
A Mathematical formulation of
the Monte Carlo method∗

Hiroshi SUGITA

Department of Mathematics, Graduate School of Science, Osaka University

1 Introduction
Although admitting that the Monte Carlo method has been producing practical results in
many fields, a number of researchers have the following serious suspicion about it.

The Monte Carlo method needs random numbers. But since no computer
program can generate them, we execute a Monte Carlo method using a pseu-
dorandom number generated by a computer program. Of course, such an
expedient can never have any mathematical justification.

As a matter of fact, this suspicion is a misunderstanding caused by prejudice. In this
article, we propose a proper mathematical formulation of the Monte Carlo method, which
resolves this suspicion.

The mathematical definitions of the notions of random number and pseudorandom
number have been known for quite some time. Indeed, the notion of random number was
defined in terms of computational complexity by Kolmogorov and others in 1960’s ([3, 4,
6]), while the notion of pseudorandom number was defined in the context of cryptography
by Blum and others in 1980’s ([1, 2, 14]). But unfortunately, those definitions have been
thought to be useless until now in understanding and executing the Monte Carlo method.
It is not because their definitions are improper, but because our way of thinking about
the Monte Carlo method has been improper. In this article, we propose a mathematical
formulation of the Monte Carlo method which is based on and theoretically compatible
with those definitions of random number and pseudorandom number.

Under our formulation, as a result, we see the following.

The Monte Carlo method may not need random numbers; pseudorandom
numbers may suffice. As a matter of fact, for the purpose of the Monte Carlo
integration, there exist pseudorandom numbers which can serve as complete
substitutes for random numbers.

The Monte Carlo integration is a numerical integration method making use of the law
of large numbers. Since most of important applications of the Monte Carlo method are
actually Monte Carlo integrations, the above fact is very significant.

∗ Ver.20151111 / This article is a digest of [11]. For details, see the full version [11].

2 Overview
The Monte Carlo method is a numerical method to solve mathematical problems by
computer-aided sampling of random variables. For each individual problem, we set up
a probability space (Ω,F , P) — in this article, for simplicity, we assume it to be a proba-
bility space of finite coin tosses

({0, 1}L, 2{0,1}
L
, PL = the uniform probability measure), L ∈ N+,

— and a random variable S defined on it; S : {0, 1}L → R. We evaluate S (ω) by a
computer for some chosen ω ∈ {0, 1}L, which procedure is called sampling.

Figure 1: Distribution and generic value of S (Conceptual figure)

a generic valuean exceptional value

The Monte Carlo method is a kind of gambling as its name indicates. The aim of
the player, say Alice, is to get a generic value (Figure 1) — a typical value or not an
exceptional value — of S by sampling (§ 3.1). Suppose that she has no idea about which
ω she should choose to get a generic value of S . She chooses an ω ∈ {0, 1}L of her own
will, realizing the risk of getting an exceptional value of S . Her risk is measured by the
probability PL(A) of a set

A :=
{
ω ∈ {0, 1}L

∣∣∣ S (ω) is an exceptional value of S
}
.

Since S seldom takes exceptional values, we have PL(A) ≪ 1,†1 and hence, Alice
may well think that she will almost certainly get a generic value of S . Of course she will,
when L is small. But when L ≫ 1, say L = 108, it is not sure that she will even though
PL(A) ≪ 1.

In case L ≫ 1, how Alice chooses an ω ∈ {0, 1}L comes into question. Indeed, to
specify an ω ∈ {0, 1}L, when L = 108 for example, she cannot help using a computer
because of its huge amount of information; ω is approximately a 12MByte data. Obvi-
ously, a 12MByte data is too huge for her to input directly from a keyboard to a computer.
So, she needs some device. But whatever device she may use, those ω’s∈ {0, 1}L she can
choose of her own will are very limited (§ 4). By this reason, even though PL(A) ≪ 1, we
cannot say that Alice is able to get a generic value of S almost certainly. Therefore, to let
†1a ≪ b stands for “a is much less that b”, while a ≫ b stands for “a is much greater than b ”.

2

the risk evaluation PL(A) have a substantial meaning, it is natural to think that Alice needs
an ω ∈ {0, 1}L which she cannot choose of her own will — namely, a random number.†2

On the other hand, S in an actual question must not be an arbitrary random variable,
but one which represents some significant quantity. Thus S is very special among all the
functions {0, 1}L → R. Therefore Alice may possibly be able to get a generic value of
the special random variable S for a special ω— not a random number — which she can
choose of her own will. It is pseudorandom generator that is planned to realize this idea.

