsm. �

Remark 8.3.4. If G is tame and contained in SLd(k), then it is small. For,
if g ∈ G was a pseudo-reflection, then its diagonalization would be of the form
diag(ζ, 1, . . . , 1), ζ 6= 1, which is not an element of SLd(k). But, there are wild
subgroups of SLd(k) which are not small. For example, if k has characteristic
p > 0, then the elements of the subgroup

Z/pZ ∼=
〈(

1 1
0 1

)〉
⊂ SL2(k)

are pseudo-reflections except the identity matrix.

Let l be the exponent of our finite group G, which is by definition the least
common multiple of orders of elements g ∈ G. We suppose that k contains l-th
roots of unity and fix a primitive l-th root ζl ∈ k.

Definition 8.3.5. Let g ∈ G ⊂ GLd(k). We can diagonalize it over k, say into
a diagonal matrix diag(ζa1

l , . . . , ζadl ) with 0 ≤ ai < l. Then we define the age of g
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to be

age(g) :=
1

l

d∑
i=1

ai.

Note that the age of g is determined by eigenvalues of g. Thus it is preserved
under conjugation in GLd(k).

Remark 8.3.6 (A canonical definition of ages). The age of an element of G
depends on the choice of the primitive l-th root ζl. If ζ ′l = ζal is another primitive
l-th root of unity (a is a poitive integer coprime to l) and if age′ : G→ Q is the age
function defined by using ζ ′l , then we have age ◦α = age′, where α is the bijection
G→ G, g 7→ ga. The map α induces a bijection Conj(G)→ Conj(G) also denoted
by α and the equality age ◦α = age′ hold also on Conj(G). To define ages more
canonically, we can associate the age to an embedding ι : µm ↪→ G ⊂ GLd(k) for a
divisorm of l; if Va denotes the 1-dimensional µm-representation given by ζ ·v = ζav
for ζ ∈ µm and v ∈ Va and if the d-dimensional µm-representation induced by ι is
isomorphic to

⊕d
i=1 Vai , then we define

age(ι) :=
1

l

d∑
i=1

ai.

A choice of a primitive l-th root ζl gives the primitive m-th root ζm := ζ
l/m
l , a

generator of µm. We have the one-to-one correspondence:

{embeddings µm ↪→ G} ↔ G

ι 7→ ι(ζm)

We easily see that this correspondence preserves ages.

Lemma 8.3.7. We have that age(g) ∈ Z if and only if g ∈ SLd(k).

Proof. With the above notaion, we have det(g) = ζ
∑
ai

l . Thus det(g) = 1 if
and only if

∑
ai is divisible by l. The latter is equivalent to that age(g) ∈ Z. �

Theorem 8.3.8 (The motivic McKay correspondence: the tame case). Let k
be a field and let G ⊂ GLd(k) be a tame finite subgroup with exponent l. Let A
be the unique Q-divisor on X such that ψ∗(KX + A) = KAdk

, where ψ denotes the
morphism Adk → X. Suppose that k contains the l-th roots of unity. Then

(8.3.1) Mst(X,A) =
∑

[g]∈Conj(G)

Ld−age(g) in M̂′k,r.

Here r is a positive integer such that age(g) ∈ 1
rZ for every g ∈ G.

The proof of this theorem will be given in Section 8.7. Note that if G is a small
subgroup, then A = 0 and we have Mst(X,A) = Mst(X). Note also that although
the age of each g ∈ G depends on the choice of the primitive l-th root ζl, the right
hand side of on this page is independent of the choice. The assumpion on roots
of unity is, on one hand, related to the Kummer theory. On the other hand, it is
related to the fact that over such a field k, g ∈ G is diagonalizable. Actually, k is
a splitting field for G:
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Remark 8.3.9 (Splitting fields). A G-representation V over a field k is called
absolutely irreducible if for every extension L/k, the scalar extension V ⊗k L is
irreducible. A field k is a splitting field for G if every irreducible G-representation
over k is absolutely irreducible. It is known that k is a splitting field for G if
and only if every irreducible k-representation is realizable over k [CR06, (70.3)].
From [Bra45], if k contains the l-th roots of 1 with l the exponent of G, then k is
a splitting field for G. If G is moreover abelian and tame, then every irreducible
G-representation over k is of dimension one.

For a finite subgroup G ⊂ SL2(C), the minimal resolution of A2
C/G is crepant

(see [Ish18, Th. 7.5.1]). In higher dimensions, we use crepant resolutions in place
of minimal resolutions. Note that in general, a quotient variety Adk/G may not
have a crepant resolution or may have multiple crepant resolutions. The following
theorem generalizes Proposition 8.1.2.

Theorem 8.3.10 ( [Bat99]). Let G ⊂ SLd(C) be a finite subgroup and let
X := AdC/G. Suppose that there exists a crepant resolution Y → X. Then etop(Y ) =
]Conj(G).

Proof. We apply Theorem 8.3.8 to the case where k = C and G ⊂ SLd(C). If
Y → X is a crepant resolution, we obtain

(8.3.2) {Y } = Mst(X) =
∑

[g]∈Conj(G)

Ld−age(g).

Taking the E-polynomial realization, we have

E(Y ;u, v) =
∑

[g]∈Conj(G)

(uv)d−age(g)

and

etop(Y ) = E(Y ; 1, 1) = ]Conj(G).

�

Theorem 8.3.10 is refined as follows.

Theorem 8.3.11 ( [IR96,Bat99,Yas06]). In the situation of Theorem 8.3.10,
the cohomology groups H2i+1(Y,Q) of odd degree vanish and

H2i(Y,Q) ∼= Q(−i)⊕ni ,

where

ni := ]{[g] ∈ Conj(G) | age(g) = i}.

Sketch of the proof. This basically follows from equality (8.3.2) and the
fact that Hi

c(Y,Q) have pure Hodge structures of weight i. To show the last fact,
we first show that the Gm-action on X lifts to Y . Then, using this action, we
get a stratification Y =

⊔
Yi where each Yi has structure of a vector bundle over

a smooth proper variety. We see that cohomology groups of Yi are pure, which
implies the desired fact. �
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8.4. Twisted arcs

The McKay correspondence can be regarded as the problem of describing in-
variants of a quotient variety X = Adk/G in terms of the G-action on Adk (without
passing to the quotient). The stringy motive Mst(X,A) (with notation of Theorem
8.3.8) is by definition a motivic integral on the arc space J∞X. To describe it in
terms of the G-action on the affine space, we would like to lift arcs of X to Adk.
However we cannot do it in the naive way; an arc DL → X does not generally lift
to an arc DL → Adk.

Adk

��
DL

//

@
>>

X

Moreover those arcs which are not liftable to X form a subset of J∞X of nonzero
measure. Namely the map J∞ Adk → J∞X is not almost surjective. For this reason,
it would be hopeless to express Mst(X,A) by means of the arc space J∞ Adk with
the G-action. This is in contrast with the case of proper birational morphisms. If
f : Z → X is a proper birational morphism, then J∞ Z → J∞X is almost bijective
and a motivic integral on J∞X is transformed to one on J∞ Z using the change of
variables formula. To settle the issue of non-liftability, we introduce the notion of
twisted arcs.

Definition 8.4.1. Suppose that k contains the l-th roots of unity; let µl ⊂ k
be the group consisting of them. For a k-algebra R, let Dl

R := SpecRJt1/lK.

We have a natural µl-action on Dl
R. The quotient Dl

R/µl is identified with DR.
Let G be a finite group and let V be a k-variety with a G-action.

Definition 8.4.2. For an embedding (an injective homomorphism) ι : µl ↪→ G,
an ι-twisted arc of V over R is an ι-equivariant k-morphism Dl

R → V ; we call it
geometric when R is an algebraically closed field. We define the scheme of ι-twisted
arcs of V to be the functor (Affk)op → Set mapping SpecR to the set of ι-twisted
arcs of V over R; we denote it by Jι∞ V .

It will turn out in Section 8.5 that this functor is indeed a scheme.
Let X := V/G and let π : V → X be the quotient morphism. Given an ι-

twisted arc Dl
R → V , we can take its µl-quotient induces DR = Dl

R/µl → V/ι(µl).
Composing it with V/ι(µl)→ X, we get an arc DR → X. This induces a morphism
Jι∞ V → J∞X.

For g ∈ G, let cg denote the conjugation map G → G, h 7→ ghg−1. For
an ι-twisted arc γ : Dl

R → V and for g ∈ G, we have the following commutative
diagram:

Dl
R

γ //

ζ

��

V

ι(ζ)

��

g // V

cg◦ι(ζ)
��

Dl
R γ

// V
g
// V
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Thus g◦γ : Dl
R → V is a cg ◦ι-twisted arc. Let Emb(µl, G) be the set of embeddings

µl ↪→ G. We define a G-action on ∐
ι∈Emb(µl,G)

Jι∞ V

by g · γ := g ◦ γ and by mapping Jι∞ V onto Jcg◦ι∞ V .
Let Conj(µl, G) = Emb(µl, G)/G be the set of G-conjugacy classes of em-

beddings µl ↪→ G. The stabilzier subgroup of ι ∈ Emb(µl, G) is the centralizer
CG(ι) := CG(ι(µl)). Therefore, for each field L, we can identify ∐

ι∈Emb(µl,G)

(Jι∞ V )(L)

 /G =
∐

[ι]∈Conj(µl,G)

(Jι∞ V )(L)/CG(ι).

We see that the map

(8.4.1)
∐
l>0

∐
ι∈Emb(µl,G)

Jι∞ V → J∞X

is G-invariant and hence induces∐
l>0

∐
[ι]∈Conj(µl,G)

(Jι∞ V )(L)/CG(ι)→ (J∞X)(L).

The last map is almost bijective. More precisely, let Ram ⊂ VD and Bra ⊂ XD

be the ramification and branch loci of VD → XD respectively and let Jι,◦∞ VD :=
Jι∞ VD \ Jι∞Ram and J◦∞XD = J∞XD \ J∞ Bra. They parametrizes (ι-twisted)
arcs mapping the generic point of Dl or D into the étale locus of VD → XD in VD

or XD respectively.

Proposition 8.4.3. Let L be an algebraically closed field. Then the map∐
l>0

∐
[ι]∈Conj(µl,G)

(Jι,◦∞ V )(L)/CG(ι)→ (J◦∞X)(L)

is bijective.

Proof. Let γ : DL → X be an arc defining a point of (J◦∞X)(L). Let E be
the normalization of DL ×X V . The projection E → DL is a G-cover. Let E0 ⊂ E
be a connected component and let H ⊂ G be its stabilizer, that is, H = {g ∈ G |
g(E0) = E0}. The field extension F/LLtM corresponding to E0 → DL is a Galois
extension with Galois group H. If l := ]H, then there is an LLtM-isomorphism
F ∼= LLt1/lM, which induces an isomorphism H ∼= µl. The induced morphism
Dl
L
∼−→ E0 → V is an ι-twisted arc, where ι is the composition µl

∼−→ H ↪→ G. We
see that this ι-twisted arc maps to γ by the map of the proposition. Thus the map
of the proposition is surjective.

Next we show the injectivity. Let α : Dl
L → V be an ι-twisted arc defining

a point of (Jι,◦∞ V )(L) and let γ : DL → X be the induced arc. Let C be the
normalization of Dl

L ×X V . The projection C → Dl
L restricts a G-torsor over

SpecLLt1/lM, which has a section. Thus this is a trivial G-torsor and C is the
disjoint union of ]G copies of Dl

L. This shows that there are exactly ]G morphisms
Dl
L → V that induces γ and they are transitively permuted by the G-action on V .

Therefore the G-orbit G · α is exactly the fiber of map (8.4.1) over γ, which shows
the proposition. �



8.5. UNTWISTING 85

This proposition gives, up to a negligible subset, a decomposition of the arc
space J∞X into finitely many subsets indexed by the finite set

∐
l>0 Conj(µl, G).

We will compute the contribution of each stratum to Mst(X,A). The proposition is
also regarded as an analogue of Proposition 4.2.1 for proper birational morphisms.

8.5. Untwisting

We reduce the study of ι-twisted arcs to the one of usual arcs. But, to do so,
we need to swtich over from k-varieties to Dk-schemes as discussed in Chapter 7.
From now on, we write Dk simply as D. Recall that we can identify J∞ V and
J∞X respectively with J∞(VD/D) and J∞(XD/D). We abbreviate the latters as
J∞ VD and J∞XD. We also have Mst(XD) = Mst(X). We define twisted arcs on
VD as follows.

Definition 8.5.1. For an embedding ι : µl ↪→ G, an ι-twisted arc of VD over
R is an ι-equivariant D-morphism Dl

R → VD; we call it geometric when R is an
algebraically closed field. We define the scheme of ι-twisted arcs as the functor
(Affk)op → Set sending SpecR to the set of ι-twisted arc of VD over R; we denote
it by Jι∞ VD.

Clearly Jι∞ V = Jι∞ VD. Corresponding to the bijection in Propostion 8.4.3, for
an algebraically closed field L, we get a bijection

(8.5.1)
∐
l>0

∐
[ι]∈Conj(µl,G)

(Jι,◦∞ VD)(L)/CG(ι)→ (J◦∞XD)(L),

where the superscript ◦ again means restrction to (twisted) arcs sending the generic
point to the étale locus of VD → XD.

Let us now come back to the situation where V is an affine space Adk and G acts
on it linearly. We fix an embedding ι : µl ↪→ G. By a suitable coordinate transform,
we suppose that the induced µl-action on V = Spec k[x1, . . . , xd] is diagonal and
write

ι(ζ) = diag(ζa1 , . . . , ζad) (0 ≤ ai < l, ζ ∈ µl).

Definition 8.5.2. Let V |ι|D be another copy of AdD = Spec kJtK[x1, . . . , xd] and
let

V
〈ι〉
D := V

|ι|
D ×D Dl = Spec kJt1/lK[x1, . . . , xd].

be its base change to Dl with the canonical morphism r : V
〈ι〉
D → V

|ι|
D . We call V |ι|D

the untwisting scheme (of V or VD) with respect to ι and that it is given morphisms
below relating it with VD, V

〈ι〉
D , and XD.

We define a D-morphism u : V
〈ι〉
D → VD to be the one corresponding to the

following kJtK-algebra homomorphism:

u∗ : kJtK[x1, . . . , xd]→ kJt1/lK[x1, . . . , xd]

xi 7→ tai/lxi

We let CG(ι) act on VD, V
|ι|
D and V 〈ι〉D by scalar extension of the original k-linear

action on V .

Lemma 8.5.3. The morphism u is CG(ι)-equivariant.
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Proof. We regard each g ∈ G as a matrix (gij) in the obvious way. Then

ι(ζ)g = (ζaigij) and gι(ζ) = (ζajgij).

Thus, for a primitive l-th root ζ of unity, ι(ζ) and g are commutative if and only
if gij = 0 for every (i, j) with ai 6= aj . By a similar reasoning, the last condition is
equivalent to that T := diag(ta1/l, . . . , tad/l) and g are commutative. We conclude
that if g ∈ CG(ι), then T and g are commutative. The linear part w :

⊕
i kJtKxi →⊕

i kJt
1/lKxi of u∗ is given by the right multiplication with T . The commutativity

of g and T for g ∈ CG(ι) means that w is CG(ι)-equivariant. Hence u is also
CG(ι)-equivariant. �

Proposition 8.5.4. With the above notation, there exist a unique D-morphism
ψ|ι| : V

|ι|
D → XD which makes the following diagram commutative:

(8.5.2) V
〈ι〉
D

r //

u

��

V
|ι|
D

ψ|ι|

��
VD

ψ
// XD

Proof. We claim that

u∗
(
kJtK[x1, . . . , xd]

G
)
⊂ kJtK[x1, . . . , xd].

Once this is proved, then ψ|ι| is defined to be the morphism corresponding to this
inclusion. Then we easily see that this satisfies the desired property. To show the
claim, it suffices to show

u∗
(
kJtK[x1, . . . , xd]

ι(µl)
)
⊂ kJtK[x1, . . . , xd].

The invariant subring kJtK[x1, . . . , xd]
ι(µl) is generated as a kJtK-module by those

monimials xe11 · · ·x
ed
d with

∑
i eiai divisible by l. For such a monomial, we have

u∗(xe11 · · ·x
ed
d ) = t(

∑
i eiai)/lxe11 · · ·x

ed
d ∈ kJtK[x].

This shows the latter inclusion above, which in turn shows the claim. �

Remark 8.5.5. The morphism V
〈ι〉
D ⊗kJt1/lK kLt1/lM→ VD ⊗kJtK kLt1/lM induced

by u is an isomorphism. Therefore we have an isomorphism VD ⊗kJtK kLt1/lM ∼=
V
|ι|
D ⊗kJtK kLt1/lM, which is compatible to maps to XD ⊗kJtK kLt1/lM. In this sense,
ψ|ι| is a twisted form of ψ and they share the same branch locus in XD.

