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Abstract

We introduce a measure contraction property of metric measure spaces which
can be regarded as a generalized notion of the lower Ricci curvature bound on
Riemannian manifolds. It is actually equivalent to the lower bound of the Ricci
curvature in the Riemannian case. We will generalize the Bonnet-Myers theorem,
and prove that this property is preserved under the measured Gromov-Hausdorff
convergence.

1 Introduction

The notions of lower and upper ‘sectional’ curvature bounds on not necessarily Rieman-
nian metric spaces are introduced by Alexandrov by using the triangle comparison theo-
rems, and they are called Alexandrov spaces and CAT(K)-spaces, respectively (see [ABN],
[BGP], [G], [BBI], and the references therein). These spaces are quite interesting objects
themselves and, furthermore, they are turned out to be useful tools to study limit spaces
under the Gromov-Hausdorff convergence of sequences of Riemannian manifolds with
uniform lower or upper sectional curvature bounds. Now the Alexandrov spaces and
CAT(K)-spaces are ones of the most important objects in the metric geometry.

Once the importances of Alexandrov spaces and CAT(K)-spaces are understood, a
natural question arises: What about the lower bound of the ‘Ricci’ curvature? One
reason why this is a natural question is that the family of Riemannian manifolds with
unifrom lower Ricci curvature and upper diameter and dimension bounds is precompact
in the Gromov-Hausdorff topology ([G]). In their serial papers [CC], Cheeger and Colding
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investigate the structure of limit spaces under the measured Gromov-Hausdorff conver-
gence of sequences of Riemannian manifolds with uniform lower Ricci curvature bounds,
and consider the convergence of the Laplacian (Fukaya’s conjecture, [F]).

One difference between the sectional and the Ricci curvatures is the role of the di-
mension. Sectional curvatures care only two-dimensional subspaces, so that we do not
need the dimension of the entire space to define Alexandrov spaces. However, for the
Ricci curvature, the dimension plays an essential role. More precisely, as a sequence of
Riemannian manifolds with a uniform lower Ricci curvature bound can collapse to a lower
dimensional space, we consider a combination of a lower Ricci curvature bound, say K,
and an upper dimension bound, say N .

Recently, a breakthrough on this topic is given by Sturm [S2] and Lott and Villani
[LV] (see also [RS]). They independently introduce mutually slightly different conditions.
More precisely, they consider the Wasserstein space on a metric measure space and adopt
the convexity of a (family of) functional(s) on that space as a generalized notion of the
lower Ricci curvature bound. However, there remains a problem on the treatment of the
dimension. Sturm’s condition does not contain a term of the dimension and it can be
regarded as the case of N = ∞. In addition to it, Lott and Villani treat the case of N < ∞,
but only for K = 0. So that it is still unclear how to define spaces with a finite upper
bound on their dimensions and with a nonzero lower Ricci curvature bound. Furthermore,
some basic questions to justify their conditions are open, for instance, whether Alexandrov
spaces satisfy these or not.

In this article, we introduce another kind of a generalization of the lower Ricci cur-
vature bound, the (K,N)-measure contraction property (Definition 2.1, the (K,N)-MCP
for short). Here K ∈ R is the lower bound of the Ricci curvature and N ≥ 1 is the upper
bound of the dimension, so that we can consider a situation which is not covered in [S2]
and [LV] (K 6= 0 and N < ∞). This condition is defined in terms of the contraction of a
measure on a set to a point, and seems simpler and more geometrically understandable.
Indeed, we do not use the Wasserstein space to define the (K,N)-MCP, and it is not
difficult to see that Alexandrov spaces satisfy the (K,N)-MCP (Proposition 2.8).

One of our main results is a generalization of the Bonnet-Myers theorem. Namely,
we shall show that, if a metric measure space (X,µ) satisfies the (K,N)-MCP for some
K > 0 and N > 1, then its diameter is less than or equal to π

√
(N − 1)/K (Theorem

4.3). Moreover, for every point x ∈ X, the set of points at a distance of π
√

(N − 1)/K
from x consists of at most one point (Theorem 4.5). We also prove a generalization of
the Bishop-Gromov volume comparison theorem (Theorem 5.1). In addition to these,
we show that, for an n-dimensional Riemannian manifold, the (K,n)-MCP is equivalent
to that its Ricci curvature is bounded from below by K (Theorem 3.2), and that the
(K,N)-MCP is preserved under the measured Gromov-Hausdorff convergence (Theorem
6.8). These results as well as the (K,N)-MCP of Alexandrov spaces justify us to say that
the (K,N)-MCP is a generalized notion of the lower Ricci curvature bound. Techniques
developed in [RS], [S2], and [LV] play crucial roles in our discussions.

