# Computing F-blowups

Takehiko Yasuda

Osaka University

Computational workshop on Frobenius singularities and invariants Ann Arbor, June 1st, 2012

## Plan of the Talk

- Definition of F-blowups and known results
- e How to compute F-blowups: the toric case
- On a joint work with Nobuo Hara and Tadakazu Sawada

## Definition of F-blowups

- char(k) = p > 0,  $k = \overline{k}$  (easily generalized to perfect fields)
- X: a (singular) variety over k.
- $x \in X \rightsquigarrow$  inf. nbhd  $x^{[p^e]} \subset X$ , defined by  $\mathfrak{m}_x^{[p^e]} \subset \mathscr{O}_X$ .

#### Definition

$$FB_e(X) := \overline{\{x^{[p^e]} \mid x \in X_{sm}\}}^{Zar} \subset Hilb_{p^{e\cdot dim X}}(X). \text{ (the e-th F-blowup of } X)$$

- $[Z] \in FB_e(X) \leftrightarrow 0$ -dim'l sub.  $Z \subset X$  with Supp(Z) = pt
- $\exists$  natural map  $FB_e(X) \rightarrow X, [Z] \mapsto Supp(Z).$
- projective and birational, an isom. over X<sub>sm</sub>

## **Basic Properties**

• a sequence of blowups:

$$FB_0(X) = X \stackrel{\not\exists}{-} - FB_1(X) - \stackrel{\not\exists}{-} - FB_2(X)$$

. . .

• X is F-pure 
$$\Rightarrow \exists FB_{e+1}(X) \rightarrow FB_e(X)$$

#### Note

 $FB_{e+e'}(X) \neq FB_{e'}(FB_e(X))$ 

## Known Results

- X: F-reg. surf.  $\Rightarrow$  For  $e \gg 0$ ,  $FB_e(X)$  is the min. res. [Hara]
- This is NOT true for non-F-reg. surf. [Hara, Sawada, Y]

• 
$$X = \mathbb{A}^d/G$$
,  $p \nmid \sharp G \Rightarrow$  For  $e \gg 0$ ,  $FB_e(X) \cong Hilb^G(\mathbb{A}^d)$ . [Y, Toda-Y]

#### Summary

Every variety in char. p has canonical blowups  $FB_e(X)$ .

Sometimes this gives a nice resolution in one step.

How to Compute F-blowups: the Toric Case

• 
$$N = \mathbb{Z}^d, \ M := N^{\vee}$$

•  $\sigma \subset \mathit{N}_{\mathbb{R}}$ : a strongly convex *d*-dimensional cone

• 
$$X = Spec k[M \cap \sigma^{\vee}]$$
: affine toric variety

#### Fact

The normalization of  $FB_e(X)$  corresponds to the Groebner fan of some ideal  $I_e$ .

## The Groebner Fan

- $I \subset k[M \cap \sigma^{\vee}]$ : an ideal
- $w \in \sigma$  : an interior point  $\rightsquigarrow w : M \cap \sigma^{\vee} \to \mathbb{R}_{\geq 0}$
- $\mathbb{R}$ -grading of  $k[M \cap \sigma^{\vee}]$  w.r.t. w
- $w \in int \sigma \mapsto initial ideal In_w(I) \subset k[M \cap \sigma^{\vee}]$

#### Definition

The Groebner fan  $\Delta$  of *I*:

• 
$$|\Delta| = \sigma$$
,

•  $In_w(I) = In_v(I) \Leftrightarrow w, v \in rel.int. \tau$  for the same  $\tau \in \Delta$ .

## The ideal $I_e$

- $1 \in T = Spec k[M] \subset X$ : the unit point of the open torus
- $1^{[p^e]} \subset T$  is defined by

$$\langle x_1-1,\ldots,x_d-1\rangle^{[p^e]} = \left\langle x_1^{p^e}-1,\ldots,x_d^{p^e}-1\right\rangle \subset k[x_1^{\pm},\ldots,x_d^{\pm}]$$

•  $1^{[p^e]} \subset X$  is defined by

$$I_e := \left\langle x_1^{p^e} - 1, \dots, x_d^{p^e} - 1 \right\rangle_{k[x_1^{\pm}, \dots, x_d^{\pm}]} \cap k[M \cap \sigma^{\vee}]$$

#### Fact

For an affine toric variety X, the normalization of  $FB_e(X)$  corresponds to the Groebner fan of  $I_e$ .

#### Note

We can also describe unnormalized  $FB_e(X)$  with initial ideals.

The toric case

The computation of Groebner fans are implemented only for polynomial rings (as far as I know).

#### Example

- The  $A_{13}$ -singularity  $X = (xy z^{14} = 0) \subset \mathbb{A}^3$  in char. 3
- Compute  $FB_4(X)$  with Macaulay2 by using the embedding  $X \subset \mathbb{A}^3$ and a Groebner fan for k[x, y, z] as follows:

The toric case: Command lines

- i1 : loadPackage "gfanInterface";
- i2 : S = ZZ/3[x,y,z];
- i3 : I = ideal(x\*y-z^14); -- A\_13-singularity
- $i4 : J = I + ideal(x^{81-1}, y^{81-1}, z^{81-1}); -- the [3^4]-nbhd of the unit pt$
- i5 : render J -- render the Groebner fan of J

Picture: The fan of  $FB_4(A_{13})$ 



## How to Compute F-blowups: the General Case

- X: a variety
- M: a coherent  $\mathcal{O}_X$ -module

#### Definition

A modification  $f: Y \to X$  is the blowup at M if:

- $(f^*M)/tors$  is locally free,
- f is universal for this property.

