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This is an exposition of the recent development in the study of holomorphic func-
tions on the complex Wiener space.

1 Introduction

Holomorphic functions of infinitely many complex variables have been studied
since long ago, for example, see [10][15]. Bargmann(1][2] considered a Hilbert
space of the square integrable holomorphic functions, in particular, in [2], he
considered it on an infinite dimensional space which is essentially equivalent
to the complex Wiener space. Shigekawa'’s work([19] is closely related to [2],
but he discussed things in the LP-setting utilizing methods developed in the
Malliavin calculus.

This exposition deals with the development in this subject made by stochas-
tic analysis, including [4][18][19][23] [24](25] and [26]. But we do not refer to
works done by authors in the field of complex analysis. (See, for example,
(16].) '

The organization of this exposition is as follows: In § 2, we introduce our
framework and basic notions. In § 3, we present the Taylor expansion (or
It6—Wiener expansion) for holomorphic Wiener functions. In § 4, we introduce
a way to get a good version for each holomorphic Wiener function. In § 5,
utilizing the results of § 4, we establish the definitions of the skeleton and the
contraction operation for holomorphic Wiener functions. In § 6, we summarize
properties of distribution laws of holomorphic Wiener functions. In § 7, we
show intimate relations between the infinite dimensional Brownian motion and
holomorphic Wiener functions. Here, the results of § 4 play an essential role.
§ 8 is a discussion.

Proofs are not fully given here, unless they are so short or not yet pub-
lished.

2 Almost complex abstract Wiener space and holomorphic Wiener
function

In this section, we introduce basic notions. See [19] [23] and [26] for details.
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2.1 Almost complez abstract Wiener space

First, we introduce our framework, almost complex abstract Wiener space.
Let (B,H,p) be a real abstract Wiener space, i.e., B is a real separa-

ble Banach space (whose dimension is infinite), H is a real separable Hilbert

space continuously and densely imbedded in B and 1 is a Gaussian measure!

satisfying
Le"p (V=1(2,1)) u(dz) = exp (—;} Il Il"}z-), le B* C H".

Here B* and H* are the real dual spaces of B and H, respectively. We now
introduce an almost complez structure J: B — B which is an isometry such
that J? = —1 and that the restriction J |m : H— H is also an isometry. The
abstract Wiener space (B, H, 1) endowed with the almost complex structure .J
is called an almost complez abstract Wiener space and denoted by (B, H, p, J).
A function on B which is measurable with respect to u is called a Wiener
Sfunction.
Let B*C be the complexification of B*. Then define

Bt(l,o) — {‘P € B*CIJ*‘P - /_I‘P}’
e (L0 e T —V=1yp}.

In other words, B*(1.9) is the space of bounded complez linear functions on B
and B*(®1) js the space of bounded complez anti-linear functions on B. We see

that B*C = B*1.0) g p=©,1), The Hilbert spaces H*C, F*1.0) anq g+©.1)
are similarly defined.

2.2 Holomorphic polynomial
Definition 1. (i) A function G : B — C is called a polynomial if it is
expressed in the form

G(Z) = g«z’ ‘Pl): s sy <Z, (Pn»’ - ZE Ba (1)

where n € N, g: C* - Cis a polynomial with complex coefficients and
P1y. -, 0p € B*C. The class of all polynomials is denoted by P.

INote that the variance of p here is % Il - 3. but not % II-112%..
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(i) A function G : B — H*C is called an H*C-valued polynomial, if it is
expressed in the form

Glz)= Y. Gi@¥;, z€B
finite sum
where G; € P, 1; € H*C. The class of all H*C_valued polynomials is denoted

by P(H*C).

(iii) A functionG: B — Cis called a holomorphic polynomial, if it is expressed
in the form (1) where 1,...,¢n € B*(19) The class of all holomorphic
polynomials is denoted by Ph.

Holomorphic Wiener functions are characterized by the Cauchy-Riemann
equation. Let us formulate it in our setting. Let 7(; and 7, ;) be the

orthogonal projections from H +C 1o H*(10) and H*©D respectively. Then
operators 0 and 8, which map P into P(H *C), are defined by

OF(z) = miDF(z) = %(DF(z) —V=1J*DF(2)), 2)
F(z) = moyDF(2) = %(DF(Z)Jr\/-_——lJ‘DF(z)), 3)

where D is the H-differential operator. It is easy to see that F' € P is holo-
morphic if and only if it satisfies the Cauchy-Riemann equation, i.e., OF =0.

