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1 Introduction

In general, to each smoothness class of integrands, there corresponds an appropriate nu-
merical integration method, and the error is estimated in terms of the norm of the inte-
grand and the number of sampling points. The most widely applicable numerical inte-
gration method by means of deterministic sampling points is so-called quasi-Monte Carlo
method, which is used for integrands of bounded variations(cf.(3) below).

But if the integrand is more complicated, for example, if it has a very big total variation
relative to its integral or if it is not of bounded variation, quasi-Monte Carlo method may
not work for it. In such a case, numerical integration by means of random sampling —
Monte-Carlo integration — is indispensable.

Random variables are usually very complicated when they are realized on a concrete
probability space. So numerical integration for complicated functions is needed to calculate
their means(expectations). But of course, there are many random variables which are not
so complicated, for which deterministic numerical integration methods work. If we need
random sampling for a random variable, it is not because it is governed by chance, but
because it is complicated. In this sense, we gave this article the title ‘Numerical integration
for complicated functions and . . . ’, although we put ‘numerical integration for random
variables’ in mind.

Random sampling for numerical integration by computer has begun by von Neumann
and Ulam, as soon as electronic computer was born. It was also the birth of the problem
‘How do we realize random sampling by computer?’

In 1960’s, Kolmogorov, Chaitin and others began the theory of random numbers ([8,
16]), known as ‘Kolmogorov’s complexity theory’, by using the theory of computation,
which was in the cradle at that time. When Martin-Löf proved that a {0, 1}-sequence is
random if and only if it is accepted by the so-called universal test, which assymptotically
dominates any test, the theory of random numbers was established([20]). The random
numbers however are quite useless in practice, because a {0, 1}-sequence is called random
if there is no shorter algorithm to generate it than the algorithm that writes down the
sequence itself. Moreover, since the universal test was constructed to keep the asymptotic
consistency, even if we are given random numbers, they do not necessarily look random in
practical scale.

Anyhow, to meet practical demand, many ‘pseudo-random generators’ have been devel-
oped without a reasonable theory, and they have been successful at least in engineering([18,
21, 22, 35]).

Twenty years after Kolmogorov’s theory, a clear “definition” of pseudo-random gener-
ator was presented in 1980’s in the theory of cryptography([3, 4, 37]). It was based on the
theory of computational complexity, which was in a sense a practical refinement of Kol-
mogorov’s complexity theory. According to the “definition”, pseudo-random generation is
a technique to let small randomness look large randomness. Just like gilding, the purpose
of pseudo-random generation is to paste little precious resource (= small randomness)
onto surface (= finite-dimensional distributions which are tested by feasible procedures).
We do not mind what one cannot see from the outside (= finite-dimensional distributions
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which cannot be tested by any feasible procedure). A pseudo-random generator which
achieves this purpose is called ‘secure’(Definition 4.1).

The reason why we wrote “definition” with double quotation marks is because there
is no proof of the existence of mathematical object that satisfies the requirement of the
“definition”, that is, secure pseudo-random generator. It is a difficult problem involving
the P 6= NP conjecture. Nevertheless, it is a big progress that the essential problem of
pseudo-random generation has been made clear.

But if we restrict the use of pseudo-random generator, there is a possibility to ‘let
small randomness work just like large randomness’. For example, as for Monte Carlo
integration, this has been already achieved(§ 4.3).

While random sampling is needed for numerical integration of complicated functions,
it is often the case that sample sequences look very random when we apply quasi-Monte
Carlo method to complicated functions([10, 11, 25, 31, 32]). A pseudo-random generator
has been constructed by using this phenomenon([25]), whose security we discuss in § 5.2.

Random sampling by computer, whose main user is engaged in applied sciences, has
been very often discussed by intuition, and spread without rigor. Unfortunately, the fact is
that even among the professional researchers, no consensus on it has been yet established.
Thus what follows is the author’s proposal as a researcher of probability theory.

2 Lebesgue space and coin tossing process

First, we introduce some symbols and notations.

Definition 2.1 (i) Let T1 be 1 dimensional torus (a group [0, 1) with addition x +
y mod 1), B be the Borel σ field over T1, and P be the Lebesgue measure. We call the
probability space (T1,B,P) the Lebesgue probability space.
(ii) For each m ∈ N, let dm(x) ∈ {0, 1} denote the m-th digit of x ∈ T1 in its dyadic
expansion, that is,

d1(x) = 1[1/2,1)(x), dm(x) = d1(2m−1x), x ∈ T1.

(iii) For each m ∈ N, we put Σm := { i/2m | i = 0, . . . , 2m−1 } ⊂ T1, Bm := σ{ [a, b) | a, b ∈
Σm, a < b }, and for x ∈ T1,

bxcm := b2mxc/2m =
m∑

i=1

2−idi(x) ∈ Σm.

By convention, we define bxc∞ := x.
(iv) For each m ∈ N, let Pm denote the uniform probability measure on the measurable
space (Σm, 2Σm

).

