
NOTES ON DUALITIES FOR MASS FORMULAS

MELANIE MATCHETT WOOD AND TAKEHIKO YASUDA

This manuscript had been first intended as Section 3 of the errata to the paper
[WY17], but has got eventually separated.

1. More examples on dualities

It turned out in the errata that [WY17, Question 5.2] have negative answers.
However it might be still interesting to consider a modified question. Consider
massesM(K,Γ, f) andM(K,Γ, g) for two counting systems f and g. Suppose that
they are admissible as functions of r (see [WY17, Definition 2.1] for the definition
of admissible functions). For a real number d, let us say that this (ordered) pair of
masses satisfy the d-dimensional weak duality if it satisfies the equality

M(K,Γ, f) · qd −M(K,Γ, g) = D(M(K,Γ, g)) · qd − D(M(K,Γ, f)).

Question 1.1. When does this generalized weak duality hold (even if the strong
duality fails)?

In the above concrete situation of quadratic extensions, the two massesM(K,Γ,vσn
)

and M(K,Γ,−wσn) satsify the n-dimensional weak duality instead of the 2n-
dimensional weak duality. Namely

(1 + q−n+1 − q−n + q−3n/2+1)qn − (q + q−n/2+1)

= (q−1 + qn/2−1)qn − (1 + qn−1 − qn + q3n/2−1).

Note that, if σn,C : Γ → GL2n(C) denotes the representation similarly defined say
over C, we have

M(K,Γ,vσn
) = M(K,Γ,aσn

/2) = M(K,Γ,aσn,C/2) and
M(K,Γ,−wσn

) = M(K,Γ,−wσn,C) = M(K,Γ,aσn,C/2− tσn,C),

where a is the Artin conductor and t is its tame part. For the left equalities, see
[WY15, Corollary 4.9]. The right ones hold because, in the case of permutation
representations, the Artin conductor and its tame part are independent of on which
field or ring the representation is defined. If τn : Γ→ GLn(C) is the representation
given by the diagonal matrix diag(−1, . . . ,−1), then σn,C is isomorphic to the direct
sum of τn and the trivial representation of degree n. It follows thatM(K,Γ,vσn

) =
M(K,Γ,aτn/2) andM(K,Γ,−wσn) = M(K,Γ,aτn/2−tτn). Thus, for this degree-
n representation τn, the “strong duality”

(1.1) D(M(K,Γ,aτn/2− tτn)) = M(K,Γ,aτn/2)

fails, while the n-dimensional weak duality holds, though this representation is no
longer defined over OK .

We show below a few more examples where the strong duality fails but the weak
duality holds in some dimension. To show the failure of the strong dualtiy, we
need to compute masses explicitly. We use local class field theory for this purpose.
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Local class field theory tells us that for a local field K and a cyclic group Cp
of prime order p, the continuous surjective homomorphisms Gal(Ksep/K) → Cp
correspond exactly to continuous surjective homomorphisms K∗ → Cp. Let U0 be
the group of elements of valuation 0 in K. For each positive integer i, let Ui be
the subgroup of U0 of elements of the form 1 + x, where x has valuation at least
i. Each homomorphism K∗ → Cp has a conductor (note this is a different, but
related, use of the word “conductor” than in “Artin conductor”), which is the least
integer c ≥ 0 such that Uc is in the kernel of the homomorphism. If the conductor is
c, then in the corresponding field extension we have the upper ramification groups
G−1 = · · · = Gc−1 = Cp and Gc = 1, and the lower ramification groups G−1 =
· · · = Gc−1 = Cp and Gc = 1. (All of this can be found in [Ser67].)

Note that both the Artin conductor and the tame part of the Artin conductor are
additive in the representation. In particular, for any n, we have M(K,Γ,aτn/2) =
M(K,Γ, naτ/2) and M(K,Γ,aτn/2 − tτn) = M(K,Γ, n(aτ/2 − tτ )) with τ := τ1.
When the Galois group is Cp, then the Artin conductor for a non-trivial irreducible
representation is c, where G−1 = · · · = Gc−1 = Cp and Gc = 1, and the tame part
is 0 if c = 0 and 1 if c ≥ 1. For a trivial representation, both the Artin conductor
and the tame part of the Artin conductor are 0.

The next three propositions show examples where Γ is the cyclic group of order
2 or 3 and the strong duality fails.