The article is organized as follows. We give the definition of the (K,N)-MCP and
consider some basic properties, such as the doubling condition, in Section 2. In Section
3, we treat the Riemannian case. Section 4 is devoted to a generalization of the Bonnet-
Myers theorem. We prove a generalization of the Bishop-Gromov volume comparison
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theorem in Section 5. In the last section, we consider the stability of the (K,N)-MCP
under the measured Gromov-Hausdorff convergence.

After this work was completed, I learned of a related work by Sturm [S3].

2 Measure contraction property

A metric space (X, dX) is called a length space if it satisfies dX(x, y) = infγ `(γ) for all
x, y ∈ X, where `(γ) denotes the length of γ and the infimum is taken over all rectifiable
curves γ from x to y. If, for every x, y ∈ X, there exists a curve γ which satisfies
dX(x, y) = `(γ), then we say that (X, dX) is geodesic. Note that, if a length space is
complete and locally compact, then it is geodesic. A rectifiable curve γ in a metric space
(X, dX) is called a geodesic if it is locally minimizing and has a constant speed. A geodesic
γ : [0, l] −→ X is said to be minimal if it satisfies `(γ) = dX(γ(0), γ(l)). By taking a
reparametrization of a curve which attains the distance, every two points in a geodesic
metric space are joined by a (not necessarily unique) minimal geodesic.

Throughout this article, without otherwise indicated, let (X, dX) be a length space,
and let µ be a Borel measure on X such that 0 < µ(B(x, r)) < ∞ holds for every x ∈ X
and r > 0, where B(x, r) (or BX(x, r)) denotes the open ball with center x ∈ X and
radius r > 0. The closed ball with center x ∈ X and radius r > 0 is denoted by B(x, r)

or B
X

(x, r). Henceforce, we denote dX(x, y) by |x − y|X for x, y ∈ X, and write simply
X instead of (X, dX).

As in [LV], let Γ be the set of minimal geodesics, say γ : [0, 1] −→ X, in X and define
the evaluation map et : Γ −→ X by et(γ) := γ(t) for each t ∈ [0, 1]. We regard Γ as a
subset of the set of Lipschitz maps Lip([0, 1], X) with the uniform topology. A dynamical
transference plan Π is a Borel probability measure on Γ, and a path {µt}t∈[0,1] ⊂ P2(X)
given by µt = (et)∗Π is called a displacement interpolation associated to Π, where we define
P2(X) as the set of all Borel probability measures, say µ, satisfying

∫
X
|x−y|2X dµ(y) < ∞

for some (and hence all) x ∈ X.
For K ∈ R, we define the function sK on [0,∞) (on [0, π/

√
K) if K > 0) by

sK(t) :=


(1/

√
K) sin(

√
Kt) if K > 0,

t if K = 0,

(1/
√
−K) sinh(

√
−Kt) if K < 0.

Definition 2.1 For K,N ∈ R with N > 1, or with K ≤ 0 and N = 1, a metric mea-
sure space (X,µ) is said to satisfy the (K,N)-measure contraction property (the (K,N)-
MCP for short) if, for every point x ∈ X and measurable set A ⊂ X (provided that
A ⊂ B(x, π

√
(N − 1)/K) if K > 0) with 0 < µ(A) < ∞, there exists a displacement

interpolation {µt}t∈[0,1] ⊂ P2(X) associated to a dynamical transference plan Π = Πx,A

satisfying the following:

(1) We have µ0 = δx and µ1 = (µ|A)− as measures, where we denote by (µ|A)− the
normalization of µ|A, i.e., (µ|A)− := µ(A)−1 · µ|A;
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(2) For every t ∈ [0, 1],

dµ ≥ (et)∗

(
t

{
sK(t`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

)
(2.1)

holds as measures on X, where we set 0/0 = 1 and, by convention, we read{
sK(t`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

= 1

if K ≤ 0 and N = 1.