The following result will be necessary in the proof of the motivic McKay cor-
respondence, Theorem 8.3.8.

Proposition 8.5.6. Following the notation of Theorem 8.3.8, we let A be the
Q-divisor on X such that V → (X,A) is crepant and let AD be its pull-back to
XD. Let V0 denote V ∼= Adk regarded as a prime divisor of VD. Then the relative
canonical divisor K

V
|ι|
D /(XD,AD)

is age(ι)V0, where age(ι) denotes the age of the
embedding ι given in Remark 8.3.6.

Proof. By definition, the map VD → (XD, AD) is crepant. From Remark
8.5.5, the map V

|ι|
D → (XD, AD) is also crepant on generic fibers (that is, fibers
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over the generic point η ∈ D). Therefore K
V
|ι|
D /(XD,AD)

is of the form eV0 for some
e ∈ Q.

By base changing three schemes in (8.5.2), we get the following diagram.

(8.5.3) V
〈ι〉
D

��

V
|ι|
D ×D Dl

��
VDl

// XDl

Let V ′0 ⊂ V
〈ι〉
D be the special fiber of V 〈ι〉D → Dl regarded as a prime divisor. The

relative canonical divisor K
V
〈ι〉
D /(X

Dl
,A

Dl
)
is equal to the pull-back of K

V
|ι|
D /(XD,AD)

and hence

K
V
〈ι〉
D /(X

Dl
,A

Dl
)

= leV ′0 .

On the other hand, since VDl → (XDl , ADl) is crepant, we have

K
V
〈ι〉
D /(X

Dl
,A

Dl
)

= K
V
〈ι〉
D /V

Dl
.

Since the morphism AdDl ∼= V
〈ι〉
D → VDl

∼= AdDl is given by xi 7→ tai/lxi, the d-form
dx1 ∧ · · · ∧ dxd on VDl is pulled back to t

∑
i ai/ldx1 ∧ · · · ∧ dxd on V 〈ι〉D . Therefore

K
V
〈ι〉
D /V

Dl
= (
∑
i

ai)V
′
0 .

We get le =
∑
i ai. �

Proposition 8.5.7. For each k-algebra R, there exists a one-to-one correspon-
dence

(8.5.4) (Jι∞ VD)(R)↔ (J∞ V
|ι|
D )(R)

which is functorial in R, CG(ι)-equivariant and compatible with the maps

ψ∞ : (Jι∞ VD)(R)→ (J∞XD)(R) and

ψ|ι|∞ : (J∞ V
|ι|
D )(R)→ (J∞XD)(R).

Moreover, if we put J◦∞ V
|ι|
D := J∞ V

|ι|
D \ J∞ Z where Z is the non-étale locus of

V
|ι|
D → XD, then the above correspondence restricts to

(8.5.5) (Jι∞ VD)(R)◦ ↔ (J∞ V
|ι|
D )(R)◦.

Proof. Let γ : Dl
R → VD be a D-morphism. The γ is an ι-twisted arc if and

only if γ∗(xi) ∈ tai/l ·RJtK. If this is the case, there exsists a unique Dl-morphism
γ̃ : Dl

R → V
〈ι〉
D such that γ = u ◦ γ̃, which is given by γ̃∗(xi) = t−ai/lγ∗(xi) ∈ RJtK.

The composition r ◦ γ̃ factors as

Dl
R → DR

γ′−→ V
|ι|
D ,
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where γ′ is the arc given by (γ′)∗(xi) = γ̃∗(xi). We define correspondence (8.5.4)
by γ ↔ γ′. Construction gives the following commutative diagram:

(8.5.6) Dl
R

//

γ̃
��

γ

��

DR

γ′

��
V
〈ι〉
D

r //

u

��

V
|ι|
D

ψ|ι|

��
VD

ψ
// XD

Both ψ∞(γ) and ψ|ι|∞(γ′) are identical to the unique morphism Dl
R → XD given by

this diagram, which shows that correspondence (8.5.4) is compatible with ψ∞ and
ψ
|ι|
∞. Since (Jι,◦∞ VD)(R) and (J◦∞ V

|ι|
D )(R) are both the preimages of (J◦∞XD)(R),

correspondence (8.5.5) holds.
Since u ard r are CG(ι)-equivariant, a simple diagram chasing shows that the

correspondence obtained above is CG(ι)-equivariant. �

Corollary 8.5.8. The functor Jι∞ VD : (Affk)◦ → Set is a scheme.

Proof. The correspondence in the last proposition gives a natural isomor-
phism of functors Jι∞ VD

∼= J∞ V
|ι|
D . Since the right hand side is a scheme, so is the

left hand side. �

As a conclusion of this section, for an algebraically closed field L, we obtain
the bijection

(8.5.7)
∐
l>0

∐
[ι]∈Conj(µl,G)

(J◦∞ V
|ι|
D )(L)/CG(ι)→ (J◦∞XD)(L)

which corresponds to (8.5.1). In this map, only ordinary/untwisted arcs are in-
volved. Thus this is very close to the setting of the change of variables formula
for D-schemes (Theorem (7.2.2)), except that we take quotients by CG(ι). In the
next section, we slightly generalized the change of variables formula incorporating
so that we can incorporate these CG(ι)-actions.

8.6. Equivariant motivic integration for untwisted arcs

We now consider an arbitrary good D-scheme X (see Definition 7.1.1) which
has an action of a finite group G over D.

Definition 8.6.1. We say that a subset A ⊂ J∞XD is G-invariant if for every
g ∈ G, g(A) = A. We say that a function h : A→ 1

rZ∪{∞} on a subset A ⊂ J∞XD

is G-invariant if A is G-invariant and for every g, h = h ◦ g.

For a G-invariant ordinary cylinder C, from Lemma 3.8.2, its image πn(C) by
a truncation map is a G-invariant constructible subset. The quotient πn(C)/G is
then defined to be the image of πn(C) in the quotient scheme (JnXD)/G, which is
a constructible subset.

Remark 8.6.2. If πn(C) is a locally closed subset say with reduced structure,
then there exists a universal homeomorphism from the quotient scheme πn(C)/G
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to its image in (JnXD)/G, but it may not be an isomorphism. As we will work in
M̂′k, the difference by a universal homeomorphism does not matter.

Definition 8.6.3. For a G-invariant ordinary cylinder C ⊂ | J∞XD|, we define

µX,G(C) := {πn(C)/G}L−dn ∈ M̂′k (n� 0).

Here d denotes the relative dimension of X over D.

From Lemma 5.5.3, for n� 0, the map πn+1(C)→ πn(C) is a piecewise trivial
Ad-bundle. It follows that the map πn+1(C)/G→ πn(C)/G is a pseudo-Ad-bundle,
which in turn shows that µX,G(C) is well-defined.

Lemma 8.6.4. Let

h : J∞(X/D) ⊃ A→ 1

r
Z ∪ {∞}

be an admissible function which is G-invariant. Then there exists a stratification
A =

⊔
i∈I Ai t N into countably many ordinary G-invariant cylinders Ai, i ∈ I

and a G-invariant negligible subset N such that for every i, the restriction f |Ai is
constant with value different from ∞.

Proof. From the definition of admissible functions (Definition 5.7.1), there
exists a stratification A =

⊔
i∈NAi tN satisfying the above conditions except the

one that Ai and N be G-invariant. We modify Ai’s inductively into G-invariant
ones. First we replace A0 with

⋃
g∈G g(A0), then replace Ai, i 6= 0, with Ai \

A0. This operation makes A0 to be G-invariant, keeping Ai’s disjoint and their
union unchanged. Applying the same operation inductively, we can make all the
Ai to be G-invariant. Lastly we replace N with N \

⋃
i∈NAi to get the desired

stratification. �

Definition 8.6.5. With the notation of the above lemma, we can define the
motivic integral associated to h with respect to µX,G as follows:∫

A

Lh dµX,G :=
∑
i

µX,G(Ai)Lh(Ai) ∈ M̂′k,r ∪ {∞∗}.

We can show that the above integral is independent of the choice of stratification
A =

⊔
i∈I Ai tN in the same way as in the non-equivariant case.

Remark 8.6.6. We may write the above integral also as(∫
A

Lh dµX
)
/G.

Here we define
∫
A
Lh dµX in the G-equivariant version G-M̂k,r of M̂k,r, lifting the

one defined in M̂k,r. The quotient above is obtained by sending it by the “taking
quotients” map

•/G : G-M̂k,r → M̂′k,r, {X} 7→ {X/G}.

To prove the change of variables formula in the equivariant setting, we first
show the following slight generalization of Lemma 5.9.3.

Lemma 8.6.7 (Fiber inclusion lemma; the equivariant case). Let Y and X be
good D-schemes with G-actions and let f : Y → X be a generically étale and G-
equivariant D-morphism. Let L be a field and let β, β′ ∈ (J∞ Y )(L). Let n ∈ Z≥0
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and suppose that fnπn(β) and fnπn(β′) are in the same G-orbit. Writing e := jf (β),
eX := jX(f∞(β)) and eY := jY (β), we suppose that n ≥ max{2e+eY , eX}. Suppose
also that β, β′ ∈ C(L) for a G-invariant cylinder C of level n− e and that the map

C(L)/G→ f∞(C(L))/G

induced by f∞ is injective. Then πn−e(β) and πn−e(β′) are in the same G-orbit.

Proof. Replacing β with an element in the same G-orbit, we may suppose
that fnπn(β) = fnπn(β′). For α := f∞(β′), let γ ∈ (J∞ Y )(L) as in Lemma 5.9.1.
Since C is a cylinder of level n− e and πn−e(β) = πn−e(γ), we see that γ ∈ C(L).
Since C(L)/G → f∞(C(L))/G is injective, the equality f∞(γ) = f∞(β′) implies
that γ and β′ are in the same G-orbit, which shows the lemma. �

Lemma 8.6.8 (The Ae-fibration lemma; the equivariant case). Let f : Y →
X be a generically étale and G-equivariant morphism of good D-schemes. Let
n, e, eX , eY ∈ Z≥0 be such that n ≥ max{2e + eY , eX}. Let C ⊂ J∞ Y be a G-
invariant cylinder of level n−e such that jf |C ≤ e, (jX ◦f∞)|C ≤ eX and jY |C ≤ eY .
Suppose that the map C/G→ f∞(C)/G is geometrically injective. Then the map

πn(C)/G→ fn(πn(C))/G

is a pseudo-Ae-bundle. In particular,

µY,G(C) = µX,G(f∞(C))Le.

Proof. From Lemma 5.10.1, f∞(C) is a cylinder of level n. Since only geomet-
ric fibers are concerned, by the usual base change argument, we may assume that k
is algebraically closed and it suffices to consider fibers over k-points. Let β ∈ C(k)
and let α ∈ f∞(C)(k) be its image. Let H be the fiber of πn(C) → fn(πn(C))
over αn = πn(α) and let F [ be the fiber of πn(C)→ πn−e(C) over πn−e(β). From
Lemma 8.6.7, we have H ⊂

⋃
g∈G g(F [). Let H ′ := H ∩F [. By the same argument

as one in the proof of 5.11.1, we can identify F [(k) with HomkJtK(β
[ΩY/kJtK, t

n−e+1
n+1 )

and H ′(k) ⊂ F [(k) with the following linear subspace

Ker
(

HomkJtK(β
[ΩY/kJtK, t

n−e+1
n+1,k )→ HomkJtK((f ◦ β)[ΩX/kJtK, t

n−e+1
n+1,k )

)
∼= k⊕e.

This shows that H ′ is an e-dimensional linear subspace of F [ ∼= Adek . Since H =⋃
g∈G g(H ′), if G′ ⊂ G denotes the stablizer of H ′, then we have an injection

Aek/G′ ∼= H ′/G′ → πn(C)/G

ontoH/G (as a subset of πn(C)/G; cf. Remark 8.6.2). We conclude that πn(C)/G→
fn(πn(C))/G is a pseudo-Ae-bundle. It follows

µY,G(C) = {πn(C)/G}L−nd

= {fn(πn(C))/G}L−nd+e

= µX,G(f∞(C))Le.

�

Now, by using Lemma 8.6.8, the change of variables formula in the present
equivariant situation is proved in the same way as was Theorem 5.13.2.



8.7. PROOF OF THE TAME MOTIVIC MCKAY CORRESPONDENCE 91

Theorem 8.6.9 (The change of variables formula; the equivariant case). Let
G be a finite group and let Y and X be good D-schemes with G-actions. Let
f : Y → X be a generically étale and G-equivariant D-morphism. Let B ⊂ J∞ Y
be a G-invariant subset such that the map B/G → f∞(B)/G is almost geoetri-
cally injective; namely, there exists G-invariant negligible subsets N ⊂ J∞ Y and
M ⊂ J∞X such that (B \N)/G→ (f∞(B) \M)/G is geometrically bijective. Let
h : f∞(B)→ 1

rZ ∪ {∞} be a G-invariant admissible function. Then∫
f∞(B)

Lh dµX,G =

∫
B

Lh◦f∞−jf dµY,G ∈ M̂′k,r ∪ {∞∗}.

Remark 8.6.10. As a morphism f : Y → X in the above theorem, we are
mainly interested in one such that the G-action on X is trivial. In this case, µX,G
is the same as µX except that it takes values in M̂′k,r rather than M̂k,r. Thus we
may denote µX,G also by µX and write the change of variables formula as∫

f∞(B)

Lh dµX =

∫
B

Lh◦f∞−jf dµY,G =

(∫
B

Lh◦f∞−jf dµY
)
/G.

For the right equality, see Remark 8.6.6.

8.7. Proof of the tame motivic McKay correspondence

In this section, we prove Theorem 8.3.8. We write V = Adk, which is given with
the G-action. By definition, X = V/G. From Remark 7.3.1, we have Mst(X,A) =
Mst(XD, AD), where AD is the pull-back of A by the projection XD → X. Thus we
can write

(8.7.1) Mst(X,A) =

∫
J∞XD

L
1
r ordI dµXD

,

where I denotes the ideal sheaf IXD,AD,r (see Section 7.3).
By untwisting, we get geometric bijection 8.5.7∐

[ι]

J◦∞ V
|ι|
D /CG(ι)→ J◦∞XD,

where [ι] runs over G-conjugacy classes of embeddings µl ↪→ G (without l be-
ing fixed). Let Kι := K

V
|ι|
D /XD

. Applying Lemma 6.4.5 to the crepant map

ψ|ι| : (V
|ι|
D ,−Kι)→ (XD, AD), we get

1

r
ordIXD,AD,r

◦ψ|ι|∞ − jψ|ι| =
1

r
ordI

V
|ι|
D
,−Kι,r

= − ordKι .

From the change of variables formula, we have

(8.7.2)
∫

J∞XD

L
1
r ordI dµXD

=
∑
[ι]

∫
J∞ V

|ι|
D

L− ordKι dµ
V
|ι|
D ,CG(ι)

.
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From Proposition 8.5.6, Kι is the special fiber multiplied with age(ι). Therefore its
order function is constant age(ι) (see Example 7.4.1). It follows that∫

J∞ V
|ι|
D

L− ordKι dµ
V
|ι|
D ,CG(ι)

= µ
V
|ι|
D ,CG(ι)

(J∞ V
|ι|
D )L− age(ι)

= {(J0 V
|ι|
D )/G}L− age(ι)

= {Adk/G}L− age(ι)

= Ld−age(ι).

(8.7.3)

Note that the last equality follows from the definition of M̂′k,r. Combining (8.7.1),
(8.7.2) and (8.7.3) gives

Mst(X,A) =
∑
[ι]

Ld−age(ι).

Theorem (8.3.8) is now obtained by rewriting the right hand side as a sum over
conjugacy claases in G acording to Remark 8.3.6.



CHAPTER 9

The McKay correspondence: the wild case

In this chapter, we discuss generalization of the McKay correspondence to the
wild case. We postpone the rigorous proofs of main results until ??. Instead, we
focus on understanding key ideas on why these results should be expected.

We keep denoting the characteristic of our field k by p.

9.1. G-covers of the formal disk

Definition 9.1.1. Let G be a finite group. A G-cover of D∗k = Spec kLtM means
an (étale) G-torsor E∗ over D∗k. A G-cover of Dk means the integral closure of Dk

in some G-cover E∗ of D∗k. Equivalently, a G-cover of D∗k is a regular scheme E
given with a G-action and a flat, finite, and G-invariant morphism E → Dk that
induces an isomorphism E/G ∼= Dk.

There is an obvious one-to-one correspondence betweeen G-covers of D∗k and
G-covers of Dk. Regarding the McKay correspondence in the tame case, µl-covers,

Dl
k = Spec kJt1/lK→ Dk = Spec kJtK,

for positive integer l with p - l played important roles. It is because, if k is alge-
braically closed and if G is a tame finite group, then every G-cover of Dk is induced
from the µl-cover Dl

k → Dk for some l via an injection µl ↪→ G. In particular,
there are only finitely many G-covers, which are in one-to-one correspondence with
elements of

∐
p-l Conj(µl, G). If we drop the tameness condition, this is no longer

true, as the following example shows.