Since each G € P, is everywhere defined and is essentially a holomorphic
function on a finite dimensional complex space and since the measure p is
invariant under rotations around the origin, the following mean value theorem
holds([23])-

G(g) = -L G(z + 2 )p(d?), z€B (4)

Similarly we have the following relation.
G(Vtz2) :/G(\/iz+\/1—tz’)u(dz’), 2z€B (5)
B

This is the simplest example of Mehler’s formula, which is well-defined for
general integrable Wiener functions(c.f.[5]).

2.3 LP-holomorphic Wiener function

Now we proceed to defining the general class of holomorphic Wiener functions.
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From the definitions (2) and (3), we see that for G € P(H*C),

0*'G(z) = %D* (G(2) -vV-1T"G(2)),

5G(z) = %D* (G +V=1TG(2).

Definition 2. A function F € LP(B, 1), 1 < p < oo, is called an LP-
holomorphic Wiener function?, if F satisfies the Cauchy-Riemann equation in
the weak sense, i.e.,

/ F(2)5G()u(dz) = 0, G e PH*C).
B A

The class of all LP-holomorphic Wiener functions is denoted by HP. The space
‘HP is a closed subspace of LP (B, 1) and hence it is a Banach space with respect
to the relative topology.

Though we have established the Cauchy-Riemann equation in such a com-
plicated way, the space ? itself can be obtained in a much simpler way: Just
take the closure of the space P}, in LP?(B, i), and you will obtain H? ([19)).
In general, an LP-holomorphic Wiener function is neither continuous nor H-
differentiable.

2.4 Splitting lemma

Holomorphic Wiener functions are holomorphic in each complex coordinate.
We will here formulate this property.

Take any I € B* so that || I |[g-= 1. Let . : H* — H be the Riesz
isomorphism and let H; be the linear span of vectors (1) and Je(l). Then define
B; to be the closure in B of the orthogonal complement Hi- of H;. It is easy
to see that the orthogonal projection m, : H — Hi is continuously extended
to ;1 B — B,. Let p' be the image measure of mz. Then (By, Hi, pt, J) is
again an almost complex Wiener space. Under an isomorphism C x B, & B

Cx B3 (§+V-1nw) - &u(l) + v—=1nJu(l) + w € B,
we have the following pseudo direct sum decomposition.

(B, H,p,J) 2 (C,C, nc,V=1) ® (Bz, HE, i, J), (6)

2We always assume 1 < p < oo in the sequel.
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where pc is a Gaussian measure on C given by
1 2 2
uo(dg) = —e ¢ ~dgdn, (=& V-1

If we consider a Wiener function F(z) as a function on C x Bz, we will write
it as F(¢, w). The following lemma is due to Shigekawa. [19].

Lemma 1. If F(z) = F((,w) be an LP-holomorphic Wiener function,
the function F(-,w) is holomorphic on C (by changing values on a pc-null
set, if necessary), for pt-a.ew € Bs.

3 Taylor expansion

In this section, we will show that the 1t6-Wiener expansion of LP-holomorphic
Wiener functions is nothing but the Taylor expansion in LP-sense.

Let {¢n}3>, be an arbitrary complete orthonormal system (CONS) of
H*(1.9). We define the set ® of multi-indices by

lmlzzmj<oo}-

P = {m:(ml,mg,...)e Z§
J

For each m = (mj, mz,...) € ®, we put
Gm(z) = 21 ﬁ(z, ei)™, z € B,
vm! 55
where m! = m;!my!. ... Note that Gm is a holomorphic monomial with degree
|m|.
Theorem 1.([13][19]) The collection {Gm}mes forms a CONS of H2.

In other words, for each F' € H?, we have the following expansion
P = Z Cme, cCm — / Fémdp, (7)
mee B

Since Gm’s are monomials, (7) may be called the Taylor ezpansion of F' in
L2-sense. If we rewrite this formula to

F = SO:J,,F, JRF = Z emGm, ®)

n=0 |m|=n



we will get the Jto-Wiener ezpansion of F, where JnF is called the n-th ho-
mogeneous chaos component of F.

On the image subspace J,H? of J,, the L2-norm and the LP-norm are
equivalent([21]), and hence J,, is a bounded operator on HP?.

To compute J, F for F € HP, it is not necessary to compute the coefficients
cm in (8). In fact, the following formula is known ([19]).