A pseudorandom generator is a mapping which stretches short {0, 1}-sequences into
long {0, 1}-sequences. For example, suppose that Alice uses a pseudorandom generator
g : {0, 1}n → {0, 1}L, n < L, to sample S . First, she chooses a seed ω′ ∈ {0, 1}n of her
own will. Here n should be so small that she may input ω′ directly from a keyboard to
a computer. Then the computer generates a pseudorandom number g(ω′) ∈ {0, 1}L from
her seed ω′, and she finally gets a sample S (g(ω′)) of S . As a result, she is now betting
on whether S (g(ω′)) is a generic value of S or not. Her risk is now measured by the
probability Pn (g(ω′) ∈ A). This probability naturally depends on g, but if there exists a
pseudorandom generator g such that Pn(g(ω′) ∈ A) ≪ 1 holds, Alice can actually get a
generic value of S with high probability. Such a g is said to be secure against A (§ 5.2).
The problem of sampling in a Monte Carlo method is solved by finding such a secure
pseudorandom generator.

For a general random variable S , although there are many candidates, there is no
pseudorandom generator which is proved to be secure against the set of those ω’s ∈ {0, 1}L
that yield exceptional values of S (§ 5.3). However, if we restrict the use of pseudorandom
generator to the Monte Carlo integration, i.e., if S in question is a sample mean of i.i.d.†3

random variables, there exists a pseudorandom generator which is secure against the set
of those ω’s ∈ {0, 1}L that yield exceptional values of S . Such a pseudorandom generator
has already been used in practice for not too large Monte Carlo integrations (§ 6.2).

3 Monte Carlo method as gambling
Mathematical problems should be solved by sure methods, if it is possible. But some
problems such as extremely complicated ones or those that lack a lot of information can
only be solved stochastically. Those treated by the Monte Carlo method are such prob-
lems.

3.1 Player’s aim
As a mathematical formulation, it is proper to think the Monte Carlo method as stochastic
game, i.e., gambling. The aim of the player, Alice, is to get a generic value of a given
random variable. (The mathematical problem in question is assumed to be solved by a
generic value of the random variable. See examples below.) Of course, Alice has a risk
to get an exceptional value, which risk should be measured in terms of probability. The
following is a very small example of the Monte Carlo method (without computer).

†2By this reason, some people use physically generated random numbers. But this article deals with only
solutions by pseudorandom generators.
†3i.i.d. stands for independently identically distributed.

3

Example 1 An urn contains 100 balls, 99 of which are numbered r and one of which
is numbered r + 1. Alice draws a ball from the urn, and guesses the number r to be the
number of her ball. The probability that she fails to guess the number r correctly is 1/100.

If we state this example in terms of gambling, it goes that “Alice wins if she draws a
generic ball, i.e., a ball numbered r, and loses otherwise. The probability that she loses is
1/100.”

In general, the player cannot know whether the aim has been attained or not even after
the sampling. Indeed, in the above example, although the risk is measured, Alice cannot
tell if her guess is correct, even after she draws a ball.†4

There are some cases where exceptional values are needed. For example, we of-
ten seek for the minimum value of a complicated random variable X by a Monte Carlo
method. In such a case, we define another random variable S so that a generic value of S
is an exceptional value of X. Look at the following example.

Example 2 Suppose that Pr(X < c) = 1/10000. So X can be less than c, but the
probability is very small. Take a sequence {Xk}40000

k=1 of independent copies of X, and
define S := min1≤k≤40000 Xk. Then we have†5

Pr(S < c) = 1 −
(
1 − 1

10000

)40000

≈ 1 − e−4 = 0.981

Thus S takes a value less than c with high probability 0.98.

3.2 An exercise
To implement Example 1, we need only an urn and 100 numbered balls and nothing else.
But actual Monte Carlo methods are implemented on such large scales that we need high-
powered computers.

In this article, we are going to solve the following exercise by a Monte Carlo method.

Exercise When we toss a coin 100 times, what is the probability p that Heads
comes up at least 6 times in succession?

We apply the interval estimation in mathematical statistics. Repeat independent trials of
“100 coin tosses” N times, and let S N be the number of the occurrences of “Heads comes
up at least 6 times in succession” among the trials. Then by the law of large numbers, the
sample mean S N/N is a good estimator for p when N is large. More concretely;

Example 3 Let N := 106 = 1, 000, 000. Then the mean and the variance of S 106/106 are

E
[S 106

106

]
= p, V

[S 106

106

]
=

p(1 − p)
106 ≤ 1

4 · 106 ,

†4Many selections of our life are certainly gambles. It is often the case where we do not know whether
the selection was correct or not
†5x ≈ y means that x and y are approximately equal to each other.

4

respectively. Hence by Chebyshev’s inequality,

Pr
(∣∣∣∣∣S 106

106 − p
∣∣∣∣∣ ≥ 1

200

)
≤ 1

4 · 106 · 2002 =
1

100
(1)

holds. In other words, a generic value of S 106/106 is an approximate value of p.

In Example 3, we may think that the inequality (1) measures the risk.
Of course, we do not toss a coin 100 × 106 = 108 times, instead we use a computer.