Example 9.1.2 (Artin-Schreier extensions of kLtM). The Artin-Schreier theory
says that Z/pZ-covers of Dk are parametrized by the quotient set kLtM/℘(kLtM).
Here ℘ is the selfmap of kLtM given by f 7→ fp− f . If k is algebraically closed, then
the composite map ⊕

l>0, p-l

k · t−l ↪→ kLtM � kLtM/℘(kLtM)

is bijective. It follows that there are infinitely many Z/pZ-covers of Dk, which are
parametrized by the infinite dimensional affine space

⊕
l>0, p-l k · t−l. Since the

trivial cover Dkq· · ·qDk → Dk is the only non-connected Z/pZ-cover of Dk, there
are infinitely many connected Z/pZ-covers.

Definition 9.1.3 (Working definition of G-Cov(D)). A P-moduli space of G-
covers of the formal disk, denoted by G-Cov(D), is a k-scheme X =

∐
i∈I Xi that

is the disjoint union of countably many affine k-schemes Xi = SpecRi, i ∈ I, that
is given, for each i ∈ I, a finite-type affine k-scheme Yi = SpecSi, a G-torsor

93
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Ei → D∗Si = SpecSiLtM and a surjective morphism fi : Yi � Xi, and such that for
every algebraically closed field F/k, the induced map∐

i∈I
Yi(F )→ {G-torsors over D∗F }

uniquely factors as∐
i∈I

Yi(F )
fi(F )−−−→ X(F )

bij.−−→ {G-torsors over D∗F }.

Roughly, the above definition says that geometric points ofG-Cov(D) parametrizes
G-torsors over D∗F and there exists a versal family

∐
Ei →

∐
D∗Si of G-torsors over

D∗. Note that a P-moduli space G-Cov(D) (according to the working definition) is
not unique. Indeed, stratifying one component Xi as Xi =

∐
j Xij by finitely many

subschemes Xij gives a new P-moduli space. If Xi → X
(p)
i denotes the relative

Frobenius, then replacing Xi with X
(p)
i also gives a new P-moduli space. However,

for two P-moduli spaces, say G-Cov(D)1 and G-Cov(D)2, there exists a unique
P-isomorphism G-Cov(D)1 → G-Cov(D)2 that preserves correspondences between
geometric points and G-torsors.

Theorem 9.1.4. For any finite group G, a P-moduli space G-Cov(D) exists.

Example 9.1.5. For G = Z/pZ, we can put

G-Cov(D) =
∐

j>0, p-j

Gm,k × Aj−1−bj/pc
k .

The j-component Gm,k × Aj−1−bj/pc
k corresponds to the setf ∈ ⊕
l>0, p-l

k · t−l | ord(f) = −j

 .

9.2. P-moduli space

Definition 9.2.1. A morphism of k-schemes Y → X is a sur covering if it is
locally of finite presentation and surjective.

We denote by GPk the category of geometric poits SpecF → Spec k of of
Spec k, which is a full subcategory of Affk. In what follows, we often identify a
k-scheme X with the associated (contravariant) functor Affk → Set. For a functor
F : Affk → Set, we denote by F |GPk its restriction to GPk.

Definition 9.2.2. For k-schemes X and Y , a P-morphism f : Y → X is a
morphism f : Y |GPk → X|GPk of functors GPk → Set such that there exist a
k-scheme Z, a sur covering g : Z → X and a morphism h : Z → Y that make the
following diagram commutative:

Z|GPk

g|GPk

$$

h|GPk

zz
Y |GPk f

// X|GPk
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We denote by HomP
k (Y,X) the set of P -morphisms Y → X. A P-morphism f : Y →

X is a P-isomorphism if there exists a P-morphism g : X → Y such that f ◦ g =
idX|GPk

and g ◦ f = idY |GPk
.

We easily see that the composition of P-morphisms is again a P-morphism.

Proposition 9.2.3. Let X and Y be k-schemes locally of finite type. A P-
morphism f : Y → X is a P-isomorphism if and only if there exist universally
bijective finite-type morphisms Z → Y and Z → X of k-schemes such that the
diagram in the last definition is commutative.

Proof. ??? �

Definition 9.2.4. We denote by P -Schk the category whose objects are k-
schemes and morphisms are P-morphisms. We mean by a P-scheme a k-scheme
regarded as an object of P -Schk.

Definition 9.2.5. For a k-scheme X, we define a functor XP : Affk → Set by

XP (Y ) := HomP
k (Y,X).

Note that for k-schemes X and Y , the set Hom(Y P , XP ) of morphisms Y P →
XP of functors is canonically identified with HomP

k (Y,X).

Definition 9.2.6. Let F : Affk → Set be a contravariant functor. A P-moduli
space of F is a k-scheme X given with a morphism f : F → XP of functors such
that

(1) for every algebraically closed field F/k, f(F ) : F(F )→ XP (F ) is bijective,
(2) for any morphism g : F → Y P with Y a k-scheme, there exists a unique

morphism h : XP → Y P of functors such that g = h ◦ f .

It is clear that a P-moduli space is unique up to unique P-isomorphism.

Theorem 9.2.7. The functor

CG : Affk → Set, SpecR 7→ {G-torsors over SpecRLtM}/ ∼=

has a P-moduli space that is the disjoint union of countably many affine k-schemes
of finite type.

Definition 9.2.8. We denote a P-moduli space of the last theorem byG-Cov(D).

9.3. Twisted arcs

Let V be a good D-scheme (see Definition 7.1.1) given with an action of a finite
group G. We suppose that there exists a G-invariant open dense subscheme U ⊂ V
on which G acts freely. Let X := V/G be the associated quotient scheme and let
π : V → X be the quotient morphism.

Definition 9.3.1. For a G-cover E → D, an E-twisted arc of V is a G-
equivariant D-morphism E → V . Let (JE V )(k) be the set of E-twisted arcs of
V .

Remark 9.3.2 (Relation to ι-twisted arc). Suppose that G is tame and k
is algebraically close. A connected component E0 of every G-cover E → D is
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isomorphic to Dl = Spec kJt1/lK as a cover of D. Choosing an isomorphism E0
∼= Dl

defines an injection ι : µl ↪→ G. For an E-twisted arc E → V , the composition

Dl → E0 ↪→ E → V

is an ι-twisted arc. Thus, in the tame case, ι-twisted arc anre E-twisted arc are
essentially the same notion. However, simplicty of the group µl and its action on
Dl is an advantage of considering ι-twisted arcs.

For an E-twisted arc γ : E → V , the induced morphism

π∞(γ) : D = E/G→ V/G = X

is an arc of X. Thus we get a map

π∞ :
∐
E

(JE∞ V )(k)→ (J∞X)(k), γ 7→ π∞(γ),

where E runs over all G-covers of D (modulo isomorphisms). If α : E → E is an
automorphism of E as a G-cover of D (that is, a G-equivariant D-isomorphism),
then π∞(γ) = π∞(γ ◦ α). Thus π∞ factors through a map

(9.3.1)
∐
E→D

(JE∞ V )(k)/Aut(E)→ (J∞X)(k),

where E → D runs over the G-covers of D.
Conversely, suppose that we are given an arc β : D → X is an arc sending

the generic point ηD into the étale locus of π. If E denotes the normalization
of D ×β,X,π V , then the narual morphism E → D is a G-cover and the natural
morphism γ : E → V is an E-twisted arc such that π∞(γ) = β.

E //

γ

))
D×X V //

��

V

π

��
D

β=π∞(γ)
// X

Moreover, the induced twisted arc γ is unique modulo automorphisms of E. Roughly
speaking, the above arguments show the claim that map (9.3.1) is “almost bijec-
tive.” To make this claim precise, we need to consider geometric points rather than
k-points and G-covers of DF for algebraically closed fields F , and define a motivic
measure on the space of twisted arcs. This will be treated in a later section in a
more general context by using stacks.

9.4. Hom schemes

We keep the notation of the last section. We construct the untwisting scheme
V |E| that plays the same role as V |ι| considered in Chapter 8. Construction is more
intrinsic than the one in the tame case and uses the Hom scheme.

Definition 9.4.1. Let S be a scheme and let X and Y be S-scheme. Suppose
that X is flat and proper over S and that Y is finitely presented over S. The Hom
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scheme HomS(X,Y ) is defined to be an S-scheme representating the following
functor:

SchS → Set

T 7→ HomT (X ×S T, Y ×S T )

Note that HomT (X×ST, Y ×ST ) is identified with HomS(X×ST, Y ). WhenX and
Y have G-actions, we can also define the G-equivariant Hom scheme HomG

S (X,Y )
representing the functor:

SchS → Set

T 7→ HomG
T (X ×S T, Y ×S T )

It is known that the Hom scheme exists and is locally of finite presentation over
S . When X and Y have G-actions, we can define the G-action on HomS(X,Y ) by
g · f := g ◦ f ◦ g−1. The G-equivariant Hom scheme HomG

S (X,Y ) is the fixed locus
of this action, which is a closed subscheme of HomS(X,Y ).

Remark 9.4.2. Note that, for an S-scheme W with an automorphism g : W →
W , the fixed point locus W g fits into the cartesian diagram:

W g
� _

��

� � // W

∆

��
W

(id,α)
// W ×S W

This shows that W g is a closed subscheme of W . (Recall that every scheme is,
by assumption, separated and the diagonal morphism is a closed immersion.) The
G-fixed locus WG for an action of a finite group G is given as the intersection⋂
g∈GW

g.

Lemma 9.4.3. If X is finite over S, then HomS(X,Y ) is of finite presentation
over S.

Proof. We prove this only when Y is quasi-projective over S. For the general
case, we refer the reader to [Yas19]. The problem is local on S. So we may suppose
that S is connected. ThenX → S has constant rank say r. We choose an immersion
X × Y ↪→ PnS . Sending a morphism f : X ×S T → Y ×S T to the graph

Γf ⊂ (X ×S T )×T (Y ×S T ) = (X ×S Y )× T
defines an immersion

HomS(X,Y ) ↪→ Hilbr(PnS/S).

Here the subscript r means that this is the Hilbert scheme associated to the constant
polynomial r. Since Hilbr(PnS/S) is of finite presentation over S, so is HomS(X,Y ).

�

Proposition 9.4.4. Suppose that X and Y have G-actions and that X → S is
a G-torsor.

(1) There is a natural isomorphism

HomG
S (X,Y ) ∼= (X ×S Y )/G,

where G acts on X ×S Y diagonally.



9.4. HOM SCHEMES 98

(2) If S = SpecF for a field F , then HomG
SpecF (X,Y ) is a twisted form of Y .

Namely, HomG
SpecF (X,Y )⊗F F and Y ⊗F F are isomorphic over F .

Proof. (1) A G-equivariant morphism f : X → Y induces the G-equivariant
morphism

X
(id,f)−−−→ X ×S Y,

which, in turn, induces

S = X/G→ (X ×S Y )/G.

Thus, we get a map of sets of S-points,

(9.4.1) HomG
S (X,Y )(S)→ ((X ×S Y )/G)(S).

Conversely, for a morphism S → (X ×S Y )/G, let

X ′ := S ×(X×SY )/G (X ×S Y ).

Since X ×S Y → (X ×S Y )/G is a G-torsor, so is X ′ → S. The natural morphisms
X ′ → X and X ′ → Y are G-equivariant S-morphisms. In particular, X ′ → X
is a G-equivariant morphism of G-torsors, and hence an isomorphism. We get a
G-equivariant morphism

X
∼−→ X ′ → Y.

This construction gives the inverse of map (9.4.1). We get a one-to-one correspon-
dence

HomG
S (X,Y )(S)↔ ((X ×S Y )/G)(S).

Moreover, this correspondence is functorial; for each S-scheme T , we can construct
a one-to-one correspondence of T -points. Thus, HomG

S (X,Y ) and (X ×S Y )/G are
naturally isomorphic functors, and hence isomorphic as S-schemes.

(2) We have

HomG
SpecF (X,Y )⊗F F = HomG

SpecF
(XF , YF ) ∼= (XF ×F YF )/G.

Since X ⊗F F is a trivial G-torsor over X, we have (XF ×F YF )/G ∼= YF . �

Lemma 9.4.5. Suppose that G transitively acts on the connected components of
X. Let X0 be a connected component of X and let H ⊂ G be its stabilizer. Then
we have a canonical isomorphism HomG

S (X,Y ) ∼= HomH
S (X0, Y ).

Proof. We choose a subset {g0 = 1, g1, . . . , gm} such that X =
∐
i gi(X0).

For an S-scheme T and a G-equivariant morphism X ×S T → Y , the restriction
X0×ST → Y is H-equivariant. Conversely, an H-equivariant morphism X0×ST →
Y uniquely extends to a G-equivariant morphism γ : X ×S T → Y ; we define it so
that its restriction to gi(X0) ×S T is gi ◦ γ ◦ g−1

i . It is straightforward to check
that the constructed morphism is indepedent of the choice of {g0, . . . , gm} and
G-equivariant. These constructions give a natural isomorphism of two functors

HomG
S (X,Y ),HomH

S (X0, Y ) : SchS → Set.

�
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9.5. Untwisting revisited

We follow the notation of Section 9.3.

Definition 9.5.1. For a G-cover E → D, we define the untwisting scheme V |E|

of V with respect to E to be the closure of HomG
D(E, V ) ×D D∗ in HomG

D(E, V )
given with the reduced structure.

Remark 9.5.2. From Lemma 9.4.5, if E0 ⊂ E is a connected componet with
stabilizerH and if we define the untwisting scheme V |E0| with respect to the induced
H-action on V , then V |E| ∼= V |E0|. It is sometimes helpful to reduce to the case
where E is connected by using this fact.

Lemma 9.5.3. The untwisting scheme is a good D-scheme.

Proof. From Lemma 9.4.3, V |E| is a finite type D-scheme. From Proposi-
tion 9.4.4, the generic fiber (V |E|)η is of pure dimension and has an open dense
subscheme that is smooth over D∗. From construction, V |E| is of pure relative
dimension and flat over D, and contains an open dense subscheme that is smooth
over D. �

The universal morphism HomG
D(E, V )×D E → V , which is defined over D and

G-equivariant, restricts to u : V |E| ×D E → V . Since V |E| → D is flat, we have
(V |E| ×D E)/G = V |E|. Therefore, we get the natural morphiosm

π|E| : V |E| = (V |E| ×D E)/G→ V/G = X.

This is Aut(E)-invariant with respect to the natural Aut(E)-action on V |E|. These
morphisms form the following commutative diagram:

(9.5.1) V |E| ×D E
rE //

uE

��

V |E|

π|E|

��
V

π
// X

Here rE denotes the projection. The restrcition of π|E| to generic fibers,

(π|E|)η : (V |E|)η = HomG
D∗(E

∗, Vη)→ Xη,

can be expressed as a natural transform of funtors as follows:

HomG
D∗(E

∗, Vη)(T )→ Xη(T )

(E∗ ×D∗ T → Vη) 7→ (T = (E∗ ×D∗ T )/G→ Vη/G = Xη)

This expression implies that (π|E|)η is a twisted form πη (cf. Proposition 9.4.4). In
particular, (π|E|)η is a generically étale finite morphism whose branch locus is the
same as the one of πη. In summary, diagram (9.5.1) has the following properties:

Proposition 9.5.4. Morphisms rE and π are finite. Morphisms (rE)η, (π|E|)η,
(uE)η, and πη are all finite and generically étale. Morphisms (π|E|)η and πη are
twisted forms of each other.

Remark 9.5.5. In the tame case, we can similarly define a morphism HomG
D(E, V )→

X as the natural transform that sends a G-equivariant D-morphism E ×D T → V
to the induced morphism

T = (E ×D T )/G→ V/G = X.
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In the wild case, the equality T = (E ×D T )/G holds only when T → D is flat.
Therefore, the above construction of the morphism HomG

D(E, V )→ X is not valid,
and taking the flat variant V |E| of HomG

D(E, V ) is necessary.

Proposition 9.5.6. There exists a natural one-to-one correspondence

(JE V )(k)↔ (JV |E|)(k)

that is compatible with the map π∞ : (JE V )(k)→ (J∞X)(k) defined in Section 9.3
and the map (π|E|)∞ : (JV |E|)(k) → (J∞X)(k) derived from π|E|. Moreover, the
correspondence is compatible with the Aut(E)-action on both sides.

Proof. By construction, we have the natural one-to-one correspondences:

(JE V )(k)↔ HomG
D(E, V )(D)↔ (JV |E|)(k)

Let α : E → V be a twisted arc and let β : D→ V |E| be the corresponding arc. The
arc π∞(α) is the morphism

D = E/G→ V/G = X

induced by α. Let us consider the restriction of β to D∗, βη : D∗ → (V |E|)η, which
corresponds to αη : E∗ → Vη. From the description of (π|E|)η as a natural transform
of functors, the morphism (π|E|)η ◦ βη : D∗ → X is the morphism

D∗ = E∗/G→ Vη/G = Xη

induced by αη. This shows that the arcs π∞(α) and (π|E|)∞(β) coincide when
restricted to D∗. Since X is separated, they coincide without restriction. It is
straightforward to check that the correspondence with the Aut(E)-actions. �

Remark 9.5.7. The correspondence of the propostioin induces a map∐
E∈G-Cov(D)(k)

(JV |E|)(k)/Aut(E)→ (JX)(k).

