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The probability of two F,-polynomials to be coprime

Hiroshi Sugita’ and Satoshi Takanobu?

Abstract.

By means of the adelic compactification R of the polynomial ring
R :=TF,[z], ¢ being a prime, we give a probabilistic proof to a density
theorem:

#{(m,n) € {0,1,...,N —1}?; ¢,, and ¢,, are coprime} 4 -1
N2 q ’

as N — oo, for a suitable enumeration {¢,, }52, of R. Then establishing

a maximal ergodic inequality for the family of shifts {I?i Sf fHp, €
R}, we prove a strong law of large numbers as an extension of the
density theorem.

§1. Introduction

Dirichlet [2] discovered a density theorem that asserts the probabil-
ity of two integers to be coprime be 6/72, that is,
(1)
. #{(m,n) e N?; 1 <m,n <N, ged(m,n) =1} B 1
i N2 = =

The notion of density is something like a probability, but it is not exactly
a probability. In order to give a rigorous probabilistic interpretation to
this theorem, Kubota-Sugita [5] gave an adelic version of (1), that is,
the probability of two adelic integers to be coprime is precisely 6/72,
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456 H. Sugita and S. Takanobu

and they derived (1) from the adelic version. Soon after that, Sugita-
Takanobu [11] established a strong law of large numbers (S.L.L.N. for
short) in Kubota-Sugita [5]’s setting, and furthermore, discovered a new
limit theorem which corresponds to the central limit theorem in usual
cases.

In this paper, we discuss an analogy of these works for the polyno-
mial ring Fy[x] =: R, ¢ being a prime, using again the adelic compacti-
fication R of R. As a result, an S.I..L.N. holds in this case, too.

However, the proofs here are not a complete analogue of the pre-
vious ones. Indeed, in many points R and R resemble Z and its adelic
compactification 7 respectively, but in some points they are quite dif-
ferent. For example, Z has a natural linear order, while R does not,
so that we need to define an appropriate enumeration R = {¢n 52 .
And the family of shifts {x — z +n}2 in Z forms a semigroup with
respect to the addition of the parameter n, while the family of shifts
{f — f+ ¢}, in R does not, i.e., in general, ¢ + ©n # Gman. In
particular, the latter is a strong obstacle in proving an S.L.L.N. (The-
orem 2 below), which is finally overcome by adopting a modification of
Stroock [10, §5.3]’s method due to Miki [8].

§2. Summary of theorems

We here present three theorems as well as definitions and a lemma
to state them. The proof of the theorems will be given in the following
sections.

Definition 1. Let ¢ be a prime, F, := Z/qZ = {0,1,...,q — 1}
be the finite field consisting of ¢ elements, and R be the ring of all
Fg-polynomials, i.e., R := Fy[x]. We enumerate R as follows:

[e )

on(z) = Zbgq)(n)mi_l, n=0,1,2,...,
i=1

where bEQ) (n) € {0,1,...,¢ — 1} denotes the i-th digit of n in its ¢g-adic
expansion, namely

n = Zbgq)(n)qi_l, n € NU{0}.
i=1

Both of infinite sums above are actually finite sums for each n.

The following density theorem is an analogue of (1).
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The probability of two F4-polynomials to be coprime 457

Theorem 1. The probability of two elements in R to be coprime is
(g —1)/q. More precisely',

(2) lim #{(m,n) € {0,1,..., N — 1}*; ged(pm, pn) = 1} _ qg—1
N—oco N2 q ’

More generally, for any f,g € R, we have

i 2Lmm) €401, N = 1325 ged(f + oy g+ on) = 1}
N —o00 N2
_g—1

—

(3)

The limit (¢ — 1)/q appearing in Theorem 1 is equal to (r(2)7!,

where
1 -1
CR(S) = (1 — qsl)

is the zeta function associated with R. See §4 below.

Let us introduce the adelic compactification R of R. We say pe R
is irreducible, if it is not a constant (or, an element of F,) and if p cannot
be divided by any f € R with 0 < deg f < degp. Let P denote the set
of all monic irreducible polynomials.

Definition 2. For each p € P, we define a metric d,, on R by

dp(f.g) = inf{q %P p"|(f —g)}, f.g€R

Let R, denote the completion of R by the metric d,. It is a compact
ring and has a unique Borel probability measure A\, which is invariant
under the shifts {R, > f — f + g}4er, (Haar probability measure).