Theorem 2. For F € H?, we have
1 27
J.F = — eV=1"017, Fdg, p-a.e. 9)
2r Jo

where an isometry Uy : LP(B, u) — LP(B, p) is defined by
(UsF)(2) := F((cos@ + Jsin6) z). (10)

In particular, the operator norm of Jp : HP — HP is 1.

Proof. We will first give a proof for F € Pr. Then, since JpF' is a homoge-
neous holomorphic polynomial of order &, we have Uy Jy F(z) = eV~ 1k JeF(2).

Consequently,

1 27 1 27-r

= —V/—=1nb = _* —V/—=1nb
o | Uy Fdf o | Ung:Jdeo

i 27
= ZQ_‘E/ e_‘/_—lnoe‘/__lngkF’d0
0

1 2w
= Y — / e VI =TM g ¢ i T
z 27 Jo
= J,F.
Now (9) is valid for a generic F € H? by virtue of the continuity of J,, and
(2m)~1 [7" e=V=10U,dp in LP(B, ). [ |
By using this formula, Shigekawa[19] proved the following theorem.

Theorem 3. For F € H?, we have Ef:lzo JnF — F, in HP as N — co.
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4 Holomorphically exceptional set and regular version

Usually, we identify Wiener functions which coincide p-a.e., but if we can
construct a good representative among them by modifying values on a p-null
set, it must be useful. For example, the Sobolev imbedding theorem stands
upon the same spirit. In the case of holomorphic Wiener functions, we can do
it thanks to the strong structure of holomorphy.

We first define a suitable notion of exceptional set3.

Definition 3. For a sequence {G’,,} C Pp such that 3 || Gn [l»< 0,
we define a subset N?({Gn}) of B by

3 IGn(d)] = oo}. (11)

n

N?({Gg}) := {z €EB

A set A C B is called an LP-holomorphically ezceptional set, if it is a subset
of a set of the type NP({Gn}). We denote the class of all LP-holomorphically
exceptional sets by NVJ.. If an assertion holds outside of an LP-holomorphically
exceptional set, we say that it holds “a.e. NE).

Any countable union of LP-holomorphically exceptional sets is again an
LP-holomorphically exceptional set.

Let us show that holomorphically exceptional sets are p-null sets(, in fact,
we will show even stronger assertions). For each t > 0, we denote by p the
induced measure of p by the mapping B 3 z — vtz € B. Note that p; and p
are mutually singular, if t # 1.

Theorem 4. Any LP-holomorphically ezceptional set is a pe-null set, if
0<t<L L

Proof. For any sequence {Gn} C P such that > | Gn llL»< 00, we have

/an:IGn(z)lm(dz) = ; L |Gn(Viz)|u(d2) < ; ( L G \/ZZ)Ipu(dz)> 1/p

Since Mehler’s transform (5) is a contraction on LP(y) ([5]), we have

RHS. < ) || Gn llLe< oo
n

3The author was deeply inspired by 1t5[14] to think of Definition 3.
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Thus we see u;(N?({G,})) = 0. 1

Theorem 5. (i) For any h € H, the one point set {h} is not an LP-
holomorphically exceptional set.
(ii) For any z € B\ H, the one point set {2} is an LP-holomorphically ezcep-
tional set.

Proof. We give a proof of the assertion (i) only. Take any sequence {Gr} C
Ph such that }°_ | Ghn ||L»< c0. By the mean value theorem (4), we see

Gn(h) = [3 Go(z + h)u(dz) = L Gu(z)M(h, 2)u(dz),  heH,

where M (h, z) = exp(2(h, z) — |h|%) is the Cameron-Martin density, which has
every moment. Consequently, taking q > 1 so that 1/p+ 1/qg =1, we have

Y 1Ga M < Y [ 1Ga (M (b, i) < 3 | G ool M(h, ) 1agy< .

Thus we see h & NP({G,,}). ]

For each holomorphic Wiener function, we can construct a good version
in the following way.

Theorem 6. (i) Each F € HP has a version I (= F,p-a.e.), called a
regular version, which satisfies the following: There ezists a sequence {Gn}uC
Pr, such that

|Gn—F ||to— 0 and G, — F a.e.(NF), asn— co.
(ii) If both Fy and F, are reqular versions of F, then F), = F3, a.e. (NP).