Remark 2.2 The case where K > 0 and N = 1 is an exceptional one because, by
Theorem 4.3 and letting N tend to 1, then X should consist of only one point. So that
we do not intend to consider such a situation.

If there exists a measurable map Φ : A −→ Γ satisfying e0 ◦ Φ ≡ x, e1 ◦ Φ = idA, and
Π = Φ∗[(µ|A)−], then the inequality (2.1) yields that

dµ ≥ (et ◦ Φ)∗

(
t

{
sK(t|x − z|X/

√
N − 1)

sK(|x − z|X/
√

N − 1)

}N−1

χA(z) dµ(z)

)
(2.2)

holds as measures on X. Here χA stands for the characteristic function on A. This is the
case where, for each y ∈ A, there exists an exactly one geodesic γ ∈ supp Π from x to y.

Lemma 2.3 The inequality (2.2) is equivalent to that, for all t ∈ [0, 1] and measurable
sets A′ ⊂ A, we have

µ
(
et(Φ(A′))

)
≥

∫
A′

t

{
sK(t|x − z|X/

√
N − 1)

sK(|x − z|X/
√

N − 1)

}N−1

dµ(z). (2.3)

Proof. Put Ψ := et ◦ Φ and

dν := t

{
sK(t|x − z|X/

√
N − 1)

sK(|x − z|X/
√

N − 1)

}N−1

χA(z) dµ(z)

in this proof for simplicity. We first assume (2.2). For a measurable set A′ ⊂ A, we have

µ
(
Ψ(A′)

)
≥ (Ψ∗ν)

(
Ψ(A′)

)
= ν

(
Ψ−1(Ψ(A′))

)
≥ ν(A′).

This implies (2.3). We next suppose (2.3). For a measurable set W ⊂ X \ Ψ(A), we
immedately obtain µ(W ) ≥ 0 = (Ψ∗ν)(W ). If W ⊂ Ψ(A), then (2.3) yields that

µ(W ) = µ
(
Ψ(Ψ−1(W ))

)
≥ ν

(
Ψ−1(W )

)
= (Ψ∗ν)(W ).

This completes the proof. 2
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The inequality (2.3) can be regarded as a generalization of the Bishop inequality under
a lower Ricci curvature bound Ricg ≥ K (see Theorem 3.1 below), and is a reason why
we say that (2.1) is a kind of measure contraction property. We refer [S1], [KS1], [R1],
and [R2] (see also [O]) for other kinds of measure contraction property of metric measure
spaces. Especially, an essentially similar condition to our MCP is proposed in [CC, I,
Appendix 2] (see also [G]).

Lemma 2.4 (i) The (K,N)-MCP of (X,µ) implies the (K ′, N ′)-MCP for all K ′ ≤ K
and N ′ ≥ N .

(ii) If (X, dX , µ) satisfies the (K,N)-MCP and if a, b > 0, then the scaled metric measure
space (X, a · dX , b · µ) satisfies (K/a2, N)-MCP.

Proof. (i) By calculation, we see that{
sK(td/

√
N − 1)

sK(d/
√

N − 1)

}N−1

is monotone non-decreasing in K for any fixed N > 1, and is monotone non-increasing in
N for any fixed K ∈ R. This (together with Theorem 4.3 and Lemma 4.4(i) if K > 0)
completes the proof.

(ii) It is clear by the definition of the (K,N)-MCP. 2

The following lemma is straightforward from the definition of the (K,N)-MCP, and
will be sharpened in Section 5.

Lemma 2.5 Let (X,µ) satisfy the (K,N)-MCP. Then, for every x ∈ X and 0 < r ≤ R
(≤ π

√
(N − 1)/K if K > 0), we have

µ(B(x,R))

µ(B(x, r))
≤ R

r
sup

0≤λ≤1

{
sK(λR/

√
N − 1)

sK(λr/
√

N − 1)

}N−1

.

In particular, the set S(x, r) := {y ∈ X | |x− y|X = r} has a null measure for any x ∈ X
and r > 0 (provided that r < π

√
(N − 1)/K if K > 0).