Now we define
Re=1[Ry x=][N
pEP pEP

The arithmetic operation ‘+” and ‘x’ being defined coordinate-wise, R
becomes a compact ring under the product topology. And A becomes
the unique Haar probability measure on R.

'The function ‘ged(f, g)’ is assumed to return the greatest common divisor
of f and ¢ that is monic. In particular, if there is no common divisor other
than constants (or, elements of F,), we have ged(f,g) =1 and say ‘f and g are
coprime’. When f = ¢g = 0, any monic polynomial is their common divisor, so
we do not define ged(0, 0).

+



458 H. Sugita and S. Takanobu

R is metrizable with the following metric?:

d((flvaa .. ')a (glaQQa .. )) = Z27idpi (fivgi)v
=1

f=f2-),9=(91,92-...) € R.

Lemma 1. The diagonal set D :={ (f, f,...) € R; f € R} is dense
n R.

Proof. According to the Chinese remainder theorem, for any k,m €
N and any fi,..., frx € R, there exists f € R such that f = f; mod
p*, i = 1,...,k This implies that D is dense in R x R x --- with
respect to the metric d. O

Identifying R with D, we can regard R as a dense subring of R by
Lemma 1. Since R is countable, we have A\(R) = 0.
Now we can mention an S.L.L.N.

Theorem 2. For each F € L*(R!,\!),
. 1
lim — > F(fi+@n,- o fi+ on)

:/ F(fr, .., fON(dfr---dfy), N-a.e.(fr,.... f).

As a special case of Theorem 2, we have an S.L.L.N.-version of
Theorem 1.

Definition 3. For f,g € ]TE, we define

o) = { e,

0 (f¢pR),
X(f,9) =1 = pp()pp(9))-
pEP

Note that for f,g € R, X(f,g) =1 if and only if ged(f,g) = 1.

Theorem 3.

N—-1
. 1 _q—1 2
]\}gl})omm%::OX(f‘i‘@mag'f'@n)* q ) A _a'e'(fvg)'

2We enumerate P = {p;}22, in the order given by Definition 1.
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§3. R — Preliminaries

3.1. Basic properties
Although all lemmas in this subsection can be proved essentially in

the same way as in the case of Z we give them proofs to make this paper
self-contained.

Lemma 2. Let p,p’' € P, p#p’, and k € N.
(i) p*R, is a closed and open ball.
(i) pFRy = Ry.

Proof. (i) That

kap ={feRy;dy(f,0) < q_kdegp}
={f € Ry; dy(f,0) < ¢~ =D desr}

shows pFR,, is closed and open.

(ii) Since p*R,, C R, is clear, we show the converse inclusion. To this
end, it is sufficient to show the existence of g € R,y for which p*g = 1.
For each m € N, there exists g,, € R such that p¥g,, = 1 mod (p')™
ie., dy (pFgm,1) < g~ ™de2’  Then for n > m, we have p* (g, — gm)
0 mod (p’)™, and hence

dp/(pkg"’pkgm) = dp/(gnvgm) S q—mdegp .

This implies {gm}5o—; is a Cauchy sequence in R,. Then its limit
g € R, satisfies

dp/(pkg,l) = nlgnoo dp’(pkgmal) =0,

in other words, p*g = 1. O
Lemma 3. Let f € R and deg f > 1.

(i) For® —oco < degg < deg f — 1, the set (fR+ g) is closed and open.

(i) R = UgeR; —co<deg g<deg f—1(fR+ g), which is a disjoint union.
Proof. (i) We may assume f to be monic. Let f =[] .p p2»(f) be

the prime factor decomposition, where a,(f) = 0 holds except for finite
number of p € P. By Lemma 2,

(4) fﬁ = H Ry, = Hpap(f)Rpa

peEP peEP

3deg 0 := —o0.

+



460 H. Sugita and S. Takanobu

where each p»(f )Rp is closed and open, and hence f]% is closed and
open, too. Since the shift R> f—(f+yg) € Risa homeomorphism,
(fﬁ + g) is closed and open, too.