(i) If F, —» F in HP, then there erists a subsequence {Fn. }x such that
Fp, = F, a.e.(N}). Here F,, and F are reqular versions.

Proof. (i) Take a sequence {Gn}n C Ppso that | G, — F |lL»— 0 and
that
>n |l Gny1 — Gy ||l Lr< 0. Define a version of F by
~ H’IP Gn(2), z¢ N?({Gpt1 - Gr})
F(2).:= (12)

0, zZ € Np({Gn+1 - Gn}).
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Then F is a regular version of F. The assertions (ii) and (iii) follow from
standard arguments. B

For F € HP, its regular version has a Lusin-type property with respect to
a certain set function which characterizes LP-holomorphically exceptional sets

([26])-
Theorem 7. Define a set function C?(A) for AC B by

C?(A) = inf {iggexp (—Z IGn(z)|)

(i) For any ag > 0 with Sk ax = 1 and any ex > 0,

c? <UA1=) <) (CP(AR) +ex)™ -
X %

(ii) A set AC Bisan LP-holomorphically ezceptional set, if and only if
CP(A)=0.

(iii) A regular version F of F € HP has the Lusin-type property with respect
to CP. That is, for any € > 0, there eTists a closed set E C B such that
C?(B\ E) < ¢ and that F|g : E — C is continuous. In particular, if F € HP
admits a continuous version, then it is a reqular version.

{Gn}aZ1 C Ph, Z | Gn llr=1 } .

5 Skeleton and contraction operation

For our abstract Wiener space (B, H, u), we have p(H) = 0 because dim B =
oo. Hence it is of no measure-theoretical meaning to consider the values of
Wiener functions on H. However some kind of Wiener functions can have
intrinsic values on H by virtue of additional structures. Indeed, holomorphic
Wiener functions are one of such examples.

Let F € HP and Fy, F» be any regular versions of F. Since {h}, h € H,
is not a holomorphically exceptional set, we see Fi(h) = F»(h). Thus, the
function Fi(h) on H is uniquely determined by F, and it is called the skeleton
of F.

Similarly, since pg, 0 <t <1, is singular relative to p, it is of no measure-
theoretical meaning to consider F’ (v/tz) for a Wiener function F'. But for each
F € MP, it is of significant meaning. Again, let F;, F; be any regular versions
of F. Since Fy = F», py-a-e. (or equivalently, Fi(Viz) = F2(Vtz), p-ae.) for
0 <t < 1, the function Fy(v/%z) is uniquely determined by F, and it is called
the contraction operation.



The following theorem follows from (4), (5) and Theorem 6.

Theorem 8. Let F € HP and F be any regular version of F. Then we
have

F(h) = L F(z+h)u(dz), heH, (13)

F(Viz) = LF(\/fz+\/1—tz’) w(dz'), pae, 0<t<1. (14)

Skeletons of L?-holomorphic Wiener functions is infinitely Gateaux - dif-
ferentiable and their Gateaux - derivatives are analytic in the sense of [11] (see

(4])-

Each holoniorphjc Wiener function is reconstructed from its skeleton in
the following way ([4]). '

Theorem 9. Let {I,} € B* be a CONS of H*. Define a projection
II,: B— H by

oz == " {(z, l)u(li) + (2, T L) Ju(lx)} -
k=1

Then for each F € HP and its reqular version F~’, we have
F(an) — F, in LP(B, p).

In particular, if two LP-holomorphic Wiener functions have a same skeleton,
they coincide p-a.e.

Next we consider the Taylor expansion of the contraction operation. Since
each Gm in (7) is a monomial of order |m|, we have G (Viz) = vVi0IGy(2).
So we can guess that F(v/z) for F € HP should be

> ViMlenGm(z) = i\/i"JnF(z). (15)
meo n=0

In fact, this is true if take a regular version F of F, because (15) is nothing
but the Taylor (Ito-Wiener) expansion of the right hand side of (14) in .
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6 Distribution law

6.1 Absolute continuity

Although being called holomorphic, a generic element of HP is neither con-
tinuous nor H-differentiable. Nevertheless, with the help of holomorphy, the
following theorem holds.

Theorem 10. If F € HP is not a constant function, its distribution law
is absolutely continuous with respect to the Lebesque measure on C.

Proof. We give a full proof which is a small modification of the proof of
Theorem 4.3 in [19].

Let A C C be of Lebesgue measure zero. What to prove is that if po
F~1(A) > 0 then F is a constant.