If k is algebraically closed or if we consider all geometric points, then this map
becomes almost bijective in a justifiable sense.

The following lemma is useful to reduce problems to the case where E is con-
nected.

Lemma 9.5.8. Let E0 be a connected component of E and let H ⊂ G be its
stabilizer. We have a canonical isomorphism

V |E| ∼= V |E0|.

Proof. We have �

9.6. A rough sketch of the wild McKay correspondence

Suppose now that V is normal and given a Q-divisor B with KX + B being
Q-Cartier and that B is stable under the G-action. Then X has a unique Q-divisor
A such that KX + A is Q-Cartier and (V,B) → (X,A) is crepant. Indeed, if
KV/X is the relative canonical divisor (that is, the ramification divisor), then A is
determined by the equality

π∗A = ∆ +KV/X .
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See [Kol13, pages 64–65]. For aG-cover E→ D, let V |E|,ν denote the normalization
of V |E|. It has a unique Q-divisor B|E| such that KV |E|,ν + A is Q-Cartier and
(V |E|,ν , B|E|)→ (X,A) is crepant.

We now mimic the proof of the tame McKay correspondence in Section 8.7.
From Lemma 6.4.5, we have

1

r
ordIX,A,r ◦(π|E|,ν)∞ − jπ|E|,ν =

1

r
ordI

V |E|,ν ,B|E|,r
.

Here π|E|,ν denotes the morphism V |E|,ν → X. From Theorem 8.6.9,∫
(π|E|,ν)∞(J∞ V |E|,ν)

L
1
r ordIX,A,r dµX =

∫
J∞ V |E|

L
1
r ordIX,A,r dµX,Aut(E)

= Mst(V
|E|,ν , B|E|)/Aut(E).

From the “almost bijection” in Remark 9.5.7, we see that Mst(V
|E|,ν , B|E|)/Aut(E)

is the contribution of E to the stringy motive Mst(X,A). Similarly, if C ⊂ X0 is
a constructible subset of X0 ⊗kJtK k, then the contribution of E to Mst(X,A)C is
Mst(V

|E|,ν , B|E|)(π|E|,ν)−1(C). Therefore, we can expect:

The wild McKay correspondence (a naive formulation). We have:

Mst(X,A)C = “
∫
G-Cov(D)

Mst(V
|E|,ν , B|E|)(π|E|,ν)−1(C)/Aut(E) ”

In particulaf, for C = X0, we have:

Mst(X,A) = “
∫
G-Cov(D)

Mst(V
|E|,ν , B|E|)/Aut(E) ”

Remark 9.6.1. We do not know whether the map

G-Cov(D)(k)→ M̂′k,r, E 7→ Mst(V
|E|,ν , B|E|)(π|E|,ν)−1(C)/Aut(E)

extends to a locally constructible function on G-Cov(D). Therefore, we need some
effort to define the above integrals over G-Cov(D) rigorously.

Remark 9.6.2. If we use weak log pairs rather than usual log pairs, we can
treat the case where X is non-normal and avoid taking the normalization of V |E|.
If (X,L) is a weak log pair, then for each G-cover E → D, we can define a natural
structure of weak log pair (V |E|,L|E|) on the untwisting scheme V |E|. Then, the
wild McKay correspondence is then naively formulated as:

Mst(X,L)C = “
∫
G-Cov(D)

Mst(V
|E|,L|E|)(π|E|)−1(C)/Aut(E) ”

9.7. Linear actions: tuning modules and v-functions

We now focus on the case where V = AdD and G acts on it linearly. We can write
V = Spec(Sym(M)), where M is a free kJtK-module of rank d with a G-action and
Sym(M) is the associated symmetric algebra having the induced G-action, which
is identified with kJtK[x1, . . . , xd] if we fix a basis x1, . . . , xd of M .

Definition 9.7.1. Let E = SpecOE → D be a G-cover. We define the tuning
module of E to be

ΞE := HomG
kJtK(M,OE),

the module of G-equivariant kJtK-module homomorphisms M → OE .
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Lemma 9.7.2. The module ΞE is a saturated kJtK-submodule of HomkJtK(M,OE).
(Here the term “saturated” means that HomkJtK(M,OE)/ΞE is a torsion-free kJtK-
module.)

Proof. The tuning module ΞE is the kernel of the kJtK-linear map

(9.7.1) HomkJtK(M,OE)→ HomkJtK(M,OE)⊕G, α 7→ (α ◦ g − g ◦ α)g∈G.

Therefore it is a kJtK-submodule of HomkJtK(M,OE). To show the saturatedness,
we need to show that for α ∈ HomkJtK(M,OE) and 0 6= f ∈ kJtK, if fα ∈ ΞE ,
then α ∈ ΞE . Indeed, if fα ∈ ΞE , then for every m ∈ M and g ∈ G, we have the
following equalities of elements of kJtK:

f(α(mg)) = (fα)(mg) (definition of fα)

= ((fα)(m))g (fα ∈ ΞE)

= (f(α(m)))g (definition of fα)

= f((α(m))g) (g is kJtK-linear)

Since kJtK is an integral domain, we have that α(mg) = (α(m))g. This means that
α is G-equivariant, and hence α ∈ ΞE . �

Lemma 9.7.3. For a flat kJtK-algebra R, we have natural isomorphism:

ΞE ⊗kJtK R ∼= HomG
L (M ⊗kJtK R,OE ⊗kJtK R) ∼= HomG

kJtK(M,OE ⊗kJtK R)

Proof. The right isomorphism is obvious. Applying − ⊗kJtK R to the exact
seqeunce

0→ ΞE → HomkJtK(M,OE)
map (9.7.1)−−−−−−−→ HomkJtK(M,OE)⊕G,

we get the exact sequence

0→ ΞE ⊗kJtK R→ HomkJtK(M,OE)→ HomkJtK(M,OE ⊗kJtK R)⊕G.

This shows the desired isomorphism. �

Lemma 9.7.4. The tuning module ΞE is a free kJtK-module of rank d.

Proof. Since HomkJtK(M,OE) is a torsion-free kJtK-module, so is ΞE . Since
kJtK is a princial ideal domain, ΞE is a free kJtK-module. It remains to compute the
rank. We take a field extension L/kLtM trivializing the G-torsor E∗ → D∗. Namely,
OE⊗kJtKL is isomorphic to L⊕G as a kJtK-algebra and G acts on it by permutation.
Since L is a flat kJtK-algebra, we see

ΞE ⊗kJtK L ∼= HomG
L (M ⊗kJtK L,OE ⊗kJtK L) ∼= HomG

L (M ⊗kJtK L,L
⊕G).

The last module is explicitly presented as

{(φ ◦ g)g∈G : M ⊗kJtK L→ L⊕G | φ ∈ HomL(M ⊗kJtK L,L)},

and hence isomorphic to HomL(M ⊗kJtK L,L) ∼= L⊕d. Thus

rankkJtK ΞE = rankL(ΞE ⊗kJtK L) = d.

�

Proposition 9.7.5. We have natural isomorphisms:

V |E| ∼= Spec(Sym(Ξ∨E)) ∼= AdD
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Proof. We first observe that for a flat kJtK-algebra R, we have functorial
one-to-one correspondences:

HomG
D(E, V )(R)↔ HomG

kJtK(M,OE ⊗kJtK R)

↔ HomG
kJtK(M,OE)⊗kJtK R

↔ Ξ∨∨E ⊗R
↔ (Spec(Sym(Ξ∨E))(R)

Letting R vary over kLtM-algebras, we see

HomG
D(E, V )η ∼= Spec(Sym(Ξ∨E))η.

The canonical Sym(Ξ∨E)-point of Spec(Sym(Ξ∨E)) corresponds to a morphism

Spec(Sym(Ξ∨E))→ HomG
D(E, V ),

which is the unique extension of the isomorphism of generic fibers. The image
of the last morphism is contained in V |E|. We construct the inverse V |E| →
Spec(Sym(Ξ∨E)) as follows. We take an affine open covering V |E| =

⋃
SpecSi.

The above correspondences give morphisms

SpecSi → Spec(Sym(Ξ∨E)),

which glue together to define V |E| → Spec(Sym(Ξ∨E)). �

In particular, V |E| is normal and V |E|,ν = V |E|.

Definition 9.7.6. For a G-cover E → D, we define

vρ(E) :=
1

]G
`kJtK

(
HomkJtK(M,OE)

OE · ΞE

)
∈ 1

]G
Z≥0,

where `kJtK denotes the length of a kJtK-module.

Lemma 9.7.7. Let k′/k be a field extension and let E → D be a G-cover. Let
ρk′ be the G-representation over k′JtK induced by ρ and let Ek′ → Dk′ be the induced
G-cover. Then

vρ(E) = vρk′ (Ek′).

Proof. We see that
Homk′JtK(M ⊗kJtK k

′JtK, OE ⊗kJtK k
′JtK)

OEk′ · ΞEk′
∼=

HomkJtK(M,OE)

OE · ΞE
⊗kJtK k

′JtK.

Therefore, the k′JtK-length of the left module is equal to the kJtK-length of

HomkJtK(M,OE)/OEΞE .

�

Proposition 9.7.8. Suppose that V has the zero boundary divisor B = 0. Then
the induced divisor B|E| on V |E| is vρ(E) ·(V |E|)0, where (V |E|)0 is the special fiber
of V |E| and regarded as a prime divisor.

Proof. From Lemma 9.7.7, we may assume that k is algebraically closed.
From Remark 9.5.2, we may suppose that E is connected. It suffices to show that
V |E| ×D E → V and V |E| ×D E → (V |E|,v(E) · (V |E|)0) have the same relative
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canonical divisor. The different d ⊂ OE of the extension OE/kJtK is, by definition,
the annihilator ideal of ΩOE/kJtK. We have

KV |E|×DE/V = KV |E|×DE/V×DE + div(d),

where div(d) denotes the effective divisor on V |E| ×D E defined by d. The E-
morphism V |E| ×D E → V ×D E corresponds to the natural OE-module homo-
mophism

α : M ⊗kJtK OE → HomkJtK(HomG
kJtK(M,OE), OE)

between two freeOE-modules of rank d. The divisorKV |E|×DE/V×DE is the effective
divisor defined by the determinant of this map. Thus

KV |E|×DE/V = div(det(α)) + div(d).

On the other hand, we have

KV |E|×DE/(V |E|,v(E)·(V |E|)0) = KV |E|×DE/V |E| + v(E)div(t).

= div(d) + v(E)div(t).

It remains to show the equality

div(det(α)) = v(E)div(t)

of divisors on V |E| ×D E. The OE-dual of α is identical to the natural injection

HomG(M,OE)⊗OE OE ↪→ HomkJtK(M,OE),

which has the same determinant as α does. Therefore,

v(E) = `kJtK(OE/(det(α)))/]G.

Let u ∈ OE be a uniformizer. Since tOE = (u]G),

v(E)div(t) = `kJtK(OE/(det(α))) · div(u) = div(det(α)).

�

In particular, the proposition shows that vρ(E) 6=∞. We can define a function

(9.7.2) vρ : G-Cov(D)→ 1

]G
Z≥0

as follows. For a point b ∈ G-Cov(D), we take a geometric point b′ : SpecF →
G-Cov(D) mapping to b. If E → DF is the G-cover associated to b′, then we define

vρ(b) := vρF (E).

From Lemma 9.7.7, this is indepedent of the choice of the geometric point.

Definition 9.7.9. We call function (9.7.2) the v-function associated to the
representation ρ.

The following result is useful to compute the v-function.

Remark 9.7.10. Choosing a basis of M , let us identify HomkJtK(M,OE) with
O⊕dE . There exist two G-actions on HomkJtK(M,OE) = O⊕dE . One is induced by the
action on M and the other is the diagonal action O⊕dE derived from the G-action
on OE . The tuning module ΞE consists of those elements on which the two actions
coincide:

ΞE = {α ∈ HomkJtK(M,OE) | ∀g ∈ G, α · g = α ∗ g},
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where · and ∗ denote these two actions. This presentation of tuning module is closer
to the ones in [Yas17,WY15].

Proposition 9.7.11. The v-function is locally constructible. (Postpone the
proof)

From the proposition, there is a stratification G-Cov(D) =
⊔
i∈I Ci by at most

countably many constructible sets Ci such that for each i, vρ|Ci is constant. The
integral

∫
G-Cov(D)

Ld−vρ is then defined as the (possibly diviergent) sum∑
i∈I
{Ci}Ld−vρ(Ci).

Theorem 9.7.12. Let ρ : G y V = AdD be a representation over kJtK, let
X := V/G and let A be the boundary divisor on X such that V → (X,A) is
crepant. Then

Mst(X,A) =

∫
G-Cov(D)

Ld−vρ .

Definition 9.7.13. Let o ∈ V (k) be the origin in the special fiber and let
o ∈ X(k) be its image. We define

dρ(E) := dim(uE)−1(o) = dim(π|E|)−1(o).

Note that the right equality follows from Proposition 9.5.4. Like vρ, the above
definition gives a function

dρ : G-Cov(D)→ {0, 1, . . . , d} ⊂ Z.
It will turn out that this is locally constructible (??).

Theorem 9.7.14. We keep the above notation. Then

Mst(X,A)o =

∫
G-Cov(D)

Ldρ−vρ .

Remark 9.7.15. If V → X is étale in codimension one, then A = 0 and we
have

Mst(X) =

∫
G-Cov(D)

Ld−vρ and Mst(X)o =

∫
G-Cov(D)

Ldρ−vρ .

If moreover there exists a proper birational morphism f : Y → X with Y regular,
then we have Mst(X) = {Y0 ∩ Ysm} and Mst(X)o = {f−1(o) ∩ Ysm}, where Ysm

denotes the D-smooth locus of Y . See Proposition 7.3.3.

9.8. The tame case revisited

In general, we have the one-to-one correspondence:

{G-covers of D} ↔ {continuous homomorphisms ΓkLtM → G}/G
Here the G-action on the set of continuous homomorphisms is the one induced from
the conjugation action of G on itself. If G is tame, then the right side is unchanged
by replacing ΓkLtM with its maximal tame quotient ΓtkLtM. If k is algebraically closed,
then only finite tame Galois extensions of kLtM are of the form kLt1/nM/kLtM, p - n.
Therefore,

ΓtkLtM = Gal(kLt1/nM/kLtM) ∼= lim←−
p-n

Z/nZ ∼=
∏
l 6=p

Zl,
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where n runs over positive integers coprime to p and l runs over prime numbers
different from p. The right isomorphism is canonical. Let us fix the left one, which
amounts to choosing a compatible system of primitive n-th roots ζn ∈ k of unity.
Then, ΓtkLtM has a topological generator γ corresponding to 1 ∈ Z ⊂ lim←−p-n Z/nZ.
Therefore, we get the following one-to-one correspondence:

{continuous homomorphisms ΓkLtM → G}/G↔ Conj(G)

[φ] 7→ [φ(γ)]

Concretely, if g ∈ G is an element of order n, then a conjugacy class [g] ∈ Conj(G)
corresponds to a G-cover E → D having a connected component E0 = Spec kJt1/nK
on which the subgroup 〈g〉 ⊂ G acts by t1/ng = ζnt

1/n.
Let n be the exponent of G, the least positive integer such that for every g ∈ G,

gn = 1. Suppose that k contains all the n-th roots of unity. For each l | n, we
choose a primitive l-th root of unity, ζl ∈ k, such that, if l | l′, then (ζl)

l/l′ = ζl′ .
As a pseudo-moduli space G-Cov(D), we can take

G-Cov(D) =
∐

[g]∈Conj(G)

Spec k.

Let g ∈ G be an element of order l. The component associated to its conjugacy
class [g] corresponds to the G-cover E → D that has a connected component E0 =
Spec kJt1/lK with the action of 〈g〉 ⊂ G given by t1/lg = ζlt

1/l.

9.9. The point-counting version and mass formulae

9.10. The case G = Z/pZ

9.11. The case G = Z/pnZ

9.12. More examples

9.13. Non-linear actions

9.14. Duality



CHAPTER 10

Deligne-Mumford stacks

In this chapter, we give a brief introduction to Deligne-Mumford stacks (DM
stacks for short) as well as prepare general results on DM stacks for later use.

Throughout the chapter, k denotes a fixed base ring. Symbols in bold type
such as Set and Schk usually mean categories. When C is a category, the notation
c ∈ C means that c is an object of C. When we describe a functor from a category
to another, we usually describe only the correspondence of objects and write the
functor, for example, as

C→ D, c 7→ d,

like a map of sets. For the correspondence of morphisms is often obvious.