Proposition 1.2. Suppose that Γ = C2, the cyclic group of order 2 and that K
has characteristic 0 and residue characteristic 2. For a positive integer n, consider
the representations σn : Γ → GL2n(OK) and τn : Γ → GLn(C) as above. Then the
masses M(K,Γ,vσn) = M(K,Γ,aτn/2) and M(K,Γ,−wσn) = M(K,Γ,aτn/2 −
tτn) are dual to each other for n = 2 but not for n 6= 2.

Proof. Note that K∗ ∼= Z × U0, where the map to Z is given by valuation, and
the conductor only depends on the restriction of a homomorphism to U0. The two
choices of maps Z → C2 will cancel with the 1/2 fraction in the definition of the
mass. Let ebe the valuation of 2 in K. The group U0 has continuous surjections to
C2 exactly as follows: (q − 1)qm−1 surjections of conductor 2m for 1 ≤ m ≤ e and
qe characters of conductor 2e+ 1 (e.g. see [Ser78, Section 2, Example (a)]). So, for
any real number s, we compute

M(K,Γ, saτ ) = 1 +

e∑
m=1

(q − 1)q(1−2s)m−1 + qe−(2e+1)s

and

M(K,Γ, s(aτ − 2tτ )) = 1 +

e∑
m=1

(q − 1)q(1−2s)m−1+2s + qe−(2e+1)s+2s

= 1 +

e∑
m=1

(q − 1)q(1−2s)(m−1) + q(1−2s)(e−1)−s+1.

The case s = n/2 corresponds to the masses of the propositions. We have

D(M(K,Γ, saτ )) = 1 +

e∑
m=1

(1− q)q(2s−1)m + q−e+(2e+1)s.

Consider the expansions of D(M(K,Γ, saτ )) and M(K,Γ, s(aτ − 2tτ )) as a finite
linear combination of powers of q. The former has only positive powers for s > 1.
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However, when n/2 = s > 1, the latter has also a negative power. Indeed, the lowest
exponent is (1−2s)(e−1)−s+1, which is negative. Therefore D(M(K,GΓ, saτ ) 6=
M(K,Γ, s(aτ − 2tτ )) for s > 1. By direct computation, we see that when s = 1,

D(M(K,Γ, saτ )) = M(K,Γ, s(aτ − 2tτ )) = 1 + q

and when s = 1/2,

D(M(K,Γ, saτ )) = e+ 1 + q1/2 − eq,

M(K,Γ, s(aτ − 2tτ )) = 1− e+ q1/2 + eq.

�

Proposition 1.3. Let Γ = C3 and let τ : Γ→ GL1(C) be a nontrivial 1-dimensional
representation. For a positive integer n, let τn := τ⊕n. Suppose that 3 has valuation
1 in K. Then M(K,Γ,aτn/2) and M(K,Γ,aτn/2− tτn) are not dual to each other
for any n. (Note that it does not affect any of the functions a, t and these masses,
which of the two irreducible representations we choose as τ .)

Proof. To count the continuous homomorphisms U0 → C3 of various conductors
(which we have reduced the problem of computing the masses to by the discussion
above), we need to determine the 3-rank of U0/(U

3
0Ui) for each i. Since U0/U1

is isomorphic to the multiplicative group of the residue field (and thus has order
relatively prime to 3, there are no maps U0 → C3 of conductor 1, and we have
reduced the problem to determining the 3-rank of U1/(U

3
1Ui) for each i ≥ 2.

From [FV02, Chapter I, Section (5.7)], we have that U3
1 = U2. Thus U1/(U

3
1Ui)

∼=
U1/(U

3
1 ) ∼= U1/U2 for all i ≥ 2, and thus all non-trivial homomorphisms U0 → C3

have conductor 2. Moreover, U1/U2 is a group of exponent 3 and size q (Section
(5.4) of same book chapter), so has q − 1 non-trivial homomorphisms to C3. Since
U3

1 = U2, there are no homorphisms of higher conductor.
Thus we have

M(K,Γ, saτ ) = 1 +
q − 1

q2s

and
M(K,Γ, s(aτ − 2tτ )) = q.

We can see if we take the dual of M(K,Γ, saτ ), we obtain

1 +
q−1 − 1

q−2s
,

which is less than 1 for q > 1. �

Proposition 1.4. Suppose that 3 has valuation 2 in K and that K has cube roots
of unity, and Γ = C3. Let τn be as in the last proposition. Then M(K,Γ,aτn/2)
and M(K,Γ,aτn/2− tτn) are dual to each other for n = 2 but not for n 6= 2.

