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Abstract

A timelike splitting theorem for Finsler spacetimes was previously established by the
third author, in collaboration with Lu and Minguzzi, under relatively strong hypotheses,
including the Berwald condition. This contrasts with the more general results known
for positive definite Finsler manifolds. In this article, we employ a recently developed
strategy for proving timelike splitting theorems using the elliptic p-d’Alembertian. This
approach, pioneered by Braun, Gigli, McCann, Sämann, and the second author, allows
us to remove the restrictive assumptions of the earlier splitting theorem. For timelike
geodesically complete Finsler spacetimes, we establish a diffeomorphic splitting. In the
specific case of Berwald spacetimes, we show that the Busemann function generates a
group of isometries via translations. Furthermore, for Berwald spacetimes, we extend
these splitting theorems by replacing the assumption of timelike geodesic completeness
with global hyperbolicity. Our results encompass and generalize the timelike splitting
theorems for weighted Lorentzian manifolds previously obtained by Case and Woolgar–
Wylie.
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1 Introduction

Splitting theorems are important rigidity results which appear in various fields of geometry.
They state that a complete geometric space of nonnegative curvature containing an infinitely
long, distance-realizing curve (i.e., a line) must split off that curve as an isometric factor of
the real line. The intuition is that nonnegative curvature promotes the formation of conjugate
points and thus curves should stop realizing the distance in finite time, however, the existence
of a line is an anomaly that is only possible in product geometries.

In both Riemannian and Lorentzian geometry, splitting theorems under the assumption
of nonnegative Ricci curvature are major milestones of their respective fields. In the Rieman-
nian case, Cheeger–Gromoll’s celebrated splitting theorem [20] and its generalizations [18, 30]
are important building blocks for the theory of geometric structures of (possibly singular)
spaces [19, 52]. In the context of general relativity, the nonnegativity of the Ricci curvature
in timelike directions is regarded as the strong energy condition. The splitting of a timelike
geodesically complete spacetime under the strong energy condition was conjectured by Yau
[71] and established by Newman [54], after a counterpart in the (more natural) globally hyper-
bolic case by Galloway [28]. Consequently, a dichotomy arises between the product splitting
of a spacetime and the existence of singularities (see [3, 32]). These results are predated by
a splitting theorem under the stronger assumption of a timelike sectional curvature bound
due to Beem, Ehrlich, Markvorsen and Galloway [4, 5] (this latter result has recently been
generalized to the synthetic setting of Lorentzian length spaces [38]; see [7]).

Both the Riemannian and the Lorentzian splitting theorems under nonnegative Ricci cur-
vature bounds were generalized to the Finsler setting [57, 44], adopting appropriate weighted
formulations. In contrast to the results for Finsler manifolds in [57], the work on Finsler space-
times in [44] required stronger hypotheses. The aim of this article is to improve the splitting
theorem in [44, Theorem 1.2] by removing those technical assumptions. Precisely, although
the isometric splitting is clearly out of reach (see Remark 1.2), we can obtain a diffeomor-
phic, measure-preserving splitting and, under an additional assumption called the Berwald
condition, also obtain a one-parameter family of isometries as translations (a local Finslerian
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isometric splitting can be obtained under significantly strong symmetry assumptions on L [16,
Theorem 4.8], that must also lack twice-differentiability along a timelike direction; see also
[13, Remark 7.5]). Notably, [44] generalized only Newman’s timelike geodesic completeness
version of the splitting theorem [54], not Galloway’s global hyperbolicity one [28]. We extend
the latter to the Berwald setting as well.

Such an improvement stems from a new strategy for Lorentzian manifolds developed in
[10], based on the p-d’Alembertian. This operator, originating in the non-smooth setting of
[6], is defined analogously to the p-Laplacian in the positive definite case, but with p < 1.
The ellipticity of the p-d’Alembertian in metric measure spacetimes was already observed in
[6], owing to its variational connection to a convex q-energy functional (where p−1+q−1 = 1).
This ellipticity was then used in [10] to simplify proofs of the Lorentzian splitting theorems.
For clarity, this streamlined argument initially considered only the classical, unweighted re-
sults of [22, 28, 54].1 Unlike the standard (2-)d’Alembertian (the spacetime Laplacian), which
is hyperbolic and requires identifying a suitable spacelike hypersurface for maximum prin-
ciple arguments, the ellipticity of the p-d’Alembertian allows for a direct application of the
maximum principle, yielding a simpler, alternative proof of the timelike splitting theorem in
both timelike geodesically complete and globally hyperbolic spacetimes (see [10] for details).
This approach also extends to weighted Lorentzian manifolds with non-smooth metrics and
weights (see [11]).

We generalize the elliptic p-d’Alembertian strategy to (smooth) Finsler spacetimes. Let
us remark that the d’Alembertian is a priori nonlinear in the Finsler case; therefore, instead
of “trading linearity for ellipticity”, we simply gain the ellipticity in our setting.

A Finsler spacetime (M,L) is a time oriented Lorentz–Finsler manifold; see Definition 2.3.
Lorentz–Finsler structures and Finsler spacetimes have been considered both as a geometric
description of gravity beyond general relativity (see, e.g., [8, 37, 62]) and in the classical limit
of modified dispersion relations encompassing Lorentz violation in quantum gravity and in
the Standard Model Extension (see, e.g., [31, 67, 35, 36, 63, 21]). Remarkably, they provide a
counter-example to the Shiff conjecture [40] but they are compatible with a slight modification
of Ehlers–Pirani–Schild axioms for general relativity (see [39, 8]).

We denote by τ the time separation function on M (see (2.4)). Then, given a timelike
straight line η : R −→ M (i.e., τ(η(s), η(t)) = t − s for all s < t), the associated Busemann
function bη : M −→ R defined by

bη(x) := lim
t→∞

{
t− τ

(
x, η(t)

)}
plays a vital role to establish a splitting theorem along η. Our first main theorem is the
following.

Theorem 1.1 (Splitting theorem). Let (M,L) be a connected Finsler spacetime equipped with
a measure m on M . Suppose the following:

(1) (M,L) is either timelike geodesically complete, or Berwald and globally hyperbolic;

(2) there is a complete timelike straight line η : R −→M ;

(3) (M,L,m) satisfies RicN ≥ 0 in timelike directions for some N ∈ (−∞, 0)∪ [n,∞], where
n = dimM ;

1The weighted generalizations of [17, 68] can be proven similarly using the methods of [10], mirroring the
approach of [22, 28, 54].
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(4) in the case of N ∈ (−∞, 0) ∪ {∞}, (M,L) satisfies the timelike ϵ-completeness for some
ϵ in the range (2.14) associated with N .

Then, the Lorentzian manifold (M, g∇(−bη)) isometrically splits in the sense that there exists
an (n − 1)-dimensional Riemannian manifold (Σ, h) such that (M, g∇(−bη)) is isometric to
(R×Σ,−dt2 + h). Moreover, (Σ, h) is equipped with a measure n for which m coincides with
the product of the Lebesgue measure dt on R and n.

The Lorentzian structure g∇(−bη) is the second order approximation of L in the direction
∇(−bη) (see (2.2)). One can also see that, for every x ∈ Σ, the curve ζ(t) corresponding
to t 7−→ (t, x) is a timelike straight line bi-asymptotic to η and an integral curve of the
gradient vector field ∇(−bη). We remark that Σ is given as the level surface b−1

η (0), and
then (Σ, L|TΣ) is spacelike if L is reversible and dimM ≥ 3, though it is unclear whether
L|TΣ is positive definite (strongly convex); see Corollary 6.1 for details.

The weighted Ricci curvature RicN is a modification of the usual Ricci curvature taking
into account the behavior of the measure m, and timelike ϵ-completeness can be regarded
as a weighted version of timelike geodesic completeness (see Definitions 2.9, 2.13). When
N ∈ [n,∞), we can take ϵ = 1 and timelike 1-completeness always holds true.

The Berwald condition in (1) means that the covariant derivative is independent of a
reference vector (see Definition 2.4). It allows us to show that, in the globally hyperbolic
setting, nearby asymptotes to the straight line η are complete, and that the local splitting
around η can be globalized, along the lines of Galloway’s argument given in [28]. Since
such difficulties do not arise in the timelike geodesically complete setting, we do not need to
assume the Berwald condition there. Let us remark that, in [44, Theorem 1.2], only timelike
geodesically complete Berwald spacetimes which are Lorentzian-metrizable were considered
(see also Remark 2.5).

Remark 1.2. Theorem 1.1 implies the diffeomorphic and measure-preserving splitting of
(M,m), however, the metric L does not have any splitting structure. This is actually natural in
the Lorentz–Finsler framework, for one can modify L in spacelike directions without changing
it in timelike directions. Since the hypotheses are concerned only with (future-directed)
timelike directions, such a deformation in spacelike directions does not influence them. Hence,
in the situation of Theorem 1.1, we have no control of L in spacelike directions.

In the Berwald case, thanks to its more rigid structure, we have in fact a certain control of
L also in spacelike directions, in the same spirit as [57, Proposition 5.2] and [44, Corollary 1.3].

Theorem 1.3 (Isometric translations in Berwald spacetimes). Let (M,L,m) be a Berwald
spacetime satisfying the hypotheses in Theorem 1.1. Then, we have the following.

(i) In the product structure M = R× Σ, the translations

Φt(s, x) := (s+ t, x), (s, x) ∈ R× Σ, t ∈ R,

are isometric transformations of (M,L) and preserve the measure m.

(ii) The geodesic equation of M splits into those of R and Σ. Precisely, a curve in M is
geodesic if and only if its projections to R and Σ are geodesic.
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As is explained in Remark 1.2, one cannot expect the isometry of translations in general
Finsler spacetimes. We also remark that, since we consider measured Finsler spacetimes
and there may be no canonical measure (like the volume measure in the Lorentzian case)
in the Lorentz–Finsler setting, Theorem 1.1 does not cover the unweighted case (assuming
Ric ≥ 0 in place of RicN ≥ 0). One can define the p-d’Alembertian without using a measure
(Remark 3.5), however, what is missing is a linear divergence, which appears in a Bochner-
type identity (Proposition 5.3) used to obtain the smoothness of the Busemann function.

In the Lorentzian case, the weighted version studied by Case [17, Theorem 1.2] (N ∈
[n,∞]) and Woolgar–Wylie [68, Theorem 1.5] (N ∈ (−∞, 1)∪ [n,∞]) includes the unweighted
one of Galloway [28] and Newman [54] by choosing the volume measure as m and letting N =
n. For a weighted Lorentzian manifold (M, g,m), since g∇(−bη) coincides with g, Theorem 1.1
recovers the splitting theorems in [17, 68] as the special case of ϵ = 1 (resp. ϵ = 0) for
N ∈ [n,∞) (resp. N ∈ (−∞, 0) ∪ {∞}) (the case of N ∈ [0, 1) was excluded for a technical
reason; see Remark 5.7).

The article is organized as follows. After reviewing necessary notions and known results on
weighted Finsler spacetimes in Section 2, we introduce the p-d’Alembertian in Section 3. Then
we discuss the properties of Busemann functions in Section 4. Section 5 includes the main
ingredients: the p-harmonicity of the Busemann function based on the maximum principle
via the p-d’Alembertian, and the Bochner-type identity (for improving the regularity of the
Busemann function). In the latter step, in contrast with the Bochner-type identity for the
p-d’Alembertian in [10], we employ the identity in terms of the usual d’Alembertian, which
turns out to be sufficient for the splitting theorem. Finally, Section 6 is devoted to the proofs
of Theorems 1.1, 1.3.

2 Preliminaries for Finsler spacetimes

We briefly recall the necessary notions for Lorentz–Finsler manifolds along the lines of [42,
43, 44] (we remark that dimM = n+1 there). We refer to [3, 60] for the basics of Lorentzian
geometry and to [34, 47, 50, 51, 61] for some generalizations including Lorentz–Finsler mani-
folds.

Throughout the article, letM be a connected C∞-manifold without boundary of dimension
n ≥ 2. Given a local coordinate system (xi)ni=1 on an open set U ⊂M , we will use the fiber-
wise linear coordinates v =

∑n
i=1 v

i(∂/∂xi)|x, x ∈ U , on the coordinate patch TU in the
tangent bundle TM .