10.1. Motivation

Deligne-Mumford stacks (DM stacks for short) are generalization of schemes.
This notion originates in a study of moduli of curves by Deligne and Mumford
[DM69]. In a general moduli problem, one seeks for a moduli space/scheme M
parametrizing objects in question. In algebraic geometry, we sometimes has even a
fine moduli scheme, that is, a scheme X whose associated functor

hX : (Schk)op → Set, Y 7→ HomSchk(Y,X)

is isomorphic to the moduli functor

(Schk)op → Set, Y 7→ {family of objects over Y }/ ∼= .

The Hilbert scheme parametrizing closed subscheme of a given projective variety is
a typical example of fine moduli scheme.

However, when objects have non-trivial automorphisms, a fine moduli scheme
usually does not exit. For automorphisms often give rise to two distinct families
over the same scheme Y which are fiberwise isomorphic. If there was a fine moduli
scheme M , then the two families induce two maps Y ⇒ M and lead to the con-
tradiction that the two maps are both distinct and identical. The problem is that
in the moduli functor, we discard information of isomorphisms by considering sets
of objects modulo isomorphisms. In the theory of stacks, we consider instead cate-
gories of objects. Accordingly, each point of stack has an automorphism group. In
case of DM stacks, it is a finite group. Very rouhghly, one may imagine a DM stack
as something like a scheme each point of which is equipped with a finite group.

Besides the moduli problem, the study of varieties with quotient singularities
motivates the study of DM stacks. For such a variety X, there exists a smooth
DM stack X and a morphism X → X which is a bijection on geometric points.
Thus X is a smooth analogue of X and often has nicer behavior than X. Therefore
one can first study X and then extract information of X from it. The McKay
correspondence, one of the main themes of this book, may be viewed as relation
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between the geometry of the variety X and the geometry of the DM stack X mixed
with algebraic aspects of finite group actions.

10.2. Categories fibered in groupoids

From the Yoneda lemma below, the category of k-schemes is embeded into the
category of functors (Schk)op → Set. According to this fact, we often identify a
scheme X with the associated functor

hX : (Schk)op → Set, S 7→ HomSchk(S,X) = X(S).

Theorem 10.2.1 (The Yoneda lemma). Let C be a category and let Fun(Cop,Set)
be the category of functors Cop → Set. Then the functor

C→ Fun(Cop,Set), c 7→ hc

is a fully faithful embedding. Here hc denotes the functor Cop → Set, d 7→
HomC(d, c).

Roughly speaking, the theory of stacks replaces the category of sets which
appeared above with the larger category of groupoids.

Definition 10.2.2. A groupoid is a category whose morphisms are all isomor-
phisms.

Example 10.2.3 (A set as a groupoid). Every set S is regarded as a groupoid;
objects of this groupoid are elements of S, the identity morphism is attached to
each object and they are the only morphisms of this groupoid.

Example 10.2.4 (A group as a groupoid). Every group is regarded as a groupoid;
it has a unique object and the automorphism group of this object is G.

Stacks can be regarded as functors (Schk)op → Groupoid; the target is the
“category” of groupoids. But, groupoids form a 2-category rather than a genuine
category and functors (Schk)op → Groupoid should be, in fact, pseudo-functors.
The standard definition of stacks uses categories fibered in groupoids, a notion
essentially equivalent to pseudo-functors (see [Vis05]).

We now fix a category S.

Definition 10.2.5. A category fibered in groupoids over S is a category X
endowed with a functor π : X → S which satisfies the following conditions:

(1) For every morphism f : T → S in S and an object x ∈ X with π(x) = S,
there exists a morphism φ : y → x in X with π(φ) = f .

(2) Let φ : y → x and χ : z → x be morphisms in X and let ψ : π(z)→ π(y) be
a morphism in S such that π(φ) ◦ ψ = π(χ). Then there exists a unique
morphism ψ : z → y in X such that φ ◦ ψ = χ and π(ψ) = ψ (see the
following diagram).

z

χ

!!∃!ψ //
_

��

y
φ //

_

��

x_

��
π(z)

π(χ)

<<
ψ // π(y)

π(φ) // π(x)
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Condition (2) shows that if φ′ : y′ → x is another morphism as in Condition (1),
then there exists a unique isomorphism y′ → y mapping to the identity morphism
of T . We call y as in Condition (1) the pullback of X by f and denote it by f∗x or
xT .

Definition 10.2.6. Let X and Y be categories fibered in groupoids over S and
let πX and πY be their functors to S respectively. A morphism from Y to X is a
functor F : Y → X with πX ◦ F = πY (this is the strict equality rather than an
isomorphism of functors). We say that a morphism Y → X is an isomorphism if it
is an equivalence.

Note that categories fibered in groupoids over S and their morphisms form a
2-category. It means that there are morphisms between morphisms. Morphisms
betwen objects are called 1-morphisms and morphisms between 1-morphisms are
called 2-morphisms. Morphisms defined above of categories fibered in groupoids are
1-morphisms, while 2-morphisms between them are natural transforms of functors.

Definition 10.2.7. Let X be a category fibered in groupoids over S and let
S ∈ S. The fiber of X over S, denoted by X (S), is the subcategory of X consisting
of objects and morphisms that map to S and idS respectively.

Lemma 10.2.8. Every fiber X (S) is a groupoid.

Proof. Let φ : y → x be a morphism in X (S) and let χ := idX and ψ := idS .
Condition (2) of Definition 10.2.5 shows that there exists a morphism ψ such that
φ ◦ψ = idX and π(ψ) = idS . Namely φ has a right inverse ψ in X (S). Similarly, ψ
has a right inverse φ′. Since ψ has both a left inverse φ and a right inverse φ′, we
have that φ = φ′ and that ψ and φ are inverses to each other. �

Remark 10.2.9. For a category X fibered in groupoids over S, the assignment
S 7→ X (S) gives a pseudo-functor from S to the 2-category of groupoids (see [Vis05,
Section 3.1.2]).

Remark 10.2.10 (Fiberwise description of categories fibered in groupoids).
In a concrete example of categories fibered in groupoids, we often have caonical
pullback functors X (S) → X (T ), x 7→ xT . Then morphisms y → x over T → S
bijectively correspond to morphisms y → xT in the fiber X (T ) to the canonical
pullback xT . In that case, we describe only fibers X (S) to define the category
fibered in groupoids X .

Example 10.2.11 (Functors as categories fibered in groupoids). We can asso-
ciate a category Xh fibered in groupoids to a functor h : Sop → Set be a functor.
The fiber Xh(S) over S ∈ Sop is the set h(S) regarded as a groupoid. For two
functors h, h′ : Sop → Set, there is a one-to-one correspondence between natural
transforms h′ → h and morphisms Xh′ → Xh. In other words, the functor h 7→ Xh
is fully faithful. (Strictly speaking, morphisms Xh′ → Xh form a category, but it
is a groupoid associated to a set and has only identity morphisms as morphisms.
Thus we can safely regard it as a set.) Thanks to this fact, we often identify h with
X .

Example 10.2.12 (Schemes as categories fibered in groupoids). In the last
example, let S = Schk and let h be the functor hX associated to a k-scheme X.
Namely h(S) = Hom(S,X). Then the associated category Xh fibered in groupoids
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is nothing but the category SchX of X-schemes endowed with the natural functor
SchX → Schk. In summary, a k-scheme X is identified with the category SchX
fibered in groupoids over Schk.

Example 10.2.13 (Moduli stack of curves). Let g be a non-negative integer.
The moduli stack Mg of cuvers of genus g is defined to be a category fibered in
groupoids over Schk as follows. An object ofMg(S) is a smooth projective curve
C over S of genus g and a morphism inMg(S) is an isomorphism over S.

10.3. Grothendieck topologies and sites

The functor associated to a scheme is not a mere functor but a sheaf for sev-
eral Grothendieck topogologies. Similarly, a stack is not a mere category fibered in
groupoids but satisfy some “sheaf conditions.” We first recall Grothendieck topolo-
gies.

Definition 10.3.1. A Grothendieck topology on a category S is a datum of
associating to each object S ∈ S a collection of families (Ui → S)i∈I of morphisms,
called coverings of X, satisfying the following conditions:

(1) For every isomorphism T → S, (T → S) is a covering of X.
(2) If (Ui → S)i∈I is a covering, then for any morphism T → S, the fiber

products Ui ×S T exist and the induced family (Ui ×S T → T )i∈I is a
covering.

(3) If (Ui → S)i∈I is a covering and if (Vij → Ui)j∈Ji , i ∈ I are coverings,
then the induced family (Vij → S)i∈I,j∈Ij is a covering.

A category endowed with a Grothendieck topology is called a site.

Example 10.3.2. Let X be a topological space and let X be the category in
which objects are open subsets ofX and morphisms are inclusion maps. Associating
to each open subset U ⊂ X the set of inclusion maps (Ui ↪→ U)i∈I with U =⋃
i∈I Ui, we obtain a Grothendieck topology on X .

Example 10.3.3. For a scheme S, the Zariski topology on SchS associates to
an S-scheme X the set of open immersions (Ui → X)i∈I whose images over X.
This is a Grothendieck topology on SchS .

Example 10.3.4. For a scheme S, the étale topology on SchS associates to a
k-scheme X the set of étale morphisms (Ui → X)i∈I whose images cover X. This
is also a Grothendieck topology of SchS and our canonical choice.

Definition 10.3.5. Let S be a site. A functor F : Sop → Set is said to be a
sheaf if for every covering (Ui → S)i∈I , the diagram

F (S)
q // ∏

i∈I F (Ui)
p∗1 //
p∗2

//
∏

(i,j)∈I2 F (Ui ×S Uj)

is an equalizer diagram; namely q is injective and

Im(q) =

{
x ∈

∏
i∈I

F (Ui) | p∗1(x) = p∗2(x)

}
.

When S is the site associated to a topological space (Example 10.3.2), the above
definition coincides with the one of sheaves on topological spaces. The injectivity
of q says that a section of F on S is determined by its “restrictions” to Ui’s and the
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other condition says that sections on U ′is can be glued to one on S if and only if
the sections on Ui and Uj “restricts” to the same section on Ui×S Uj (a counterpart
of the intersection Ui ∩ Uj of two open subsets in the Grothendieck topology).

10.4. Stacks

In what follows, for any scheme S, we regard SchS as a site by giving it the
étale topology (Example 10.3.4). Let X be a category fibered in groupoids over
Schk.

Definition 10.4.1. For S ∈ S and x, y ∈ X (S), we define a functor

IsoS(x, y) : (SchS)op → Set, T 7→ IsoX (T )(xT , yT ),

where xT and yT are respectively the pullbacks of x and y to T and IsoX (T )(xT , yT )
is the set of isomorphisms xT → yT in the groupoid X (T ).

Definition 10.4.2. Let (Ui → S)i∈I be a covering in Schk. A descent datum
in X with respect to this covering consists of objects xi ∈ X (Ui), i ∈ I and iso-
morphisms φij : p∗1xi → p∗2xj in X (Ui ×S Uj) for (i, j) ∈ I2 satisfying the cocycle
condition

φ̃ik = φ̃jk ◦ φ̃ij in X (Ui ×S Uj ×S Uk)

for (i, j, k) ∈ I3, where φ̃ik is the pullback of φik by the projection Ui×SUj×SUk →
Ui ×S Uk and similarly for φ̃jk and φ̃ij .

Example 10.4.3 (A descent datum induced by an object). Each object x ∈
X (S) induces a descent datum in X with respect to any covering (Ui → S)i∈I given
by pullbacks xUi and canonical isomorphisms ψij : p∗1xUi → p∗2xUj .

Definition 10.4.4. We say that a descent datum (xi, φij) in X with respect
to (Ui → S)i∈I is effective if there exists an object x ∈ X (S) such that (xi, φij) is
isomorphic to the descent datum (xUi , ψij) induced from x as in Example 10.4.3,
that is, there exist isomorphisms xi → xUi compatible with φij and ψij .

In the analogy to the classical topology, a descent datum corresponds to a
gluing datum of objects over Ui relative to some open covering S =

⋃
i Ui and its

effectivity means that we can indeed glue these objects to get an object on S.

Definition 10.4.5. We keep the notation. We say that X is a stack over k or
k-stack if the following conditions hold:

(1) For S ∈ Schk and x, y ∈ X (S), the functor IsoS(x, y) : (SchS)op → Set
is a sheaf on the site SchS .

(2) For every covering (Ui → S)i∈I in Schk, every descent datum in X with
respect to (Ui → S)i∈I is effective.

A morphism between k-stacks is defined to be a morphism as categories fibered in
groupoids over Schk. We often abbreviate a k-stack to a stack, when there is no
confusion.

Remark 10.4.6. The two conditions in the above definition are equivalent to
the following single condition: for each covering (Ui → S)i∈I , the functor X (S)→
X ((Ui → S)i∈I), where X ((Ui → S)i∈I) denotes the category of descent data with
respect to this covering.
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Example 10.4.7. LetX be a k-scheme. The category SchX fibered in groupoids
over Schk (Example 10.2.12) is a stack.

Remark 10.4.8 (Working over Affk). We defined stacks as categories fibered
in groupoids over Schk satisfying some condition. However it is sometimes more
convenient to use the category Affk of affine schemes instead, of which we will
take advantage in later chapters. Since every scheme S admits an étale covering
(Si → S)i with Si affine, the fiber X (S) of a stack X over a scheme S is recovered
from the fibers X (Si) and functors among them. Thus we do not lose anything by
restricting the base category to Affk.

10.5. Fiber products and schematic morphisms

As schemes are Zariski locally affine schemes, DM stacks are étale locally
schemes. Namely every DM stack X admits an étale surjective morphism U → X
from a scheme U . But what does it mean that a morphism U → X from a scheme
to a stack is étale and surjective? To make this precise, we need the notions of fiber
products and schematic morphisms.

First recall that the fiber product Y ×X Z of schemes is defined as a functor by

(Y ×X Z)(S) = Y (S)×X(S) Z(S) := {(y, z) ∈ Y (S)× Z(S) | f(y) = g(z)}.

Definition 10.5.1. Let f : Y → X and g : Z → X be functors of groupoids.
The fiber product Y ×X Z = Y ×f,X ,g Z is a category defined as follows. An object
is a triple (y, z, α) where y and z are objects of Y and Z respectively and α is
an isomorphism f(y) → g(z) in X . A morphism (y′, z′, α′) → (y, z, α) is the pair
(φ, ψ) of morphisms φ : y′ → y and ψ : z′ → z such that the following diagram is
commutative.

f(y′)
f(φ) //

α

��

f(y)

α′

��
g(z′)

g(ψ)
// g(z)

Definition 10.5.2. Let f : Y → X and g : Z → X be morphisms of categories
fibered in groupoids over Schk. We define the fiber product (also called the 2-fiber
product) Y ×X Z = Y ×f,X ,g Z to be a category fibered in groupoids over Schk
given by (Y ×X Z)(S) := Y(S)×X (S) Z(S).

A fiber product of stacks is again a stack. When X = Schk = Spec k, we
denote Y ×X Z simply by Y ×k Z or Y × Z. In this case, the third entry α of a
triple (y, z, α) as above is always the identity map. Thus (Y ×k Z)(S) is identified
with the product category Y(S)×Z(S).

We have the forgetting functors (or projections)

pY : Y ×X Z → Y and pZ : Y ×X Z → Z.

Moreover there exists a canonical isomorphism θ : f ◦pY
∼−→ g ◦pZ of functors given

by

θ(Y, Z, α) = α : f(Y )
∼−→ g(Z).
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Thus we get the 2-commutative diagram:

Y ×X Z
pZ //

pY

��

Z

g

��
Y

f
//

θ

7?

X

The fiber product has the desired universal propery. Let T be another k-stack
and let a : T → Y and b : T → Z be morphisms and let γ : f ◦ a ∼−→ g ◦ b be an
isomorphism of functors. Then there exists the canonical morphism c : T → Y×X Z
sending T ∈ T to (a(T ), b(T ), γ(T )).

Definition 10.5.3. Let f : Y → X be a morphism of stacks. We say that f is
schematic if for every morphism T → X from a scheme T , the fiber product T×X Y
is (isomorphic to) a scheme. Let P be a property of morphisms of schemes which
is stable under base change and of local nature on the target for the étale topology
(e.g. unramified, étale, smooth, finite, affine, surjective, being a closed immersion,
proper). We say that a schematic morphism f : Y → X has the property P if for
every morphism T → X from a k-scheme, the base change fT : T ×X Y → T has
the property P.

10.6. DM stacks and algebraic spaces

For a stack X , the diagonal morphism

∆ = ∆X : X → X ×X
is given by sending an object X to the pair (X,X).

Lemma 10.6.1. Let X be a stack such that ∆X is schematic. Then any mor-
phism V → X from a scheme V is schematic.