The sequence of functions {dm}∞m=1 is a fair coin tossing process on the Lebesgue
probability space([5, 6]). Bm is the set of events which are determined by at most m
coin tosses. f is Bm-measurable if and only if f(x) ≡ f(bxcm). The probability space
(Σm, 2Σm

, Pm) describes everything about m coin tosses. The probability space (T1,Bm,P)
is isomorphic to (Σm, 2Σm

, Pm) by a mapping b · cm : T1 → Σm. If f is Bm-measurable,
we say ‘f has (at most) m-bit randomness’.

The mean(expectation) of a random variable f on the Lebesgue probability space is
denoted by I[f ], that is,

I[f ] :=
∫

T1

f(y)dy.

For any random variable whose defining probability space is not specifically shown, the
mean shall be denoted by E.
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3 Numerical integration for complicated functions

3.1 A numerical example

Let us make a detour to present a numerical example for the later explanation.
On the Lebesgue probability space, we define two random variables with parameter

m ∈ N: For x ∈ T1,

Sm(x) :=
m∑

i=1

di(x), (1)

fm(x) := 1{S2m−1(·)≤m−1}(x) =
{

1, (S2m−1(x) ≤ m− 1)
0, (S2m−1(x) ≥ m)

. (2)

The former returns the number of Heads (di(x) = 1) out of m tosses, while the latter
returns 1 or 0 according with whether or not the number of Heads is at most (m− 1) out
of (2m− 1) tosses.

Now let us consider to calculate the integral of f50. Since Head and Tail come out with
equal probabilities, we know I[f50] = P(S99 ≤ 49) = 1/2. Of course, it is most desirable
that we can calculate the integral by theoretical analysis in this way.

The second most desirable is to be able to compute an approximated integral value
by a deterministic method with a meaningful error estimate. Although f50 is a rather
simple random variable as a probabilistic object, it has countless discontinuous points as
a function on T1. So we can imagine that no deterministic numerical integration method
works for it.

But as an experiment, let us apply quasi-Monte Carlo methods to f50. A quasi-Monte
Carlo method is a deterministic sampling method by means of a low discrepancy sequence.
A [0, 1] = T1-valued sequence {xn}∞n=1 is said to be of low discrepancy, if for any function
f on T1 of bounded variation, we have

∣∣∣∣∣
1
N

N∑

n=1

f(xn)− I[f ]

∣∣∣∣∣ ≤ c(N)||f ||BV × log N

N
, N ∈ N, (3)

where ||f ||BV is the total variation of f and C(N) > 0 is independent of f([17, 22]). For
example, the Weyl sequence with irrational parameter α = (

√
5− 1)/2,

xn := (nα) mod 1, n = 1, 2, . . . , (4)

satisfies (3) for c(N) = (3/ log N) + (1/ log ξ) + (1/ log 2), ξ = (1 +
√

5)/2 ([17]).
Note that ||f50||BV is so huge that the error estimate (3) has no practical meaning.

But, anyway, we calculated the absolute error |N−1
∑N

n=1 f50(xn) − (1/2)|, where xn is
defined by (4) and N = 103, 104, . . . , 107. The result is shown in Fig.1. The numerical
integration seems to be successful. As the declined line is of slope −1/2, the convergence
rate is approximately O(N−1/2).

Using the van der Corput sequence {vn}∞n=1, another well-known low discrepancy se-
quence, let us try the same calculation. Here vn is defined by

vn :=
∞∑

i=1

d−i(n− 1)2−i, n = 1, 2, . . . , (5)

where d−i(n) stands for the i-th bit of n = 0, 1, 2, . . ., in its binary expansion (i.e., n =∑∞
i=1 d−i(n)2i−1). To put it concretely,

{vn}∞n=1 =
{

0,
1
2
,
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4
,

1
8
,

5
8
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3
8
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7
8
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,
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}
. (6)
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Figure 1: Absolute error of quasi-Monte Carlo method by the Weyl sequence (4)(log-log
graph)

This time, letting xn = vn, (3) holds with c(N) = log(N +1)/(log 2 · log N). In comparison
of c(N), the van der Corput sequence is better than the Weyl sequence. But if N < 250 =
1.13× 1015, we have N−1

∑N
n=1 f50(vn) = 1, which means that {vn}∞n=1 does not work for

the integration of f50 in practice.

3.2 Why deterministic methods do not work

What numerical integration method is applicable to the set of Bm-measurable functions?
We have I[f ] = 2−m

∑
y∈Σm f(y), for Bm-measurable f . If 2m is small enough, it is easy to

compute the right-hand side’s finite sum. The problem is how we compute it when 2m is
so large that we cannot compute the finite sum. What we can do in this case is to compute
an approximated value of I[f ] from the values {f(xn)}N

n=1 (N ¿ 2m) of f at sample points
{xn}N

n=1 ⊂ Σm. In such a situation, as we will explain soon, any deterministic numerical
integration method does not work.

Let us consider a numerical integration method of the type

I (f ; c,x) :=
N∑

n=1

cnf(xn), (7)

where c := {cn}N
n=1 is a coefficient vector which satisfies

∑N
n=1 cn = 1. Let L2(Bm)

denote the set of all Bm-measurable real valued functions with the usual inner product
〈f, g〉 := I[fg]. The norm is given by ||f || := 〈f, f〉1/2 as usual.