2.1 Finsler spacetimes

Definition 2.1 (Lorentz–Finsler structures). A Lorentz–Finsler structure onM is a function
L : TM −→ R satisfying the following conditions:

(1) L ∈ C∞(TM \ {0});

(2) L(cv) = c2L(v) for all v ∈ TM and c > 0;

(3) For any v ∈ TM \ {0}, the symmetric matrix

(
gij(v)

)n
i,j=1

:=

(
∂2L

∂vi∂vj
(v)

)n
i,j=1

(2.1)
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is non-degenerate with signature (−,+, . . . ,+).

Then we call (M,L) a (C∞-)Lorentz–Finsler manifold.

For v ∈ TxM \ {0}, we can define a Lorentzian metric gv on TxM by using (2.1) as

gv

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
x

,
n∑
j=1

bj
∂

∂xj

∣∣∣∣
x

)
:=

n∑
i,j=1

gij(v)aibj . (2.2)

Then we have gv(v, v) = 2L(v) by Euler’s homogeneous function theorem.
A tangent vector v ∈ TM is said to be timelike (resp. null) if L(v) < 0 (resp. L(v) = 0).

We say that v is lightlike if it is null and nonzero, and causal if it is timelike or lightlike.
Spacelike vectors are those for which L(v) > 0 or v = 0. Denote by Ω′

x ⊂ TxM the set of
timelike vectors and put Ω′ :=

⋃
x∈M Ω′

x. For causal vectors v, we define

F (v) :=
√
−2L(v) =

√
−gv(v, v). (2.3)

Note that Ω′
x 6= ∅, every connected component of Ω′

x is a convex cone (see [2], [42, Lemma 2.3]),
and that the closures of different components intersect only at 0 (see [47, Proposition 1]).

Remark 2.2. On the one hand, the number of connected components of Ω′
x may be larger

than 2 in this generality (see [2], [42, Example 2.4]). On the other hand, if L is reversible (i.e.,
L(v) = L(−v) for any v ∈ TM) and n ≥ 3, then Ω′

x has exactly two connected components
(see [47, Theorem 7]).

Definition 2.3 (Finsler spacetimes). If a Lorentz–Finsler manifold (M,L) admits a smooth
timelike vector field X, then (M,L) is said to be time oriented (by X). A time oriented
Lorentz–Finsler manifold will be called a Finsler spacetime.

In a Finsler spacetime time oriented by X, a causal vector v ∈ TxM is said to be future-
directed if it lies in the same connected component of Ω′

x\{0} as X(x). We denote by Ωx ⊂ Ω′
x

the set of future-directed timelike vectors, and define

Ω :=
⋃
x∈M

Ωx, Ω :=
⋃
x∈M

Ωx.

A C1-curve in (M,L) is said to be timelike (resp. causal) if its tangent vector is always
timelike (resp. causal). Henceforth, unless explicitly stated otherwise, all causal curves are
assumed to be future-directed.

Given x, y ∈ M , we write x � y (resp. x < y) if there is a timelike (resp. causal) curve
from x to y, and x ≤ y means that x = y or x < y. Then we define the chronological past
and future of x by

I−(x) := {y ∈M | y � x}, I+(x) := {y ∈M |x� y},

and the causal past and future of x by

J−(x) := {y ∈M | y ≤ x}, J+(x) := {y ∈M |x ≤ y}.

We also define the time separation (also called the Lorentz–Finsler distance) τ(x, y) for
x, y ∈M by

τ(x, y) := sup
η

L(η), L(η) :=

∫ 1

0
F
(
η̇(t)

)
dt, (2.4)
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where η : [0, 1] −→ M runs over all causal curves from x to y. We set τ(x, y) := −∞ if
x 6≤ y. A curve η attaining the above supremum and having a constant speed (i.e., F (η̇)
is constant), which is then a causal geodesic, is said to be maximizing. In general, τ+ :=
max{τ, 0} is only lower semi-continuous and can be infinite (see, e.g., [48, Proposition 6.7]).
In globally hyperbolic Finsler spacetimes (see Definition 6.4), τ+ is finite and continuous, and
any pair of points x, y ∈ M with x < y admits a maximizing geodesic from x to y (see [48,
Propositions 6.8, 6.9]).

Next, we introduce the covariant derivative. Define

γijk(v) :=
1

2

n∑
l=1

gil(v)

{
∂glk
∂xj

(v) +
∂gjl
∂xk

(v)−
∂gjk
∂xl

(v)

}

for i, j, k = 1, . . . , n and v ∈ TM \ {0}, where (gij(v)) is the inverse matrix of (gij(v));

Gi(v) :=

n∑
j,k=1

γijk(v)v
jvk, N i

j(v) :=
1

2

∂Gi

∂vj
(v)

for v ∈ TM \ {0}, Gi(0) = N i
j(0) := 0 by convention. (The above Gi(v) is defined in the

same way as [58, 59] and corresponds to 2Gα(v) in [44], in order to avoid confusion in the
calculations in Subsection 5.2.) For later use, note that the homogeneous function theorem
yields (cf. [58, Exercise 4.7])

N i
j(v) =

n∑
k=1

γijk(v)v
k − 1

2

n∑
k,l=1

gik(v)
∂gkl
∂vj

(v)Gl(v). (2.5)

Moreover, we set

Γijk(v) := γijk(v)−
1

2

n∑
l,m=1

gil(v)

(
∂glk
∂vm

Nm
j +

∂gjl
∂vm

Nm
k −

∂gjk
∂vm

Nm
l

)
(v) (2.6)

on TM \{0}, and the covariant derivative of a vector field X =
∑n

i=1X
i(∂/∂xi) is defined as

Dw
v X :=

n∑
i,j=1

{
vj
∂Xi

∂xj
(x) +

n∑
k=1

Γijk(w)v
jXk(x)

}
∂

∂xi

∣∣∣∣
x

for v ∈ TxM with a reference vector w ∈ TxM \ {0}. We remark that the functions Γijk in
(2.6) are the coefficients of the Chern(–Rund) connection.

In the Lorentzian case, gij is constant in each tangent space (thus, Γijk = γijk) and the
covariant derivative does not depend on the choice of a reference vector. In the Lorentz–
Finsler setting, the following class is worth considering.

Definition 2.4 (Berwald spacetimes). A Finsler spacetime (M,L) is said to be of Berwald
type (or called a Berwald spacetime) if Γijk is constant on the slit tangent space TxM \ {0}
for any x in the domain of every local coordinate system.

By definition, the covariant derivative on a Berwald spacetime is defined independently of
the choice of a reference vector. An important property of a Berwald spacetime is that, for any
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C1-curve η : [0, 1] −→M whose velocity does not vanish, the parallel transport along η gives a
linear isometry from (Tη(0)M,L) to (Tη(1)M,L) (see, e.g., [58, Proposition 6.5] for the positive
definite case). In particular, all tangent spaces are mutually linearly isometric. Examples of
Berwald spacetimes include Lorentzian manifolds and flat Lorentz–Finsler structures of Rn
(every tangent space TxRn is canonically isometric to T0Rn and Γijk = γijk = 0). We refer
to [15, 24, 25, 26, 27, 33] for some mathematical and physical investigations on Berwald
spacetimes, and to [1, Chapter 10], [58, §§6.3, 10.2] for the positive definite case.

Remark 2.5 (Metrizability). In the positive definite case, Szabó showed that a Finsler man-
ifold of Berwald type (M,F ) admits a Riemannian metric h whose Levi-Civita connection
coincides with the Chern connection of F , i.e., the Christoffel symbols of h coincide with
Γijk of F (see [66] and [1, Exercise 10.1.4]). This is called the (Riemannian) metrizability
theorem. It is not known whether the metrizability can be generalized to Berwald spacetimes.
In [24], some counter-examples were constructed for Lorentz–Finsler structures defined only
on a subset of TM . Their discussion is not applicable to Lorentz–Finsler structures defined
on all of TM as in Definition 2.1.

The geodesic equation is written as Dη̇
η̇ η̇ ≡ 0. The exponential map is defined in the same

way as the Riemannian case, which is C∞ on a neighborhood of the zero section only in
Berwald spacetimes (see, e.g., [49], as well as [1, Exercise 5.3.5] in the positive definite case).
For C1-vector fields X,Y along a causal geodesic η, we have

d

dt

[
gη̇(X,Y )

]
= gη̇(D

η̇
η̇X,Y ) + gη̇(X,D

η̇
η̇Y ) (2.7)

and, if X is nowhere vanishing,

d

dt

[
gX(X,Y )

]
= gX(D

X
η̇ X,Y ) + gX(X,D

X
η̇ Y ) (2.8)

(see, e.g., [42, (3.1), (3.2)]).
A C∞-vector field J along a geodesic η is called a Jacobi field if it satisfies the Jacobi

equation Dη̇
η̇D

η̇
η̇J +Rη̇(J) = 0, where

Rv(w) :=

n∑
i,j=1

Rij(v)w
j ∂

∂xi

∣∣∣∣
x

for v, w ∈ TxM and

Rij(v) :=
∂Gi

∂xj
(v)−

n∑
k=1

{
∂N i

j

∂xk
(v)vk −

∂N i
j

∂vk
(v)Gk(v) +N i

k(v)N
k
j (v)

}
is the curvature tensor. A Jacobi field is also characterized as the variational vector field of
a geodesic variation.

Note that Rv(w) is linear in w, thus Rv : TxM −→ TxM is an endomorphism for each v ∈
TxM . For v ∈ Ωx, we define the Ricci curvature of v as the trace of Rv: Ric(v) := trace(Rv).
We remark that Ric(cv) = c2Ric(v) for c > 0.
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2.2 Legendre transforms and differential operators

In order to introduce the d’Alembertian, we consider the dual structure to L and the Legendre
transform (see [47], [50, §3.1], [43, §4.4] for further discussions, and [58, §3.2] for the positive
definite case). Define the polar cone to Ωx ⊂ TxM by

Ω∗
x :=

{
ω ∈ T ∗

xM | ω(v) < 0 for all v ∈ Ωx \ {0}
}
.

This is an open convex cone in T ∗
xM . For ω ∈ Ω∗

x, we define

L∗(ω) := −1

2

(
sup

v∈Ωx∩F−1(1)

ω(v)

)2

= −1

2
inf

v∈Ωx∩F−1(1)

(
ω(v)

)2
,

in other words, setting F ∗(ω) :=
√
−2L∗(ω) for ω ∈ Ω∗,

F ∗(ω) = − sup
v∈Ωx∩F−1(1)

ω(v).

Then we have the reverse Cauchy–Schwarz inequality√
4L∗(ω)L(v) = F ∗(ω)F (v) ≤ −ω(v) (2.9)

for any v ∈ Ωx and ω ∈ Ω∗
x.

Definition 2.6 (Legendre transform). Define the Legendre transform L∗ : Ω∗
x −→ Ωx as the

map sending ω ∈ Ω∗
x to the unique element v ∈ Ωx satisfying L(v) = L∗(ω) = ω(v)/2.

We can continuously extend to L∗ : Ω∗
x −→ Ωx (then L∗(0) = 0), and equality holds in

(2.9) if and only if v and L∗(ω) are proportional (see [47, Theorem 3]).
A coordinate expression of the Legendre transform is given by

L∗(ω) =
n∑
i=1

∂L∗

∂ωi
(ω)

∂

∂xi
= −1

2

n∑
i=1

∂[(F ∗)2]

∂ωi
(ω)

∂

∂xi
, (2.10)

where ω =
∑n

i=1 ωi dx
i. We set

g∗ij(ω) :=
∂2L∗

∂ωi∂ωj
(ω)

and note that, by the homogeneous function theorem,

n∑
k=1

∂g∗ij
∂ωk

(ω)ωk =
n∑
k=1

∂g∗ik
∂ωj

(ω)ωk = 0 (2.11)

for all i, j = 1, . . . , n. We also remark that L∗ : Ω∗
x −→ Ωx is a bijection and (g∗ij(ω)) is the

inverse matrix of (gij(L
∗(ω))) (see [47, Corollary 4]).

A continuous function f : M −→ R is called a time function if f(x) < f(y) for all x, y ∈M
with x < y. A C1-function f : M −→ R is said to be temporal if −df(x) ∈ Ω∗

x for all x ∈M .
Note that a temporal function is a time function.