Proof. The (K,N)-MCP with x = x, A = B(x,R), and t = r/R yields that

µ
(
B(x, r)

)
≥ µ

(
B(x,R)

) r

R
inf

0≤λ≤1

{
sK(λr/

√
N − 1)

sK(λR/
√

N − 1)

}N−1(
(er/R)∗Πx,B(x,R)

)(
B(x, r)

)
= µ

(
B(x,R)

) r

R
inf

0≤λ≤1

{
sK(λr/

√
N − 1)

sK(λR/
√

N − 1)

}N−1

Π
(
(er/R)−1[B(x, r)]

)
≥ µ

(
B(x,R)

) r

R
inf

0≤λ≤1

{
sK(λr/

√
N − 1)

sK(λR/
√

N − 1)

}N−1

Π
(
(e1)

−1[B(x,R)]
)

=
r

R
inf

0≤λ≤1

{
sK(λr/

√
N − 1)

sK(λR/
√

N − 1)

}N−1

µ
(
B(x,R)

)
.
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Here the inequality in the third line follows from (e0)∗Π = δx. Indeed, it implies

(e1)
−1[B(x,R)] ∩ supp Π ⊂ (er/R)−1[B(x, r)].

This completes the proof. 2

In particular, the (K,N)-MCP implies the (local) doubling condition. Namely, for
any R > 0 (R ≤ π

√
(N − 1)/K if K > 0), r ∈ (0, R], and x ∈ X, we have

µ(B(x, r))

µ(B(x, r/2))
≤ CK,N,R,

where CK,N,R < ∞ is a constant depending only on K, N , and R. The doubling condi-
tion implies that every bounded closed ball in X is totally bounded. Therefore, if X is
complete, then it is proper (i.e., all bounded closed sets are compact) and hence geodesic.

Corollary 2.6 If (X,µ) satisfies the (K,N)-MCP and if it contains more than two
points, then the measure µ is non-atomic.

Corollary 2.7 If (X,µ) satisfies the (K,N)-MCP, then the Hausdorff dimension of X
is less than or equal to N .

Proof. Lemma 2.5 yields that the function f(x) := lim supr→0 rNµ(B(x, r))−1 on X is
locally bounded. By [AT, Theorem 2.4.3], this implies that the N -dimensional Hausdorff
measure HN on X is also locally bounded. Therefore the Hausdorff dimension of X is
not greater than N . 2

We end this section with a proposition which asserts that Alexandrov spaces satisfy
the MCP. As the Alexandrov space is considered as a metric space with a lower ‘sectional’
curvature bound, this proposition supports us for saying that the (K,N)-MCP is a gen-
eralized notion of a lower ‘Ricci’ curvature bound. See [BBI], [BGP], and [KS1] for the
definition of and terminologies on Alexandrov spaces.

Proposition 2.8 Let X be an n-dimensional, complete Alexandrov space with curvature
≥ K, and Hn be the n-dimensional Hausdorff measure on X. Then (X,Hn) satisfies the
((n − 1)K,n)-MCP.

Proof. This easily follows from [KS1, Lemma 6.1], we give an outline of the proof for
completeness. For a point x ∈ X and a measurable set A ⊂ X, we define a map ΦX =
ΦX

x,A : A −→ Γ by ΦX(y) := γ, where γ : [0, 1] −→ X is an arbitrarily chosen minimal
geodesic from x to y. Then we see that ΦX is measurable as in the proof of [KS1,
Proposition 6.1], and we put Π := (ΦX) ∗ [(µ|A)−]. The condition (1) in Definition 2.1
is clearly satisfied and the condition (2) follows from the curvature condition just as in
[KS1, Lemma 6.1]. 2
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3 Riemannian case

In this section, we consider the Riemannian case. See, for example, [Cl] for fundamentals
on Riemannian geometry. Let (M, g) be an n-dimensional, complete Riemannian manifold
without boundary and denote by dg (or | · − · |g) and νg the Riemannian distance and the
Riemannian measure, respectively, on M induced from g. In addition, Ricg stands for the
Ricci tensor with respect to g and the inequality Ricg ≥ K means that Ricg(ξ, ξ) ≥ K
holds for every p ∈ M and ξ ∈ SpM , where SpM ⊂ TpM is the unit tangent sphere at
p ∈ M . For a point p ∈ M and a unit tangent vector ξ ∈ SpM , we set

c(ξ) := sup{r > 0 | |p − γξ(r)|g = r},

where we define γξ(r) := expp rξ. Define, for p ∈ M ,

C(p) := {γξ

(
c(ξ)

)
| ξ ∈ SpM},

D(p) := {tξ | ξ ∈ SpM, 0 ≤ r < c(ξ)} ⊂ TpM,

D(p) := expp D(p).