In order to formulate things mathematically, we realize the random variable S 106 of Ex-
ample 3 on the coin tossing probability space (Ω := {0, 1}108

, 2Ω, P108) as follows. We first
define a function X : {0, 1}100 → {0, 1} by

X(ξ1, . . . , ξ100) := max
1≤l≤100−5

l+5∏
i=l

ξi, (ξ1, . . . , ξ100) ∈ {0, 1}100.

This means that X = 1 if there are 6 successive 1’s in (ξ1, . . . , ξ100) and X = 0 otherwise.
Next we define Xk : {0, 1}108 → {0, 1}, k = 1, 2, . . . , 106, by

Xk(ω) := X(ω100(k−1)+1, . . . , ω100k), ω = (ω1, . . . , ω108) ∈ {0, 1}108
,

and S 106 : {0, 1}108 → Z by

S 106(ω) :=
106∑
k=1

Xk(ω), ω ∈ {0, 1}108
.

Defining A0 of ω’s that yield exceptional values of S 106 by

A0 :=
{
ω ∈ {0, 1}108

∣∣∣∣∣ ∣∣∣∣∣S 106(ω)
106 − p

∣∣∣∣∣ ≥ 1
200

}
, (2)

we have P108(A0) ≤ 1/100 according to (1).
Then we can regard Example 3 as a gamble in the following way.

Example 4 Alice chooses an ω ∈ {0, 1}108
. If ω < A0 holds, she wins, if ω ∈ A0, she

loses. The probability that she loses is less than or equal to 1/100.

4 Problem of random number
There are no theoretical differences between Example 1 and Example 4 except scales. But
the difference of scales yields an essential difference in practice.

Now, suppose that Alice is going to choose an ω ∈ {0, 1}108
to play the gamble of

Example 4. But as a matter of fact, those ω’s ∈ {0, 1}108
she can choose of her own

will are very few and hence limited. Consequently, even though P108(A0) ≪ 1, it is not
necessarily easy for her to win the game.

Let us look more closely at the situation. Since each element of {0, 1}108
is a very

large data, i.e., about 12MByte, Alice cannot help using a computer to choose an ω ∈

5

{0, 1}108
. But it is quite impossible to input it directly from a keyboard to the computer.

Suppose that Alice can input at most 1,000 bit data directly from the keyboard, and that
a certain computer program generates an element of {0, 1}108

from her input.†6 Then the
number of those ω’s ∈ {0, 1}108

that she can choose is at most 21,001. (This is because
the number of all the l bit data is 2l, and hence the number of all data of at most l bit is
20 + 21 + 22 + · · · + 2l = 2l+1 − 1.) Since the number of all the elements of {0, 1}108

is 2108
,

we see how few those ω’s ∈ {0, 1}108
she can choose are. Even if she were able to input

at most 108 − 10 bit data, the number of ω’s ∈ {0, 1}108
she can choose would be at most

2108−9, which is only 1/512 of all the ω’s ∈ {0, 1}108
. In other words, at least 511/512 of

them require more than 108 − 9 bit input to be specified.
If an ω ∈ {0, 1}L, L ≫ 1, requires an input which is almost as long as ω itself to

be specified, it is called a random number.†7 To specify a random number, there is no
more efficient way than inputting it as it is. When L ≫ 1, most of elements of {0, 1}L are
random numbers.

The risk evaluation P108(A0) ≤ 1/100 of Example 4 assumes that Alice can choose
any ω ∈ {0, 1}108

with equal probability. This means that she should choose it among
random numbers, because they account for nearly all sequences. This is the reason why
random number is needed for the Monte Carlo method. However, although there are so
many random numbers, she cannot choose any one of them of her own will. This is the
most essential problem of sampling in the Monte Carlo method.

5 Pseudorandom generator
Pseudorandom generator is a device to get generic values of random variables with high
probability without using random numbers. An important property that pseudorandom
generators should have is discussed here.

5.1 Definition and role
To play the gamble of Example 4, anyhow, Alice has to choose an ω ∈ {0, 1}108

. Let us
suppose that she uses the most used device to do it, namely, a pseudorandom generator.

Definition 5 A function g : {0, 1}n → {0, 1}L is called a pseudorandom generator if
n < L. The input ω′ ∈ {0, 1}n of g is called a seed,†8 and the output g(ω′) ∈ {0, 1}L a
pseudorandom number.

To produce a pseudorandom number, we need to choose a seedω′ ∈ {0, 1}n of g : {0, 1}n →
{0, 1}L, which procedure is called initialization.†9 For practical use, n should be so small
that we may input any seed ω′ ∈ {0, 1}n directly from a keyboard, and the program of the
function g should work sufficiently fast.