(ii) Since R is dense in R and h — fh+ g is a continuous and closed
mapping, we have fR+ g = fﬁ + g. On the other hand, since R =
UgeR; —oo<deg g<deg f—1(f R + g), we see

R= U (fR+g).
gEeR;
—oo<degg<deg f—1

Let us next show that the above union is disjoint. Let g, ¢’ be distinct
polynomials both of which are of lower degree than f. By (i), A :=

(fR+ g)n (fR—i— g') is an open set. If A # (), then RN A # (), because
R is dense in R. But then, for [ € RN A, we see that

dp(l - gvo) S p_(yp(f)v dp(l - glao) é p_ap(f)a p S Pa

which means that for any p € P, p®»)|(g — ¢'). Thus we see f|(g —¢'),
which is impossible. Consequently, we must have A = ().

O

Lemma 4. For f € R\ {0} and A € B(R), we have fA € B(R)
and that

() AfA) = g~ 4B INA).

Proof. Since Risa complete separable metric space and the mul-
tiplication R> g— fg€ R is injective and Borel measurable, it holds
that fA € B(R) (cf. [9, Chapter I Theorem 3.9]). Next, let v be a
Borel probability measure on R defined by

_ AU
A(fR)’

v(A) B(R).

Then v is clearly shift invariant, and hence v = A by the uniqueness of
the Haar measure. Thus we see A(fA) = A(fR)A(A). Lemma 3 and the
shift invariance of A imply

1= AR) = > MfR+9) = ¢**I\(fR),

gER;
—oo<deg g<deg f—1

from which (5) immediately follows. O

+
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3.2. Zeta function associated with R
Let us define the zeta function associated with R:

(6) Cr(s) = Z N(lf)S’ Res > 1,
fER:monic

where

(7) N(f) := the number of residue classes R/fR = ¢%°&7.

Since the polynomial ring R is a unique factorization domain, and

N(fg) = N(f)N(g),

we have an Euler product representation of (g:

0w Tlw) D)

pEP pEP

Surprisingly, the following extremely simple formula holds:

o) ) = (1 = )

461

Let us show (9). Let g(m) := Zdlmu(%)qd, where p is the Mdbius

function. Then the M&bius inversion formula implies

q" = Zg(d), n € N.

d|n

We must also recall that (See [7, 3.25. Theorem])
1
#{p € P;degp=m} = Eg(m).

Now noting that log(1 —)~' = 327 L (¢ < 1),

n 1 n
log Cr(s Z log ( sdlegp> Z 221 n qmdegp
pEP pEP =
00 0 1 !
=3 G Lem) Zi( )
=1 ml =1

+

1

qsmn

g(m)
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1\ !
=log (1 - qs_1> .

Thus we have (9).

Theorem 3 follows from the next lemma and Theorem 2.
Lemma 5.

/ X (f, 9)\*(dfdg) = %
Proof.

/ X(f, 9)N2(df dg) = H / — oo(F)onl9) N2 (df dg)
cP

- < W) [ npfann)

— H ( —degp —degp)
_ H 1— q72degp
cp

On the other hand, plugging s = 2 into (8) and (9), we see that

[L0-an) " = ey = (1-1)

pEP q
and hence

2 _ o _a-l
| Xy = — = L. 0

3.3. Uniform distributivity of {¢,}32 , in R
We begin with a characterization of continuous functions on R.

Definition 4. Let f € R and h € R\ {0}. When degh > 1,
by Lemma 3(ii), there exists a unique g € R such that —oo < degg <
degh—1land f—g € hR. This g is denoted by f mod h. When degh = 0,
i.e., h is non-zero constant, we always set f mod h := 0.

Definition 5. A function F : R — R is said to be periodic, if there
exists h € R, degh > 1, such that
(10)
F(f) = F(f mod h) = > F(g)l,5,,(f), feR

9gER;
—oo<degg<degh—1

+



The probability of two F4-polynomials to be coprime 463

And F : R — R is said to be almost periodic, if there exists a sequence
{Fm}5o_, of periodic functions that converges to F' uniformly .

Lemma 6. A function F : R—Ris continuous, if and only if it is
almost periodic.