For a temporal function f : M −→ R, define the gradient vector of −f at x ∈M by

∇(−f)(x) := L∗(−df(x)) = n∑
i,j=1

g∗ij
(
−df(x)

)∂(−f)
∂xj

(x)
∂

∂xi
∈ Ωx. (2.12)
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Observe from (2.2) and (2.10) that g∇(−f)(∇(−f)(x), v) = −df(v) holds for any v ∈ TxM .
For a C2-temporal function f : M −→ R and x ∈ M , its Hessian ∇2(−f) : TxM −→ TxM is
defined by

∇2(−f)(v) := D∇(−f)
v

[
∇(−f)

]
.

This spacetime Hessian has the following symmetry (see, e.g., [43, Lemma 4.12]):

g∇(−f)
(
∇2(−f)(v), w

)
= g∇(−f)

(
v,∇2(−f)(w)

)
(2.13)

for all v, w ∈ TxM . Then we define the d’Alembertian (or the spacetime Laplacian) as the
trace of the Hessian:

□(−f) := trace
[
∇2(−f)

]
.

We remark that the d’Alembertian □ is not elliptic but hyperbolic, and is nonlinear in our
Finsler setting (since the Legendre transform is nonlinear).

Remark 2.7. For v ∈ TxM and the geodesic η : (−ε, ε) −→ M with η̇(0) = v, the second
order derivative (−f ◦η)′′(0) does not coincide with g∇(−f)(∇2(−f)(v), v) in general. They co-
incide in Berwald spacetimes thanks to the fiber-wise constancy of the connection coefficients
Γijk (see [58, §12.1] for the positive definite case).

2.3 Weighted Finsler spacetimes

There are two ways of putting a weight on a Finsler spacetime (M,L). The first one, rea-
sonable from the point of view of geometric analysis, is to choose a positive C∞-measure m
on M . The other possibility is to employ a C∞-function Ψ: M −→ R. They are mutually
equivalent in the Lorentzian case via the relation m = e−Ψ volg, where volg is the volume
measure induced from the Lorentzian metric g. In the Lorentz–Finsler setting, however, we
do not have a canonical measure like volg (see [55, 58] for the positive definite case). In this
article, we consider the first way because we will make use of the linear divergence operator
induced by a measure.

Remark 2.8. One way to unify the above two cases is to consider a general 0-homogeneous
function ψ : Ω\{0} −→ R as in [42, 43]. However, even a weighted Laplacian on a Riemannian
manifold corresponding to such a general function ψ is yet to be developed (see the end of
[43, §3.3]).

Define a function ψm : Ω\{0} −→ R associated with a positive C∞-measure m on M (i.e.,
its density function is positive and C∞ in each local chart) by

m(dx) = e−ψm◦η̇
√
−det

[(
gij(η̇)

)]
dx1 · · · dxn

along causal geodesics η. In other words, given a causal vector field V on an open set U ⊂M
such that every integral curve of V is a geodesic, we have m = e−ψm◦V volgV on U .

Definition 2.9 (Weighted Ricci curvature). Given v ∈ Ω \ {0}, let η : (−ε, ε) −→ M be the
causal geodesic with η̇(0) = v. Then we define the weighted Ricci curvature by

RicN (v) := Ric(v) + (ψm ◦ η̇)′′(0)−
(ψm ◦ η̇)′(0)2

N − n
for N ∈ R\{n}. We also define Ric∞(v) := Ric(v)+(ψm ◦ η̇)′′(0), Ricn(v) := limN↓nRicN (v),
and RicN (0) := 0.
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We remark that, in the positive definite case, (ψm ◦ η̇)′(0) is called the S-curvature at v
associated with m (see [58, 64]).

We will say that RicN ≥ K holds in timelike directions for some K ∈ R if we have
RicN (v) ≥ KF 2(v) = −2KL(v) for all v ∈ Ω (recall (2.3) for F ). By definition, we have the
monotonicity

Ricn(v) ≤ RicN (v) ≤ Ric∞(v) ≤ RicN ′(v)

for N ∈ (n,∞) and N ′ ∈ (−∞, n). The following notion was introduced in [42].

Definition 2.10 (ϵ-range). Given N ∈ (−∞, 1] ∪ [n,∞], we consider ϵ ∈ R in the following
ϵ-range:

ϵ = 0 for N = 1, |ϵ| <
√
N − 1

N − n
for N 6= 1, n, ϵ ∈ R for N = n. (2.14)

The associated constant c = c(N, ϵ) is defined as

c(N, ϵ) :=
1

n

(
1− ϵ2N − n

N − 1

)
> 0 for N 6= 1, c(1, 0) :=

1

n
. (2.15)

Note that ϵ = 1 is admissible only for N ∈ [n,∞), while ϵ = 0 is always admissible. By
the ϵ-range, we can unify results for constant and variable curvature bounds into a single
framework. See [42] for singularity theorems and [43] for comparison theorems.

A d’Alembertian comparison theorem with ϵ-range was established in [43] as follows. For
a temporal function f : M −→ R and x ∈M , we define the weighted d’Alembertian associated
with m by

□m(−f)(x) := □(−f)(x)− (ψm ◦ η̇)′(0), (2.16)

where η : (−ε, ε) −→ M is the timelike geodesic with η̇(0) = ∇(−f)(x). One can alterna-
tively define □m(−f) as divm(∇(−f)); the divergence divm with respect to the measure m
(independent of L) is given in coordinates by

divm V :=
n∑
i=1

{
∂V i

∂xi
+ V i ∂Φ

∂xi

}
(2.17)

for differentiable vector fields V , where m = eΦ dx1 · · · dxn. For test functions ϕ ∈ C∞
c (M) of

compact support, we have the integration by parts formula:∫
M
ϕ ·□m(−f) dm = −

∫
M

dϕ
(
∇(−f)

)
dm.

The equivalence of these two definitions of □m(−f) can be seen, for example, in the same way
as the positive definite case (see [58, Lemma 12.4]).

The d’Alembertian (Laplacian) comparison theorem ([43, Theorem 5.8], [44, Theorem 3.5])
for nonnegatively curved spacetimes asserts the following.

Theorem 2.11 (d’Alembertian comparison theorem). Let (M,L,m) be a weighted Finsler
spacetime of dimension n ≥ 2, N ∈ (−∞, 1] ∪ [n,∞], and ϵ ∈ R belong to the ϵ-range (2.14).
Suppose that RicN ≥ 0 holds in timelike directions. Then, for any z ∈M , the time separation
function f(x) := τ(z, x) satisfies

□m(−f)
(
η(t)

)
≤ e

2(ϵ−1)
n−1

ψm(η̇(t))

(
c

∫ t

0
e

2(ϵ−1)
n−1

ψm(η̇(s)) ds

)−1

(2.18)
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for any maximizing timelike geodesic η : [0, T ) −→M of unit speed (i.e., F (η̇) ≡ 1) emanating
from z and any t ∈ (0, T ), where c = c(N, ϵ) as in (2.15).

In fact, in [43], a general 0-homogeneous function was considered as a weight (recall
Remark 2.8). (Recall also that dimM = n + 1 in [43, 44].) We refer to [17, 68] for the
weighted Lorentzian case.

We will also need the reverse version of Theorem 2.11. The reverse Lorentz–Finsler struc-
ture of L is defined as

←−
L (v) := L(−v), and we put an arrow ← on a quantity associated with

←−
L . The Lorentz–Finsler manifold (M,

←−
L ) is time oriented by −X, so that

←−
Ω = −Ω. The

corresponding weighted d’Alembertian satisfies
←−□mf = −□m(−f) for temporal functions f

(since
←−
ψ m(v) = ψm(−v)). We also remark that

←−
RicN (v) = RicN (−v) for v ∈

←−
Ω, and hence

the timelike curvature bound RicN ≥ 0 is equivalent to
←−
RicN ≥ 0.

Corollary 2.12 (Reverse version). Let (M,L,m), N and ϵ be as in Theorem 2.11. Then, for
any z ∈M , the function f(x) := τ(x, z) satisfies

←−□m(−f)
(
η(−t)

)
= −□mf

(
η(−t)

)
≤ e

2(ϵ−1)
n−1

ψm(η̇(−t))
(
c

∫ 0

−t
e

2(ϵ−1)
n−1

ψm(η̇(s)) ds

)−1

(2.19)

for any maximizing timelike geodesic η : (−T, 0] −→ M of unit speed with η(0) = z and any
t ∈ (0, T ).

Note that the reverse curve η̄(t) := η(−t) is a maximizing timelike geodesic of unit speed

with respect to
←−
L . In the application of the d’Alembertian comparison theorem to splitting

theorems, we need to require that the right-hand side of (2.18) (and (2.19)) tends to 0. To
be precise, we will assume the following completeness condition introduced in [42], adapted
to our usage in splitting theorems.

Definition 2.13 (ϵ-completeness). A weighted Finsler spacetime (M,L,m) is said to be future
timelike ϵ-complete if, given any future complete maximizing timelike geodesic η : [0,∞) −→
M , there is a neighborhood U of η(0) such that, for any sequence tk → ∞ admitting maxi-
mizing geodesics ζk : [0, τ(x, η(tk))] −→M from x ∈ U to η(tk) of unit speed, we have

lim
k→∞

∫ τ(x,η(tk))

0
e

2(ϵ−1)
n−1

ψm(ζ̇k(s)) ds =∞.

The past timelike ϵ-completeness will mean the future timelike ϵ-completeness of (M,
←−
L ,m).

We say that (M,L,m) is timelike ϵ-complete if it is both future and past timelike ϵ-complete.

Note that τ(x, η(tk)) → ∞ by the reverse triangle inequality, and thus the timelike 1-
completeness always holds. Timelike 0-completeness recovers the ψm-completeness introduced
in [70] in the Riemannian case (see [68] for the Lorentzian case). A typical situation is that
ϵ < 1 and ψm is bounded above (see [17], where N =∞).

In the timelike geodesically complete case (see Definition 4.1), for our purpose, it is in
fact sufficient to assume ∫ ∞

0
e

2(ϵ−1)
n−1

ψm(η̇(s)) ds =∞ (2.20)

for every future complete timelike geodesic η : [0,∞) −→M .
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3 The p-d’Alembert operator

This section is devoted to a key new ingredient, the p-d’Alembertian, which is a modification
of the d’Alembertian (2.16) in a similar manner to the p-Laplacian in the positive definite
case (for p > 1), but with p < 1. We refer to [6, 9, 10] (see also [46, 53]) for the (possibly
singular) Lorentzian setting.

We first introduce the q-Lagrangian Lq as in [12, 46] with q ∈ (0, 1) (see also [65] for the
case q = 1). Define Lq : TM −→ (−∞, 0] ∪ {∞} as

Lq(v) :=

−
1

q

(
−2L(v)

)q/2
if v ∈ Ω,

∞ otherwise.

Observe that Lq(v) = −F (v)q/q for v ∈ Ω. We remark that the original Lagrangian L (= L2)
is not convex in the radial direction, and taking the (q/2)-th power makes Lq strictly convex
as follows (see [12, Lemma 3.1]).

Lemma 3.1. For any q ∈ (0, 1) and x ∈M , the Lagrangian Lq is convex on TxM and strictly
convex on Ωx.

The convex dual Hp : T
∗M −→ [0,∞] of Lq, called the p-Hamiltonian, is given by

Hp(ω) := sup
v∈TM

(
ω(v)− Lq(v)

)
,

where q−1 + p−1 = 1 and ω(v) is the canonical pairing. Note that p < 0 and we have

Hp(ω) =

−
1

p

(
−2L∗(ω)

)p/2
if ω ∈ Ω∗,

∞ otherwise.
(3.1)

Remark 3.2 (Ranges of q, p). One can equally well consider q < 0 or even q = p = 0 (with
L0(v) = − log(

√
−2L(v))). The convexity properties of the Lagrangian and the corresponding

Hamiltonian, and the ellipticity of the p-d’Alembertian remain unchanged; see [10] for details.
Nonetheless, since it is sufficient for splitting theorems, we will only work with q ∈ (0, 1) and
(hence) p < 0.

Define the p-energy functional for a temporal function f , associated to the measure m, by

Ep(−f) :=
∫
M
Hp(−df) dm = −1

p

∫
M

(
−2L∗(−df)

)p/2
dm = −1

p

∫
M
F ∗(−df)p dm.