†6Such a computer program is called a pseudorandom generator.
†7In the IT terminology, if an ω ∈ {0, 1}L can be specified by a shorter input ω′ ∈ {0, 1}n, L > n, we say

that ω is compressed into ω′. Thus a random number is an incompressible element of {0, 1}L.
†8We also call it an initial value.
†9It is also called randomization.

6

Example 6 In Example 4, suppose that Alice uses a pseudorandom generator g :
{0, 1}238 → {0, 1}108

, for instance.†10 She chooses a seed ω′ ∈ {0, 1}238 of g and inputs
it from a keyboard to a computer. Since ω′ is only a 238 bit data (≈ 30 letters of alpha-
bet), it is easy to input from a keyboard. Then the computer produces S 106(g(ω′)).

The reason why Alice uses a pseudorandom generator is because her input ω ∈
{0, 1}108

is too large. If it is short enough, a pseudorandom generator is not necessary.
For example, when drawing a ball from the urn in Example 1, who on earth uses a pseu-
dorandom generator ?

5.2 Security
Let us continue to consider the case of Example 6. Alice can choose any seed ω′ ∈
{0, 1}238 of the pseudorandom generator g freely of her own will. Her risk is measured by

P238

(∣∣∣∣∣S 106(g(ω′))
106 − p

∣∣∣∣∣ ≥ 1
200

)
, (3)

which we need to calculate. Of course, the probability (3) depends on g. If this probability
— i.e., the probability that her sample S 106(g(ω′)) is an exceptional value of S — is large,
then it is difficult for her to win the game, which is not desirable.

So we give the following (somewhat vague) definition; we say that a pseudorandom
generator g : {0, 1}n → {0, 1}L, n < L, is secure against a set A ⊂ {0, 1}L if it holds that

PL(ω ∈ A) ≈ Pn(g(ω′) ∈ A).

In Example 6, if g : {0, 1}238 → {0, 1}108
is secure against A0 of (2), for the majority

of the seeds ω′ ∈ {0, 1}238, which Alice can choose of her own will, the samples S (g(ω′))
will be generic values of S . In this case, random numbers are not necessary. In other
words, in sampling a value of S , using g does not make Alice’s risk big, and so g is said to
be secure. The problem of sampling in each Monte Carlo method — i.e., the problem of
random number — will be resolved by finding a suitable secure pseudorandom generator.

In general, such a pseudorandom generator that is secure against very many sets A’s
is desirable. But there is no pseudorandom generator that is against every set A. Indeed,
for a given pseudorandom generator g : {0, 1}n → {0, 1}L, set

Ag := g({0, 1}n) ⊂ {0, 1}L.

Then we have PL(ω ∈ Ag) ≤ 2n−L and Pn(g(ω′) ∈ Ag) = 1, which means that g is not
secure against Ag. Thus, when we consider the security of pseudorandom generator, we
must restrict a class of sets A’s.

5.3 Computationally secure pseudorandom generator
Suppose L ≫ 1, e.g., L = 108. For each set A ⊂ {0, 1}L, let us think about how to judge
if a pseudorandom generator g is secure against it. To do this, first of all, we must write

†10The origin of the number 238 will soon be clear in Example 9.

7

a program which judges if a given ω ∈ {0, 1}L belongs to A. Since the number of all the
sets A ⊂ {0, 1}L is 22L

, the same number of such programs are needed. Then by the same
argument in § 4, we know there are very many sets A’s for which we need about 2L bit long
programs. Obviously, such long programs cannot be realized by computers in practice.
Consequently, it is practically impossible to judge if ω ∈ A for most of A’s⊂ {0, 1}L.

A pseudorandom generator g needs to be secure against only A for which ω ∈ A is
practically judge-able by small amount of computations. Such a g is said to be compu-
tationally secure (or cryptographically secure). In cryptography, however, the security
of pseudorandom generator is not defined in terms of space complexity (i.e., length of
program, as is discussed above), but it is defined in terms of time complexity (i.e., CPU
time).†11

In Example 6, if the pseudorandom generator g : {0, 1}238 → {0, 1}108
is computa-

tionally secure, the distributions of S 106(ω) and S 106(g(ω′)) will be so close to each other.
Indeed, the fact that the function S 106 can be computed in practice means that for any
c1 < c2 ∈ N, the set A(c1, c2) := {ω | c1 ≤ S 106(ω) ≤ c2} is a computationally judge-able
set. Therefore whatever p′ may be, the computational security of g implies that

P108

(∣∣∣∣∣S 106(ω)
106 − p′

∣∣∣∣∣ ≥ 1
200

)
≈ P238

(∣∣∣∣∣S 106(g(ω′))
106 − p′

∣∣∣∣∣ ≥ 1
200

)
.

Computationally secure pseudorandom generator is, theoretically speaking, the most
complete multi-purpose pseudorandom generator. But, its existence has not been proved
yet, which is one of the hardest problems in computer science. Moreover, the notion
of computational security is, rigorously speaking, an asymptotic property, and hence, it
is not clear that a computationally secure pseudorandom generator is surely useful for a
practical use.