Now, since I (f ; c,x) is linear in f ∈ L2(Bm), there exists a unique gc,x ∈ L2(Bm) such
that I (f ; c,x) = 〈gc,x, f〉 for each f ∈ L2(Bm). Indeed, it is given by

gc,x(y) := 2m
N∑

n=1

cn1[xn,xn+2−m)(y), y ∈ T1. (8)

Consequently, we have
I (f ; c,x)− I[f ] = 〈gc,x − 1, f〉.
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This means that in order to make the error |I (f ; c,x)− I[f ]| small, we must take c,x so
that f and gc,x−1 is almost orthogonal. But can we take c,x so that gc,x−1 is orthogonal
to all f ∈ L2(Bm)? Of course, we cannot, because gc,x − 1 ∈ L2(Bm) has same direction
with itself.

Indeed, noting 〈gc,x, 1〉 = 1, ||gc,x||2 ≥ 2m
∑N

n=1 c2
n (if xn’s are all distinct then ‘=’

holds), and that
∑N

n=1 c2
n ≥ 1/N (if cn ≡ 1/N then ‘=’ holds), we have

I(gc,x − 1; c,x)− I[gc,x − 1] = 〈gc,x − 1, gc,x − 1〉 = ||gc,x||2 − 1

≥ 2m
N∑

n=1

c2
n − 1 ≥ 2m

N
− 1, (9)

which becomes huge if N ¿ 2m. In short, the sampling method by means of c,x yields a
tremendous error if it is applied to the function gc,x − 1 corresponding to itself.

This argument is quite trivial, but the theoretical obstacle in numerical integration
of complicated functions by means of finite deterministic sampling points consists in this
‘self-duality’. The failure of numerical integration of f50 by means of van der Corput
sequence {vn}∞n=1 shows that this kind of matter can occur in practice.

Remark 3.1 If our considering class L of integrands forms a thin set in L2(Bm), like a
linear subspace, then we may able to take c,x so that gc,x − 1 can be almost orthogonal
to L. Indeed, the trapezoidal rule as well as Simpson’s rule has the form (7), and the
corresponding smooth class of integrands (discretized into 2−m precision) to the rule must
be a thin set in L2(Bm).

3.3 Scenario of Monte Carlo integration

Monte Carlo integration is the general term for numerical integration methods which use
random variables as the sampling points. What follows is a summary of its idea1).

Purpose
Let f̃ be a random variable whose mean we wish to know. First, we construct a random

variable f on (T1,B,P) which has the same (or almost same) distribution as f̃ . Now our
aim is to compute I[f ] numerically instead of E[f̃ ]. Next, we construct another random
variable X also on (T1,B,P) which distributes near around I[f ]. In the present article,
assuming f ∈ L2[0, 1), we consider to construct X for any error bound ε > 0 so that the
mean square error is less than ε, i.e.,

I
[
|X − I[f ]|2

]
< ε. (10)

Then Chebyshev’s inequality shows

P (|X − I[f ]| > δ) < ε/δ2. (11)

Here note that f and X must be either of finite randomness or simulatable(see § 3.7).
When f and X satisfying all requirements above are constructed, the theoretical pur-

pose is achieved.

Random sampling
In order to obtain an approximated value of I[f ], we evaluate X(x) for an x ∈ T1. Of

course, since we do not know in advance which x gives a good approximated value — if
we knew, there would be a deterministic numerical integration method —, we are not sure
to obtain a good approximation. Choosing an x is a kind of gambles, as the term ‘Monte
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Carlo’ — famous city for casinos — indicates. The executer of the calculation, whom we
shall call Alice below, has the freedom to choose an x ∈ T1 and simultaneously bears the
responsibility for the result. Then (10) and (11) are considered to be the estimation of her
risk. We call such a method of problem solution random sampling. Note that we should
not mind the adjective ‘random’ so much. For example, the mathematical content of (11)
is, if X is BM -measurable, that the number of x ∈ ΣM that satisfies |X(x)− I[f ]| > δ is
less than 2Mε/δ2, and nothing else.

Pseudo-random generator
However, the randomness of X(= M) is very often extraordinarily large. In other

words, to evaluate X, Alice needs to input an extraordinarily long binary string x ∈ ΣM

into X. Then a pseudo-random generator g : Σn → ΣM , n ¿ M , takes over her job.
Namely, instead of a long binary string x, Alice chooses a short binary string ω ∈ Σn as
an input to g. The output g(ω) ∈ ΣM is called pseudo-random bits and ω is called the
seed. Then she computes X(g(ω)). Thus she actually has only freedom to choose ω but
not x.

Now, how shall we estimate her risk? Since we do not know again which ω to choose,
it is natural to assume that ω is a random variable uniformly distributed in Σn. Although,
in general, it is almost impossible to know the exact distribution of X(g(ω)) under Pn,
Alice (usually unconsciously) takes it for granted that almost the same risk estimate as
(11) holds for X(g(ω)), i.e.,

Pn (|X(g(ω))− I[f ]| > δ) < ε′/δ2,

where ε′ may be slightly bigger than ε. In other words, to meet Alice’s expectation,
the pseudo-random generator g should have the following property: The distribution of
X(g(ωn)) under Pn is close to that of X(x).