Then, Ep is convex in the cone consisting of temporal functions. Thus, the corresponding
p-d’Alembertian (or the spacetime p-Laplacian) defined by

□m,p(−f) := divm
(
F ∗(−df)p−2 · ∇(−f)

)
= F ∗(−df)p−2 ·□m(−f) + d

[
F ∗(−df)p−2

](
∇(−f)

) (3.2)
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is elliptic. Indeed, for any smooth function ϕ ∈ C∞
c (M) of compact support, f+tϕ is temporal

provided that |t| is sufficiently small, and we deduce from (2.10) that

lim
t→0

Ep(−f − tϕ)− Ep(−f)
t

= −1

2

∫
M

(
−2L∗(−df)

)(p−2)/2 · 2dϕ
(
∇(−f)

)
dm

= −
∫
M

dϕ
(
F ∗(−df)p−2 · ∇(−f)

)
dm

=

∫
M
ϕ · divm

(
F ∗(−df)p−2 · ∇(−f)

)
dm.

Hence,

Ep(−f − tϕ) = Ep(−f)− t
∫
M
(−ϕ) ·□m,p(−f) dm+ o(t),

which means that □m,p is the generator of the gradient flow for Ep in L2(m).

Remark 3.3. In the right-hand side of (3.2), we observe from (2.7) or (2.8) that

d
[
F ∗(−df)p−2

](
∇(−f)

)
= d

[(
−g∇(−f)

(
∇(−f),∇(−f)

))(p−2)/2](
∇(−f)

)
= −(p− 2)F ∗(−df)p−4g∇(−f)

(
D

∇(−f)
∇(−f)

[
∇(−f)

]
,∇(−f)

)
= −(p− 2)F ∗(−df)p−4g∇(−f)

(
∇2(−f)

(
∇(−f)

)
,∇(−f)

)
(a similar calculation in the positive definite case can be found in [59, §3.1]). Hence,

□m,p(−f)
F ∗(−df)p−2

= □m(−f)− (p− 2)g∇(−f)

(
∇2(−f)

(
∇(−f)
F ∗(−df)

)
,
∇(−f)
F ∗(−df)

)
. (3.3)

In a suitable local chart (xi)ni=1 around x ∈ M such that (∂/∂xi)ni=1 is orthonormal with
respect to g∇(−f) with ∂/∂x

1 = ∇(−f)/F ∗(−df) at x, recalling the coordinate expression of
∇(−f) in (2.12), we can write down the second order part of (3.3) at x as

−∂
2(−f)
(∂x1)2

+
n∑
i=2

∂2(−f)
(∂xi)2

− (p− 2)
∂2(−f)
(∂x1)2

= (1− p)∂
2(−f)
(∂x1)2

+
n∑
i=2

∂2(−f)
(∂xi)2

.

Therefore, □m,p is elliptic exactly when p < 1. We also remark that, in the positive definite
case, the p-Laplacian ∆pf := divm(F

∗(df)p−2 · ∇f) is usually considered for p ∈ (1,∞).

When we replace □m with □m,p in Theorem 2.11 as well as Corollary 2.12, since F ∗(−df) ≡
1 and F ∗(df) ≡ 1, we immediately obtain the following.

Lemma 3.4 (p-d’Alembertian comparison estimates). Let (M,L,m), N and ϵ be as in The-
orem 2.11. Then, for any z ∈M , the function f(x) := τ(z, x) satisfies

□m,p(−f)
(
η(t)

)
≤ e

2(ϵ−1)
n−1

ψm(η̇(t))

(
c

∫ t

0
e

2(ϵ−1)
n−1

ψm(η̇(s)) ds

)−1

(3.4)

for any maximizing timelike geodesic η : [0, T ) −→ M of unit speed with η(0) = z and any
t ∈ (0, T ). Moreover, the function f(x) := τ(x, z) satisfies

←−□m,p(−f)
(
η(−t)

)
= −□m,pf

(
η(−t)

)
≤ e

2(ϵ−1)
n−1

ψm(η̇(−t))
(
c

∫ 0

−t
e

2(ϵ−1)
n−1

ψm(η̇(s)) ds

)−1

(3.5)

for any maximizing timelike geodesic η : (−T, 0] −→ M of unit speed with η(0) = z and any
t ∈ (0, T ).
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Remark 3.5 (Unweighted setting). For completeness, we also discuss the p-d’Alembertian
in the unweighted situation. Let us set

∇p(−f) :=
n∑
i=1

∂Hp

∂ωi
(−df) ∂

∂xi
= F ∗(−df)p−2 · ∇(−f).

Then, it is natural to define

□p(−f) := trace
[
D∇(−f)[∇p(−f)]]

= F ∗(−df)p−2 ·□(−f) + d
[
F ∗(−df)p−2

](
∇(−f)

)
.

Note that ∇2(−f) = ∇(−f) and □2(−f) = □(−f).

4 Busemann functions

In this section, we summarize some properties of the Busemann function associated with a
timelike straight line established in [44], under the assumption of timelike geodesic complete-
ness, along the lines of [29] (see also [3, Chapter 14]). The globally hyperbolic case will be
discussed later in Subsection 6.3.

4.1 Rays and generalized co-rays

Definition 4.1 (Timelike geodesic completeness). A Finsler spacetime (M,L) is said to be
future timelike geodesically complete if any timelike geodesic η : [0, 1] −→M can be extended
to a geodesic η̃ : [0,∞) −→ M . We say that (M,L) is timelike geodesically complete if both

(M,L) and (M,
←−
L ) are future timelike geodesically complete (in other words, the above η is

extended to a geodesic η̃ : R −→M).

A future inextendible causal geodesic η : [0, T ) −→ M (with 0 < T ≤ ∞) is called a ray
if each of its segments is maximizing, i.e., L(η|[a,b]) = τ(η(a), η(b)) for all 0 ≤ a ≤ b < T .
When η is future complete (i.e., T =∞, which is always the case if (M,L) is future timelike
geodesically complete), we define

I−(η) :=
⋃
t>0

I−
(
η(t)

)
, I(η) := I+

(
η(0)

)
∩ I−(η). (4.1)

Then I(η) is an open set including η((0,∞)), and τ(x, y) <∞ for all x, y ∈ I(η) with x ≤ y.
In the rest of this section, we suppose that (M,L) is future timelike geodesically complete.

Let η : [0,∞) −→M be a timelike ray. Rays asymptotic to a given ray, called co-rays, play an
important role in splitting theorems. In the non-globally hyperbolic case, due to the possible
absence of maximizing curves, we need to consider also generalized co-rays (see [4, 5, 23]).

We recall that a sequence ζk : [0, ak] −→M of causal curves is said to be limit maximizing
if L(ζk) ≥ τ(ζk(0), ζk(ak))−εk for some positive sequence εk → 0 (see, e.g., [23, p. 210]). Then,
as a consequence of a limit curve argument, if a limit maximizing sequence ζk : [0, ak] −→M of
causal curves satisfies ζk(0)→ x and τ(ζk(0), ζk(ak))→∞, then there exists a subsequence of
(ζk) with suitable reparametrizations converging uniformly on compact intervals (with respect
to any auxiliary Riemannian metric on M) to a ray ζ : [0,∞) −→ M emanating from x (see
[44, Lemma 4.4], [29, Lemma 2.4]).

15



Definition 4.2 (Generalized co-rays). Let x ∈ I(η). If a limit maximizing sequence of
causal curves ζk : [0, ak] −→ M satisfies ζk(0) → x and ζk(ak) = η(tk) for some tk > 0 with
tk → ∞, then its limit curve ζ : [0,∞) −→ M is called a generalized co-ray of η. If each ζk
is maximizing, then we call ζ a co-ray of η. A co-ray ζ with ζk(0) = x for all k is called an
asymptote of η.

The limit curve ζ is indeed a ray as we mentioned above. To avoid convergence to a
lightlike ray, we introduce the following condition.

Definition 4.3 (Generalized timelike co-ray condition (GTCC)). Let x ∈ I(η). We say that
the generalized timelike co-ray condition (GTCC for short) for η holds at x if any generalized
co-ray of η emanating from x is timelike.

The GTCC implies the following fine properties (see [44, Lemmas 4.8, 4.9], [29, Lem-
mas 3.3, 3.4]).

Lemma 4.4 (Existence of maximizing geodesics). Suppose that the GTCC for η holds at
some x ∈ I(η). Then, there exist a neighborhood U of x and T > 0 such that, for any z ∈ U
and t > T , there exists a maximizing timelike geodesic from z to η(t). Moreover, every z ∈ U
admits a timelike asymptote of η emanating from z.

The GTCC holds on a neighborhood of η as follows (see [44, Proposition 4.10], [29,
Proposition 5.1, Corollary 5.2]).

Proposition 4.5 (GTCC near rays). Any generalized co-ray emanating from η(a) with a >
0 necessarily coincides with η. In particular, the GTCC holds on an open set including
η((0,∞)).

4.2 Busemann functions for rays

We continue to assume future timelike geodesic completeness, and let η : [0,∞) −→ M be a
timelike ray of unit speed (F (η̇) ≡ 1). We introduce a central ingredient of the proof of the
splitting theorem.

Definition 4.6 (Busemann functions). Define the Busemann function bη : M −→ [−∞,∞]
associated with η by

bη(x) := lim
t→∞

bη,t(x), where bη,t(x) := t− τ
(
x, η(t)

)
.

The limit above always exists in R∪{±∞}. Precisely, if x 6∈ I−(η), then τ(x, η(t)) = −∞
for all t and hence bη(x) =∞. If x ∈ I−(η), then the reverse triangle inequality implies that,
for large s < t,

bη,t(x) ≤ t−
{
τ
(
x, η(s)

)
+ τ
(
η(s), η(t)

)}
= bη,s(x).

Hence, bη,t(x) is non-increasing in t and converges to bη(x) ∈ R ∪ {−∞}. One can also see
bη(x) ∈ R for x ∈ I(η) since

bη,t(x) ≥ t+ τ
(
η(0), x

)
− τ
(
η(0), η(t)

)
= τ

(
η(0), x

)
.

It follows from the reverse triangle inequality that bη(y) ≥ bη(x) + τ(x, y) for x ≤ y.
Moreover, since τ+ = max{τ, 0} is lower semi-continuous, bη is upper semi-continuous in
I−(η). We summarize some further fundamental properties of bη along timelike asymptotes.
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Lemma 4.7 (Properties of bη along asymptotes). Let ζ : [0,∞) −→M be a timelike asymp-
tote of η of unit speed with x := ζ(0) ∈ I(η).

(i) For each t > 0,
ρ(z) := bη(x) + bζ,t(z) = bη(x) + t− τ

(
z, ζ(t)

)
is an upper support function for bη at x in the sense that ρ ≥ bη on I+(η(0))∩I−(ζ(t))
and ρ(x) = bη(x).

(ii) We have bη(ζ(t)) = bη(x) + t for all t ≥ 0. In particular, I(ζ) ⊂ I(η) holds.

(iii) If bη is differentiable at x, then we have ζ(t) = expx(t∇(−bη)(x)), and ζ is a unique
timelike asymptote of η of unit speed emanating from x. In particular, F (∇(−bη)(x)) =
1 holds.

(iv) For each t > 0, bη is differentiable at ζ(t) with ∇(−bη)(ζ(t)) = ζ̇(t).

Proof. We refer to [44, Lemma 5.2] (and [22, §2.2], [29, Lemma 2.5, Proposition 2.6]) for (i)
and (ii). Then, (iii) is a direct consequence of (ii). Indeed, if dbη(v) = dbη(w) = 1 for distinct
timelike vectors v, w ∈ Ωx ∩F−1(1), then we have dbη((v+w)/2) = 1 and F ((v+w)/2) > 1.
However, this is a contradiction since bη(y) ≥ bη(x) + τ(x, y) for x ≤ y. Finally, (iv) is seen
as in [22, §2.2], by noticing that bη(ζ(T ))− τ(·, ζ(T )) and bη(x)+ τ(x, ·) are upper and lower
support functions for bη at ζ(t) for T > t.

Under GTCC, bη is in fact differentiable almost everywhere near η (see [44, Theorem 5.3],
[29, Theorem 3.7]).