Proof. We need to show that for any morphism S → X from a scheme, the
fiber product S ×X V is a scheme. This follows from

S ×X V ∼= (S × V )×X×X ,∆ X
and the assumption that ∆ is schematic. �

Definition 10.6.2. A k-stack X is called a DM stack (over k) if the following
conditions hold:

(1) The diagonal morphism ∆X : X → X ×k X is schematic and finite.
(2) There exists a morphism V → X from a scheme which is étale and sur-

jective. (Such a scheme V or a morphism V → X is called an atlas of
X .)

Note that from the first condition and Lemma 10.6.1, the second condition
makes sense.

Remark 10.6.3. Our definition of DM stacks is equivalent to the one of sepa-
rated DM stacks for the usual terminalogy. According to the usual definition, the
diagonal morphism ∆X of a DM stack is only supposed to be representable, a weaker
condition than schematic. Then a DM stack is separated if the diagonal morphism
is also proper. As mentioned above, One can show that the diagonal morphism of a
DM stack is formally unramified [Ols16, Th. 8.3.3]. Being representable, formally
unramified and proper implies being schematic and finite.
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Definition 10.6.4. An algebraic space is defined to be a DM stack X such that
every fiber X (S) is equivalent to a set, or equivalently such that X is isomorphic
to the category fibered in groupoid associated to a functor (Schk)op → Set.

It is clear from definition that every scheme is an algebraic space and every
algebraic space is a DM stack.

Remark 10.6.5. For an algebraic space X , there exists an algebraic space
X ′ isomorphic to X such that every fiber X ′(S) is a genuine set rather than a
groupoid equivalent to a set. Indeed, we can define X ′ by puttin X ′(S) to be the
set of isomorphism classes in X (S). Therefore, when talking about an algebraic
space X , we basically suppose that fibers X (S) are sets.

The following notion is a slight generalization of representable morphisms.

Definition 10.6.6. A morphism f : Y → X of categories fibered in groupoids
is called representable (by algebraic spaces) if for every morphism T → X from an
algebraic space, the fiber product T ×X Y is an algebraic space.

Definitions of properties of schematic morphisms (Definition 10.5.3) are gener-
alized to representable morphisms.

Remark 10.6.7. Usually one defines algebraic spaces and representable mor-
phisms before defining DM stacks and assumes the diagonal morphism of a DM
stak only to be representable by algebraic spaces (for instance, see [Ols16]). Since
we restricted ourselves to separated DM stacks (see Remark 10.6.3), we were able
to avoid the use of representable morphisms in the definition of DM stacks.

We now define various properties of DM stacks and one of their morphisms.
We first define local properties of DM stacks.

Definition 10.6.8. Let P be a property of schemes which is local in the étale
topology (e.g. locally of finite type, locally smooth, normal, regular, local complete
intersection, klt). We say that a DM stack X has property P if some (equivalently
every) atlas V of X has property P.

Since algebraic spaces are by definition DM stacks, the above definition is valid
also for algebraic spaces.

Definition 10.6.9. Let P be a property of morphisms of schemes which is
stable under base change and of local nature on the target for the étale topology
(e.g. unramified, étale, smooth, finite, affine, surjective, being a closed immersion,
proper). We say that a representable morphism f : Y → X has the property P if
for every morphism T → X from a k-scheme, the base change fT : T ×X Y → T
has the property P.

Definition 10.6.10. We say that a DM stack X is quasi-compact if there exists
an atlas V → X such that V is a quasi-compact scheme. We say that X is of finite
type (resp. of finite presentation, Noetherian) if it is locally of finite type (resp.
locally of finite presentation, locally Noetherian) and quasi-compact.

Finally we define immersions and substacks.

Definition 10.6.11. A morphism ι : Y → X of DM stacks is called an open
(resp. closed, locally closed) immersion if it is schematic (or equivalently repre-
sentable) and an open (resp. closed, locally closed) immersion in the sense of
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Definition 10.5.3. An open (resp. closed, locally closed) substack of a DM stack
X is an equivalence class of open (resp. closed, locally closed) immersions to X .
Here two immersions ι′ : Y ′ → X and ι : Y → X are equivalent if there exists an
isomorphism f : Y ′ → Y with ι ◦ f ∼= ι′. By abuse of terminology and notation, we
say that given an immersion Y → X , we say that Y is a (open, closed or locally
closed) substack of X and write Y ⊂ X .

10.7. Points and their automorphism groups

Recall that for schemes S and X, an S-point of X just means a morphism
S → X. On the other hand, when we regard X as a functor (Schk)op → Set, an
S-point of X is an element of the set X(S).

Definition 10.7.1. For a scheme S and a DM stack X , an S-point of X means
a morphism S → X . When S = SpecR for a ring R, S-points are also called
R-points. A geometric point of X is a K-point for some algebraically closed field
K.

As in the case of schemes, giving an S-point is equivalent to giving an object
of the groupoid X (S). Indeed, to a morphism

φ : S = SchS → X ,

we associate the object φ(S
id−→ S). Conversely, to an object x ∈ X (S), we define a

morphism:

SchS → X
(f : T → S) 7→ f∗x

Tautologically, S-points form the groupoid X (S) rather than a set and each
S-point x comes with the automorphism group

Aut(x) := AutX (S)(x) = AutS(x)(S),

which is also called the stabilizer.

Proposition 10.7.2. Let X be a DM stack X , let S ∈ Schk and let x, y ∈
X (S). Then the sheaf IsoS(x, y) on the site SchS is a finite and unramified S-
scheme. In particular, the automorphism group scheme AutS(x) is a finite and
unramified group scheme over S.

Proof. From the definition of fiber products,

IsoS(x, y) ∼= S ×(x,y),X×kX ,∆ X .

Therefore the first condition in Definition 10.6.2 is equivalent to saying that the
sheaf IsoS(x, y) on the site SchS is a finite S-scheme. From [Ols16, Th. 8.3.3], ∆X
is unramified, and so is IsoS(x, y). Thus the first assertion of the proposition holds.
The second assertion follows from the first. �

Definition 10.7.3. The point set of a DM stack X , denoted by |X |, is the
set of equivalence classes of geometric points of X . Here two geometric points
SpecK1 → X and SpecK2 → X are equivalent if and only if there exist a third
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geometric point SpecK3 → X and morphisms SpecK3 → SpecKi (i = 1, 2) fitting
into the following commutative diagram:

SpecK3
//

%%��

SpecK2

��
SpecK1

// X

The point set of a DM stack is equipped with a topology as follows:

Definition 10.7.4. For a DM stack, we can define a topology on |X |, called
the Zariski topology, as follows: an open subset of |X | is the point set |U| of an
open substack U ⊂ X . We call

If two geometric points x1 and x2 of X defines the same point of |X |, then
we have Aut(x1) ∼= Aut(x2). Threfore we can talk about the automorphism group
Aut(x) of a point x ∈ |X |. We can characterize algebraic spaces among DM stacks
by looking only at geometric points:

Proposition 10.7.5 ( [Con07, Th. 2.2.5]). Let X be a DM stack. The X
is an algebraic space if and only if every gemetric point x of X has the trivial
automorphism group.

The following is the relative version of the above proposition:

Proposition 10.7.6. A morphism of DM stacks f : Y → X is representable if
and only if for every geometric point y of Y, the induced map Aut(y)→ Aut(f(y))
is injective.

Proof. The if part: Consider a fiber product S ×X Y with S an algebraic
space. For an algebraically closed field K, the automorphism group of (s, y, α) ∈
(S ×X Y)(K) consists of pairs (φ, ψ) ∈ Aut(s) × Aut(y) comaptible with α. But,
since Aut(s) = 1, if Aut(y)→ Aut(f(y)) is injective, then φ should be the identity.
Thus (s, y, α) has the trivial automorphism group. From Proposition 10.7.6, S×X Y
is an algebraic space and hence f is representable.

The only if part: If Aut(y) → Aut(f(y)) is not injective for some y ∈ Y(K),
then the induced K-point of SpecK ×X Y has the non-trivial group Ker(Aut(y)→
Aut(f(y))) as its automorphism group. Again from Proposition 10.7.6, SpecK×XY
is not an algebraic space. Thus f is not representable. �

10.8. Inertia stacks

Since points of a DM stack have automorphisms, it is natural to consider a
stack parametrizing pairs of points and there automorphisms.

Definition 10.8.1. The inertia stack IX of a DM stack X is a category fibered
in groupoids over Schk defined as follows. An object of (IX )(S) is the pair (x, α)
of x ∈ X (S) and α ∈ AutX (S)(x). A morphism (y, β) → (x, α) in (IX )(S) is a
morphism φ : y → x in X (S) with α ◦ φ = φ ◦ β.

We have the forgetting morphism IX → X , (x, α) 7→ x and the section X →
IX , x 7→ (x, idx). Note that the fiber of the map | IX| → |X | of point sets over x ∈
|X | is not the automorphism group Aut(x) but the set Conj(Aut(x)) of conjugacy
classes in Aut(x). For pairs (x, α) and (x, β) are isomorphic if and only if α and β
are conjugate in Aut(x).
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Lemma 10.8.2. There exists also an isomorphism

X ×∆,X×kX ,∆ X ∼= IX

which is compatible with the first projection X ×∆,X×kX ,∆ X and the morphism
IX → X .

Proof. An object of the left side is the triple (x, x′, (α1, α2)) where α1 and α2

are isomorphisms x→ x′. The isomorphism of the lemma is given by sending this
triple to the pair (x, α−1

2 ◦ α1). �

From the lemma, we have:

Corollary 10.8.3. The inertia stack IX of a DM stack X is a DM stack.

10.9. Coarse moduli spaces

For a DM stack X , there always exists the algebraic space that approximates
X the best in a certain sense. This algebraic space is the coarse moduli space of
X . Its precise definition is as follows:

Definition 10.9.1. Let X be a DM stack. A coarse moduli space of X is an
algebraic space X given with a morphism f : X → X such that

(1) for every algebraically closed field K, the map X (K)/∼= → X(K) of K-
point sets is bijective, and

(2) for every morphism g : X → Z to an algebraic space, there exists a unique
morphism h : X → Z with f ◦ g = h.

Clearly a coarse moduli space is unique up to unique isomorphism and always
exists:

Theorem 10.9.2 ( [KM97,Con,Ryd13]). Let X be a DM stack. Then there
exists a corase moduli space π : X → X. Moreover, if Y → X is a flat morphism
of algebraic spaces, then Y is a coarse moduli space of Y ×X X .

10.10. Quotient stacks

Quotient stacks are the most basic examples of DM stacks as well as the most
important for our purpose. Suppose that a finite group G acts on an algebraic space
V . The quotient V/G always exists as an algebraic space. Its main properites are:

(1) The canonical morphism V → V/G is the universal G-invariant morphism
from V in the category of algebraic spaces.

(2) For each algebraically closed field, the induced map V (K)/G→ (V/G)(K)
is bijective.

If V is a scheme and every G-orbit is contained in an affine open subset, then the
quotient V/G is a scheme. The morphism V → V/G factors as

V → [V/G]→ V/G

through the quotient stack [V/G]. The quotient stack is a hybrid of the G-space V
and the quotient space V/G; its local structure is close to the G-space V and its
global structure is close to V/G. We give the precise definition of quotient stacks
below, slightly generalizing to the case where G is an étale finite group scheme. We
first need to define G-torsors.
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Definition 10.10.1. Let G be an étale finite group scheme. A G-torsor (also
called a principal G-bundle) is a morphism T → S of schemes given with a G-action
on T which satisfies the following conditions:

(1) The morphism T → S is G-invariant.
(2) There exists an étale covering (Si → S)i such that for each i, we have a

G-equivariant Si-isomorphism TSi := T ×S Si
∼−→ G× Si.

We may rephrase the definition as follows: a G-torsor is an G-equivariant mor-
phism T → S which looks like the trivial torsor G × S → S étale locally on the
base scheme S.

Definition 10.10.2. Let V be an algebraic space endowed with an action of
an étale finite group scheme G. The quotient stack [V/G] is a category fibered in
groupoids over Schk defined as follows. An object of the fiber groupoid [V/G](S)
is the pair (T → S, T → V ) of a G-torsor T → S and a G-equivariant morphism
T → V . A morphism (T ′ → S, T ′ → V ) → (T → S, T → V ) in [V/G](S) is a
G-equivariant S-isomorphism T ′ → T compatible with to V .

T ′

��

// ''
T

��

// V

S // S

The quotient stack is a DM stack [Ols16, Section 8.4.1]. The canonical mor-
phism V → [V/G] sends an S-point S → V of V to the induced pair

(G× S → S,G× S → V )

of the trivial torsor G× S → S and the unique equivariant morphism G× S → V
extending the given morphism S = {1} × S → V . The morphism V → [V/G] is an
atlas of [V/G]. The morphism [V/G] → V/G sends the pair (T → S, T → V ) to
the induced S-point S = T/G→ V/G. By this morphism, V/G is a coarse moduli
space of [V/G].

For an algebraically closed field K, any G-torsor over SpecK is trivial. There-
fore a geometric point SpecK → [V/G] corresponds to a G-equivariant morphism
SpecK × G → V . This implies that isomorphism classes of K-points of [V/G]
correspond to G-orbits in V (K).

Lemma 10.10.3. Let x : SpecK → [V/G] be a geometric point and let v : SpecK →
V be any lift of x with the stabilizer subgroup Stab(v) ⊂ G. Then Aut(x) ∼= Stab(v).

Proof. The automorphism group of the trivial G-torsor G×SpecK → SpecK
is identified with G. Indeed, if the neutral component {1}× SpecK maps to {g}×
SpecK by an G-equivariant automorphism, then a component {h} × SpecK maps
to {hg}×SpecK. Thus this automorphism is given by the right multiplication with
g. Let w : G×SpecK → V be the G-equivariant morphism extending v : SpecK =
{1}×SpecK → V . The automorphism of the trivial G-torsor G×SpecK → SpecK
corresponding to g is compatible with w if and only if g ∈ Stab(v). This proves the
lemma. �

The lemma shows that [V/G] is an algebraic space if and only if the G-action
on V is free. If this is the case, we have [V/G] ∼= V/G.
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10.11. Étale groupoid schemes

Since a stack is a category fibered in groupoid, it contains infinite data. To
express a stack by “finite data,” we can use a groupoid scheme. It is a tuple
(M,O, s, t, ε, i,m) satisfying several compatibility conditions. Here M and O are
schemes and the other entries are morphisms as follows:

source: s : M → O
target: t : M → O
identity: ε : O →M
inverse: i : M →M
composition: m : M ×s,O,tM →M

An example of compatibilty conditions is the associativity saying that the two
compositions

M ×s,O,tM ×s,O,tM
m×id //
id×m

// M ×s,O,tM
m // M

are the same. For the other conditions, we refer the reader to [LMB00, 2.4.3] or
[Ols16, Section 3.4.4]. We usually denote a groupoid scheme as M ⇒ O, omitting
morphisms ε, i,m. We call a groupoid scheme étale if the morphisms s and t are
étale.

To an étale groupoid schemeM ⇒ O, we can construct a DM stack denoted by
[M ⇒ O] or [O/M ]. First we define a category fibered in groupoids [O/M ]′ such
that the fiber [O/M ]′(S) over a scheme S has O(S) as the set of objects and M(S)
has the set of morphisms whose sources and targets are specified by s and t. This
becomes a so-called prestack. The DM stack [O/M ] is obtained by stackifying this
(a similar operation to the sheafification of a presheaf).

For a scheme V with an action of an étale group scheme G, we can define
an étale groupoid scheme G × V ⇒ V in which the morphisms s and t are the
projection and the G-action. The associated stack [G × V ⇒ V ] is isomorphic to
the quotient stack [V/G] defined in the last section [LMB00, (3.4.3)].

For a DM stack X with an atlas V , we have the associated étale groupoid
scheme V ×X V ⇒ V , where the two projections are the source and target. We
have X ∼= [V ×X V ⇒ V ] [LMB00, (3.8) and (4.3)].

10.12. Quasi-coherent sheaves

Let X be a DM stack.

Definition 10.12.1. The small étale site of X , denoted by Xét, has atlases
V → X as its objects. A morphism from b : V → X to a : U → X is the pair
(f, α) of a morphism f : V → U and an isomorphism α : b

∼−→ a ◦ f . Namely this
is a morphism b → a in X with a and b regarded as objects of X . A collection
of morphisms, ((Vi → X ) → (U → X ))i, is a covering if the induced collection of
scheme morphisms (Vi → U)i is an étale covering.

We define define quasi-coherent sheaves on X as sheaves on the site Xét. We
firs define the structure sheaf:

Definition 10.12.2. The structure sheaf OX is the sheaf on Xét such that
OX (V → X ) = OV (V ) and the map OU (U) → OV (V ) associated to a pair (f, α)
as above is the usual pullback map f∗.
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If V → X is an atlas, then restriction of OX to Vét coincides with the structure
sheaf OV of V .