3.4 i.i.d.-sampling

Let f ∈ L2(Bm) be our integrand, let {Zn}N
n=1 be an i.i.d.(= independently identically

distributed) random variables each of which is uniformly distributed in Σm, and let

Iiid(f ; {Zn}N
n=1) := I(f ; {1/N}N

n=1, {Zn}N
n=1) =

1
N

N∑

n=1

f(Zn). (12)

The random sampling that estimates I[f ] by means of Iiid(f ; {Zn}N
n=1) is called i.i.d.-

sampling, which is the simplest and most used random sampling.
As is well-known, the mean square error is estimated as

I
[ ∣∣Iiid(f ; {Zn}N

n=1)− I[f ]
∣∣2

]
=

1
N

Var[f ], (13)

where Var[f ] := I
[|f − I[f ]|2] is the variance of f . It follows from Chebyshev’s inequality

that
P

(∣∣Iiid(f ; {Zn}N
n=1)− I[f ]

∣∣ > δ
) ≤ Var[f ]

Nδ2
, δ > 0. (14)

If N is large enough, the distribution of (12) can be approximated by some normal distri-
bution, so that the error estimate (14) will be much more refined.

The i.i.d. random variables {Zn}N
n=1 can be realized on the Lebesgue probability

space as Zn = Zn(x) :=
∑m

i=1 2−id(n−1)m+i(x)，x ∈ T1. Then we see that X(x) :=
Iiid(f ; {Zn(x)}N

n=1) is BNm-measurable. Thus when 1 ¿ N , the randomness of X is much
larger than that of f .
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3.5 An inequality for general random sampling

Instead of a clear formula like (13), an inequality holds for general random sampling
methods.

Theorem 3.1 (cf. [26]) Let {1, ψ1, . . . ψ2m−1} be an orthonormal basis of L2(Bm). Then
for any random variables X := {Xn}N

n=1 ⊂ T1，1 ≤ N ≤ 2m，the following inequality
holds.

2m−1∑

l=1

E
[
|I(ψl; c,X) |2

]
≥ 2m

N
− 1. (15)

If cn ≡ 1/N and {bXncm}N
n=1 are all distinct with probability 1, then (15) becomes an

equality.

Proof. As a special case of the assertion, even if X is deterministic, (15) should be
valid. On the other hand, if (15) is valid for each deterministic X, then it is valid for any
random X. Thus we will show it for any deterministic sequence {xn}N

n=1.
We may assume x := {xn}N

n=1 ⊂ Σm. To this sequence, there corresponds gc,x ∈
L2(Bm) via (8). Parseval’s identity (or Pythagoras’ theorem) implies that

||gc,x||2 = 〈gc,x, 1〉2 +
2m−1∑

l=1

〈gc,x, ψl〉2. (16)

It follows form 〈gc,x, 1〉2 = 1, (9), and (16) that

2m

N
≤ 1 +

2m−1∑

l=1

|I(ψl; c,x)|2 ,

which is nothing but (15) for Xn ≡ xn. 2

If a sampling method — deterministic or random — is very efficient for a certain class
of good integrands, we had better not use it for integrands which are not in the class,
because there must exist a bad integrand for which the error becomes larger than that of
i.i.d.-sampling so as to fulfill the inequality (15). Thus, this sampling provides a “high
return and high risk”-method.

Conversely, i.i.d.-sampling provides the most “low risk and low return”-method. Let
us call the supremum of the normalized mean square error

R(c,X) := sup
f∈L2(Bm),Var[f ]=1

E
[
|I(f ; c,X)− I[f ]|2

]
(17)

the maximum risk of the random sampling by means of c,X. The maximum risk of
i.i.d.-sampling is R({1/N}N

n=1, {Zn}N
n=1) = 1/N by (13). For a general random sampling,

dividing both sides of (15) by 2m − 1, we get

R(c,X) ≥
(

2m

2m − 1
1
N
− 1

2m − 1

)
∼ 1

N
, N ¿ 2m. (18)

Thus, when N ¿ 2m, we can say that i.i.d.-sampling has the property that its maximum
risk is almost smallest among those of all random sampling methods.
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3.6 Reduction of randomness

The formula (13) for i.i.d.-sampling is a consequence of uncorrelatedness (I[(f(Zn) −
I[f ])(f(Zn′)−I[f ])] = 0 if n 6= n′) rather than independence. We can therefore obtain (13)
for uniformly distributed pairwise independent random variables instead of i.i.d. random
variables.

Example 3.1 (cf. [19]) Identify Σm with {0, 1}m through binary expansion and further
with the Galois field GF(2m). Let Ω := GF(2m) × GF(2m) and let µ be the uniform
probability measure on Ω. We define random variables {Xn}n∈GF(2m) on the probability
space (Ω, 2Ω, µ) by

Xn(ω) := x + nα, ω = (x, α) ∈ Ω, n ∈ GF(2m).

Then each Xn distributes uniformly in GF(2m), and if n 6= n′, Xn and Xn′ are independent.

The assertion of Example 3.1 follows from the fact that the following system of linear
equations {

x + nα = a
x + n′α = a′

has a unique solution (x, α) = ω0 = (x0, α0) ∈ Ω, and hence

µ(Xn = a, Xn′ = a′) = µ({ω0}) = 2−2m = µ(Xn = a)µ(Xn′ = a′).