Proof. Lemma 3 implies that periodic functions on R are continuous,
and hence their uniformly convergent limits, that is, almost periodic
functions are continuous. N N

Conversely, let F' be a continuous function on R. Since R is compact,
F' is uniformly continuous, in particular, for any ¢ > 0, there is § > 0
such that for any h € R, d(0,h) < J, and any f € ﬁ, it holds that
|F'(f) — F(f +h)|] <e. Now fix such an h € R, and define a periodic
function I’ by

F'(f) == F(f mod h), fé€R.

Then we have |F(f)—F'(f)| <e, f € R. Thus F is almost periodic. [

We next introduce the following lemma, which shows an important
property of our enumeration {p,}5 .

Lemma 7. Let m € N and let h € R be a monic polynomial of
degree m. Then, for any j € N, {¢, mod h; (j — 1)¢™ < n < j¢™}
forms a complete residue system modulo h. Namely,

{¢nmodh; (j—1)¢" <n<jq¢"}={g€R; —oo<degg <m}
={vn; 0<n<qm}.

Proof. This lemma is due to Hodges [4, p.71]. Since the enumeration
{n}22, is systematic, we can present a shorter proof here. Let j € N
and let (j — 1)¢™ < n < jq™. According to the definition of {¢,}5,
since

n=Mn-G-1)¢")+G-1)q¢", 0<n—(j—-1)q¢"<q",

we have
spn = spn_(j_l)qm —+ @j,lsoqm,

where
degpn_(j_1)gm < m, degpj_1pgm { B

Noting that r := ¢;_1¢4m mod h is of degree < m, we see that

{onmod h; (j —1)¢"™ <n<j¢q"}

+
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= {(bn—(j-1)gm + Pj—19gm) mod 5 (j = 1)g™ <n < jq™}
={(¢n+r)mod h;0<n<q™}
={en; 0=n<q"} 0

Since R is compact and includes R densely, each continuous function
F: R — R is determined by its values on R. In particular, the integral
of F is determined by the sequence {F(p,)}52 . The following lemma
indicates this fact explicitly.

Lemma 8. The sequence {pn}52 is uniformly distributed in ﬁ,
that is, for any continuous function F': R — R, it holds that

N—1
. 1 P -
(1) Jm, oy 3 Flen) = | P
Proof.
1° Let F be a periodic function, that is, let us assume F(f) =
F(f mod h), f € R, for some nonconstant monic A € R. Then putting

m = degh and jj := L%J, Lemma 7 implies that

q

1 N-1 1 Jo  dq"-1
=N F(on modh)—l—ﬁz Z F (¢, mod h)

n=joq™ J=1n=(j—1)g™

1 Jo
= F(py mod h) + > Fly).

n=joq"" —oo<deg g<m

Letting {t} denote the fractional part of ¢t > 0,

1 = 1
~ ZF(%)—q—m > Flyg)
n=0

—oo<deg g<m
N-1
1 1 /N N
=¥ > F(%modh)ﬂLN(—m—{—m}) >, Fly)
n=joq™ q q —oo<deg g<m
1
- Z F(g)
q —oo<deg g<m




The probability of two F4-polynomials to be coprime
<lat _mex  [F@I+| Y F)
N —oo<degg<m
—oo<degg<m
—0 as N — o0.

Thus (11) holds for periodic functions.
2° Let I': R — R be a continuous function. By Lemma 6, for any

€ > 0, there is a periodic function F; such that ||F'— F;||« < e. By 1°,

N— N—

n=0

<2+

1 N-1

— 0 (first N — oo, secondly e — 0).

Thus (11) holds for continuous functions. O
The following corollary follows from Lemma 8 and [9, Chapter III

Lemma 1.1].

Corollary 1. For any continuous function F : R? R, we have

lim N2 Z F(©m,¢n) / F(f, g)\(df dg).

N—o0
m,n=0

The assertion of Corollary 1 is referred to as the weak convergence of
the sequence of probability measures® { <= Zz_nl:o O(omron) Y ey to A2
It is well-known that the weak convergence is equivalent to the following

condition (cf. [10, §3.1]): For any closed set K C R2, it holds that

N—-1
1
(12) 11]rvnsup 5 Y Sl (K) < N (K).
—e m,n=0

4500 on) denotes the d-measure at (o, on) € R2.