6 Monte Carlo integration
Let X be a function of m coin tosses, i.e., X : {0, 1}m → R, and let us consider to calculate
the mean

E[X] =
1

2m

∑
ξ∈{0,1}m

X(ξ)

of X numerically. When m is small, we can directly calculate the finite sum of the right
hand side. But when m is large, e.g., m = 100, the direct calculation becomes impossible
in practice because of the huge amount of computation. In such a case, we estimate the
mean of X applying the law of large numbers, which is called the Monte Carlo integration
(Example 3). Most of scientific Monte Carlo methods aim at calculating some character-
istics of distributions of random variables, which are actually Monte Carlo integrations.

6.1 i.i.d.-sampling
If we formulate Example 3 in a general setting, it goes as follows. Let {Xk}Nk=1 be a
sequence of independent copies of X : {0, 1}m → R, and S N be their sum. Namely, {Xk}Nk=1
†11Since a short program can take time if it includes many loops, it is practically significant to define the

security in terms of time complexity.

8

and S N are functions of Nm coin tosses, which are written down as

Xk(ω) := X(ωk), ωk ∈ {0, 1}m, ω = (ω1, . . . , ωN) ∈ {0, 1}Nm, (4)

S N(ω) :=
N∑

k=1

Xk(ω). (5)

Then if N is large enough, a generic value of S N/N becomes an approximated value of
E[X] by the law of large numbers. The estimation of the mean of X by sampling the
random variable S N/N is called the i.i.d.-sampling.

Since the means of S N/N and X (i.e., the integrations with respect to PNm and Pm,
respectively) are the same (i.e., E[S N/N] = E[X]), and their variances satisfy V[S N/N] =
V[X]/N, we have the following inequality due to Chebyshev ;†12

PNm

(∣∣∣∣∣S N(ω)
N
− E[X]

∣∣∣∣∣ ≥ δ) ≤ V[X]
Nδ2 . (6)

This is the risk measurement of the following gamble; when Alice chooses an ω ∈
{0, 1}Nm, she wins if ω < A1, and she loses if ω ∈ A1, where

A1 :=
{
ω ∈ {0, 1}Nm

∣∣∣∣∣ ∣∣∣∣∣S N(ω)
N
− E[X]

∣∣∣∣∣ ≥ δ }
. (7)

6.2 Random Weyl sampling
In the Monte Carlo integration, the object random variable S N to sample has a very special
form. Utilizing this fact, we can concretely construct a secure pseudorandom generator to
sample it.

Before doing it, we need a couple of notations; let

Dm := { i2−m | i = 0, ..., 2m − 1 } ⊂ T1. (8)

LetBm be the algebra generated by the collection of sets Im := {[a, b)|a, b ∈ Dm}. Namely,
each element of Bm is a finite union of some elements of Im. Let P(m) be the uniform
probability measure on Dm. For each m ≥ 1 and each x ∈ T1, let

⌊x⌋m := ⌊2mx⌋/2m ∈ Dm.

Definition 7 (cf. [7, 13]) Let j ∈ N+, and set

Zk(ω′) := ⌊x + kα⌋m ∈ Dm, ω
′ = (x, α) ∈ Dm+ j × Dm+ j, k = 1, 2, 3, . . . , 2 j+1.

Then we define a pseudorandom generator g : {0, 1}2m+2 j → {0, 1}Nm, N ≤ 2 j+1, by

g(ω′) := (Z1(ω′), Z2(ω′), . . . , ZN(ω′)) ∈ (Dm)N � {0, 1}Nm, (9)
ω′ = (x, α) ∈ Dm+ j × Dm+ j � {0, 1}2m+2 j.

The numerical integration method using the pseudorandom generator (9) for the sampling
of S N is called the random Weyl sampling (abbreviated as RWS).†13

†12In general, as E[X] is unknown, V[X] is unknown, too. In this sense, this risk measurement is not
complete. But under some circumstances, an upper bound V[X] can be obtained (e.g., Example 3), the risk
measurement then becomes complete.
†13RWS presented here is slightly improved from the one introduced by [7, 13].

9

Theorem 8 The pseudorandom generator g : {0, 1}2m+2 j → {0, 1}Nm of (9) satisfies that
for S N of (5),

E[S N(g(ω′))] = E[S N(ω)] (= NE[X]),
V[S N(g(ω′))] = V[S N(ω)] (= NV[X]).

Here ω′ and ω are assumed to be distributed uniformly in {0, 1}2m+2 j and in {0, 1}Nm,
respectively. From this, as is seen in (6), Chebyshev’s inequality

P2m+2 j(g(ω′) ∈ A1) = P2m+2 j

(∣∣∣∣∣S N(g(ω′))
N

− E[X]
∣∣∣∣∣ ≥ δ) ≤ V[X]

Nδ2

follows. In this sense, g is secure against A1 of (7).