Proof. We proceed as in the above proof. We have no homomorphisms U0 → C3 of
conductor 1, and we need to determine the 3-rank of U1/(U

3
1Ui) for each i ≥ 2 to

determine the number of homomorphisms of each higher conductor. From [FV02,
Chapter I, Section (5.7)], we have that U3

1 ⊂ U3 and U3
2 = U4. So, U1/(U

3
1U2) ∼=

U1/U2, which is exponent 3 and order q. Thus there are q − 1 homormorphisms
U0 → C3 of conductor 2. Also, U1/(U

3
1U3) ∼= U1/U3, which is an exponent 3 group

(from the first description), and order q2 (from the second description). So there are
q2−q homormorphisms U0 → C3 of conductor 3. Finally, U3

1U3/U
3
1U4 = U3/U

3
1U4,
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and the same section of the book referenced above tells us that the map U3
1 →

U3/U4 has image of size q/3 and U3/U4 has size q. Thus, we conclude U3
1U3/U

3
1U4

has size 3, and thus U1/(U
3
1U4) has exponent 3 and size 3q2. That shows there

are 2q2 homormorphisms U0 → C3 of conductor 4. Since U3
2 = U4 there are no

homormorphisms of higher conductor.
Thus we conclude

M(K,Γ, saτ ) = 1+
q − 1

q2s
+
q2 − q
q3s

+
2q2

q4s
= 1+q1−2s−q−2s+q2−3s−q1−3s+2q2−4s

and

M(K,Γ, s(aτ − 2tτ )) = q +
q2 − q
qs

+
2q2

q2s
= q + q2−s − q1−s + 2q2−2s.

Then
D(M(K,Γ, saτ )) = 1 + q2s−1 − q2s + q3s−2 − q3s−1 + 2q4s−2.

When n = 2s = 2, we see we have duality. When n = 2s > 2, the only term with
positive exponent of q in M(K,Γ, s(aτ − 2tτ )) is q1, however in (M(K,Γ, saτ )) the
coefficients of the terms qi for i > 0 sum to 2, and so we don’t have duality. When
n = 2s = 1, thenM(K,Γ, s(aτ−2tτ )) is a polynomial in q1/2, but D(M(K,Γ, saτ ))
is not, since it has the term q3s−2 = q−1/2. �

All the cases in the last three propositions satisfy the weak duality in some
dimension. We can prove a little more general result:

Proposition 1.5. Let K be a local field of residue characteristic p > 0. Let σ : Γ→
GLd(C) be a permutation representation of a finite group Γ and τ : Γ→ GLe(C) a
summand of σ complementary to the largest trivial subrepresentation of σ (that is,
the trivial Γ-action on the fixed locus (Cd)Γ). Suppose that for any element γ ∈ Γ
of order p, the fixed point locus is (Ce)γ = {0}. Then the masses M(K,Γ,aτ/2)
and M(K,Γ,aτ/2− tτ )) satisfy the e-dimensional weak duality, provided that these
masses are admissible functions.

Proof. Let us denote these masses by M and N respectively. We decompose M as
M = Mt + Mw, where Mt (resp. Mw) is the part of those maps ρ : GK → Γ such
that ρ(IK) is tame (resp. wild), where IK is the inertia subgroup of GK . Similarly
we write N = Nt +Nw. We claim that the dualtiy

(1.2) D(Mt) = Nt

holds. Indeed, the involution ι in [WY17, Section 5, the tame case] preserves the
subset of SK,Γ contributing Mt and Nt and the above duality follows from Lemma
5.1 of the same paper and the equalities vσ = aσ/2 = aτ/2 and −wσ = aσ/2−tσ =
aτ/2− tτ .

From the assumption, for any ρ : GK → Γ with wild inertia image, we have
t(ρ) = e. Therefore Nw = Mw · qe, dually D(Nw) · qe = D(Mw). Therefore

(1.3) Mw · qe −Nw = 0 = D(Nw) · qe − D(Mw).

This implies

M · qe −N = Mt · qe −Nt,
D(N) · qe − D(M) = D(Nt) · qe − D(Mt).

From (1.2), the right sides of these two equalities are equal. This proves the propo-
sition. �
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