To assure that two Σm-valued random variables Xn and Xn′ are independent, we need at
least 2m bit randomness. Consequently, it is impossible to construct Σm-valued pairwise
independent random variables with randomness less than Example 3.1. However, since
the operations in GF(2m) are in fact polynomial operations, if m is a little bit big, it is
not easy to generate sampling points Xn quickly. Hence, these random variables are not
practical for numerical calculus.

There are other methods for generation of pairwise independent random variables([2,
9, 12, 14]). Among them, the following example is very suited for numerical calculation,
although it is not of least randomness.

Example 3.2 (Random Weyl sampling(RWS)[26, 33]) Let Ω := Σm+j × Σm+j and
µ := Pm+j ⊗ Pm+j(= the uniform probability measure on Ω). We define Σm-valued
random variables {Xn}2j

n=1 on the probability space (Ω, 2Ω, µ) by

Xn(ω) := bx + nαcm, ω = (x, α) ∈ Ω, n = 1, 2, 3, . . . , 2j .

Then under µ, each Xn distributes uniformly in Σm, and Xn and Xn′ are independent if
1 ≤ n 6= n′ ≤ 2j . In particular, {f(Xn)}2j

n=1 are pairwise independent having the same
distribution as f .

As an example, let us consider numerical integration of f50 defined by (2) again. If we
apply i.i.d.-sampling to f50 with sample size N = 107, we need 99×107 ∼ 109 random bits,
while if we apply RWS to it with the same sample size, we need only d99+ log2 107e× 2 =
246 random bits. Since a 246 bit string is easy to type, we need no pseudo-random
generator in the latter case.

Of course, it often happens that even if we apply RWS we still need to input such a
long binary string that we cannot type it. Then we use a pseudo-random generator. In
this case, the drastic reduction of randomness of RWS brings us the following advantages:
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(a) RWS is very insensitive to the quality of pseudo-random generator (§ 4 of [33]).

(b) RWS is very insensitive to the speed of pseudo-random generator. Consequently, we
can use a slow but precise pseudo-random generator (such as secure one, see § 4.2).
In this case, the random sampling becomes very reliable.

Remark 3.2 In § 3.1, we saw that quasi-Monte Carlo method by means of the Weyl
sequence (4) worked well for the integration of f50. This can be interpreted as follows:
Regarding that what we did was RWS with (x, α) = (0, b(√5 − 1)/2c123) ∈ Σ123 × Σ123,
we can say such good luck takes place very often.

3.7 Simulatable random variables and their numerical integration

By finiteness of computational resources(memory and time), we can deal with only random
variables of finite randomness, i.e., Bm-measurable function for some m ∈ N. But the
following class of random variables of infinite randomness (not Bm-measurable for any
m ∈ N) can be dealt with rigorously with high probability.

Example 3.3 (Hitting time) A random variable σ on (T1,B,P) defined by

σ(x) := inf{n ≥ 1 | d1(x) + d2(x) + · · ·+ dn(x) = 5}, x ∈ T1,

describes the time when the 5-th Head comes out in sequential coin tosses (inf ∅ := ∞).
Clearly, σ is unbounded and of infinite randomness. But, when the 5-th Head comes out,
the rest of coin tosses are not needed, so that we finish generating di(x) and get σ(x).
Thus the calculation of σ(x) ends in a finite time with probability 1.

A function τ : T1 → N∪{∞} is called a {Bm}m- stopping time (cf.[5, 7]), if {τ ≤ m} :=
{x ∈ T1 | τ(x) ≤ m} ∈ Bm, ∀m ∈ N. For a {Bm}m-stopping time τ , we define a sub σ-field
Bτ of B by Bτ := {A ∈ B |A ∩ {τ ≤ m} ∈ Bm, ∀m ∈ N}. A function f : T1 → R ∪ {±∞}
is Bτ -measurable, if and only if f(x) = f

(bxcτ(x)

)
, x ∈ T1.

The random variable σ in Example 3.3 is a {Bm}m-stopping time, and σ itself is
Bσ-measurable. In general, if a {Bm}m-stopping time τ satisfies P(τ < ∞) = 1, any Bτ -
measurable function f can be calculated with high probability. Such f is called simulatable
(cf. [7]).

If a stopping time τ satisfies E[τ ] < ∞, it is easy to apply i.i.d.-sampling to any
Bτ -measurable f . Indeed, putting

zn(x) := b2
∑n−1

i=1 τ(zi(x))xcτ(zn(x)), x ∈ T1, n ∈ N,

since τ is a stopping time with P(τ < ∞) = 1, each zn is defined with probability 1.
{f(zn)}∞n=1 on the Lebesgue probability space is an i.i.d.-sequence whose common distri-
bution is equal to that of f .

Furthermore, we can apply pairwise independent sampling to any simulatable random
variables.

Definition 3.1 (Dynamic random Weyl sampling(DRWS)，[27, 30]) Let j, K ∈ N, let
{(xl, αl)}l∈N be ΣK+j×ΣK+j-valued uniform i.i.d. random variables, and let τ be a {Bm}m-
stopping time such that E[τ ] < ∞. Define T1-valued random variables {xn}2j

n=1 by

xn :=
dτ(xn)/K e∑

l=1

2−(l−1)K bxl + νn,lαl (mod 1)cK ,

νn,l := #{ 1 ≤ i ≤ n | τ(xi) > (l − 1)K }.