Theorem 4.8 (Regularity of bη). Assume that the GTCC for η holds at x ∈ I(η). Then, bη
is Lipschitz continuous, and hence differentiable almost everywhere, on a neighborhood of x.

We remark that the Lipschitz continuity is understood with respect to an auxiliary Rie-
mannian metric.

With the help of the semiconvexity of the time separation function in [12, Proposition 3.9]
(along the lines of [46, Proposition 3.4]), we have a uniform estimate on the semiconcavity of
bη,t (cf. [10, Proposition 5]).

Lemma 4.9 (Equi-semiconcavity of bη,t). Fix a smooth Riemannian metric h of M , and let
W ⊂ I(η) be an open set including η((0,∞)) as in Proposition 4.5. Then, for each x0 ∈ W ,
there exist a neighborhood U of x0, T > 0 and a constant C = C(x0, T ) ∈ R such that

lim sup
r→0

bη,t(exp
h
x(−rv)) + bη,t(exp

h
x(rv))− 2bη,t(x)

r2h(v, v)
≤ C

for all x ∈ U , v ∈ TxM \ {0} and t ≥ 2T .

Proof. Given x0 ∈W , take a neighborhood U of x0 and T > 0 as in Lemma 4.4. We fix x ∈ U
and t ≥ 2T , and give a modification of Lemma 4.7(i) to obtain an upper support function of
bη,t. Let ζ : [0, τ(x, η(t))] −→M be a maximizing geodesic from x to η(t). Note that

τ
(
x, η(t)

)
≥ τ

(
x, η(T )

)
+ τ
(
η(T ), η(t)

)
≥ t− T ≥ T
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by the reverse triangle inequality. Then, we infer that, for z close to x,

bη,t(z)− bη,t(x) = τ
(
x, η(t)

)
− τ
(
z, η(t)

)
≤ τ

(
x, η(t)

)
− τ
(
z, ζ(T )

)
− τ
(
ζ(T ), η(t)

)
= τ

(
x, ζ(T )

)
− τ
(
z, ζ(T )

)
.

Thus,
ρ(z) := bη,t(x) + T − τ

(
z, ζ(T )

)
is an upper support function of bη,t at x.

Hence, for γ(r) := exphx(rv) with v ∈ TxM such that h(v, v) = 1, we have

bη,t(γ(−r)) + bη,t(γ(r))− 2bη,t(x)

r2
≤ ρ(γ(−r)) + ρ(γ(r))− 2ρ(x)

r2

= −τ(γ(−r), ζ(T )) + τ(γ(r), ζ(T ))− 2τ(x, ζ(T ))

r2
,

provided that r > 0 is sufficiently small. The right-hand side is bounded from above as
follows. Let P be the vector field along the reparametrized geodesic s 7−→ ζ(sT ), s ∈ [0, 1],

such that P (0) = v and Dζ̇

ζ̇
P ≡ 0. We also consider

V (s) := (1− s)P (s), V ⊥(s) := V (s) + gζ̇
(
V (s), ζ̇(sT )

)
ζ̇(sT ).

Observe that gζ̇(V
⊥(s), ζ̇(sT )) = 0 and, by (2.7) or (2.8),

Dζ̇

ζ̇
V ⊥(s) = −P (s) + gζ̇

(
−P (s), ζ̇(sT )

)
ζ̇(sT ) =: −P⊥(s).

Then, it follows from the calculation in [12, Proposition 3.9] that

lim inf
r→0

τ(γ(−r), ζ(T )) + τ(γ(r), ζ(T ))− 2τ(x, ζ(T ))

r2

≥ −T
∫ 1

0

{
gζ̇(D

ζ̇

ζ̇
V ⊥, Dζ̇

ζ̇
V ⊥)− gζ̇

(
Rζ̇(V

⊥), V ⊥)}ds+ gζ̇
(
Dζ̇
γ̇ γ̇(0), ζ̇(0)

)
= −T

∫ 1

0

{
gζ̇(P

⊥, P⊥)− (1− s)2gζ̇
(
Rζ̇(P

⊥), P⊥)}ds+ gζ̇
(
Dζ̇
γ̇ γ̇(0), ζ̇(0)

)
.

Since the right-hand side depends only on smooth quantities on ζ([0, T ]), and all such initial
vectors ζ̇(0) belong to a compact set in Ω∩F−1(1) (see [29, Lemma 3.4]), it is thus bounded
from below by some constant −C(x0, T ). This yields the desired semiconcavity of bη,t.

4.3 Busemann functions for straight lines

In splitting theorems, we assume the existence of a timelike straight line η : R −→ M , i.e.,
τ(η(s), η(t)) = t−s holds for all s < t. We will denote by bη the Busemann function associated
with the ray η|[0,∞). Moreover, the curve η̄(t) := η(−t), t ∈ [0,∞), is a timelike ray of unit

speed with respect to the reverse structure
←−
L (v) = L(−v) (recall Subsection 2.3). Hence, we

can introduce the corresponding Busemann function as

bη(x) := lim
t→∞

{
t− τ

(
η(−t), x

)}
18



(τ is with respect to L). It follows from the reverse triangle inequality that

bη(x) + bη(x) ≥ lim
t→∞

{
2t− τ

(
η(−t), η(t)

)}
= 0, (4.2)

and equality holds on η.
For straight lines we modify I(η) in (4.1) into

I(η) :=

(⋃
t>0

I+
(
η(−t)

))
∩

(⋃
t>0

I−
(
η(t)

))
.

Note that I(η) =
⋃
s<0 I(η|[s,∞)), therefore, the previous results considered for rays continue

to hold on I(η) for timelike straight lines η. We infer from Lemma 4.7(ii) the following (see
[44, Lemma 5.5], [22, Lemma 4.1]).

Lemma 4.10. Assume that x ∈ I(η) satisfies bη(x)+bη(x) = 0, and let ζ+ and ζ− be timelike
asymptotes of η and η̄ of unit speed emanating from x, respectively. Then, the concatenation
ζ of ζ+ and ζ− is a timelike straight line.

Precisely, ζ− is an asymptote of η̄ of unit speed with respect to
←−
L , and the concatenation

ζ is given by ζ(t) := ζ+(t) for t ≥ 0 and ζ(t) := ζ−(−t) for t < 0. We say that such a straight
line ζ is bi-asymptotic to η.

5 p-harmonicity and smoothness of Busemann functions

With the basic properties of the Busemann function bη in the previous section in hand, we
proceed to the analysis of bη using the p-d’Alembertian □m,p. We begin with the wider range
N ∈ (−∞, 1] ∪ [n,∞], and restrict ourselves to N ∈ (−∞, 0) ∪ [n,∞] at the last step (see
Remark 5.7).

5.1 Maximum principle and p-harmonicity

We first show that, in a rather standard way, bη is superharmonic with respect to
←−□m,p (cf.

[10, Corollary 8]).

Lemma 5.1 (p-superharmonicity). Let (M,L,m) be a timelike geodesically complete, weighted
Finsler spacetime as in Theorem 1.1, but with N ∈ (−∞, 1] ∪ [n,∞]. Then, the Busemann

functions bη,bη satisfy
←−□m,pbη ≤ 0 and □m,pbη ≤ 0 in the weak sense on a neighborhood of

η(R).

Precisely, we assume timelike ϵ-completeness for ϵ as in (2.14) also when N ∈ [0, 1].

Proof. It is sufficient to find a neighborhood of η(0) on which the claim holds. Lemma 4.4
and Proposition 4.5 provide a neighborhood U of η(0) such that, for sufficiently large k ∈ N,
there is a maximizing timelike geodesic from each x ∈ U to η(k). Moreover, such a sequence
of maximizing geodesics ζk : [0, τ(x, η(k))] −→ M converges uniformly (up to subsequences
and with respect to any complete auxiliary Riemannian metric onM) to a timelike asymptote
ζ of η. Arguing as in [29, Lemma 3.4], up to passing to another subsequence, also the initial
vectors ζ̇k(0) converge to ζ̇(0), by smooth dependence of geodesics by initial data.
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Put τk(x) := −τ(x, η(k)). Then, τk is differentiable almost everywhere in U and, thanks
to Lemma 4.7(iii), ∇(−τk)(x) → ∇(−bη)(x) as k → ∞, provided that τk and bη are differ-
entiable at x (recall Theorem 4.8 as well). Thus, for an arbitrary nonnegative test function
ϕ ∈ C∞

c (U) of compact support, we deduce from the dominated convergence theorem and
←−
∇bη = −∇(−bη) that

lim
k→∞

∫
U
dϕ
(←−
∇τk

)
dm =

∫
U
dϕ
(←−
∇bη

)
dm.

Now, given x ∈ U , it follows from the reverse form of the p-d’Alembertian comparison
estimate (3.5) that

←−□m,pτk(x) ≤ e
2(ϵ−1)
n−1

ψm(ζ̇k(0))

(
c

∫ rk

0
e

2(ϵ−1)
n−1

ψm(ζ̇k(s)) ds

)−1

, (5.1)

where rk := τ(x, η(k)) and c = c(N, ϵ) > 0 as in (2.15). We claim that

lim sup
k→∞

←−□m,pτk(x) ≤ 0. (5.2)

This is indeed immediate from (5.1) and the future timelike ϵ-completeness (recall Defini-
tion 2.13). Here, for completeness, we also give a proof under (2.20). If (5.2) does not hold
true, then we deduce from (5.1) that there is a subsequence of (τk)k, again denoted by (τk)k
for brevity, such that

e
2(ϵ−1)
n−1

ψm(ζ̇k(0))

(
c

∫ rk

0
e

2(ϵ−1)
n−1

ψm(ζ̇k(s)) ds

)−1

≥ C

for some constant C > 0. By passing to the limit as k → ∞ (up to a subsequence), we find
an asymptote ζ : [0,∞) −→M of η with ζ(0) = x, which satisfies

e
2(ϵ−1)
n−1

ψm(ζ̇(0))

(
c

∫ ∞

0
e

2(ϵ−1)
n−1

ψm(ζ̇(s)) ds

)−1

≥ C.

This contradicts (2.20), thus we obtain (5.2). We remark that, in the case of N ∈ [n,∞), we
can take ϵ = 1 and timelike 1-completeness always holds.

Under a uniform bound
←−□m,pτk ≤ C on U guaranteed by (5.1) and the smoothness of ψm,

Fatou’s lemma and ϕ ≥ 0 imply

lim
k→∞

∫
U
ϕ · ←−□m,pτk dm ≤

∫
U
ϕ · lim sup

k→∞

←−□m,pτk dm ≤ 0.

Therefore, recalling that F ∗(−dbη) = F ∗(−dτk) = 1 m-a.e. on U (cf. Lemma 4.7(iii)), we
obtain ∫

U
ϕ · ←−□m,pbη dm =

∫
U
ϕ · ←−□mbη dm = −

∫
U
dϕ
(←−
∇bη

)
dm

= − lim
k→∞

∫
U
dϕ
(←−
∇τk

)
dm = lim

k→∞

∫
U
ϕ · ←−□mτk dm

= lim
k→∞

∫
U
ϕ · ←−□m,pτk dm ≤ 0,

which completes the proof of
←−□m,pbη ≤ 0. The other inequality □m,pbη ≤ 0 is shown in the

same way by using (3.4) and past timelike ϵ-completeness.

20



The next proposition, along the lines of [10, Proposition 9], is the key step where the
ellipticity of the p-d’Alembertian enables us to apply the maximum principle.

Proposition 5.2 (p-harmonicity). In the same situation as Lemma 5.1, there exists a neigh-
borhoodW of η(R) on which we have bη+bη = 0 pointwise as well as □m,p(−bη) = □m,pbη = 0

in the weak sense. In particular, bη and bη are C1,1
loc on W .

Proof. Set u := bη + bη and recall from (4.2) that u ≥ 0. Let us consider

ht := −bη + tu = (1− t)(−bη) + tbη.

Note that h0 = −bη, h1 = bη, and that −ht is a time function. Thus, we observe from

Lemma 5.1 that □m,ph1 ≤ 0 and □m,ph0 = −←−□m,pbη ≥ 0 in the weak sense on some neigh-
borhood W of η(R).