Definition 10.12.3. A quasi-coherent sheaf on X is a sheaf F of OX -modules
on Xét such that for each atlas V → X , the induced sheaf FVét on Vét is a quasi-
coherent OV -module.

Example 10.12.4. For a morphism Y → X of DM stacks, we can define a quasi-
coherent sheaf ΩY/X on Y, called the sheaf of differentials. For an étale morphism
V → Y from a scheme, if V → Y → X factors through an étale morphism U → X ,
then we have (ΩY/X )Vét

∼= ΩV/U . The restriction (ΩY/X )Wét for a general étale
morphism W → X is determined by descent along an étale morphism V →W such
that the composition V →W → X satisfies the above condition.

To a quasi-coherentOX -algebraA, we can define the relative spectrum SpecX A
as in the case of schemes. The canonical morphism SpecX A → X is representable
and affine. This construction gives an equivalence between the category of quasi-
coherent OX -algebras and the category of DM stacks representable and affine over
X [Ols16, Th. 10.2.4].

10.13. Local structure of DM stacks

The following result says that every DM stack is locally a quotient stack.

Proposition 10.13.1 ( [AV02, Lem. 2.2.3], [Ols16, Th. 11.3.1]). Let X be
a DM stack and let X be its coarse moduli space. There exists an étale covering
(Xi → X)i such that for every i, the fiber product Xi ×X X is isomorphic to the
quotient stack [Ui/Gi] associated to an action of a finite group Gi on a scheme Ui.

Of course, we may also say that every DM stack is locally a scheme because
of the existence of an atlas. But an atlas V → X does not preserve automor-
phism groups of geometric points, unless X is an algebraic space. The morphism∐
i[Ui/Gi] → X obtained from the above proposition is not only representable,

étale and surjective, but also stabilizer-preserving :

Definition 10.13.2. Amorphism f : Y → X of DM stacks is stabilizer-preserving
if for every geometric point y of Y, the map Aut(y)→ Aut(f(y)) is bijective.

The morphism
∐
i[Ui/Gi] → X is stabilizer-preserving, because stabilizer-

preserving morphisms are stable under the base change and the morphism
∐
iXi →

X is obviously stabilizer-preserving. The above proposition follows from the fol-
lowing similar lemma:

10.14. Hom stacks

A Hom stack parametrizes morphisms between two stacks. This notion will
play an important role later in developing motivic integration over DM stacks.

Definition 10.14.1. Let S be a DM stack and let Y,X be DM stacks over S
(that is, given with a morphism to S). We define a category fibered in groupoids
over S, denoted by HomS(Y,X ) (resp.Homrep

S (Y,X )) as follows. Let S be a k-
scheme and let σ ∈ S(S) be an object corresponding to a morphism σ : S → S.
The fiber HomS(Y,X )(σ) (resp.Homrep

S (Y,X )(σ)) over σ is the groupoid

HomS(Y ×S,σ S,X ×S,σ S)
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consisting of S-morphisms (resp. representable S-morphisms) from Y ×S,σ S to
X ×S,σ S, that is, it has S-morphisms (functors) Y ×S,σ S → X ×S,σ S as ob-
jects and natural transforms between them (which are necessarily invertible) as
morphisms.

In general, if U → T and T → S are both categories fibered in groupoids, then
the composition U → S is also a category fibered in groupoids [Sta20, tag 09WW].
This shows that Hom stacks are categories fibered in groupoids over Schk.

Proposition 10.14.2 ( [Ols07,Ols06,Yas19]). Let S be a DM stack of finite
type and let Y,X be DM stack of finite type over S. Suppose that there exists a
finite, étale and surjective morphism U → Y such that the composition U → Y → S
is representable, flat and finite. Then HomS(Y,X ) and Homrep

S (Y,X ) are DM
stacks of finite type.



CHAPTER 11

Untwisted arcs

In this chapter, we generalize further motivic integration over Dk-schemes into
two directions. First we allow the target to be a DM stack. Second we replace
the base field k with a DM stack, considering a family of DM stacks over Dk

parameterized by a DM stack.
the We generalize the motivic integration to DM stacks in two steps. Firstly

we develop the theory for untwisted arcs; the only target space is generalized to
DM stacks, but the source of an arc remains to be the scheme DR = SpecRJtK.
Secondly we develop the theory for twisted arcs, here the source also becomes a
DM stack. The first step is rather straightforward, which we demonstrate in this
chapter.

From this chapter on, we use the category of affine schemes Affk as the base
category of stacks. Throughout this chapter, we denote by X and Y good Dk-stacks
of relative dimension d, which are defined as follows.

Definition 11.0.1. A good Dk-stack means a reduced DM stack X over Dk

satisfying the following conditions:
(1) X → Dk is flat, of finite type and of pure relative dimension,
(2) the generic fiber Xη is geometrically reduced.

We denote by f a generically étale Dk-morphism Y → X .

11.1. Untwisted jets and arcs

Definition 11.1.1. We define an untwisted n-jet of X over R to be a Dk-
morphism DR,n → X . We define the stack of untwisted n-jets of X , denoted
by Jn(X/Dk), to be the fibered category over Affk such that (Jn(X/Dk))(R) =
HomDk(DR,n,X ).

Lemma 11.1.2. The fibered category Jn(X/Dk) is a DM stack of finite type over
k.

Proof. Let Xn := X ×Dk Dk,n. Giving an untwisted n-jet of X over R is
equivalent to giving an R-morphism DR,n → Xn ⊗k R such that the composition

DR,n → Xn ⊗k R→ DR,n

is the identity morphism. This shows that we have an isomorphism

Jn(X/Dk) ∼= Homk(Dk,n,Xn)×Homk(Dk,n,Dk,n) Spec k.

The lemma follows from Proposition 10.14.2. �

For n = 0, we have Jn(X/Dk) ∼= X0, the special fiber of X → Dk.

Lemma 11.1.3. If f : Y → X is a representable étale morphism, then

Jn(Y/Dk) ∼= Jn(X/Dk)×X0
Y0.
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Proof. Giving an object of the right side over SpecR is equivalent to giving
a 2-commutative diagram consisting of Dk-morphisms and a 2-isomorphism of the
form:

SpecR //

��

Y

��
Dn,R

//

8@

X
Such a digram determines a morphism SpecR→ Dn,R ×X Y. Since Dn,R ×X Y →
Dn,R is an étale morphism of schemes, the morphism SpecR→ Dn,R×X Y extends
to a section Dn,R → Dn,R ×X Y. Composing it with the projection Dn,R ×X Y,
we get a Dk-morphism Dn,R → Y, that is, an object of (Jn(Y/Dk))(R). This
construction defines a morphism Jn(X/Dk)×X0

Y0 → Jn(Y/Dk).
Conversely, given a Dk-morphism Dn,R → Y, we get a 2-commutative diagram

of the above form. This gives a quasi-converse Jn(Y/Dk) → Jn(X/Dk) ×X0 Y0 to
the above functor. �

For each n ≥ 0, we have a truncation morphism

πn+1
n : Jn+1(X/Dk)→ Jn(X/Dk)

which sends an (n+ 1)-jet Dn+1,R → X to the composition Dn,R ↪→ Dn+1,R → X .
This morphism is unique up to unique 2-isomorphism, but not strictly unique as
we have room to choose pullback functors X (Dn+1,R) → X (Dn,R). We fix one for
each n. For two integers n′ ≥ n ≥ 0, we define πn

′

n : Jn′(X/Dk) → Jn(X/Dk)

as the composition πn+1
n ◦ · · · ◦ πn

′−1
n′−2 ◦ πn

′

n′−1. Thus we obtain the inverse system
(Jn(X/Dk), πn

′

n ) of DM stacks.

Corollary 11.1.4. For integers n′ ≥ n ≥ 0, the natural morphism Jn′(X/Dk)→
Jn(X/Dk) is schematic and affine.

Proof. Let V → X be an atlas. From Lemma 11.1.3, we have the following
2-commutative diagram:

Jn′(V/Dk) //

��

Jn′(X/Dk)

��
Jn(V/Dk) // Jn(X/Dk)

Moreover the horizontal arrows are étale and surjective. Since the left vertical arrow
is an affine morphism of schemes, the right one is representable and affine. Hence
it is schematic as well. �

Definition 11.1.5. The limit stack J∞(X/Dk) = lim←− Jn(X/Dk) is defined as
follows. An object of the fiber (J∞(X/Dk))(SpecR) is the sequence (αn)n≥0 of
objects αn ∈ (Jn(X/Dk))(SpecR) with πn+1

n (αn+1) = αn. A morphism (βn)n≥0 →
(αn)n≥0 in (J∞(X/Dk))(SpecR) is the sequence (φn)n≥0 of morphisms φn : βn →
αn with πn+1

n (φn+1) = φn. We call J∞(X/Dk) the stack of untwisted arcs of X .
We define an untwisted arc of X over R to be a Dk-morphism DR → X . When R
is an algebraically closed field, we call it a geometric untwisted arc.

We can see that this is indeed a stack over Affk.

Lemma 11.1.6. The stack J∞(X/Dk) is a DM stack.
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Proof. For an atlas V → X , we have J∞(V/Dk) ∼= J∞(X/Dk)×X0
V0, which

is a scheme. Thus J∞(X/Dk) → X0 is representable and J∞(X/Dk) is a DM
stack. �

Lemma 11.1.7. For an algebraically closed field K, the fiber (J∞(X/Dk))(K)
is identified with the category of untwisted arcs DK → X .

Proof. Let CX ,K denote the category of untwisted arcs DK → X . We have
a functor CX ,K → (J∞(X/Dk))(K) sending an arc α : DK → X to the sequence
of indued jets αn : Dn,K → X . We show that this is fully faithful and essentially
surjective, which implies the lemma.

Fully faithful: Isomorphisms from an arc β to another α in the category CX ,K
correspond to sections of IsoDK

(β, α)→ DK . On the other hand, the isomorphisms
from (βn) to (αn) in (J∞(X/Dk))(K) correspond to compatible sequences of sec-
tions of IsoDn,K

(βn, αn) → Dn,K . These two sets of isomorphisms correspond to
each other from the universal property of the completion of a ring. Thus the above
functor is fully faithful.

Essentially surjective: Let V → X be an atlas. The functor (J∞(V/Dk))(K)→
(J∞(X/Dk))(K) is essentially surjective. The functor CV,K → (J∞(V/Dk))(K) is
also essentially injective. This shows the desired essential surjectivity. �

The following corollary is a direct consequence of this lemma:

Corollary 11.1.8. The point set | J∞(X/Dk)| is identified with the set of
equivalence classes of geometric untwisted arcs of X . Here we define two geometric
untwisted arcs αi : DKi → X , i ∈ {1, 2} to be equivalent if there exists a third one
α3 : DK3

→ X fitting into a 2-commutative diagram of Dk-morphisms of the form:

DK3
//

��

α3

""

DK2

α2

��
DK1 α1

// X



CHAPTER 12

Twisted formal disks

12.1. Twisted formal disks

Definition 12.1.1. Let K be an algebraically closed field. A twisted formal
disk over K is a DM stack E endowed with a morphism E → DK such that

(1) E is regular,
(2) the morphism E → DK is a coarse moduli space and birational (that is,
E ×DK D∗K → D∗K is an isomorphism).

Definition 12.1.2. AGalois cover of DK means an integral regular DK-scheme
E such that E∗ := E ×DK D∗K → D∗K is a finite étale Galois cover.

For a Galois cover E, if E∗ = SpecL, then L/KLtM is a finite Galois extension.
Conversely, given a finite Galois extension L/KLtM, we can construct a Galois cover
of DK as the integral closure of DK in L.

For a Galois cover E → DK with the Galois group G, the quotient stack [E/G]
is a twisted formal disk. Conversely any twisted formal disk is of this form:

Lemma 12.1.3. Let E → E be an atlas and let E0 be a connected component
such that the closed point of |E| is in the image of |E0|. Then the composition
E0 → E → DK is a Galois cover and if G denotes its Galois group, then E ∼= [E0/G].
Moreover this Galois cover is uniquely determined from E up to isomorphism.

Proof. We redefine E to be E0. Then E is an integral regular scheme. Since
the first projection E ×E E → E is étale and finite, there exists an isomorphism
E ×E E ∼= E ×G with G a finite set which is compatible with the first projections.
The groupoid scheme structure of E ×E E ⇒ E gives G a structure of a group and
makes the second projection E ×G = E ×E E → E a group action. Thus

E ∼= [E ×E E ⇒ E] ∼= [E/G].

Let E∗ := E ×DK D∗K . The morphism E∗ → D∗K is étale and E∗/G = D∗K . Thus
E → DK is a Galois cover. If E′ → E is another integral atlas, then every connected
component of E ×E E′ maps isomorphically onto both E and E′. Thus we get an
isomorphism E ∼= E′ compatible with the morphisms to DK . �

These results are summarized in the following proposition.

Proposition 12.1.4. For each algebraically closed field K, the above construc-
tion gives the following one-to-one correspondences:

{finite Galois extensions of KLtM}/∼=
↔ {Galois covers of DK}/∼=
↔ {twisted formal disks over K}/∼=

125
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12.2. A pseudo-universal family of twisted formal disks

Definition 12.2.1. A finite affine atlas of a DM stack just means an atlas
V → X such that V is an affine scheme and V → X is a finite morphism.

Let Φ be a DM stack with a finite affine atlas V = SpecR→ X . Then V ×X V
is also an affine scheme, say SpecS. We get the groupoid scheme SpecS ⇒ SpecR.
This induces the groupoid scheme SpecSJtK ⇒ SpecRJtK

Definition 12.2.2. With the above notation, we define the formal disk over
Φ, denoted by DΦ, to be the stack [SpecSJtK ⇒ SpecRJtK] associated to the above
groupoid scheme. Similarly we define the punctured formal disk over Φ, denoted by
D∗Φ, to be DΦ×Dk D∗k. We also define Dn,Φ := DΦ×Dk Dn,k. (Equivalently we may
define D∗Φ and Dn,Φ as the stacks assocated to the groupoid schemes SpecSLtM ⇒
SpecRLtM and SpecS[t]/(tn+1) ⇒ SpecR[t]/(tn+1).) More generally, if Φi, i ∈ I
are countably many DM stacks with finite affine atlases and Φ =

∐
i∈I Φi, then we

define DΦ :=
∐
i∈I DΦi and similarly for D∗Φ and Dn,Φ.

Theorem 12.2.3. There exist countably many DM stacks Φi, i ∈ I of finite type
with finite affine atlases and a morphism E → DΦ of DM stacks with Φ :=

∐
i∈I Φi

such that:
(1) For each geometric point φ : SpecK → Φ, Eφ := E ×DΦ DK is a twisted

formal disk over K.
(2) For each algebraically closed field K, the map

Φ(K)/∼=→ {twisted formal disks over K}/∼=
φ 7→ Eφ

is bijective.
The rest of this chapter is devoted to the proof of this theorem.

Definition 12.2.4. We call E → DΦ as above a pseudo-universal family of
twisted formal disks.

12.3. Galoisian group schemes

In order to prove Theorem 12.2.3, we first construct the moduli stack of all
possible Galois groups.

Definition 12.3.1. A finite group G is called Galoisian if there exists a finite
Galois extension L/KLtM such that K is an algebraically closed field and the Galois
group Gal(L/KLtM) is isomorphic to G.

It is known that if p > 0, every Galoisian group is isomorphic to the semidirect
product H o C of a p-group and a tame cyclic group C [Ser79, pp. 67–68]. If
p = 0, Galoisian groups are exactly finite cylic groups. Quotients and subgroups of
a Galoisian group is again Galoisian.

Definition 12.3.2. A finite étale group scheme G over a scheme S is called
Galoisian if for every geometric point s : SpecK → S, the fiber Gs = G×S SpecK
is a Galoisian finite group. For a Galoisian finite group G, a finite étale group
scheme H → S is called G-Galoisian if every geometric fiber Hs is isomorphic to
G.
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Definition 12.3.3. We define the moduli stack of Galoisian group schemes,
denoted by A, as follows. An object of a fiber A(S) is a Galoisian group scheme
G → S. A morphism from H → S to G → S in A(S) is an isomorphism H → G
of group schemes over S. We call A the moduli stack of Galoisian group schemes.
For the isomorphism class [G] of a Galoisian finite group G, we define A[G] to be
its full subcategory consisting of G-Galoisian group schemes.

It is straightforward to show that A is a stack. Let us denote by GalGps a
representative set of isomorphism classes of Galoisian finite groups. We have

A =
∐

G∈GalGps

A[G].

If we fix a Galoisian group and an algebraically closed field K, then all G-Galoisian
group scheme over K are isomorphic one another and have Aut(G) as their au-
tomorphism groups. Thus we may guess that the stack A[G] would be B(AutG).
This is indeed true:

Lemma 12.3.4. For a Galoisian finite group G, we have an isomorphism

A[G]
∼= B(AutG)

such that the constant group scheme G over k corresponds to the standard morphism
Spec k → B(AutG).