9



Note that since τ is a {Bm}m-stopping time with P(τ < ∞) = 1, each νn,l and xn are
well-defined with probability 1.

Theorem 3.2 ([27]) If f is Bτ -measurable, each f(xn), 1 ≤ n ≤ 2j, has the same distri-
bution as f , and {f(xn)}2j

n=1 are pairwise independent.

4 Pseudo-random generator

4.1 General setting

A function gn : Σn → Σ`(n) with a parameter n ∈ N is called a pseudo-random generator,
if n < `(n). Suppose that Alice picks up an ωn ∈ Σn at random, i.e., ω is assumed to be a
random element with distribution Pn, which is called the seed. The output gn(ωn) ∈ Σ`(n)

is called pseudo-random bits, or pseudo-random numbers. As n < `(n), gn(ωn) is not a
coin tossing process.

For A ⊂ Σ`(n) with P`(n)(A) ¿ 1, we define a test for pseudo-random bits gn(ωn)
whose rejection region is A. That is, If Pn(gn(ωn) ∈ A) is close to the significant level
P`(n)(A), we admit that the pseudo-random bits gn(ωn) are accepted.

Expanding the above idea a little, let us formulate the notion of ‘random test’ for the
pseudo-random generator gn. For a function An : Σ`(n) × Σs(n) → {0, 1} with parameter
n ∈ N, we define

δ(gn, An) :=
∣∣Pn ⊗ Ps(n)

(
An(gn(ωn), ωs(n)) = 1

)− P`(n) ⊗ Ps(n)

(
An(ω`(n), ωs(n)) = 1

)∣∣ .

Here ‘⊗’ stands for the direct product of probability measures. The quantity δ(gn, An)
indicates how An can distinguish gn(ωn) from real coin tosses ω`(n). We introduced a
random element ωs(n) with distribution Ps(n) which is independent of ωn so as to describe
a random test.

4.2 Secure pseudo-random generator

4.2.1 Definition

Since n < `(n), there exists an An such that δ(gn, An) ≥ 1/2 ( for example, define An as
the indicator function of the range of gn). Hence it does not make sense if we consider
all tests, i.e., all functions An. We must consider some restricted classes of An. Then for
each class, there corresponds a class of pseudo-random generators which are accepted by
every test of that class.

Now, under what standard shall we define the classes? In cryptography, they set
computational complexity as the standard. Namely, T (An) being the time complexity of
An, they define

S(gn, An) :=
T (An)

δ(gn, An)
.

Suppose S(gn, An) is very large for all An. This means that if T (An) is not so large,
δ(gn, An) must be very small, and that if T (An) is very large, δ(gn, An) need be not so
small. They consider such gn to be excellent.

As a theoretical research object, the following class of pseudo-random generators is the
simplest and most investigated one.

Definition 4.1 Assume that `(n) and T (gn) are at most of polynomial growth in n. If
S(gn, An) is of over polynomial growth for any An, we say gn is a secure pseudo-random
generator, or that the pseudo-random bits gn(ωn) is secure.

10



Remark 4.1 For example, et/1000 grows much faster than all polynomials as t →∞, but
for small t, it is much smaller than t100. Thus in practical scale, a function of polynomial
time complexity is not necessarily feasible, and a function of over polynomial complexity
is not necessarily infeasible. In practice, we should investigate whether feasible or not case
by case.

4.2.2 Secure pseudo-random generator and Monte Carlo method

Secure pseudo-random generator originally means that when we used it for cryptography,
we can keep secret of communications with very high probability. But at the same time,
it is also ‘secure’ in Monte Carlo method in the sense that its output can hardly be
distinguished from real coin tossing process. Let us explain this fact.

Let X be a random variable with `(n)-bit randomness. Suppose as in § 3.3 that `(n)
is too large, and that we use a pseudo-random generator gn : Σn → Σ`(n) for the input of
X. Namely, we use X ′ = X(gn(ωn)) instead of X in practical numerical calculus. Then
the question is whether or not the distribution of X ′ is close to that of X.

To answer this question, let us compare their distribution functions FX(t) := P`(n)(X ≤
t) and FX′(t) := Pn(X ′ ≤ t). If gn is secure, then it is assured that FX(t) and FX′(t)
are close to each other for any t, if n is large enough. Indeed, defining a function for test
An by An(ω`(n)) := 1{X(ω`(n))≤t}, ω`(n) ∈ Σ`(n), that X is practically computable implies
T (An) is rather small. Then by the definition of secure pseudo-random generator, we see
that

|FX(t)− FX′(t)| =
∣∣P`(n)

(
An(ω`(n)) = 1

)− Pn (An(gn(ωn)) = 1)
∣∣

must be very small.

4.2.3 Existence problem

From theoretical point of view, the class of secure pseudo-random generators is the sim-
plest and most natural class among all classes of pseudo-random generators. However,
unfortunately, we do not know whether it is empty or not. This existence problem is
deeply related to ‘P 6= NP conjecture’, which is one of the most important unsolved prob-
lems in theory of computational complexity. That is, if P = NP, there exists no secure
pseudo-random generator2).