Take any | € B* so that || I ||g-= 1. By the pseudo direct sum decompo-
sition (using the same notation as in § 2.4), we express F(z) as

F(Z) i . F(va)’ Ce Cv w € B2-

Then, by Lemma 1, we know that F(-,w) is holomorphic on C for pt-ae.
w € By. We readily see that

pc ({¢ e CIF(w) € Apy="0&1, pt-ae w € Bs.
In both cases, we see that
p (FHAAFH(A) +uD)) = 0,

where A stands for the symmetric difference. Since [ is arbitrary, it follows
from the ergodicity of p with respect to the H-shift that po F71(A) = 1,
because we have assumed p o F~1(A) > 0. Then by the Fubini theorem, we
have

pc ({Ce CIF(Gw) €A} =1, pt-ae. w € Bo.

Since C is of complex dimension one, we see that F (¢, w) does not depend on ¢,
namely, there exists a measurable function G on B; such that F(¢,w) = G(w),
for pc® pt-ae. (¢, w). Again since ! is arbitrary, F is measurable with respect
to the tail o-field generated by all € B*. This means that F is a constant. B
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6.2 Large deviation principle

In the theory of SDE, the large deviation principle is stated in terms of the
skeleton, i.e., the solution of ODE associated to SDE by replacing Brownian
motions by smooth paths. In our case, Fang-Ren [4] showed the following
theorem.

Theorem 11. Let F € HP and F be its reqular version. Then we have :
(i) If A C C is closed then '

lim sup tlogu(F(\/fz) € A) < —inf{% | k1% | F(R) eA}.
t—0
(ii) If A C C is open then
lim inf tlogu(F(\/Zz) eA) > —inf{% I 2 1% | F(R) GA}. :

6.3 Approzimate continuity

Approzimate continuity, being first introduced to infinite dimensional stochas-
tic analysis by [3], is the property shown in (16) below. It is much weaker than
the continuity in || - || g, but strong enough to assure, for instance, support the-
orems ([20]). Since approximate continuity depends heavily on the topology
(see [22]), it is necessary to specify which topology we will talk about.

Definition 4. (i) The norm || - || is said to be rotation invariant, if it
satisfies that

| (cos + Jsinb) z |p=]| z |5, z€B, 6¢€]0,2r).

(i) The norm || - || g is said to be completely rotation invariant, if it is rotation
invariant and if there exists a CONS {Ix} C B* of H* such that for any | = [,

I (e owlis=lcowls c¢cC, wen, oe [0, 27),
where we are considering the pseudo direct sum decomposition (6).
Let || - || be a given norm. Then a new norm || - || defined by

| z]l:= sup || (cos®+ Jsin#)z || g, z € B,
0<f<2w
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is a rotation invariant norm and it is equivalent to || - || p. Thus we may always
assume the rotation invariance of the norm.

A typical example of completely rotation invariant measurable norm is
the following: Let {pn} C H**? be a CONS and let a, > 0 be such that
3, @n < co. Define a norm on H by

1/2
I A ll:= (Zan (R, wn)l2)

Then this norm is measurable ([6][8]) and completely rotation invariant.

Theorem 12. Let || - || be completely rotation invariant and let B, be
the centered || - || p-ball with radius r > 0. Then for each F € H?, p > 2,
|F(z+h) — F(h)[u(dz) =0,  heH.

lim :
r—0 u(By) B,

In particular,

lim p(|F(z) = F(h)| > €] | z=h]ls<®) =0, >0 (16)

If the norm is not rotation invariant, we can construct a counter example
to the theorem using the same method as [22]. But we do not know whether
the complete rotation invariance is necessary or not.

7 Fine continuity with respect to Brownian motion

In finite dimensions, holomorphic functions and the Brownian motion are
closely related via the notion of conformal martingales. Namely, if f is holo-
morphic on C" and (2):>0 is a Brownian motion on C?, then the composite
(f(2))t>0 is a conformal martingale. In this section, we will show that this
relation can be extended to the infinite dimensional case.

Let (Z¢)i>0 be a B-valued independent increment process defined on a
probability space (2, F, P) such that Zo = 0 and the distribution of Z;—Z,,1 >
s, is py—s. Then the process (Zi)i>0 becomes a diffusion process on B and it
is called a B-valued Brownian motion (see, for example, [8]).