Proof. In [Yas19], we proved this by explicit construction of funtors which
are pseudo-inverses to each others. We give a different and shorter proof here. Con-
sider the fiber product Spec k ×A[G]

Spec k given by the morphism Spec k → A[G]

associated to the constant group scheme G over k. We claim that this stack
Spec k ×A[G]

Spec k is isomorphic to the constant group scheme AutG over k. In-
deed, an object of this fiber product over an affine scheme S is the triple (S →
Spec k, S → Spec k, α : GS → GS), where the first two entries are the structure mor-
phism and the last one is an isomorphism of group schemes over S by the definition
of fiber products. Thus the fiber (Spec k×A[G]

Spec k)(S) is canonically equivalent to
(AutG)(S). Thus A[G] is is isomorphic to the stack associated the groupoid scheme
AutG⇒ Spec k, that is, the classifying stack B(AutG) = [Spec k/AutG]. �

The moduli stack A has the universal family

G → A

of Galoisian group schemes. An object of G(S) is the pair (G→ S, σ) of a Galoisian
group scheme G → S and a section σ ∈ G(S). A morphism (G′ → S, σ′) → (G →
S, σ) in G(S) is a morphism G′ → G of group schemes over S compatible with
σ′ 7→ σ. For a Galoisian group scheme G→ S corresponding to S → A, we have

G ×A S ∼= G.

In particular, G → A is schematic, étale and finite.

12.4. The Artin-Schreier theory

For each k-algebra R, we have the Artin-Schreier exact sequence

0→ Z/pZ→ Ga
℘−→ Ga → 0
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of sheaves on the small étale site of SpecR [Mil80, p. 67]. Here ℘ is the Artin-
Schreier map which maps a section s to sp − s. This induces an exact sequence of
cohomology groups

H0
ét(SpecR,Ga)

℘−→ H0
ét(SpecR,Ga)→ H1

ét(SpecR,Z/pZ)→ H1
ét(SpecR,Ga).

The group H1
ét(SpecR,Z/pZ) parametrizes isomorphism classes Z/pZ-torsors over

SpecR We also have

Hi
ét(SpecR,Ga) = Hi(SpecR,OSpecR) =

{
R (i = 0)

0 (i 6= 0).

Here the higher cohomology groups vanish, since SpecR is affine [Gro61, Th. 1.3.1]
(cf. [Har77, III, Th. 3.5]). Thus we have a one-to-one correspondence:

(12.4.1) R/℘(R)↔ {Z/pZ-torsors over SpecR}/∼=
This maps the class of f ∈ R to the torsor SpecR[X]/(Xp −X − f). The (right)
action of Z/pZ is given by the (left) action

a ·X = X + a (a ∈ Z/pZ).

To categorify this correspondence, we define a cagegory BR as follows.

Definition 12.4.1. An object of BR is an element r ∈ R. A morphism r′ → r
is an element b ∈ R such that b − bp = r′ − r. For morphisms c : r′′ → r′ and
b : r′ → r, the composition b ◦ c : r′′ → r is the sum b+ c.

Indeed, since

(b+ c)− (b+ c)p = (b− bp) + (c− cp) = r′′ − r,

the sum b + c is a morphism r′′ → r. In the category BR, an element r ∈ R is
isomorphic to its p-th power rp by the isomorphism r : r

∼−→ rp.
For a morphism b : r′ → r, we have the isomorphism

αb : SpecR[X]/(Xp −X − r′)→ SpecR[X]/(Xp −X − r)
of torsors given by α∗b(X) = X + b.

Lemma 12.4.2. The map

HomBR(r′, r)→ IsoR

(
Spec

R[X]

Xp −X − r′
,Spec

R[X]

Xp −X − r

)
b 7→ αb

is bijective.

Proof. The map extends to the map

SpecR[X]/(Xp −X − (r′ − r))→ IsoR

(
Spec

R[X]

Xp −X − r′
,Spec

R[X]

Xp −X − r

)
of functors AffR → Set so that the original map is the one evaluated at SpecR.
Moreover these schemes are Z/pZ-torsors over SpecR and the map is Z/pZ-equivariant.
Since every equivariant morphism of torsors is an isomorphism, the above map of
functors is an isomorphism. It follows that the map of the lemma is bijective. �

The lemma shows the following proposition, which categorifies the correspon-
dence (12.4.1):
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Proposition 12.4.3. The functor

BR → BR(Z/pZ) = {Z/pZ-torsors over SpecR}
that sends an object r to SpecR[X]/(Xp −X − r) and a morphism b : r′ → r to αb
is an equivalence.

Definition 12.4.4. For a finite étale group scheme G over k, we denote by ∆G

the stack of G-torsors over D∗. More precisely, we define this stack so that the fiber
∆G(SpecR) is (BG)(D∗R), the groupoid of G-torsors over D∗R = SpecRLtM.

Thanks to Proposition 12.4.3, we may identify (B(Z/pZ))(SpecR) with BR and
∆G(SpecR) with BRLtM. We give an explicit description of ∆Z/pZ. Let N := {n ∈
Z>0 | p - n} and let A⊕Nk be the functor Affop

k → Set given by

A⊕Nk (SpecR) := R⊕N = {(rn)n∈N ∈ RN | rn = 0 for all but finitely many n}.
This is isomorphic to the inductive limit lim−→Amk of affine spaces Amk , m ≥ 0 with
respect to standard embedings Amk ↪→ Am+1

k as transition maps. An object of
A⊕Nk × B(Z/pZ) over SpecR is a pair ((rn)n∈N , r0) with rn ∈ R; we denote it also
as (rn)n∈N∪{0} or simply (rn). For two objects (rn) and (sn) over R, if rn = sn
for every n > 0, then an R-isomorphism (rn) → (sn) is an element u0 ∈ R such
that u0 − up0 = rn − sn. If rn 6= sn for some n > 0, then (rn) and (sn) are not
isomorphic.

Definition 12.4.5. For each m ∈ Z≥0, we define a morphism ψm : A⊕Nk ×
B(Z/pZ)→ ∆Z/pZ as follows; for an object (rn)n∈N∪{0} of A⊕Nk × BG,

ψm((rn)) :=
∑

n∈N∪{0}

rnt
−npm ,

and for a morphism u0 : (rn)→ (sn),

ψm(u0) = u0.

Let F : A⊕Nk ×B(Z/pZ)→ A⊕Nk ×B(Z/pZ) be the Frobenius morphism sending
(rn) to (rpn). Then we have functorial isomorphisms

ψm ((rn)) : ψm ((rn))
∼−→ ψm+1 ◦ F ((rn)) ,

which gives an isomorphism ψm
∼−→ ψm+1 ◦ F . We get a morphism

ψ∞ :
(
A⊕Nk × B(Z/pZ)

)iper → ∆Z/pZ,

where (−)iper denotes the inductive perfection . Note that since B(Z/pZ) is perfect,
we have (

A⊕Nk × B(Z/pZ)
)iper ∼= (A⊕Nk )iper × B(Z/pZ).

Theorem 12.4.6. The above morphism ψ∞ is an isomorphism.

Proof. It suffices to show that this functor ψ∞ is essentially surjective and
fully faithful.

Essential surjectivity: Let us take an arbitrary k-algebra R and an arbitrary
f =

∑
fit

i ∈ RLtM, which is an object of ∆Z/pZ(SpecR) = BRLtM. We write
f+ :=

∑
i>0 fit

i and f− :=
∑
i≤0 fit

i so that f = f+ + f−. From Lemma 12.4.7,
there exists a unique g ∈ t ·RJtK with ℘(g) = f+. This g is an isomorphism f−

∼−→ f
in BRLtM. Therefore we may and will suppose that f = f−, that is, f has no term of
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positive degree. We claim that replacing terms of f , we get an isomorphic Laurent
polynomial h =

∑
i≤0 hit

i whose nozero terms all have degrees with the same p-
adic (additive) valuation, say m, except the zeroth term h0. This is equivalent to
saying that h is in the image of ψm. Thus the claim implies that ψ∞ is essentially
surjective. The claim follows from the fact that if f = a + b, then f ∼= ap + b and
we can replace a term with its p-th power without changing the isomorphism class.

Faithfullness: Let (rn), (sn) be two objects of A⊕Nk × B(Z/pZ) over SpecR

such that rn = sn for n > 0 and let u0, v0 ∈ R be two isomorphisms r0
∼−→ s0 in

(B(Z/pZ))(SpecR). These elements u0, v0 also give R-isomorphisms (rn)
∼−→ (sn)

in A⊕Nk × B(Z/pZ). Suppose that ψm(u0) = ψm(v0) for some m. By definition,
um0 = vm0 in R. Therefore Fm(u0) = Fm(v0) in B(Z/pZ). Since BG is perfect,
u0 = v0. This shows the faithfullness of ψ∞.

Fullness: Let (sn) and (rn) be two objects of A⊕Nk ×B(Z/pZ) over SpecR. Let
m ∈ Z≥0 and let b : ψm((sn))→ ψm((rn)) be an isomorphism in ∆Z/pZ(SpecR) for
some m. Namely b is an element of RLtM such that

b− bp =
∑

n∈N∪{0}

(sn − rn)t−np
m

.

We will show the claim that for e � 0, bp
e ∈ R. From Lemma 12.4.7, b has the

trivial positive-degree part. Let e� 0 such that every nonzero coefficient of c := bp
e

is not nilpotent (nilpotent coefficiets are killed by being raised to the pe-th power).
We get the equality

(12.4.2) c− cp =
∑
n

(sn − rn)p
e

t−np
m+e

.

Writing c =
∑
cit

i, we define the set,

Mc := {vp(i) | i < 0 and ci 6= 0} ⊂ Z≥0.

Here vp is the additive normalized p-adic valuation. If the claim is false, then this
set is not empty. Then Mc−cp contains at least two distinct numbers maxMc and
maxMc + 1. But the corresponding set for the right side of (12.4.2) contains at
most one number m+ e. This is a contradiction. We have proved the claim.

The claim shows that for e� 0, bp
e

gives an isomorphism F e((sn))
∼−→ F e((rn))

as well as an isomorphism

ψm+e((sn)) = ψm((sn))p
e ∼−→ ψm((rn))p

e

= ψm+e((rn)).

This shows that ψ∞ is full. �

Lemma 12.4.7. For each f ∈ t · RJtK, there exists a unique g ∈ t · RJtK with
℘(g) = f .

Proof. For power series f =
∑
fit

i and g =
∑
git

i in t · RJtK, the equality
℘(g) = f is equivalent to the system of countable equaltities

gpi/p − gi = fi (i ∈ Z>0).

Here we follow the convention that if i/p is not an integer, then gi/p = 0 . Given
f , the unque solution is inductively given by gi := gpi/p − fi. �

Lemma 12.4.8. Let f =
∑
n≤0 fnt

−npm ∈ RLtM. Suppose that every nozero
coefficient fn of f is non-nilpotent. Suppose also that fn 6= 0 for some n > 0. Then
there is no b ∈ RLtM such that b− bp = f .
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Proof. On the contrary, suppose that there exists b ∈ RLtM such that b− bp =
f . Raising b and f to the pn-th power for n � 0, we may suppose that every
nonzero coefficient of b is not nilpotent. Then

ord bp = p ord b = ord f =: l,

here the order of a Laurent polynomial is defined to be the least degree of nonzero
terms. Then ord �

Lemma 12.4.9. Let R be a ring. The natual maps

{open and closed subsets of SpecR}
→ {open and closed subsets of SpecRJtK}
→ {open and closed subsets of SpecRLtM}

are bijective.

Proof. Open and closed subsets of SpecR correspond to idempotents of R. It
suffices to show that every idempotent of RJtK belongs to R and every idempotent
of RLtM belongs to R.

The first map: On the contrary, suppose that there exists an idempotent r in
RJtK \ R. For n � 0, its image r̄ in RJtK/(tn) is still an idempotent which does
not belong to R. But, since SpecR → SpecRJtK/(tn) is a homeomorphism, this is
impossible, a contradiction.

The second map: Suppose that the map is not bijective for some ring R. We
choose a pair (R, f) of a ring R and an idempotent f ∈ RLtM \RJtK such that ord f
attains the maximum, which is a negative integer. If c ∈ R is the coefficient of tord f

in f , then c2 = 0. The image f̄ of f in (R/c)LtM is an idempotent of order > ord f .
Therefore f̄ belongs to (R/(c))JtK. Since the map RJtK → R/(c)JtK = RJtK/(c)
induces a bijection of idempotents, f̄ belongs to RJtK, a contradiction. �

Corollary 12.4.10. Let B be a finite set and let B be the associated sheaf on
Affk. Namely B(SpecR) is the set of locally constant maps SpecR → B. Then
the maps

B(SpecR)→ B(SpecRJtK)→ B(SpecRLtM)
are bijective.

Proof. The setB(SpecR) correspond to a finite stratification SpecR =
⊔
b∈B Ub

by open and closed subsets Ub indexed by B. Thus the corollary is a direct conse-
quence of the above lemma. �



APPENDIX A

This is an appendix

A.1. Quotients of schemes by finite group actions

A.2. Descent

Consider an fpqc (that is, faithfully flat and quasi-compact) morphism p : S′ →
S of schemes. We put S′′ := S′ ×S S′ and S′′′ := S′ ×S S′ ×S S′. Let pi : S′′ → S′

be the i-th projection and let pij : S′′′ → S′′ be the projection to the i-th and j-th
entries.

Definition A.2.1 (Descent data). Let F ′ be a quasi-coherent sheaf on S′.
A descent datum on F ′ (with respect to p) is an isomorphism φ : p∗1F ′ → p∗2F ′
satisfying the cocycle condition

p∗13φ = p∗23φ ◦ p∗12φ.

Similarly, let X ′ be an S′-scheme. A descent datum on X ′ is an S′′-isomorphism
φ : p∗1X

′ → p∗2X
′ satisfying the cocycle condition

p∗13φ = p∗23φ ◦ p∗12φ.

Here p∗? means the base change by p?.

For a quasi-coherent sheaf F on S, the pull-back p∗F has the natural descent
datum. Similarly for p∗X of an S-scheme X.

Remark A.2.2 (The case of Galois covering). Suppose that p is a finite étale
Galois cover of integral schemes with Gal(S′/S) = G. Then we can identify S′′ with
G × S′ so that p1 corresponds to the projection G × S′ → S′ and p2 corresponds
to the G-action G × S′ → S′. Now giving an isomorphism φ : p∗1F ′ → p∗2F ′ is
equivalent to giving an isomorphism φg : F ′ → g∗F ′ for each g ∈ G. The cocycle
condition means that

φhg = g∗(φh) ◦ φg.

Thus giving a quasi-coherent sheaf on S′ with a descent datum is equivalent to giv-
ing a G-equivariant quasi-coherent sheaf on S′. Similarly, giving an S′-scheme with
a descent datum is equivalent to giving a G-equivariant S′-scheme. See [BLR90,
pp. 139-141] for details.

Proposition A.2.3 (fpqc descent; [BLR90, Section 6.1, Theorems 4 and 6], [Gro65, Propositions 2.5.2]). (1)
The functor F 7→ p∗F gives an equivalence from the category of quasi-
coherent sheaves on S to the category of quasi-coherent sheaves on S′ with
descent data. Moreover, F is locally free if and only if so is p∗F .

132
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(2) Suppose that S and S′ are affine. Then the functor X 7→ p∗X gives an
equivalence from the category of affine S-schemes to the category of affine
S′-schemes with descent data.

From Remark A.2.2, we get the following corollary in the case of Galois covers:

Corollary A.2.4 (Galois descent). Suppose that p is a finite étale Galois
cover of integral schemes with Gal(S′/S) = G.

(1) The functor F 7→ p∗F gives an equivalence from the category of quasi-
coherent sheaves on S to the category of G-equivariant quasi-coherent
sheaves on S′.

(2) The functor X 7→ p∗X gives an equivalence from the category of S-schemes
to the category of G-equivariant S′-schemes.

Corollary A.2.5 (Galois descent for vector bundles). Let X be an S-scheme.
Suppose that p is a finite étale Galois cover of integral schemes with Gal(S′/S) = G.
Suppose also that the pull-back p∗X has a structure of a G-equivariant vector bundle
with respect to the natural G-action. Then X has a structure of a vector bundle.
In particular, if p is the morphism SpecL → SpecK associated to a finite Galois
extension of fields, then X is isomorphic to an affine space AnK .

Proof. The vector bundle p∗X with the descent datum corresponds to a lo-
cally free sheaf F ′ with a descent datum. From Proposition A.2.3 and Corollary
A.2.4, there exists a locally free sheaf F which induces F ′ with the descent datum
via p∗. It is straightforward to see that the vector bundle Y associated to F induces
p∗X toghether with the given descent datum. Again from Corollary A.2.4, X is
S-isomorphic to Y . We have proved the first assertion. In the situation of the
second assertion, since S = SpecK is a point, the locally free sheaf F is in fact free
and the associated vector bundle Y is trivial. �
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