Nevertheless, researchers are optimistic. They think that of course it is excellent if
it exists, but even if it does not, there would be some progress in P 6= NP conjecture.
Anyway, while the negative answer is not proved, let us assume its existence.

4.2.4 Next-bit-prediction

The notion of ‘next-bit-prediction’ is a clue to how we construct a secure pseudo-random
generator.

Definition 4.2 Let gn : Σn → Σ`(n) be a pseudo-random generator and let P`(n),n be
the uniform probability measure on the product set {1, 2, . . . , `(n)}×Σn. In what follows,
(I, ωn) ∈ {1, 2, . . . , `(n)} × Σn is an random element with distribution P`(n),n. For each
function Ã : {1, 2, . . . , `(n)} × Σ`(n) × Σs(n) → {0, 1}, we define

δ̃(gn, Ãn) := P`(n),n ⊗ Ps(n)

(
Ãn

(
I, bgn(ωn)cI−1, ωs(n)

)
= dI(gn(ωn))

)
− 1

2
.
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This is the probability that Ãn exactly predicts the I-th bit dI(gn(ωn)) from know I−1-bits
bgn(ωn)cI−1. Then if for any Ãn,

S̃(gn, Ãn) :=

∣∣∣∣∣
T (Ãn)

δ̃(gn, Ãn)

∣∣∣∣∣

is of over polynomial growth, gn is said to be next-bit-unpredictable.

Since next-bit-prediction can be regarded as a special kind of tests mentioned in § 4.2.1,
a secure pseudo-random generator is of course next-bit-unpredictable. Interesting is that
the converse also holds.

Theorem 4.1 (cf. [19, 24]) A pseudo-random generator is secure if and only if it is
next-bit-unpredictable.

By Theorem 4.1, in order to construct a secure pseudo-random generator, it is enough
to design one to be next-bit-unpredictable. Some general methods are known by which
we can construct a next-bit-unpredictable pseudo-random generator, assuming the exis-
tence of one-way function (function itself is feasible but its inverse is not feasible), which
assumption is stronger than P 6= NP. The BBS generator([3, 4, 24, 37]) is the first one
that is considered to be a next-bit-unpredictable, which stands on the assumption that a
product of two big prime numbers are very hard to factorize.

4.3 Pseudo-random generator for special use

Until now, we have been tacitly considering all-purpose pseudo-random generator. But in
Monte Carlo method, pseudo-random generators are often used for special purposes. If
we restrict the use, it is not surprising that pseudo-random bits with small randomness
may have the same function as coin tossing process for that use, irrelevantly to P 6= NP
conjecture. It is because the restriction of the use means that the class of tests by which
the pseudo-random bits should be accepted may be determined without any ground of
computational complexity.

Such an example has already be seen in numerical integration. Indeed, (D)RWS has the
same mean square error as i.i.d.-sampling. And the former requires much less randomness
than the latter does. That is, the random variables generated by (D)RWS are not accepted
by every test, but are accepted by the test which asks if they have the same function as
i.i.d. random variables in numerical integration.

In this sense, (D)RWS is a pseudo-random generator exclusively adapted to numerical
integration.

5 Security of pseudo-random generator and complexity

5.1 Disappearance of dependence

In Fig. 1 of § 3.1, we saw the error |N−1
∑N

n=1 f50(nα) − (1/2)| decreases at the rate
of O(N−1/2). We can say this is an average rate according to Theorem 3.1. In fact, it
is widely known that when integrands are very complicated, quasi-Monte Carlo method
seems to converge as slow as i.i.d.-sampling([7]). This phenomenon is intuitively explained
as follows: It is essentially difficult to integrate very complicated functions numerically, so
that any method does not efficiently work for them. Consequently, any method can give
at most the same convergence rate as i.i.d.-sampling.
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Now, isn’t it natural to imagine that the samples {f(xn)}n generated by quasi-Monte
Carlo method applied to a very complicated function f look very random? Indeed, such
‘disappearance of dependence’ occurs in several examples, such as:

Theorem 5.1 ([10]) Let Sm(x) be the function defined by (1). Then for P-a.e.α, the
stochastic process {2m−1/2(Sm( · +nα)−(m/2))}∞n=1 on (T1,B,P) converges in each finite
dimensional distribution to i.i.d.-random variables with standard normal distribution as
m →∞.

Each 1-dimensional distribution of this process converges to standard normal distribu-
tion as m → ∞ by the central limit theorem. It is not easy to see the process converges
to a Gaussian system, but instead, let us see why the correlation vanishes.

First, we have Sm(x)− (m/2) = (r1(x) + · · ·+ rm(x))/2, where ri(x) := 1− 2di(x) is
the Rademacher functions. Let

ϕ(α) :=
1
4
I[r1(·)r1(·+ α)] =

∣∣∣∣
1
2
− α

∣∣∣∣−
1
4
. (19)

Noting that

ri(x) = r1(2i−1x), I[ri(·)rj(·+ β)] = 0, ∀β, i 6= j,

let us calculate the correlation:

I
[
m−1/2

(
Sm(·)− m

2

)
·m−1/2

(
Sm(·+ nα)− m

2

)]

=
1

4m

m∑

i=1

m∑

j=1

I[ri(·)rj(·+ nα)] =
1

4m

m∑

i=1

I[ri(·)ri(·+ nα)]

=
1

4m

m∑

i=1

I[r1(2i−1·)r1(2i−1 ·+2i−1nα)] =
1

4m

m∑

i=1

I[r1(·)r1(·+ 2i−1nα)]

=
1
m

m∑

i=1

ϕ(2i−1nα). (20)

The last line converges to I[ϕ] = 0 for a.e.α on account of the ergodicity of the transfor-
mation α 7→ 2α ([36]). But the convergence (20) is as slow as O(m−1/2) ([10, 15]).