T N
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§4. Proof of density theorem

Although Theorem 1 could be proved in an elementary way, we
here prove it in the light of probability theory by means of the adelic
formulation. This section is an analogue of Kubota-Sugita [5, § 6].

If the function X (f,g) were continuous on ]§2, Corollary 1 would
imply Theorem 1. However it is not continuous. Indeed,

B = X"'({1}) = [ (®*\ @R)*)  R*
peEP

is surely a closed set, but we can show B = 0B, which means that in any
neighborhood of any point of B, there exists a point for which X = 0.
Thus X is not continuous. That B = 9B is shown in the following way:
Take any (f,g) € B and any £ > 0. Then choose I,m € N so large that

d (O7 Hi:l pzn) < e. Now find Ay, ho € R such that

{ fmod priy + i [T, p{* =0 (mod piy1),
g mod pr41 + ha Hi:l p" =0 (mod pi11).

In fact, since Hi:l pi* and p;41 are coprime, there exists k € R such
that knézlpz’-”’ = 1 (mod pj4+1), so that by = k(pi+1 — f mod pj41)
and hy = k(pi+1 — g mod p;11) are required ones. Then it is easily
seen that d(f, f + ha Hizllp;n) <&, d(g.g+ha[[i—; p}") < &, and that
(f+h Lo g+ ho [l;_, p") & B. Thus B C 9B.

Let us begin to prove (2) in Theorem 1. For each monic polynomial
h € R, we set

hB = {(hf.hg) € R?; (f,g) € B}.

Since hB N R? = {(f,9) € R?;gcd(f,g) = h}, it is easy to see that

(13)
L (m,n) €{0,1,2,...3>\ {(0,0)},
Z 6(‘P7n74pn)(hB) = { 0 o 0 0
h€R : monic ’ (m,n) - ( ) )
According to Lemma 5, \*(B) = [z, X(f,9)A\*(dfdg) = (¢—1)/q. Hence
by Lemma 4,
1 qg—1

2 = ——————
A (hB) - q2degh q

+
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Since hB is a closed set, (12) implies

1 q—1

(14) q2 degh ’ q

— )\Q(hB) > hmsup Z (@rmrpm) (RB).

N —o0

Note that by (6), (7) and (9) with s = 2, we have

1 q
(15) Z ) q2degh = q_l'
h€R : monic

Also, since, for v > 0 and ¢ € R

—00 < deg<p§z/<:>g06{gom;0§ m§q”+1—1},

(<) &)
we see that for N € NN[2,00), taking v € NU{0} so that ¢ < N—1<
g,

1 A | v
D2
N? Y e (hB) < N2 D (oo (AR?)
et m,n=1
1 qV'H 1
(¢¥ +1)? Z O(omyon) (AR X hR)
m, n=1

1/+1 —1
Z o, hR)

2
#1<m< ¢t —1;h| om}
q" +1

#{peR; —co<degp <v, h|p}
¢’ +1

q’ +1

q" +1
v—degh+1 __ 1\ 2
() vz den,
ql/

0, v < degh

2
#{k € R; —oco < degk < I/—degh}>

(7
(
g
(#{k € R\ {0} ; deg(hk) < u})
[
|
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q2

< —.
q2degh

Here the last expression is summable in A € R, monic. Then it follows
from (15), (14) and the Lebesgue-Fatou theorem that

qg—1 q—1 1
(16) 1—-———= Z T'W

q heR ;degh>1, monic
1 N-1
2 Z 1imsupm Z (g .pn) (B)
he€R;degh>1, monic N—oo m,n=0
1 N-1
= Z 1imsupm Z (g .pn) (B)
heR ;degh>1, monic N—oo m,n=1
1 N-1
> lim sup > Nz > o) (hB)
N—oo h€R;degh>1, monic m,n=1
1 N-1
= hmsupm Z Z S(omron) (AB).
N —o00

m,n=1heR ;deg h>1, monic

Subtracting each side of (16) from 1 and noting (13), we have

N-1
g—1_ .. 1
(17) e < l}glglof 1- N2 Z O(pumopn) (RB)
m,n=1heR;degh>1, monic
1 N-1
m,n=1 heR ;deg h>1, monic
1
e ¥ )
0<m,n<N-—1;
m=0 or n=0
1 N-1
= liminf <m (g ipn) (B)
m,n=0
1
TN Z (1 - 5(q:m,<pn)(3))
0<m,n<N-—1;
m=0 or n=0
1 N-1
= liminf - D" Spmpn) (B)-
m,n=0

+
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Finally, (14) with hA(z) =1 and (17) imply that

N—1 g—1
Jm Oomen) (B) = — =,
m,n=0

which is equivalent to (2).