The set C(p) is called the cut locus of p. Recall that expp : D(p) −→ D(p) gives a
diffeomorphism and that we can represent dνg(q) = (expp)∗[Ap(r; ξ) dr dξ] on D(p), where
q = γξ(r) and Ap(r; ξ) denotes the density of the Riemannian measure on S(p, r) induced
from g. Recall that we set S(p, r) := {q ∈ M | |p − q|g = r}. The classical Bishop
comparison theorem asserts the following ([BC], cf. [Cl, Theorem 3.8]).

Theorem 3.1 If (M, g) satisfies Ricg ≥ K, then we have

1

Ap(r; ξ)

dAp(r; ξ)

dr
≤ (n − 1)

s′K(r/
√

n − 1)

sK(r/
√

n − 1)

for all ξ ∈ SpM and r ∈ (0, c(ξ)). In particular, the function

Ap(r; ξ)

sK(r/
√

n − 1)n−1

is monotone non-increasing in r ∈ (0, c(ξ)).

Given a point p ∈ M and a measurable set A ⊂ M , as in the proof of Proposition
2.8, we define a map ΦM = ΦM

p,A : A −→ Γ by ΦM
p,A(q) := γ, where γ : [0, 1] −→ M is an

arbitrarily chosen minimal geodesic from p to q. As C(p) has a null measure, the map
ΦM

p,A is measurable and is uniquely determined upto a modification on a null measure set.

Theorem 3.2 Let (M, g) be an n-dimensional, complete Riemannian manifold without
boundary with n ≥ 2. Then a metric measure space (M,dg, νg) satisfies the (K,n)-MCP
if and only if Ricg ≥ K holds.

Proof. We first assume Ricg ≥ K and fix a point p ∈ M and a mesurable set A ⊂ M .
We shall show that the map ΦM = ΦM

p,A defined as above satisfies (2.3) with N = n
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which implies the (K,n)-MCP. It follows from Theorem 3.1 that, for any t ∈ [0, 1] and
measurable subset A′ ⊂ A,

νg

(
et(Φ

M
p,A(A′))

)
=

∫
exp−1

p (A′)∩D(p)

tAp(tr; ξ) dr dξ

≥
∫

exp−1
p (A′)∩D(p)

t

{
sK(tr/

√
n − 1)

sK(r/
√

n − 1)

}n−1

Ap(r; ξ) dr dξ

=

∫
A′

t

{
sK(t|p − q|g/

√
n − 1)

sK(|p − q|g/
√

n − 1)

}n−1

dνg(q).

Therefore ΦM satisfies the inequality (2.3).
Next we consider the converse, so that we suppose that (M,dg, νg) satisfies the (K,n)-

MCP. Fix p ∈ M , ξ ∈ SpM , and an orthonormal basis {e1, . . . , en} in TpM with e1 = ξ.
We denote by ki the sectional curvature of the plane spanned by e1 and ei for each
i = 2, . . . , n. For a small r > 0, it follows from

sK(r)

sK(2r)
=

1

2

(
1 +

K

2
r2 + O(r4)

)
that

Ap(r; ξ)

Ap(2r; ξ)
=

1

2n−1

n∏
i=2

(
1 +

ki + O(r)

2
r2 + O(r4)

)
=

1

2n−1

n∏
i=2

(
1 +

ki

2
r2

)
+ O(r3)

=
1

2n−1

{
1 +

n∑
i=2

kir
2

}
+ O(r3)

=
1

2n−1

{
1 + Ricg(ξ, ξ)r

2
}

+ O(r3).

On the other hand, it is not difficult to observe that the (K,n)-MCP implies

Ap(r; ξ)

Ap(2r; ξ)
≥

{
sK(r/

√
n − 1)

sK(2r/
√

n − 1)

}n−1

,

and hence we have

Ricg(ξ, ξ)r
2 ≥

{
2sK(r/

√
n − 1)

sK(2r/
√

n − 1)

}n−1

− 1 + O(r3)

=

{
1 +

K

n − 1
r2

}n−1

− 1 + O(r3)

= Kr2 + O(r3).

Dividing both sides by r2 and letting r tend to zero, we consequently obtain

Ricg(ξ, ξ) ≥ K.