In the following theorem, much faster disappearance of dependence occurs.

Theorem 5.2 ([1, 25, 29, 34, 38, 39]) Let {X(m)
n (· ; α)}∞n=1, α ∈ T1, be a {0, 1}-valued

stochastic process on (T1,B,P) defined by

X(m)
n (x; α) := Sm(x + nα) mod 2, x ∈ T1, n = 1, 2, . . . (21)

Then for P-a.e.α3), {X(m)
n (· ; α)}∞n=1 converges in each finite dimensional distribution to

coin tossing process as m → ∞. Furthermore, for P-a.e.α, this convergence is exponen-
tially fast in m.

5.2 Connection to next-bit-prediction

It is interesting to look at Theorem 5.2 from the viewpoint of computational complexity.
We can imagine that since the complexity of the function Sm(x) mod 2 increases as m →
∞, any next-bit-prediction for {X(m)

n (· ; α)}∞n=1 becomes more and more difficult. This
must be reflected in Theorem 5.2.
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Let us explain the situation a little more precise. First, we have an algorithm to
calculate the following probability explicitly([25]).

F (m)(k0, k1, . . . , kl−1; α) := P




l−1∑

j=0

X
(m)
kj

( · ; α) = odd


 .

So we can consider following the next-bit-prediction:

Ã(x1, x2, . . . , xkl−1−1) :=





1{∑l−2
j=0 xkj

=even}, if F (m)(k0, k1, . . . , kl−1; α) > 1
2 ,

1{∑l−2
j=0 xkj

=odd}, if F (m)(k0, k1, . . . , kl−1; α) < 1
2 .

It is easy to see

P
(
Ã(X(m)

1 ( · ; α), . . . , X(m)
kl−1−1( · ;α)) = X

(m)
kl−1

( · ;α)
)

=
∣∣∣∣F (m)(k0, k1, . . . , kl−1;α)− 1

2

∣∣∣∣ +
1
2
.

Namely, by Ã, we can predict the next bit with probability bigger than 1/2 by
∣∣∣∣F (m)(k0, k1, . . . , kl−1; α)− 1

2

∣∣∣∣ .

But the last quantity converges for P-a.e.α to 0 exponentially in m. This fact shows that
the above next-bit-prediction becomes rapidly impossible in practice as m increases.

Although our next-bit-predictions are very limited ones, we think it very interesting
to be able to see the connection between the complexty of Sm(x) mod 2 and next-bit-
prediction via analysis in this way. Is it too optimistic to expect from the above fact that
the process {X(m)

n (· ; α)}∞n=1 defined by (21) is secure pseudo-random bits?
Incidentally, by Theorem 5.1, {fm(·+nα)}∞n=1 defined by (2) converges to coin tossing

process for P-a.e.α as m →∞, too, but the correlation decays as slow as O(m−1/2), which
implies {fm(·+ nα)}∞n=1 is by no means secure as pseudo-random bits.

6 Conclusion

In this article, we used the term ‘complicated function’ for many times including the
title. This does not simply mean ‘function with large total variation’. Indeed, d100(x) has
very large total variation, but the numerical integration by means of the Weyl sequence
(4) is easy. It vaguely means ‘function with large computational complexity’, but we do
not know clearly what notion we wish to express by the term. Anyway, what we wish
to know is some quantitative relation between ‘complexity’ and analytic (in particular,
probabilistic) phenomena. For example, consider, the two stochastic processes {f50(· +
nα)}∞n=1 and {S50(·+ nα) mod 2}∞n=1, both defined on (T1,B,P). As mentioned in § 5.2,
the latter is much closer to coin tossing process than the former. How this phenomenon
is quantitatively related to the complexity of f50 and S50 mod 2 attracts us very much.

Notes

1) The idea which the author thinks most reasonable. Some people may think in other
ways.
2) P 6= NP does not imply the existence of secure pseudo-random generator.
3) Recently, K.Ysutomi proved that for any irrational α ∈ T1, the process {X(m)

n (· ; α)}∞n=1

converges in law to coin tossing process as m →∞ ([40]).
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suppl., 5–63.

[3] L. Blum, M. Blum and M. Shub, A simple unpredictable pseudorandom number generator,
SIAM J. Comput., 15-2 (1986), 364–383.

[4] M. Blum and S. Macali, How to generate cryptographically strong sequences of pseudo-random
bits, SIAM J. on Computing, 13 (1984), 850–864. A preliminary version appears in Proceed-
ings of the IEEE Foundations of Comput. Sci., (1982), 112–117.

[5] P. Billingsley, Probability and measure, 3rd edition, John Wiley & Sons, (1995).
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