Now, we fix a local coordinate system (xi)ni=1 on a (small) open set U in W and take a
nonnegative test function ϕ ∈ C∞

c (U) of compact support. Then, we have

0 ≥
∫
U
ϕ(□m,ph1 −□m,ph0) dm

= −
∫
U
dϕ
(
F ∗(dh1)

p−2 · ∇h1 − F ∗(dh0)
p−2 · ∇h0

)
dm

= −
∫
U

∫ 1

0

d

dt

[
F ∗(dht)

p−2 · dϕ(∇ht)
]
dtdm.

It follows from (2.10), (2.12) and (2.11) that the right-hand side can be calculated as

= −
∫
U

∫ 1

0

{
(2− p)F ∗(dht)

p−4du(∇ht) · dϕ(∇ht)

+ F ∗(dht)
p−2 · dϕ

( n∑
i,j=1

g∗ij(dht)
∂u

∂xj
∂

∂xi

)}
dt dm

= −
∫
U

∫ 1

0

n∑
i,j=1

∂ϕ

∂xi
∂u

∂xj
F ∗(dht)

p−2

×
{

2− p
F ∗(dht)2

n∑
k,l=1

g∗ik(dht)
∂ht
∂xk

g∗jl(dht)
∂ht
∂xl

+ g∗ij(dht)

}
dtdm.

Therefore, by writing m = σ dx1 · · · dxn on U , u is a supersolution to a linear second order
differential operator, namely

n∑
i,j=1

∂

∂xi

[
aij

∂u

∂xj

]
≤ 0

in the weak sense on U with

aij := σ

∫ 1

0
F ∗(dht)

p−2

{
2− p

F ∗(dht)2

n∑
k,l=1

g∗ik(dht)
∂ht
∂xk

g∗jl(dht)
∂ht
∂xl

+ g∗ij(dht)

}
dt.

In the Fermi(–Walker) coordinates along η such that (∂/∂xi)ni=1 is g∇(−bη)-orthonormal
and ∂/∂x1 = η̇ on η, (aij) is the diagonal matrix σ ·diag(1−p, 1, . . . , 1) on η, which is positive
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definite. Hence, taking a smaller neighborhood W of η(R) if necessary, u is a supersolution
to an elliptic equation on W . Combining this with u ≥ 0 and u = 0 on η, we can apply the
maximum principle, yielding u = 0 on W . Then, we deduce from bη = −bη and Lemmas 4.9,

5.1 that bη is both semiconcave and semiconvex (hence C1,1
loc ) and satisfies □m,p(−bη) =

□m,pbη = 0 in the weak sense (see [10, Proposition 9] for more details).

5.2 Bochner-type identity and smoothness

In order to obtain the smoothness of the Busemann function bη, we generalize the Bochner
identity to our setting. Different from the strategy in [10, 53] directly working on Hp in
(3.1) (cf. related works [41, 56] on Hamiltonian systems), we shall closely follow the lines of
thought in the Finsler case [58, 59]. In fact, we can apply the same calculation regardless of
the signature of the metric; the only difference is that the quantity (5.5) corresponding to the
Hilbert–Schmidt norm is not necessarily nonnegative in the Lorentzian setting. Due to the
close analogy with the positive definite setting, we only give an outline here and refer to [59,
§3.1] and [58, §12.2] for more details.

Let U ⊂M be an open set and take h ∈ C3(U) such that −h is temporal. For y ∈ U and
small t > 0, define a map Tt and a vector field Vt by

Tt(y) := expy
(
t∇h(y)

)
, Vt

(
Tt(y)

)
=

d

dt

[
Tt(y)

]
.

Fix x ∈ U and put ζ(t) := Tt(x). Since ζ is a timelike geodesic and ζ̇(t) = Vt(ζ(t)), we have

n∑
i=1

∂V i
t

∂t

(
ζ(t)

) ∂
∂xi

∣∣∣
ζ(t)

+DVt
Vt
Vt
(
ζ(t)

)
= 0. (5.3)

Let (ei)
n
i=1 be an orthonormal basis of (TxM, g∇h) such that e1 = ∇h(x)/F (∇h(x)), and

consider vector fields along ζ given by

Ei(t) := (dTt)x(ei) =
∂

∂s

[
Tt
(
expx(sei)

)]
s=0

.

By the latter expression, Ei is a Jacobi field with Ei(0) = ei. Since (Ei(t))
n
i=1 is a basis of

Tζ(t)M (for small t > 0), we can introduce an n × n matrix B(t) = (bij(t)) by Dζ̇

ζ̇
Ei(t) =∑n

j=1 bij(t)Ej(t). Then, we have the following Riccati equation:[
traceB

]′
(t) + trace

[
B(t)2

]
+Ric

(
ζ̇(t)

)
= 0. (5.4)

Observe that B(t) represents the covariant derivative of Vt in the sense that

D
ζ̇(t)
Ei(t)

Vt =
n∑
j=1

bij(t)Ej(t).

In particular, since V0 = ∇h, we have bij(0) = g∇h(∇2
eih, ej)g∇h(ej , ej) and infer from the

symmetry (2.13) that

trace
[
B(0)2

]
=

n∑
i,j=1

g∇h(∇2
eih, ej)

2g∇h(ei, ei)g∇h(ej , ej) =: HS∇h(∇2h), (5.5)
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which corresponds to the square of the Hilbert–Schmidt norm of ∇2h with respect to g∇h in
the positive definite case, but is not necessarily nonnegative in the current setting.

Concerning the first term in (5.4), we find

trace
[
B(t)

]
= divm Vt

(
ζ(t)

)
+ (ψm ◦ ζ̇)′(t),

and then (5.3) (together with the linearity of divm (2.17)) implies

d

dt

[
divm Vt

(
ζ(t)

)]
= d(divm Vt)

(
ζ̇(t)

)
− divm(D

Vt
Vt
Vt)
(
ζ(t)

)
.

Now, at t = 0, we observe divm V0 = □mh and, since

g∇h

(
D∇h

∇h
[
∇h
]
,
∂

∂xi

)
= g∇h

(
D∇h
∂/∂xi

[
∇h
]
,∇h

)
=

1

2

∂

∂xi

[
g∇h(∇h,∇h)

]
,

it follows that

D∇h
∇h
[
∇h
]
=

n∑
i,j=1

gij(∇h)g∇h
(
D∇h

∇h
[
∇h
]
,
∂

∂xi

)
∂

∂xj
= ∇∇h

[
−F (∇h)

2

2

]
,

where we define

∇∇hu :=

n∑
i,j=1

gij(∇h) ∂u
∂xj

∂

∂xi

(we do not impose any causality condition on u). Plugging those into (5.4) at t = 0, we arrive
at the following.

Proposition 5.3 (Bochner-type identity). Let (M,L,m) be a weighted Finsler spacetime.
For h ∈ C3(U) on an open set U ⊂M such that −h is temporal, we have

divm

(
∇∇h

[
F (∇h)2

2

])
+ d(□mh)(∇h) + Ric∞(∇h) + HS∇h(∇2h) = 0 (5.6)

pointwise on U .

We remark that, if we replace F (∇h)2 with −g∇h(∇h,∇h), then (5.6) is exactly the same
form as the Bochner identity in the positive definite case in [58, 59].

Remark 5.4 (Comparison with Raychaudhuri equation). The Raychaudhuri equation can be
shown by a similar argument (see, e.g., [42]), however, in that we deal with an endomorphism
on the (n−1)-dimensional subspace Nζ(t) ⊂ Tζ(t)M which is gζ̇-orthogonal to ζ̇. In the above

discussion, the corresponding endomorphism v 7−→ D
ζ̇(t)
v Vt on Tζ(t)M does not necessarily

satisfy this condition. A typical example where one can apply the Raychaudhuri equation is
the time separation function from a point, and then the d’Alembertian comparison theorem
follows (see [43]).

Since (5.6) is concerned with Ric∞, for a weaker bound RicN ≥ 0 with N ≤ 0, we need a
variant along the lines of [70, Lemma 3.1].
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Lemma 5.5 (Ric0 ≥ 0 case). Let (M,L,m) be a weighted Finsler spacetime with Ric0 ≥ 0 in
timelike directions. Then, for h ∈ C3(U) as in Proposition 5.3, we have

w divm

(
∇∇h

[
F (∇h)2

2

])
+ d(w□mh)(∇h) + w

(□mh)
2

n
≤ w

2F (∇h)2
n∑

α=2

(
d
[
F (∇h)2

]
(eα)

)2
(5.7)

at any x ∈ U , where w(ζ(t)) := e2ψm(ζ̇(t))/n for ζ(t) := expx(t∇h(x)) and (ei)
n
i=1 is an

orthonormal basis of (TxM, g∇h) such that e1 = ∇h(x)/F (∇h(x)). Moreover, in the case
where F (∇h) is constant, equality holds if and only if Ric0(∇h(x)) = 0 and ∇2

vh = cv for
some c ∈ R and all v ∈ TxM .

Proof. We first observe

d(w□mh)(∇h) = w · d(□mh)(∇h) + 2w
(ψm ◦ ζ̇)′(0)

n
·□mh.

It follows from (5.5), the Cauchy–Schwarz inequality and (2.8) that, at x,

HS∇h(∇2h) ≥
n∑
i=1

g∇h(∇2
eih, ei)

2 − 2
n∑

α=2

g∇h(∇2
eαh, e1)

2

≥ 1

n

(
−g∇h(∇2

e1h, e1) +
n∑
i=2

g∇h(∇2
eih, ei)

)2

− 2

F (∇h)2
n∑

α=2

g∇h(∇2
eαh,∇h)

2

=
(□h)2
n
− 1

2F (∇h)2
n∑

α=2

(
d
[
F (∇h)2

]
(eα)

)2
.

Moreover, we have

(□h)2 =
(
□mh+ (ψm ◦ ζ̇)′(0)

)2
= (□mh)

2 + 2(ψm ◦ ζ̇)′(0)□mh+ (ψm ◦ ζ̇)′(0)2.

Comparing these with (5.6), we obtain

d(w□mh)(∇h) + w
(□mh)

2

n
− w

2F (∇h)2
n∑

α=2

(
d
[
F (∇h)2

]
(eα)

)2
≤ w · d(□mh)(∇h) + wHS∇h(∇2h)− w (ψm ◦ ζ̇)′(0)2

n

= −w divm

(
∇∇h

[
F (∇h)2

2

])
− wRic∞(∇h)− w (ψm ◦ ζ̇)′(0)2

n

= −w divm

(
∇∇h

[
F (∇h)2

2

])
− wRic0(∇h).

Since Ric0 ≥ 0 by assumption, this completes the proof of (5.7).
When F (∇h) is constant, the right-hand side of (5.7) vanishes. Then, by the above proof,

equality holds if and only if Ric0(∇h(x)) = 0 and g∇h(∇2
eih, ej) = c · g∇h(ei, ej) for some

c ∈ R, which means ∇2
vh = cv.

With (5.6) and (5.7) in hand, we can show the smoothness of bη. We remark that the
N ∈ [0, 1] case is excluded here.
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Corollary 5.6 (Smoothness). Let (M,L,m) be a timelike geodesically complete, weighted
Finsler spacetime as in Theorem 1.1. Then, the Busemann function bη is C∞ and satisfies

∇2(−bη) ≡ 0 (5.8)

on a neighborhood W of η(R).

Proof. We put h := −bη for brevity. Recall from Lemma 4.7 and Proposition 5.2 that h is

C1,1
loc , F (∇h) ≡ 1 on W , and □m,ph = □mh = 0 almost everywhere on W .
First, suppose that h is C3. When N ∈ [n,∞], we deduce from (5.6) and the hypothesis

RicN ≥ 0 that
HS∇h(∇2h) = −Ric∞(∇h) ≤ −RicN (∇h) ≤ 0.

Thanks to F (∇h) ≡ 1, in (5.5), for α = 2, . . . , n, we observe

g∇h(∇2
e1h, eα) = g∇h(∇2

eαh, e1) = −
1

2
d
[
F (∇h)2

]
(eα) = 0.

This yields g∇h(∇2
eih, ej) = 0 for all i, j, and hence (5.8) holds and h is C∞.