Let F and F’ be Wiener functions such that F = F’, p-a.e. Then, in
general, for 0 < t < 1, we cannot expect F(Z;) = F'(Z;), P-ae., because
the distribution law of Z; is p, which is singular relative to p. But if F' is
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holomorphic, its regular version Fis uniquely determined Ki-a.e., and hence
F(Z,) is well-defined P-a.e. Thus we get a stochastic process (F(Z¢))o<t<1 on
the probability space (2, F, P).

Theorem 13. (i) The process (Z;)o<i<1 does not hit any N € N} with
probability 1. Namely,

P(Zy & N forvte[0,1]) = 1.

(ii) Let F € HP and F be any regular version of F. Then the process
(F(Zt))o<t<1 is a continuous LP-conformal martingale.

Proof. (i) We will show that for any sequence {Gr} C Py, with
2on I Gallze< oo,
E [ sup ZIGn(Zt)IJ < oo, (17)

0<t<14;

where E stands for the expectation with respect to the probability P. Since
Gn € P, the process (G,(Z;))¢>0 is a continuous conformal martingale (see for
example, [9], [12], Chapter IV-6). It therefore follows from Doob’s inequality
that ¢, > 0 being some constant,

o<t

1/p
E[ sup |G,(Z,) —Gn(O)l] <7 E[ sup |G,(Z,) — G,,(O)[”J
0<t<1 <1
< GE[|Ga(Z1) - Ga(0)P )7

= 6 " Gn() - Gn(O) "LP .

Since 37 |Gn(0)| <3, || Gy |lz1< oo by (4), we easily see (17).

(ii) Take a sequence {Gy} C P, such that 2 ll Gn—F ||L»< co. On account
of (i), it is sufficient to prove the assertion for the particular regular version F'
defined by (12). Again by Doob’s inequality, we have

n=1 0<t

E ’:Z Sugl |Grt1(Z:) — Gn(Zt)lJ et cpz | Grn1—Gn |lLs < 0.
n=1

This implies that the sequence {(G, (Zt))ostSI_}n converges to a continuous
L?-conformal martingale, which coincide with F(Z,) for each t € [0, 1], P-a.e.
B
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Thus, holomorphically exceptional sets and the property (ii) of Theorem 6
may be compared respectively to the polar sets and the fine continuity with
respect to the Brownian motion (Z;). However, since (Z;) has no symmetriz-
ing measure — if it had any, it would be the Feynmann measure (Lebesgue
measure) on B —, no potential theoretical notion can be rigorously formu-
lated. In fact, (Z;) may hit holomorphically exceptional sets with positive
probability after time 1: For example, define a holomorphically exceptional set
A= N?*({Gn}) by

n(n+1)
3

1
Gn(Z) = ;E H (Z,‘Pj>, "= 1321""
=2 4

where {¢p }n C B*3:?) is an orthonormal system of *(1,0) Then we can show
that the first hitting time of (Z;) to the set A is equal to €” a.s., v = 0.57721...
being Euler’s constant ([25]).

8 Discussion

In all of the preceding sections, holomorphic Wiener functions are globally
defined. Then how do we establish a theory of locally defined holomorphic
Wiener functions under as little hypotheses as possible? There is an inter-
esting answer given by Kusuoka-Taniguchi[18], to which we will give a brief
introduction below.

In finite dimensions, locally defined holomorphic functions are closely re-
lated to the shapes of their defining domains. For example, it is known that
the notions of pseudoconvex domain and domain of holomorphy are equivalent.
In this connection, Kusuoka-Taniguchi[18] investigated stochastic differential
equations (SDEs) with holomorphic coefficients. Note that if the coefficients
are not linear but general holomorphic functions, the solution of the SDE may
explode. Consider the set (say A) of Brownian paths for which the solution
does not explode before time 1. Then Kusuoka-Taniguchi showed that the set
A is considered to be pseudoconvex in the sense that H-equations u = F are
solvable on A, and that the solution is holomorphic on A.

The next aim here should be to establish a theory of skeletons (and regular
versions) defined on pseudoconvex domains. If it is achieved, more functional-
analytic approaches would be possible.

In finite dimensions, holomorphic functions dwell also on complex mani-
folds. Then how do we construct them on complex Wiener—Riemannian man-
ifolds? The answer is not yet definite to this point, but we expect that, for
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example, the works of Professors R. Léandre, B. Driver and L. Gross in this
volume will have some connections to this question.
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