Proof. Step 1. (cf. [7, 13]) Under the uniform (direct product) probability measure P(m+ j)⊗
P(m+ j) on Dm+ j × Dm+ j, we show that {Zk}2

j+1

k=1 are pairwise independent, and that each Zk is
distributed uniformly in Dm. To this end, we prove that for any Bm-measurable functions
F, G : T1 → R and for any 1 ≤ k < k′ ≤ 2 j+1, it holds that

E[F(Zk′)G(Zk)] =
∫ 1

0
F(t)dt

∫ 1

0
G(s)ds. (10)

Here E denotes the mean under P(m+ j) ⊗ P(m+ j).
By the Bm-measurability of F and G, we have

E[F(Zk′)G(Zk)] =
1

22m+2 j

2m+ j∑
q=1

2m+ j∑
p=1

F
(

p
2m+ j +

k′q
2m+ j

)
G

(
p

2m+ j +
kq

2m+ j

)

=
1

22m+2 j

2m+ j∑
q=1

2m+ j+kq∑
p=1+kq

F
(

p
2m+ j +

(k′ − k)q
2m+ j

)
G

(p
2m+ j

)

=
1

22m+2 j

2m+ j∑
q=1

2m+ j∑
p=1

F
(

p
2m+ j +

(k′ − k)q
2m+ j

)
G

(p
2m+ j

)
. (11)

Now, let us assume that 0 < k′ − k = 2il ≤ 2 j+1 − 1, where 0 ≤ i ≤ j and l is an odd
number. Then we have

1
2m+ j

2m+ j∑
q=1

F
(

p
2m+ j +

(k′ − k)q
2m+ j

)
=

1
2m+ j

2m+ j∑
q=1

F
(

p
2m+ j +

lq
2m+ j−i

)
. (12)

For each r = 1, 2, 3, . . . , 2m+ j−i, there exists a qr such that lqr ≡ r (mod 2m+ j−i). Since l is
odd,

#{1 ≤ q ≤ 2m+ j | lq ≡ r (mod 2m+ j−i)}
= #{1 ≤ q ≤ 2m+ j | lq ≡ lqr (mod 2m+ j−i)}
= #{1 ≤ q ≤ 2m+ j | l(q − qr) ≡ 0 (mod 2m+ j−i)}
= #{1 ≤ q ≤ 2m+ j | q ≡ qr (mod 2m+ j−i)}
= 2i.

10

From this, it follows that

1
2m+ j

2m+ j∑
q=1

F
(

p
2m+ j +

lq
2m+ j−i

)
=

1
2m+ j−i

2m+ j−i∑
r=1

F
(p
2m+ j +

r
2m+ j−i

)

=
1

2m+ j−i

2m+ j−i∑
r=1

F
(r
2m+ j−i

)
=

∫ 1

0
F(t)dt. (13)

By (11), (12) and (13), we see

E[F(Zk′)G(Zk)] =
1

2m+ j

2m+ j∑
p=1

 1
2m+ j

2m+ j∑
q=1

F
(

p
2m+ j +

(k′ − k)q
2m+ j

)G
(p
2m+ j

)

=
1

2m+ j

2m+ j∑
p=1

 1
2m+ j

2m+ j∑
q=1

F
(

p
2m+ j +

lq
2m+ j−i

)G
(p
2m+ j

)

=

∫ 1

0
F(t)dt · 1

2m+ j

2m+ j∑
p=1

G
(p
2m+ j

)
=

∫ 1

0
F(t)dt

∫ 1

0
G(s)ds.

Thus (10) is proved.
Step 2. First, since each Zk(ω′) is distributed uniformly in {0, 1}m, we see

E[S N(g(ω′))] = NE[X].

Next, the pairwise independence implies that

V[S N(g(ω′))] = E

 N∑

k=1

(
X(Zk(ω′)) − E[X]

)2
=

N∑
k=1

N∑
k′=1

E
[(

X(Zk(ω′)) − E[X]
) (

X(Zk′(ω′)) − E[X]
)]

=

N∑
k=1

E
[(

X(Zk(ω′)) − E[X]
)2
]

+2
∑

1≤k<k′≤N

E
[(

X(Zk(ω′)) − E[X]
) (

X(Zk′(ω′)) − E[X]
)]

= NV[X].

Thus we know that g has the required properties. □

Example 9 Applying RWS, we can solve Exercise in § 3.2. In Example 6 (§ 5.1), let
us use the pseudorandom generator g : {0, 1}238 → {0, 1}108

defined by (9) with m = 100,
N = 106, and j = 19.†14 Then the risk is measured by (cf. (3))

P238

(∣∣∣∣∣S 106(g(ω′))
106 − p

∣∣∣∣∣ ≥ 1
200

)
≤ 1

100
. (14)

†14Here we have 2 j+1 = 220 > 106 = N and 2m + 2 j = 238. In a practical Monte Carlo integration, the
sample size N is not determined in advance, but it is usually determined in doing numerical experiments.
To be ready for such situations, it is a good idea to let j be a little on the big side.