Next, let us prove (3) in Theorem 1. Take arbitrary f,¢g € R with

deg fVdegg > 0, and set ., := f+pm, and ¢! := g+p,. Then it is easy
to see that the sequence of probability measures {% Zﬁ;lzo S(pr o IN

weakly converges to A2. Furthermore, we have

L (¢m,¢n) # (0,0),

(18) Z 6(<P§nv¢§{)(hB) - { 0, (¢.,¢")=(0,0).

h€R : monic

By these facts, we can deduce that

;| N2 g1
(19) m o Y S (B) = T

)
N—o0
- m,n=0 q

similarly as the case where (f,g) = (0,0).

Remark 1. If f,g € R fail to belong to R, (19) may not be true.
The following is one of such examples: Let 7 : N x N — N be a bijective
mapping. For each N € N, we consider a system of equations

(f + Sam) mod Pr(m,n) = 0,

m,n = 1,2,..., N,
(g+90n) mOde(m,n) =0,

with unknown variable (f,g) € R2. By the Chinese remainder theorem,
the solution (f,g), say (fn,gn) € R?, exists. Since R? is compact,
{(fn,gn)}¥_; has a limit point, say (fe,goo) € R?. Then since for
each p € P, pR is a closed ball, it holds that

+ mod r(m,n) — 0;
(Joo & om) Pr(m.n) m,n € N.

(goo + @n) mod Pr(mm) = 0,

Clearly, we have X (foo + ¢@m, goo + ¢n) = 0, m,n € N, and hence

N—1
. 1
J&EHOOW Z O(foctem gocten) (B) = 0.

m,n=0

+
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§5. Proof of strong law of large numbers

5.1. Maximal ergodic inequality

Basically, we adopt the method used in Stroock [10, §5.3]. We begin
with the definition of classical maximal function.

Definition 6. For f € L'(R' — R), we define Hardy-Littlewood’s
maximal function M f by

M) = s |712| /Q F)ldy, =R,

where the sup is taken for all cubes Q of the form
1
Ha],a]—i—r a=(ay,...,aq) €RY, r>0

such that @ 3 z, and
|Q| := the Lebesgue measure of Q.

Lemma 9 (The Hardy-Littlewood inequality). ([10, §5.3]) For any
0 < a < 00, it holds that

1
o e RiMf@) = a}] < = [ If@ldy

Definition 7. For each m,n = 0,1,2,..., there exists a unique
k € NU {0} such that ¢, (z) + on(z) = ( ). This k will be denoted
by m - n, that is,

m-n = Z ((dﬁ‘”(m) + dg(I) (n)) mod q) ¢t

i=1

As is easily seen, m - n # m + n in general. Therefore the method
used in Stroock [10, §5.3] does not work to derive the maximal ergodic
inequality. In this paper, we adopt a modification of Stroock’s method
due to Miki [8].

Lemma 10. ([8]) Let m,n,l =0,1,2,....
i)m-0=m,m-n=n-m, (Il-m)-n=101-(m-n).
(ii) The mapping NU{0} 5 k+— m -k € NU{0} is bijective.
(iii) (mvn)—(¢g—1)(mAn) <m-n<m-+n.

+
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Proof. (i) and (ii) are obvious. We here check (iii). Since, for a,b €
{0,1,...,q—1}
a+b, if a+b<gq,

a+b) mod g =
( ) 1 {a—i—b—q, if a+b>gq,

it follows that

(a+b) mod g < a+b,

a+b+(¢g—1a

=b+qa, ifa+b<gq,
a+b—q+(g—1)a
=b+gqla—1),ifa+b>qg>0

(a+b)mod g+ (¢ —1)a

=

Hence, for 0 <m <n

3

3

|
M

@
I
—

((dg‘” (m) + dg‘” (n)) mod q) ¢t

(dl(.q) (m) + dgq) (n))qi*1 =m+n,

o,

i
O

(d”(n) = (¢ = AP (m))g" " =n — (g = 1)m

M

1

<.
Il

Lemma 11. For any square array {akhh}kl koef012,.3 C [0, 00)