If N < 0, then Ric0 ≥ RicN ≥ 0 and we can apply Lemma 5.5. Since equality holds in
(5.7) with F (∇h) ≡ 1, we have Ric0(∇h) = 0 and ∇2

vh = cv for some c ∈ R. Now, combining
Ric0(∇h) = 0 with the hypothesis RicN ≥ 0, we find that

RicN
(
∇h(x)

)
= Ric0

(
∇h(x)

)
−
(
1

n
+

1

N − n

)
(ψm ◦ ζ̇)′(0)2

= − N

n(N − n)
(ψm ◦ ζ̇)′(0)2

is nonnegative, where ζ is the geodesic with ζ̇(0) = ∇h(x). Since N < 0, this implies
(ψm ◦ ζ̇)′(0) = 0, thereby

□h = □mh+ (ψm ◦ ζ̇)′(0) = 0.

Therefore, we obtain c = 0 and the proof is completed.
For general bη ∈ C1,1

loc , we approximate it with C∞-functions, and obtain (5.8) almost
everywhere by the above argument. This yields that (5.8) holds everywhere and bη is C∞.
We refer to [10, Corollary 14] for further details of the approximation procedure, via the
integrated form of (5.6):∫

M

{
dϕ

(
∇∇h

[
F (∇h)2

2

])
+□mh · divm(ϕ∇h)

}
dm =

∫
M
ϕ
{
Ric∞(∇h) + HS∇h(∇2h)

}
dm

for (nonnegative) test functions ϕ ∈ C∞
c (M) of compact support.

Remark 5.7 (N ∈ [0, 1] case). Wylie’s [70, Lemma 3.1] is in fact more general and con-
cerned with the situation that ∇2h has at most k non-zero eigenvalues under the assumption
Ricn−k ≥ 0. Applying this with k = n − 1 for a Busemann function, whose second order
derivative vanishes along asymptotes, we could extend the splitting theorem to N < 1 ([70,
Corollary 1.3], [68, Theorem 1.5(i)]), and we can even obtain a warped product splitting for
N = 1 ([70, Theorem 1.2], [68, Theorem 1.5(ii)]). In the above proof, however, C∞-functions
approximating bη may have n non-zero eigenvalues; this is the reason why we restricted
ourselves to N < 0.
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6 Splitting theorems

We are in a position to complete the proofs of the splitting theorems. We first consider the
timelike geodesically complete (TGC) case, and the globally hyperbolic (GH) case is deferred
to Subsection 6.3.

6.1 Diffeomorphic splitting

Proof of Theorem 1.1 (TGC case). We deduce from Lemmas 4.7, 4.10 together with Corol-
lary 5.6 that, for every point x ∈ W , the unique straight line bi-asymptotic to η passing
through x is given by the integral curve of ∇(−bη). In other words, every integral curve of
∇(−bη) is a straight line bi-asymptotic to η. This enables us to apply standard arguments in
splitting theorems in Lorentzian manifolds (one can alternatively apply Wu’s de Rham-type
decomposition theorem [69]). Precisely, since ∇2(−bη) = 0, on a neighborhood W of η(R),
also holds for g∇(−bη) by [42, Proposition 3.2], we deduce that ∇(−bη) is a parallel (and thus
a complete timelike Killing) vector field for g∇(−bη). Hence, taking into account that ∇(−bη)
is also the gradient of −bη with respect to g∇(−bη), we set Σ′ := b−1

η (0) ∩W and

Θ: R× Σ′ −→M, Θ(t, x) := ζx(t), (6.1)

where ζx is the integral curve of ∇(−bη) with ζx(0) = x. The map Θ is then an isometry
from (R× Σ′,−dt2 + g∇(−bη)|TΣ′) onto its image in (M, g∇(−bη)).

Moreover, we deduce from (ψm ◦ ζ̇x)′ = 0 shown in the proof of Corollary 5.6 that the
measure m is also decomposed into the product dt×n. Finally, we can show the global splitting
by the standard open-and-closed argument (see, e.g., [44, Theorem 7.3]). This completes the
proof of Theorem 1.1.

We remark that Σ is given as the level surface b−1
η (0) equipped with the Riemannian

metric g∇(−bη)|TΣ. As for L|TΣ, one can say the following.

Corollary 6.1 (Causal character of Σ). In the situation of Theorem 1.1, the level surface
Σ = b−1

η (0) is transversal to future-directed causal vectors in TM . Moreover, if L is reversible
and dimM ≥ 3, then L(v) > 0 for any v ∈ TΣ \ {0}.

Proof. If v ∈ TxΣ \ {0} is future-directed causal, then we deduce from the reverse Cauchy–
Schwarz inequality (2.9) that

0 = dbη(v) ≥
√
4L∗

(
−dbη(x)

)
L(v) ≥ 0.

Recalling the equality condition in (2.9), we find that L(∇(−bη)(x)) = L(v) = 0, which
contradicts F (∇(−bη)) = 1.

In the case where L is reversible and dimM ≥ 3, the set Ω′
x ⊂ TxM of timelike vectors has

exactly two connected components, corresponding to the future and past directions (recall
Remark 2.2). In this case, since −v ∈ TxΣ is not future-directed causal as well, every v ∈
TxΣ \ {0} satisfies L(v) > 0.

We remark that, even when L > 0 on TxΣ \ {0}, we do not know if L|TxΣ is strongly
convex (in the sense that the Hessian of L|TxΣ\{0} is positive definite).
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6.2 Isometric translations in Berwald spacetimes

Next, we prove Theorem 1.3 concerning Berwald spacetimes. The proof is common to the
TGC and GH cases (once the splitting as in Theorem 1.1 is established). Since the covariant
derivative is independent of a reference vector by the very definition of Berwald spacetimes
(recall Definition 2.4), we may omit it in the following.

Lemma 6.2 (Busemann function is affine). Let (M,L,m) be a weighted Berwald spacetime as
in Theorem 1.3. Then, for any geodesic ξ : [0, 1] −→M , we have (bη ◦ ξ)′′ ≡ 0. In particular,
for each t ∈ R, b−1

η (t) is a totally geodesic hypersurface with respect to L.

Proof. This is straightforward from (2.8) and (5.8):

(bη ◦ ξ)′′ =
[
−g∇(−bη)

(
∇(−bη)(ξ), ξ̇

)]′
= −g∇(−bη)

(
Dξ̇

(
∇(−bη)

)
, ξ̇
)
− g∇(−bη)

(
∇(−bη)(ξ), Dξ̇ ξ̇

)
= 0.

Precisely, the first term vanishes in general thanks to (5.8), while the second term vanishes

only in the Berwald case (since D
∇(−bη)

ξ̇
ξ̇ 6= 0 in general).

To show Theorem 1.3, we can follow the lines of [57, Proposition 5.2].

Proof of Theorem 1.3. (i) Take v ∈ TxM \ {0} and put V (t) := dΦt(v). It follows from
Theorem 1.1 that V is a parallel vector field with respect to g∇(−bη) along the straight line
ζ(t) := Φt(x). Hence, we have

d

dt
L(V ) =

1

2

d

dt

[
gV (V, V )

]
= gV (Dζ̇V, V ) ≡ 0,

thereby Φt is isometric. More precisely, we observe from (2.8) that

d

dt

[
gV (V, V )

]
= 2gV (D

V
ζ̇
V, V ),

and the Berwald condition and [42, Proposition 3.2] imply DV
ζ̇
V = Dζ̇

ζ̇
V = D

g∇(−bη)

ζ̇
V ≡ 0,

where Dg∇(−bη) denotes the covariant derivative with respect to g∇(−bη).

(ii) We shall split the geodesic equation Dξ̇ ξ̇ = 0 on M into those on R and Σ. Given

a local coordinate system (zα)n−1
α=1 on an open set U ⊂ Σ, we consider a coordinate system

(xi)ni=1 on R× U ⊂M given by x1 = bη and xi = zi−1 for i ≥ 2. Then, we have

∂gij
∂x1

(
∇(−bη)

)
= 0 for i, j = 1, . . . , n

by Theorem 1.1, and
∂g1j
∂xi

(
∇(−bη)

)
= 0 for i = 1, . . . , n

by F ∗(−dbη) = 1 for j = 1, and by g∇(−bη)(∇(−bη), TΣ) = 0 for j ≥ 2. Therefore, we find

γijk(∇(−bη)) = 0 unless i, j, k ≥ 2.
Moreover, by the expression (2.5):

N i
j(v) =

n∑
k=1

γijk(v)v
k − 1

2

n∑
k,l,a,b=1

gia(v)
∂gab
∂vj

(v)γbkl(v)v
kvl,
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we deduce that N i
j(∇(−bη)) = 0 for all i, j = 1, . . . , n. This implies that, by recalling the

definition (2.6) of Γijk, Γ
i
jk(∇(−bη)) = 0 holds unless i, j, k ≥ 2. Therefore, the geodesic

equation in M is written as

Dξ̇ ξ̇ = ξ̈1
∂

∂x1

∣∣∣
ξ
+

n∑
i=2

{
ξ̈i +

n∑
j,k=2

Γijk(ξ)ξ̇
j ξ̇k
}
∂

∂xi

∣∣∣
ξ
= 0.

This completes the proof.

Remark 6.3 (When L|TΣ\{0} is positive). Although Σ = b−1
η (0) may not be spacelike in L in

general, we notice that, by the fact that parallel transports preserve L and the decomposition
of Γijk in the proof of Theorem 1.3(ii), if there exists some x ∈ b−1

η (0) such that TxΣ is
spacelike (i.e., L(v) > 0 for all v ∈ TxΣ \ {0}) and gv|TxΣ is positive semi-definite for all
v ∈ TxΣ \ {0}, then (Σ, L|TΣ) is a (non-strongly convex) Finsler manifold of Berwald type.
In this case, one can also give a Lorentzian metrization of (M,L) (recall Remark 2.5). In
fact, by [45, Remark(A), p. 2157], which extends Szabó’s metrization result of Berwald spaces
[66] to non-strongly convex (and also non-smooth) Berwald metrics, we obtain a Riemannian
metric h on Σ such that the Levi-Civita connection of h coincides with the Chern connection
of L|TΣ. Then, the Levi-Civita connection of the Lorentzian metric −dt2 + h coincides with
the Chern connection of L. We also remark that, by [47, Proposition 2, Lemma 2], if n ≥ 3
and L|TΣ\{0} > 0 , then, for all x ∈M , Ω′

x has either one or two connected components.

6.3 Globally hyperbolic case

We conclude with the proof of the globally hyperbolic case.

Definition 6.4 (Global hyperbolicity). We say that a Finsler spacetime (M,L) is globally hy-
perbolic if it is causal (there is no closed future-directed causal curve) and all causal diamonds
J+(x) ∩ J−(y), x ≤ y, are compact.

We remark that, since the cone structure Ω is proper in the sense of [50, Definition 2.3],
according to [50, Corollary 2.4], the above definition is equivalent to requiring the strong
causality and the compactness of causal diamonds (compare also with [14, Appendix B]).

Proof of Theorem 1.1 (GH case). Let (M,L,m) be a globally hyperbolic weighted Berwald
spacetime satisfying the hypotheses in Theorem 1.1. In this case, τ+ = max{τ, 0} is finite
and continuous and, for any x, y ∈ M with x < y, there is a maximizing geodesic from x to
y (see [48, Propositions 6.8, 6.9]).

In the globally hyperbolic case, an asymptote ζ : [0, b) −→ M constructed as in Defini-
tion 4.2 may not be future complete, namely ζ may be future inextendible with b < ∞.
Nonetheless, concerning the behavior of Busemann functions, Lemma 4.7 holds for t ∈ (0, b),
and it is shown along the lines of [22, Lemma 3.3] (see also [10, Theorem 2]) that bη is locally
Lipschitz on a neighborhood of η(R) (as in Theorem 4.8).

Furthermore, following the lines of [10, §6], we can apply the calculations as in Section 5.
(In this case, due to the possibility of b < ∞ as above, we need the timelike ϵ-completeness
as in Definition 2.13 rather than (2.20).) Eventually, on a neighborhood W of η(R), we have
bη +bη ≡ 0, bη ∈ C∞(W ), and ∇2(−bη) ≡ 0. Therefore, we obtain a local splitting of W as
in Theorems 1.1, 1.3.
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Now, the difficulty in the globally hyperbolic case is that W may not be represented
simply as the product R× (b−1

η (0)∩W ). To show the completeness of asymptotes, we follow
the argument in [10, 28]; at this step we need the Berwald condition. As in (6.1), we define
Θ(t, x) := ζx(t) for x ∈ b−1

η (0) ∩W and t ∈ (ax, bx), namely ζx : (ax, bx) −→M is the future
and past inextendible timelike asymptote of η with ax < 0 < bx. We shall show that ax = −∞
(i.e., ζx is past complete).