This completes the proof. 2
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The following are easily derived from Lemma 2.4(i) and Corollary 2.7 together with
the theorem above.

Corollary 3.3 Let (M, g) be an n-dimensional, complete Riemannian manifold without
boundary.

(i) If (M, g) satisfies Ricg ≥ K and n ≤ N , then (M,dg, νg) satisfies the (K,N)-MCP.

(ii) If a metric measure space (M,dg, νg) satisfies the (K,N)-MCP, then we have n ≤ N .

4 Bonnet-Myers theorem

In this section, we shall show a generalization of the Bonnet-Myers theorem ([M]), that
is, the (K,N)-MCP with K > 0 and N > 1 implies that the diameter is less than or
equal to π

√
(N − 1)/K. By rescaling the distance, we may assume K = N − 1 (Lemma

2.4(ii)). For x ∈ X and s, t ≥ 0 with s < t, we define A(x; s, t) := B(x, t) \B(x, s), where
we set B(x, 0) := ∅. The symbol θα,β(δ) denotes a function depending only on α and β
with limδ→0 θα,β(δ) = 0. Before beginning the proof of the Bonnet-Myers theorem, we
prove a useful lemma which holds for general K and N .

Lemma 4.1 Let (X,µ) satisfy the (K,N)-MCP and, for 0 ≤ r < r′ ≤ ∞ (0 ≤ r <
r′ ≤ π

√
(N − 1)/K if K > 0), let τ : (r, r′) −→ (0, 1] be a C1-function satisfying

τ ′(l)l + τ(l) > 0 for all l ∈ (r, r′). Then we have, for any point x ∈ X, any measurable
set A ⊂ A(x; r, r′) with 0 < µ(A) < ∞, and for Π = Πx,A as in Definition 2.1,

dµ ≥ (eτ )∗

[{
τ ′(`(γ)

)
`(γ) + τ

(
`(γ)

)}
×

{
sK(τ(`(γ))`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

]
(4.1)

as measures. Here eτ : Γ −→ X denotes a map defined by eτ (γ) := eτ(`(γ))(γ).

Proof. Choose an arbitrary measurable set W ⊂ X. It suffices to show

µ(W ) ≥
∫

e−1
τ (W )

[{
τ ′(`(γ)

)
`(γ) + τ

(
`(γ)

)}
×

{
sK(τ(`(γ))`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A)

]
dΠ(γ).

In the case of K > 0, without loss of generality, we may assume

W ⊂ B(x, π
√

(N − 1)/K − ε)

for some ε > 0. Take a large M ∈ N, set δ := (r′−r)/M and rm := r+mδ for 0 ≤ m ≤ M ,
and put

Γm := e−1
τ (W ) ∩ {γ ∈ Γ | e0(γ) = x, e1(γ) ∈ A(x; rm−1, rm)}
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and Wm := eτ (Γm) for 1 ≤ m ≤ M . The hypothesis on τ says that

[τ(l)l]′ = τ ′(l)l + τ(l) > 0,

and hence Wm ∩ Wm′ = ∅ holds if m 6= m′.
For each 1 ≤ m ≤ M , we denote by km ∈ N ∪ {0} the number satisfying

τ(rm)

(
rm−1

rm

)km+1

rm ≤ τ(rm−1)rm−1 < τ(rm)

(
rm−1

rm

)km

rm.

Moreover, for each 1 ≤ m ≤ M , we can choose am, bm ∈ [rm−1, rm] with am < bm and
k′

m ≥ km such that

τ(rm−1)rm−1 ≤ τ(rm)

(
am

bm

)k′
m+1

rm ≤ τ(rm−1)rm−1 + τ(rm)δ2 (4.2)

as well as ∫
Γ′

m

{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

dΠ(γ)

≥ bm − am

rm − rm−1

∫
Γm

{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

dΠ(γ), (4.3)

where we put

Γ′
m := e−1

τ (W ) ∩ {γ ∈ Γ | e0(γ) = x, e1(γ) ∈ A(x; am, bm)} ⊂ Γm.

Note that, for all l ∈ (am, bm) and 0 ≤ k ≤ k′
m,

τ(rm)rm

bm

(
am

bm

)k

l ∈
(

τ(rm)rm

(
am

bm

)k+1

, τ(rm)rm

(
am

bm

)k)
⊂

(
τ(rm−1)rm−1, τ(rm)rm

)
,

and hence

Wm ⊃
k′

m⊔
k=0

e(τ(rm)rm/bm)(am/bm)k(Γ′
m) (disjoint union).