#### Example

The Nash blowup of X is the blowup at  $\Omega_{X/k}$ .

#### Fact

 $FB_e(X)$  is the blowup at  $F^e_* \mathcal{O}_X$ .

## Two Parts of Computation

- Compute blowups at modules.
- **2** Compute  $F^e_* \mathcal{O}_X$ .

## Computing Blowups at Modules

Expressing them as blowups at ideals

- X = Spec R (Noetherian)
- M: f.g. R-module of rank r
- $R^n \xrightarrow{A} R^m \to M \to 0$ : free presen. by a  $m \times n$ -matrix A
- $\exists m \times (m-r)$ -submatrix A' such that

$$M' := coker(R^{m-r} \xrightarrow{A'} R^m)$$

has rank r

•  $I \subset R$ : the ideal generated by (m-r)-minors of A'

# Fact [Villamayor, J. Alg.] $Bl_M(X) = Bl_I(X)$

# Computing Blowups at Modules A recipe

$$I Given R^n \xrightarrow{A} R^m \to M \to 0,$$

- 2 determine a submatrix A', then
- $\bigcirc$  compute the ideal *I* generated by minors of A', then
- compute the Rees algebra, Rees(I) = ⊕<sub>i≥0</sub> I<sup>i</sup>. (with Macaulay2, for instance)
- We get  $BI_M(X) = Proj Rees(I)$ .

# Computing $F^e_* \mathcal{O}_X$

In precise, we compute the following:

Input:

• 
$$S = \mathbb{F}_p[x_1,\ldots,x_n], R = S/\langle f_1,\ldots,f_l \rangle$$

• *R*-module *M* with a presentation,

$$R^n \xrightarrow{A} R^m \to M \to 0, A = (\overline{a_{ij}}), a_{ij} \in S.$$

Output:

• a presentation of  $F_*^e M$ ,

$$R^{s} \xrightarrow{B} R^{t} \to F^{e}_{*}M \to 0,$$

with explicit B.

## How to compute $F^e_*M$

An algorithm

Input: 
$$S = \mathbb{F}_{\rho}[x_1, \dots, x_n], R = S/\langle f_1, \dots, f_l \rangle, M = coker(R^n \xrightarrow{A} R^m).$$

Algorithm:

**(**) Compute an S-presentation of M,

$$S^a \to S^b \to M \to 0.$$

2 Compute an S-presentation of 
$$F_*^e M$$
,

$$S^{c} \xrightarrow{B} S^{d} \rightarrow F^{e}_{*}M \rightarrow 0, B = (b_{ij}), b_{ij} \in S.$$

(explained in the next slide)

**3** By  $-\otimes_S R$ , get an *R*-presenation of  $F_*^e M$ ,

$$R^{c} \xrightarrow{B} R^{d} \to F^{e}_{*}M \to 0, \, \bar{B} = (\overline{b_{ij}}).$$

#### How to compute $F_*^e M$ for a *S*-module *M* The monomial case

The key case:

• 
$$x^a = x_1^{a_1} \cdots x_n^{a_n} \in S$$
: a monomial

• (
$$\bigstar$$
):  $S \xrightarrow{x^a} S \to M \to 0$ 

(★) is regarded as a presen. of  $F^e_*M$ , looked throught  $F^e: S \to S$ :  $\bigoplus_b S \cdot [x^b] \xrightarrow{\phi} \bigoplus_b S \cdot [x^b] \to F^e_*M \to 0,$ where  $b = (b_1, \dots, b_n)$  with  $0 \le b_i < q := p^e$ . Explicitly:  $\phi([x^b]) = x^{(a+b) \div q} [x^{(a+b)\% q}],$ 

 $(a+b) \div q$ , (a+b)% q: the elementwise quotient and remainder

#### How to compute $F^e_*M$ for a *S*-module *M* The general case

The monomial case:

$$S \xrightarrow{x^a} S \to M \to 0 \qquad \rightsquigarrow \qquad S^{q^n} \xrightarrow{\phi_a} S^{q^n} \to F^e_* M \to 0$$

The polynomial case: For  $f = \sum c_a x^a$ , put  $\phi_f := \sum c_a \phi_a$  and

$$S \xrightarrow{f} S \to M \to 0 \qquad \rightsquigarrow \qquad S^{q^n} \xrightarrow{\phi_f} S^{q^n} \to F^e_* M \to 0$$

The matrix case: For  $A = (a_{ij}), \phi_A$  is a block matrix with blocks  $\phi_{a_{ij}}$  and

$$S^s \xrightarrow{A} S^t \to M \to 0 \qquad \rightsquigarrow \qquad S^{sq^n} \xrightarrow{\phi_A} S^{tq^n} \to F^e_*M \to 0$$

The 1st F-blowup of a simple elliptic singularity

i1 : load "MyPackage.m2"

i2 : R =  $\frac{22}{2[x,y,z]}/\frac{1}{4}eal(y^2+x^3+x^*y^*z+z^6); -- a simple ell. sing., type <math>tilde{E}_8$ 

i3 : isBlowupNormal fBlowup(R,1)

o3 = false -- FB\_1 (R) is non-normal

4 3 1

i4 : fBlSpecial(R,1) -- the exceptional locus

4 3 2

- Toric: Yasuda, Universal flattening of Frobenius, Amer. J. Math, 2012
- General: Sawada, Hara & Yasuda, *F-blowups of normal surface singularities*, to appear in Algebra & Number Theory, arXiv:1108.1840

I have put slides of this talk and some Macaulay2 functions at my homepage:

http://takehikoyasuda.jimdo.com/