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Plan of the Talk

1 Definition of F-blowups and known results
2 How to compute F-blowups: the toric case
3 How to compute F-blowups: the general case← the main part, based

on a joint work with Nobuo Hara and Tadakazu Sawada



Definition of F-blowups

char(k) = p > 0, k = k̄ (easily generalized to perfect fields)

X : a (singular) variety over k.

x ∈ X  inf. nbhd x [pe ] ⊂ X , defined by m
[pe ]
x ⊂ OX .

Definition

FBe(X ) := {x [pe ] | x ∈ Xsm}
Zar
⊂ Hilbpe·dimX (X ). (the e-th F-blowup of X )

[Z ] ∈ FBe(X ) ↔ 0-dim’l sub. Z ⊂ X with Supp(Z ) = pt

∃ natural map FBe(X )→ X , [Z ] 7→ Supp(Z ).

projective and birational, an isom. over Xsm



Basic Properties

a sequence of blowups:

FB0(X ) = X
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6∃ FB1(X )
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6∃ FB2(X )
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· · ·

X

X is F-pure ⇒ ∃ FBe+1(X )→ FBe(X )

Note
FBe+e′(X ) 6= FBe′(FBe(X ))



Known Results

X : F-reg. surf. ⇒ For e� 0, FBe(X ) is the min. res. [Hara]

This is NOT true for non-F-reg. surf. [Hara, Sawada, Y]

X = Ad/G , p - ]G ⇒ For e� 0, FBe(X )∼= HilbG(Ad ). [Y, Toda-Y]



Summary
Every variety in char. p has canonical blowups FBe(X ).

Sometimes this gives a nice resolution in one step.



How to Compute F-blowups: the Toric Case

N = Zd , M := N∨

σ ⊂ NR: a strongly convex d-dimensional cone

X = Spec k[M ∩σ∨]: affine toric variety

Fact
The normalization of FBe(X ) corresponds to the Groebner fan of some
ideal Ie .



The Groebner Fan

I ⊂ k[M ∩σ∨]: an ideal

w ∈ σ : an interior point  w : M ∩σ∨→ R≥0

R-grading of k[M ∩σ∨] w.r.t. w

w ∈ int σ 7→ initial ideal Inw (I)⊂ k[M ∩σ∨]

Definition
The Groebner fan ∆ of I:

|∆|= σ ,

Inw (I) = Inv (I) ⇔ w ,v ∈ rel .int.τ for the same τ ∈∆.



The ideal Ie

1 ∈ T = Spec k[M]⊂ X : the unit point of the open torus

1[pe ] ⊂ T is defined by

〈x1−1, . . . ,xd −1〉[p
e ] =

〈
xpe

1 −1, . . . ,xpe

d −1
〉
⊂ k[x±1 , . . . ,x±d ]

1[pe ] ⊂ X is defined by

Ie :=
〈
xpe

1 −1, . . . ,xpe

d −1
〉

k[x±1 ,...,x±d ]
∩k[M ∩σ

∨]

Fact
For an affine toric variety X , the normalization of FBe(X ) corresponds to
the Groebner fan of Ie .



Note
We can also describe unnormalized FBe(X ) with initial ideals.



Macaulay2 Computation
The toric case

The computation of Groebner fans are implemented only for polynomial
rings (as far as I know).

Example
The A13-singularity X = (xy − z14 = 0)⊂ A3 in char. 3
Compute FB4(X ) with Macaulay2 by using the embedding X ⊂ A3

and a Groebner fan for k[x ,y ,z ] as follows:



Macaulay2 Computation
The toric case: Command lines



Macaulay2 Computation
Picture: The fan of FB4(A13)



How to Compute F-blowups: the General Case

X : a variety
M: a coherent OX -module

Definition
A modification f : Y → X is the blowup at M if:

(f ∗M)/tors is locally free,

f is universal for this property.

Example
The Nash blowup of X is the blowup at ΩX/k .

Fact
FBe(X ) is the blowup at F e

∗OX .



Two Parts of Computation

1 Compute blowups at modules.
2 Compute F e

∗OX .



Computing Blowups at Modules
Expressing them as blowups at ideals

X = Spec R (Noetherian)

M: f.g. R-module of rank r

Rn A−→ Rm→M→ 0: free presen. by a m×n-matrix A

∃ m× (m− r)-submatrix A′ such that

M ′ := coker(Rm−r A′−→ Rm)

has rank r

I ⊂ R: the ideal generated by (m− r)-minors of A′

Fact [Villamayor, J. Alg.]
BlM(X ) = BlI(X )



Computing Blowups at Modules
A recipe

1 Given Rn A−→ Rm→M→ 0,
2 determine a submatrix A′, then
3 compute the ideal I generated by minors of A′, then
4 compute the Rees algebra, Rees(I) =

⊕
i≥0 I i . (with Macaulay2, for

instance)
5 We get BlM(X ) = Proj Rees(I).



Computing F e
∗OX

In precise, we compute the following:

Input:
S = Fp[x1, . . . ,xn], R = S/〈f1, . . . , fl〉

R-module M with a presentation,

Rn A−→ Rm→M→ 0, A = (aij), aij ∈ S.

Output:
a presentation of F e

∗M,

Rs B−→ Rt → F e
∗M→ 0,

with explicit B.



How to compute F e
∗M

An algorithm

Input: S = Fp[x1, . . . ,xn], R = S/〈f1, . . . , fl〉, M = coker(Rn A−→ Rm).

Algorithm:
1 Compute an S-presentation of M,

Sa→ Sb →M→ 0.

2 Compute an S-presentation of F e
∗M,

Sc B−→ Sd → F e
∗M→ 0, B = (bij), bij ∈ S.

(explained in the next slide)
3 By −⊗S R, get an R-presenation of F e

∗M,

Rc B̄−→ Rd → F e
∗M→ 0, B̄ = (bij).



How to compute F e
∗M for a S-module M

The monomial case

The key case:

xa = xa1
1 · · ·xann ∈ S: a monomial

(F): S xa
−→ S →M→ 0

(F) is regarded as a presen. of F e
∗M, looked throught F e : S → S :⊕

b
S · [xb]

φ−→
⊕

b
S · [xb]→ F e

∗M→ 0,

where b = (b1, . . . ,bn) with 0≤ bi < q := pe . Explicitly:

φ([xb]) = x (a+b)÷q[x (a+b)%q],

(a+b)÷q, (a+b)%q: the elementwise quotient and remainder



How to compute F e
∗M for a S-module M

The general case

The monomial case:

S xa
−→ S →M→ 0  Sqn φa−→ Sqn → F e

∗M→ 0

The polynomial case: For f = ∑caxa, put φf := ∑caφa and

S f−→ S →M→ 0  Sqn φf−→ Sqn → F e
∗M→ 0

The matrix case: For A = (aij), φA is a block matrix with blocks φaij and

Ss A−→ St →M→ 0  Ssqn φA−→ Stqn → F e
∗M→ 0



Macaulay2 Computation
The 1st F-blowup of a simple elliptic singularity
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Slides and Codes

I have put slides of this talk and some Macaulay2 functions at my
homepage:

http://takehikoyasuda.jimdo.com/