with Z,;“;kzzo Qg ko < 00, the following inequality holds: For any o > 0,

#{(klka) € {Oa L2,. }2 sup ( ) Z Oy -j1,kz-j2 = a}

n>1

J1,J2=0
122 &
< — .
= Z Ak ks
k1, ko=0
Proof. Put
L)
f(l') = Z ak17k2lc(k1’k2)(]))7 = RQ,

k1,k2=0

where
C(kﬁl,kﬁg) = [kl,kil + 1) X [k}g,k}g + 1).

+
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Then clearly we have
[ee]
(20) / f(z)dx = Z Ay oy < OO,
R2
k1 ,k2=0

and maximal function M f becomes

2D Mf(z) = sup IQI/ U

Lo, naol.
zgml%oal sletrng

Now suppose that « € C(ky, ka) (k1,k2 € {0,1,2,...}), n € N, and 0 <
jlan <n—1. If we take Q = [kl_(q_l)nvk1+n)>< [kQ_(q_l)nvk2+n)a
then @ > x and

(22) QD Clky - j1,ka - j2)
holds. Because Lemma 10(iii) implies

ki-j1> ki — (g —1)n,
ko -jo>ke—(qg—1)n

and

ki-71 < ki + g1
ko - g2 < ko + ja

ki+n—1,
ko+n—1,

we see

[k1 - j1,k1-j1+1) Clkr— (g — Dn, ki +n),
(k2 - jo, k2 - j2 + 1) C [k2 — (g — )n, k2 +n),

and hence (22) holds.
If we take this @ for (21), we have for z € C(k1, k2), n € N that

1 n—1

en Z Ay 1 kagn | C (K1 - J1, k2 - j2) N Q)|

| | J1,J2=0

Mf(x)

Y

in

( ) Z QAky-j1,ko ja -

J1,52=0

+
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Taking sup in n,

o] n—1
Mf(:L’) > Z (sup (L)Q Z akl'jl;kz'j2>]'C(kth)(x)'

n
k1 k2 =0 neN (¢ j1,42=0

Then for 0 < a < oo,

{a: € [0,00)% M f(z) > a}

D {a: €[0,00)%

o) n—1
11\2
Z (sup <_) Z akl'jl,kz'h) ]'C(kth)(x) = a}

n N
ko ka0 \"EN NI 0

= U C (K1, k2).
kl kz>0'

1)\2 -1
SupﬂEN(_n) DT da=0 Wy g1 kg g2 2O

Therefore Lemma 9 and (20) imply

122 &

o E Ay ko
k1,ka=0
122

= . f(z)dx

Hx E]RQ;Mf(x) > aH

Y

> \{x € [0, 00)% Mf(z) = o
> 1 2
- kl% 0 Sup,, en qn) 2;1_72 0 Ok g1, kg -jg 2O
9 N 1
=# (kl,kg)E{O,l,Q,..,}Q;SUII\)I( ) Z ak1]1kzjz—a .0
ne
J1,J2=0

Lemma 12 (Maximal ergodic inequality). Let F : R — [0,00) be
a Borel measurable function such that

2

BV1F) = [ PN (ddg) < o0
]RZ

+
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Then for any 0 < o < 00, it holds that

Proof. Fix M € N and (f,g) € R2. For each k1,ke € {0,1,2,..

N-1

we define

Aky ko (fa g) = {

F(f+90k1ag+50k2)a

0,

Then Lemma 11 implies that

qN

1 242 2
(supﬁ Z F(f+ @9+ ¢i) Zq2a> < —EM[F].

if 0< ke, ko <2M—1,

otherwise.

N-1
112
#{kl,kz > 0; sup <—) > kg (f9) > Oé}

122

N>1

J1,52=0

< — Z a’khkz(fag)

«
k1,k2

122

=0

D

(6%
0<ky ,kp<2M—1

Noting that

OéklakQS

M,

0§j17j2<N7

F(f+¢k,9+ ¢r), 0<a<oo.

