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Plan of the Talk

@ Definition of F-blowups and known results
© How to compute F-blowups: the toric case

© How to compute F-blowups: the general case<— the main part, based
on a joint work with Nobuo Hara and Tadakazu Sawada



Definition of F-blowups

o char(k) = p >0, k =k (easily generalized to perfect fields)

e X: a (singular) variety over k.

o x € X ~ inf. nbhd x[P1 © X, defined by mP? c &y.

Definition

Zar
FBe(X) := {xIPl| x € Xgmm} T Hilb,e.qimx (X). (the e-th F-blowup of X)

o [Z] € FB.(X) <+ 0-dim'l sub. Z C X with Supp(Z) = pt
e J natural map FB.(X) — X, [Z] — Supp(Z).

@ projective and birational, an isom. over Xs,



Basic Properties

@ a sequence of blowups:

FBo(X) =X —— — FBi(X) — 2 — FBy(X)

l

X

e X is F-pure = 3 FBey1(X) = FBe(X)

FBeie(X) # FBe(FBe(X))




Known Results

@ X: F-reg. surf. = For e >0, FB.(X) is the min. res. [Hara]
@ This is NOT true for non-F-reg. surf. [Hara, Sawada, Y]

o X=A/G, p{4G = For e3> 0, FBo(X) = Hilb®(A9). [Y, Toda-Y]



Every variety in char. p has canonical blowups FB(X).

Sometimes this gives a nice resolution in one step.




How to Compute F-blowups: the Toric Case

o N=29 M:=NY
@ 0 C Ng: a strongly convex d-dimensional cone

e X = Speck[MNa"]: affine toric variety

The normalization of FB.(X) corresponds to the Groebner fan of some
ideal I,.




The Groebner Fan

o | C k[MNcV]: an ideal
@ w € 0 : an interior point > w:MnNoV — R
e R-grading of k[MNo"] w.rt. w

e w € into  initial ideal In, (/) C k[MNoV]

Definition
The Groebner fan A of [:
° |A|l=o,

o In,(l)=In,(I) & w,v € rel.int.7 for the same 7 € A.




The ideal /,

e 1 T = Speck[M] C X: the unit point of the open torus
o 1[PT c T is defined by

<x1—1,...,xd—1>[pe] = <xfe—1,...,xge—1> C kX, x3]

o 1Pl ¢ X is defined by

o= (X" =1, 71>k[ . KMNeY]

X1 yeees Xy

For an affine toric variety X, the normalization of FB.(X) corresponds to
the Groebner fan of I.




We can also describe unnormalized FB.(X) with initial ideals.




Macaulay2 Computation

The toric case

The computation of Groebner fans are implemented only for polynomial
rings (as far as | know).

o The Ajsz-singularity X = (xy —z'* =0) € A3 in char. 3
o Compute FB4(X) with Macaulay2 by using the embedding X C A3
and a Groebner fan for k[x,y,z] as follows:




Macaulay2 Computation

The toric case: Command lines

il : loadPackage "gfanInterface";

i2 ¢ S = 772/3[x,y,z];
i3 : I = ideal(x*y-zAl4); -- A_13-singularity
i4 : J = I + ideal(xA81-1,yA81-1,zA81-1); -- the [3A4]-nbhd of the unit pt

i5 : render ] -- render the Groebner fan of J



Macaulay2 Computation
Picture: The fan of FB4(Ai3)
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How to Compute F-blowups: the General Case

o X: a variety

@ M: a coherent Ox-module

Definition

A modification f : Y — X is the blowup at M if:
o (f*M)/tors is locally free,

@ f is universal for this property.

The Nash blowup of X is the blowup at Qx /-

FBe(X) is the blowup at FEOx.




Two Parts of Computation

©@ Compute blowups at modules.
@ Compute FfO.



Computing Blowups at Modules

Expressing them as blowups at ideals

@ X = Spec R (Noetherian)
e M: f.g. R-module of rank r
o RN R™ s M —0: free presen. by a m x n-matrix A
e 3 mx (m—r)-submatrix A’ such that
M' .= coker(R™~" A, R™)
has rank r

@ / C R: the ideal generated by (m — r)-minors of A’

Fact [Villamayor, J. Alg.]
Bim(X) = Bli(X)




Computing Blowups at Modules

A recipe

Given R" 2 R™ — M — 0,
determine a submatrix A’, then
compute the ideal / generated by minors of A’, then

©0 00

compute the Rees algebra, Rees(/) = @;~q/". (with Macaulay2, for
instance)

We get Bly(X) = Proj Rees(l).



Computing FSOx

In precise, we compute the following:
Input:
o S=Fp[x1,....,xn], R=S/(f,.... )
@ R-module M with a presentation,

R" 2 R™ s M—0,A=(35), a; € S.

Output:

@ a presentation of FFM,

RS B Rt 5 FeM 0,

with explicit B.



How to compute FM
An algorithm

Input: S =Fp[x1,...,xn], R=S/(f,...,f), M= coker(R" A R™).

Algorithm:
@ Compute an S-presentation of M,

S? 5 S5b s M—o0.

@ Compute an S-presentation of FEM,

55,59 s FEM 0, B=(b;), bj € S.

(explained in the next slide)
© By —®s R, get an R-presenation of FEM,

RS By RY 5 FEM = 0, B = (by).



How to compute FEM for a S-module M

The monomial case

The key case:

o x?=x;'---x2" € S: a monomial

o (%): S5 SM—0

(%) is regarded as a presen. of FEM, looked throught F€:S — S
DS 1L @S- [xh]— FEM =0,
b b
where b= (by,...,bp) with 0 < b; < q := p¢. Explicitly:

¢([X ]) a+b q[X(a+b)%q]

(a+b)=+q, (a+ b)%gq: the elementwise quotient and remainder



How to compute FEM for a S-module M

The general case

The monomial case:

S5 S5 M=0 ~ Sqnf‘%sq"ﬁFfl\/l—)O

The polynomial case: For f =Y c,x?, put ¢¢ ;=Y c,¢, and

shsam—o ~ Sq"%Sq"—)FfM—w

The matrix case: For A= (aj;), ¢a is a block matrix with blocks ¢, and

SASE S M0 o~ SIS L Fep 0



Macaulay2 Computation
The 1st F-blowup of a simple elliptic singularity
il : load "MyPackage.m2"
i2 : R = 772/2[x,y,2z]/ideal (yA2+xA3+x*y*z+zA6); -- a simple ell. sing., type \tilde{E}_8
i3 : isBlowupNormal fBlowup(R,1)
o3 = false -- FB_1 (R) is non-normal
i4 : fBlSpecial(R,1) -- the exceptional locus
W, w, W, W, w]
2 8 1 2 3 4
Of = — o
2
(0,0,0,0,0,w, 0, WwWw +WW, WW +WW +W, WW +WW, WW +WW)
3 23 14 03 14 4 12 24 13 34
o4 :

i5 : decompose ideal oo

05 = {ideal (W , w , w ), ideal (w , w , w )} -- the exceptional locus = two PAl's
4 3 1 4 3 2
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Slides and Codes

| have put slides of this talk and some Macaulay2 functions at my
homepage:

http://takehikoyasuda.jimdo.com/