11

Since Alice can easily choose any seed ω′ ∈ {0, 1}238 of her own will, she no longer needs
a long random number. Here is a concrete example. Instead of her, the author chose the
following seed ω′ = (x, α) ∈ D119 × D119 � {0, 1}238 written in dyadic expansion;

x = 0.1110110101 1011101101 0100000011 0110101001 0101000100

0101111101 1010000000 1010100011 0100011001 1101111101

1101010011 111100100,
α = 0.1100000111 0111000100 0001101011 1001000001 0010001000

1010101101 1110101110 0010010011 1000000011 0101000110

0101110010 010111111.

Then the computer calculated as S 106(g(ω′)) = 546, 177. In this case,

S 106(g(ω′))
106 = 0.546177

is the estimated value of the probability p.

Remark 10 When Alice executes RWS, we can advise her a little in choosing a seed
ω′ = (x, α) ∈ {0, 1}2m+2 j. That is, she should not choose a particularly simple α. Indeed, if
she chooses an extremely simple one, such as α = (0, 0, . . . , 0) ∈ {0, 1}m+ j, the sampling
will certainly end in failure.

Remark 11 In case 2m + 2 j ≫ 1, the problem of random number again prevents
Alice even from choosing a seed ω′ ∈ {0, 1}2m+2 j of RWS of her own will. In such a
case, she is forced to choose it by an auxiliary pseudorandom generator g′ : {0, 1}n →
{0, 1}2m+2 j. Then we do not know whether or not the composite generator g◦g′ : {0, 1}n →
{0, 1}2m+2 j → {0, 1}Nm is secure against A1 of (7).

Example 12 Let us apply a pairwise independent sampling such as RWS to search the
minimum value of the random variable X which was dealt with in Example 2. Suppose
that Pr(X < c) = 1/10000 and that X′1, X

′
2, . . . , X

′
40000 are pairwise independent copies of

X. Then setting S ′ :=
∑40000

k=1 1{X′k<c}, we have

E[S ′] = 4, V[S ′] = 40000V[1{X′k<c}] = 40000
(
1 − 1

10000

)
1

10000
< 4.

Therefore Chebyshev’s inequality implies that

Pr(S ′ ≥ 1) ≥ Pr
(|S ′ − 4| < 4

) ≥ 1 − 4
42 =

3
4
.

Thus the random variable
min

1≤k≤40000
X′k

takes values less than c with probability at least 3/4.

12

7 From viewpoint of mathematical statistics

7.1 Random sampling
We have formulated the Monte Carlo method as gambling and we have considered that
the seed ω′ ∈ {0, 1}n of a pseudorandom generator g is chosen by Alice of her own will.
But from the viewpoint of mathematical statistics, this is not a good formulation, because
sampling should be done randomly in order to guarantee the objectivity of the result.
Indeed, in the case of RWS, as we mentioned in Remark 10, Alice can choose a bad seed
on purpose, i.e., the result may depend on the player’s will.

Of course, it is impossible to discuss the objectivity of sampling rigorously. We here
simply assume that Heads or Tails of coin tosses do not depend on anyone’s will. Then,
for instance, when we choose a seed ω′ ∈ {0, 1}n, we toss a coin n times, record 1 if Heads
comes up and 0 if Tails does at each coin toss, define ω′ as the recorded {0, 1}-sequence,
and finally compute S (g(ω′)), which completes an objective sampling. As a matter of
fact, Example 9 was performed in this way.

This method cannot be used to choose a very long ω ∈ {0, 1}L. The point is that the
pseudorandom generator g : {0, 1}n → {0, 1}L makes the input shorter so that this method
may become executable.

7.2 Test for pseudorandom generator
Many statistical tests for pseudorandom generators have been done in the following man-
ner. Let g : {0, 1}n → {0, 1}L be a pseudorandom generator to test.

(1) Decide what test to do. (Test of run, Poker test, . . .)

(2) For randomly chosen seeds ω′ ∈ {0, 1}n, generate pseudorandom numbers g(ω′) by
g, calculate the portion of rejected ones.

(3) If the portion of rejected ones is close to the significance level of the test, accept g,
if it is much greater than the significance level, reject g.

In the above procedure, if we let A denote the rejection region of the test chosen at (1),
what is done at (2) is the estimation of the probability Pn(g(ω′) ∈ A). And at (3), we
check if it is close to the significance level PL(ω ∈ A). As a result, this test can be said to
be a test for the security of g against A.

8 Concluding remarks
As is seen in this article, needless to say, secure pseudorandom generators are useful.
Here we mention about the relation between random number and probability theory.