1< N<M

= 0<k-g<k+i<M+N-1<2M-1,
0<ko-jo<ko+j2o<M+N-1<2M-1

= akl'jl,kz'jz(fvg) = F(f+¢k1~j1a9+80kz-jz)
= F(f+90k1 +90j1ﬂg+30k2 +30j2)7

we have

#{(lql,k‘g) €{0,1,2,..., M}?*;

<

max (
1<N<M
2M—1
122
«
k1,ka=0

1
qN

N—-1

2
) D P+ o+ g+ on + o) 2 a

J1,j2=0

+

Z F(f+¢r,9+¢r), 0<a<oco.

32

}
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Therefore taking the expectation E* of both sides,

1.2 N2
Z X 1<N<M(qN) Z F(f+50k1+80j179+§0k2+<pj2)2a
k1,k2=0 1,j2=0
122 20
SF]C%:()E |: f+(pk1ag+50k2)i| 0< a<oo.
1,~R2

Since A? is shift-invariant, the above inequality reduces to

N-1

112
)\2 <1§H]1\/'a§XM (q_N) Z F(f_‘_sohag“‘@jz) > Oé)

J1,52=0

122/ 2M
=

2 1o
M—i—l) EM[F], 0<a<oc.

«

Finally, letting M — oo, the assertion of the lemma follows. O

5.2. Proof of Theorem 2

For simplicity, we here prove Theorem 2 for [ = 2 only. The same
method works for general [, too. Namely, what we prove is as follows:

For any F € L*(R2,\?),

N—-1
(3) w3 X FUtgmaten) = EV[F] Noac(f.g)
m,n=0

Proof. Take sequence of continuous functions {F}}7°, so that

1
By Corollary 1, it holds for each k € N that
(25)
1 = -
_2 Z f+50mag+50n)_)E)\ [Fk] aSNHOOa (f,g)GRQ.
mn:

By Lemma 12, it holds for 0 < a < oo that

N—-1
1
>‘2 (Sup N2 § ‘Fk f+90]1ag+soj2) (f+50j1ag+50j2)‘ Z q2Oé>
J1,j2=0

< 25— )

+
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242 1
<= .
- a k2

From this, it follows that

i:: ( ) € R?;

<
SIS

N—-1
1
]SVuF;NQ Z ‘Fk(f'*—(p]mg'*—(p]z)_F(f+90]1ag+30]2)|2 )

J1,52=0

which means that

N-1

1
lim sup 5 D [Fi(f+95,9+95) = F(f+ 05,0+ 95,)| =0, as.

k—oo N>1 =
J1,52=0

Consequently, by (24) and (25), we see that

N—-1

1 2
(26) Nz Z F(f+¢j,9+¢j,) —EN[F]
J1,j2=0
1 N—-1
=7 2 (F(f+30j179+%’2)—Fk(f+¢j1ag+sﬂjz))
J1,j2=0
1 N—1 )
~3 Z Fu(f + @i, g+ ¢j,) —EN [Fi]
J1,j2=0

+EN [F] - BN [F]

N—

1

e Z ‘Ff+%0j179+%'2)—Fk(f+¢j1,g+saj2)

J1,J2=0
N—

Z k(f + 95,9 + 952) — BN [Fi]

[\Fk - Fﬂ

1 _
fﬁ Z ‘Ff+9011ag+90jz) Fk(f"’@]ng"‘sojz)
= J1,J2=0

+
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N-1
1 2
v > Fu(f+ 9,9+ i) — BN [F]
J1,72=0
1
=
— 0 as. (first N — oo, secondly k — o0). O

Remark 2. If F € LP(EQ, A\?) for some 1 < p < oo, the convergence
in (23) is in fact an LP-convergence. Indeed, for any € > 0, there exists
a bounded measurable function F. : R? — R such that

HF_FEHLP < €.

A similar estimate as (26) can be done in LP-norm in the following way:

N-—
2
Z (f +¢m, g+ on) —EX [F]
n=0
N-—

N— Z IF(f +@m g+ ¢n) — Fo(f + ©m 9+ @n)llLr

Lpr

N—
2
Z S(f+omg+on) —EN IR +|IF = Flle

Lr

1
e + 2¢

Lr

2
F.(f + om. g+ ¢n) —EY [F]
m,n=0

<

— 0 (first N — oo, secondly e — 0).
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