Let Σ′ := expη(0)(B) for a small ball B ⊂ Tη(0)M∩(dbη)−1(0). Precisely, B is an open ball

with respect to the restriction of g∇(−bη) to (dbη)
−1(0), which is a Riemannian metric, and

the exponential map is for L. By the decomposition of geodesics as in Theorem 1.3(ii), Σ′ is
included in b−1

η (0). We may assume that, by taking smaller B if necessary, η̇(0)+v ∈ Ωη(0) for
any v ∈ B. Fix v ∈ B, put σ(s) := expη(0)(sv) for s ∈ [0, 1], and consider ζσ(s)(t) = Θ(t, σ(s)).
To show aσ(s) = −∞ for all s ∈ [0, 1], we claim that, for any fixed T > 0,

aσ(s) < −T + s (6.2)

holds. To this end, denote by IT the set of R ∈ [0, 1] such that (6.2) holds for all s ∈ [0, R].
Then, clearly 0 ∈ IT since aη(0) = −∞, and IT is open in [0, 1].

We prove that R := sup IT ∈ IT . If not, then we have aσ(s) < −T + s < −T +R ≤ aσ(R)

for all s ∈ [0, R). Hence, ζσ(s)(t) is well-defined for all s ∈ [0, R) and t ∈ (aσ(R), 0]. Now, we
consider a timelike geodesic

ξ(s) := expη(−T )

(
s
(
η̇(−T ) + v

))
= Θ

(
−T + s, σ(s)

)
,

where v ∈ Tη(−T )M is identified with v ∈ B above and η̇(−T ) + v ∈ Ωη(−T ) by the isome-
try of the translation as in Theorem 1.3(i), and equality is seen from Theorem 1.3(ii). By
construction, for all s ∈ [0, R) and t ∈ (aσ(R), 0], we find

η(−T )� ξ(s) = Θ
(
−T + s, σ(s)

)
� Θ

(
aσ(R), σ(s)

)
� Θ

(
t, σ(s)

)
.

Letting s→ R, we deduce from the closedness of causal diamonds (by the global hyperbolic-
ity) that Θ(t, σ(R)) ∈ J+(η(−T ))∩J−(σ(R)) for all t ∈ (aσ(R), 0]. This, however, contradicts
the non-total imprisonment, which follows from the global hyperbolicity (see, e.g., [50, Defi-
nition 2.20]). Therefore, we obtain R ∈ IT and IT = [0, 1], which implies aσ(s) = −∞ for all
s ∈ [0, 1] since T > 0 was arbitrary in (6.2). This completes the proof of the past complete-
ness of asymptotes, and the future completeness can be shown in the same way as the past

completeness for the reverse structure
←−
L .

This concludes the proof of the fact that the local splitting neighborhood W can indeed
be represented as a cylindrical product of the form R× (b−1

η (0)∩W ). In the globalization of
the local splitting, one needs to extend the splitting of W to its boundary, where one must
ensure that also the boundary asymptote is complete in the globally hyperbolic case. Using
the Berwald condition, the argument is entirely analogous to the completeness of asymptotes
in the local case given above, and will be omitted. We refer to [10, 28] for details in the
Lorentzian globally hyperbolic case as well as to [44] for the globalization argument in the
Lorentz–Finsler case.
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on Finsler manifolds. Adv. Math. 252 (2014), 429–448.

[60] O’Neill, B. Semi-Riemannian geometry. With applications to relativity, vol. 103 of Pure
and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers],
New York, 1983.

[61] Perlick, V. Fermat principle in Finsler spacetimes. Gen. Relativity Gravitation 38, 2
(2006), 365–380.

33



[62] Pfeifer, C. Finsler spacetime geometry in physics. International Journal of Geometric
Methods in Modern Physics 16, suppl. 2 (2019), 1941004, 18.

[63] Russell, N. Finsler-like structures from Lorentz-breaking classical particles. Physical
Review D 91, 4 (2015), 045008.

[64] Shen, Z. Lectures on Finsler geometry. World Scientific Publishing Co., Singapore,
2001.

[65] Suhr, S. Theory of optimal transport for Lorentzian cost functions. Münster J. Math.
11, 1 (2018), 13–47.
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Appendix: Detailed proof of the Bochner identity

For convenience, here we present a detailed proof of Proposition 5.3. In fact, the Lorentzian
signature of L has no influence and we can apply the same calculation as [58, 59].

Let U ⊂M be an open set and h ∈ C3(U) such that −h is temporal. For y ∈ U and small
t > 0, define a map Tt and a vector field Vt by

Tt(y) := expy
(
t∇h(y)

)
, Vt

(
Tt(y)

)
=

d

dt

[
Tt(y)

]
.

Fix x ∈ U and put ζ(t) := Tt(x). Since ζ is a timelike geodesic and ζ̇(t) = Vt(ζ(t)), we have

0 = Dζ̇

ζ̇
ζ̇ =

n∑
i=1

{
ζ̈i +

n∑
j,k=1

Γijk(ζ̇)ζ̇
j ζ̇k

}
∂

∂xi

=

n∑
i=1

{
n∑
j=1

∂V i
t

∂xj
V j
t +

∂V i
t

∂t
+

n∑
j,k=1

Γijk(Vt)V
j
t V

k
t

}
(ζ)

∂

∂xi
.

This implies (5.3):
n∑
i=1

∂V i
t

∂t

(
ζ(t)

) ∂
∂xi

∣∣∣
ζ(t)

+DVt
Vt
Vt
(
ζ(t)

)
= 0.

Let (ei)
n
i=1 be an orthonormal basis of (TxM, g∇h) such that e1 = ∇h(x)/F (∇h(x)). Then

we consider vector fields along ζ given by

Ei(t) := (dTt)x(ei) =
∂

∂s

[
Tt
(
expx(sei)

)]
s=0

.

By the latter expression, Ei is a Jacobi field with Ei(0) = ei. Since (Ei(t))
n
i=1 is a basis of

Tζ(t)M (for small t > 0), we can introduce an n × n matrix B(t) = (bij(t)) by Dζ̇

ζ̇
Ei(t) =∑n

j=1 bij(t)Ej(t). We also introduce A(t) = (aij(t)) with aij(t) := gζ̇(Ei(t), Ej(t)). Then we

have, by denoting Dζ̇

ζ̇
by ′,

a′ij = gζ̇(E
′
i, Ej) + gζ̇(Ei, E

′
j) = (BA+ABT)ij ,

where T denotes the transpose. Moreover, since Ei is a Jacobi field, we infer from [42,
Proposition 3.4(ii)] that[

(BA−ABT)ij
]′
= gζ̇(E

′′
i , Ej)− gζ̇(Ei, E

′′
j ) = −gζ̇

(
Rζ̇(Ei), Ej

)
+ gζ̇

(
Ei, Rζ̇(Ej)

)
= 0.

Thus,

BA−ABT ≡ B(0)A(0)−A(0)B(0)T, A′ = 2BA−B(0)A(0) +A(0)B(0)T

(note that A(0) = In in the positive definite case). From the latter equation, we find

A′′ = 2B′A+ 2BA′ = 2B′A+ 2B2A+ 2BABT.

On the other hand, it follows from the Jacobi equation that

A′′ = −2R+ 2BABT, rij(t) := gζ̇
(
Rζ̇(Ei), Ej

)
= gζ̇

(
Rζ̇(Ej), Ei

)
.
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Comparing these expressions of A′′ yields B′ + B2 + RA−1 = 0 and, taking the trace, we
obtain the Riccati equation (5.4):[

traceB
]′
(t) + trace

[
B(t)2

]
+Ric

(
ζ̇(t)

)
= 0.

Indeed, writing Rζ̇(Ei) =
∑n

j=1Ricij Ej , we observe

trace(RA−1) =

n∑
i,j,k=1

Ricij ajk · (A−1)ki =

n∑
i=1

Ricii = Ric(ζ̇).

Moreover, plugging

Ei(t) =
n∑
k=1

Eki (t)
∂

∂xk
=

∂

∂s

[
Tt
(
expx(sei)

)]
s=0

into

E′
i(t) =

n∑
k=1

[
Eki
]′
(t)

∂

∂xk
+

n∑
j,k,l=1

Γljk
(
ζ̇(t)

)
ζ̇j(t)Eki (t)

∂

∂xl
,

we find

E′
i(t) =

n∑
k=1

∂

∂s

[
V k
t

(
Tt
(
expx(sei)

))]
s=0

∂

∂xk
+

n∑
j,k,l=1

Γljk
(
ζ̇(t)

)
V j
t

(
ζ(t)

)
Eki (t)

∂

∂xl

= D
ζ̇(t)
Ei(t)

Vt.

Thus, we obtain

D
ζ̇(t)
Ei(t)

Vt =

n∑
j=1

bij(t)Ej(t).

In particular, since V0 = ∇h,
n∑
j=1

bij(0)ej = D∇h(x)
ei [∇h] = ∇2

eih,

and hence bij(0) = g∇h(∇2
eih, ej)g∇h(ej , ej). It follows from the symmetry (2.13) that

trace
[
B(0)2

]
=

n∑
i,j=1

g∇h(∇2
eih, ej)

2g∇h(ei, ei)g∇h(ej , ej) =: HS∇h(∇2h).

As for the first term in (5.4), since

DVt
∂/∂xi

Vt =

n∑
k=1

{
∂V k

t

∂xi
+

n∑
j=1

Γkij(Vt)V
j
t

}
∂

∂xk
,

we have

trace
[
B(t)

]
= trace

[
DVtVt

](
ζ(t)

)
=

n∑
i=1

{
∂V i

t

∂xi
+

n∑
j=1

Γiij(Vt)V
j
t

}(
ζ(t)

)
.
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Observe from

m = e−ψm◦ζ̇
√
−det

(
gij(ζ̇)

)
dx1 · · · dxn

along ζ that

divm Vt(ζ) =

n∑
i=1

∂V i
t

∂xi
(ζ) +

1

2

d

dt
log
(
−det

(
gij(ζ̇)

))
− (ψm ◦ ζ̇)′.

Note that

d

dt
log
(
−det

(
gij(ζ̇)

))
=

1

det(gij(ζ̇))

d

dt
det
(
gij(ζ̇)

)
= trace

[(
gij(ζ̇)

)−1 ·
(
d[gij(ζ̇)]

dt
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=

n∑
i,j,k=1

gij(ζ̇)

{
∂gji
∂xk

(ζ̇)ζ̇k +
∂gji
∂vk

(ζ̇)ζ̈k
}
.

Since ζ is a geodesic, we obtain

d

dt
log
(
−det

(
gij(ζ̇)

))
=

n∑
i,j,k=1

gij(ζ̇)

{
∂gji
∂xk

(ζ̇)ζ̇k − ∂gji
∂vk

(ζ̇)Gk(ζ̇)

}
= 2

n∑
i,j=1

Γiij(ζ̇)ζ̇
j .

Therefore, we arrive at

trace
[
B(t)

]
= divm Vt

(
ζ(t)

)
+ (ψm ◦ ζ̇)′(t).

Next, (5.3) (together with the linearity of divm (2.17)) implies

d

dt

[
divm Vt

(
ζ(t)

)]
= d(divm Vt)

(
ζ̇(t)

)
− divm(D

Vt
Vt
Vt)
(
ζ(t)

)
.

Now, at t = 0, we observe divm V0 = □mh and, since

g∇h

(
D∇h

∇h
[
∇h
]
,
∂

∂xi

)
= g∇h

(
D∇h
∂/∂xi

[
∇h
]
,∇h

)
=

1

2

∂

∂xi

[
g∇h(∇h,∇h)

]
,

it follows that

D∇h
∇h
[
∇h
]
=

n∑
i,j=1

gij(∇h)g∇h
(
D∇h

∇h
[
∇h
]
,
∂

∂xj

)
∂

∂xi
= ∇∇h

[
−F (∇h)

2

2

]
,

where we define

∇∇hu :=
n∑

i,j=1

gij(∇h) ∂u
∂xj

∂

∂xi

(we do not need any causality condition on u). Plugging those into (5.4) at t = 0, we complete
the proof of Proposition 5.3.
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