In Kolmogorov’s modern probability theory, a random quantity is expressed as a ran-
dom variable X, which is a function defined on a probability space, say ({0, 1}L, 2{0,1}L , PL),
i.e., X : {0, 1}L → R. We think X random by the following interpretation; an ω ∈ {0, 1}L
is randomly chosen and as a result X(ω) becomes random. But in probability theory, we

13

always deal with X as just a function and we never mind how ω is chosen. Since ran-
domness does lie in the process how ω is chosen, probability theory does not mind what
randomness is.

Suffering from Parkinson’s disease in his later years, Kolmogorov devoted himself
to the question “What is randomness?”, which his probability theory had been avoiding.
Finally, he answered the question, by establishing the notion of random number. Theo-
retically, we do not need the notion of random number in studying probability theory, but
recognizing it brings us deep understanding of not only the Monte Carlo method but also
probability theory itself. Let us explain it below.

According to Kolmogorov, studying randomness is equivalent to studying random
number. The existence of random numbers becomes prominent, only when the sample
space {0, 1}L in question is huge. We therefore know that it is important to study the case
L ≫ 1. So, let us suppose L ≫ 1. Then, we cannot choose any one of random numbers in
{0, 1}L of our own will, although they account for nearly all sequences. This means that
assuming the uniform probability measure PL implies that ω ∈ {0, 1}L is not assumed to
be chosen by anyone’s will, but by some method beyond man’s will, i.e., at random. Thus
the probability space ({0, 1}L, 2{0,1}L , PL) provides a framework to study randomness.

It is difficult to get any knowledge about individual random numbers. But since ran-
dom numbers account for nearly all sequences, it is a good idea to study characteristic
properties that nearly all sequences share. Such properties have been minutely studied in
probability theory — properties described in various limit theorems, such as law of large
numbers, central limit theorems, etc. Probably, limit theorems are the only mathematical
formulation that enables us to investigate randomness concretely. This explains why limit
theorems are so much studied in probability theory.

What is really amazing is that since a long time before the discovery of the notion of
random number, the probabilists of great insight had recognized the importance of limit
theorems and had made a lot of efforts to study them.

References
[1] L. Blum, M. Blum and M. Shub, A simple unpredictable pseudorandom number

generator, SIAM J. Comput., 15-2 (1986), 364–383.

[2] M. Blum and S. Macali, How to generate cryptographically strong sequences of
pseudorandom bits, SIAM J. on Computing, vol. 13, (1984) 850–864. A preliminary
version appears in Proceedings of the IEEE Foundations of Comput. Sci. (1982),
112–117.

[3] G.J. Chaitin, Algorithmic information theory, IBM J. Res. Develop., 21 (1977), 350–
359.

[4] A.N. Kolmogorov, Selected works of A. N. Kolmogorov. Vol. III. Information theory
and the theory of algorithms, Edited by A. N. Shiryayev [A. N. Shiryaev]. Translated
from the 1987 Russian original by A. B. Sossinsky. Mathematics and its Applica-
tions (Soviet Series), 27. Kluwer Academic Publishers Group, Dordrecht, (1993)
xxvi+275 pp.

14

[5] M. Luby, Pseudorandomness and cryptographic applications, Princeton Computer
Science Notes, Princeton University Press, (1996).

[6] P. Martin-Löf, The definition of random sequences, Inform. Control, 9 (1966), 602–
619.

[7] H. Sugita, Robust numerical integration and pairwise independent random variables,
Jour. Comput. Appl. Math., 139 (2002), 1–8.

[8] H. Sugita, Dynamic random Weyl sampling for drastic reduction of randomness in
Monte Carlo integration, Math. Comput. Simulation, 62 (2003), 529–537.

[9] H. Sugita, Numerical integration of complicated functions and random sampling
(in Japanese), “Sugaku”, 56-1, Iwanami-shoten (2004), 1–17.(English translation,
SUGAKU EXPOSITIONS, 19-2, AMS, December 2006, 153–169.)

[10] H. Sugita, Security of Pseudo-random Generator and Monte Carlo Method, Monte
Carlo Methods and Appl., 10-3, VSP, (2004), 609–615.

[11] H. Sugita, Monte Carlo method, Random number, and Pseudorandom number, MSJ
Memoirs vol.25 (2011), xiv+133 pp.

[12] H. Sugita, The Random Sampler, available at;
http://www.math.sci.osaka-u.ac.jp/˜sugita/mathematics.html.

[13] H. Sugita and S. Takanobu, Random Weyl sampling for robust numerical integration
of complicated functions, Monte Carlo Methods and Appl., 6-1, VSP, (1999), 27–48.

[14] A. Yao, Theory and applications of trapdoor functions, Proceedings of the IEEE
Foundations of Comput. Sci., (1982), 80–91.

15