Therefore we have, by the (K,N)-MCP,

µ(W ) ≥
M∑

m=1

µ(Wm) ≥
M∑

m=1

[ k′
m∑

k=0

µ
(
e(τ(rm)rm/bm)(am/bm)k(Γ′

m)
)]

≥
M∑

m=1

[ k′
m∑

k=0

τ(rm)rm

bm

(
am

bm

)k

×
∫

Γ′
m

{
sK({τ(rm) + θ(δ)}`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

]
=

M∑
m=1

[
τ(rm)rm

bm

1 − (am/bm)k′
m+1

1 − (am/bm)

×
∫

Γ′
m

{{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

+ θ(δ)

}
µ(A) dΠ(γ)

]
.
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Furthermore, it follows from (4.2) and (4.3) that

M∑
m=1

[
τ(rm)rm

bm

1 − (am/bm)k′
m+1

1 − (am/bm)

×
∫

Γ′
m

{{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

+ θ(δ)

}
µ(A) dΠ(γ)

]
≥

M∑
m=1

[
τ(rm)rm

bm

1 − (am/bm)k′
m+1

1 − (am/bm)

bm − am

rm − rm−1

×
∫

Γm

{{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

+ θ(δ)

}
µ(A) dΠ(γ)

]
≥

M∑
m=1

[{
τ(rm)rm − τ(rm−1)rm−1

rm − rm−1

− τ(rm)δ

}
×

∫
Γm

{{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

+ θ(δ)

}
µ(A) dΠ(γ)

]
→

∫
Γ

{
τ ′(`(γ)

)
`(γ) + τ

(
`(γ)

)}{
sK(τ(`(γ))`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

as M diverges to the infinity. We remark that, to see

lim
M→∞

τ(rm)δ

∫
Γm

{
sK(τ(rm)`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ) = 0

in the last implication, we used the fact that∫
Γ

τ
(
`(γ)

){sK(τ(`(γ))`(γ)/
√

N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

≤
∫

Γ

µ(A) dΠ(γ) = µ(A) < ∞

holds if K ≤ 0, and that∫
Γ

τ
(
`(γ)

){sN−1(τ(`(γ))`(γ)/
√

N − 1)

sN−1(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

=

∫
A

τ(|x − y|X)

{
sin(τ(|x − y|X)|x − y|X)

sin(|x − y|X)

}N−1

dµ(y)

≤ µ
(
A ∩ B(x, π/2)

)
+

∫
A∩A(x;π/2,π)

{√
2 sin(|x − y|X/2)

sin(|x − y|X)

}N−1

dµ(y)

≤ µ
(
B(x, π/2)

)
+ 2(N+1)/2

∫
A(x;π/2,π)

1

2

{
sin(|x − y|X/2)

sin(|x − y|X)

}N−1

dµ(y)

≤ µ
(
B(x, π/2)

)
+ 2(N+1)/2µ

(
A(x; π/4, π/2)

)
< ∞

11



holds if K = N − 1 > 0. We used the (N − 1, N)-MCP in the fourth implication. This
completes the proof. 2

Next we prove a key lemma in this section.

Lemma 4.2 Let (X,µ) satisfy the (N − 1, N)-MCP. Then, for any x ∈ X and s, t ∈
[0, π/2] with s < t, we have

µ
(
A(x; s, t)

)
≥ µ

(
A(x; π − t, π − s)

)
.

Proof. Take a large M ∈ N and set δ = (t − s)/M and tm := s + mδ for 0 ≤ m ≤ M .
For 1 ≤ m ≤ M , we define a function τm : (π − tm, π − tm−1) −→ (0, 1] by

τm(l) :=
l − π + tm−1 + tm

l
.

Note that

τm(π − tm) · (π − tm) = tm−1, τm(π − tm−1) · (π − tm−1) = tm,

d

dl

[
τm(l)l

]
= 1.

Applying Lemma 4.1 to each Am := (x; π − tm, π − tm−1) and τm, we have

µ
(
A(x; s, t)

)
=

M∑
m=1

µ
(
A(x; tm−1, tm)

)
≥

M∑
m=1

∫
Γ

{
sN−1(τm(`(γ))`(γ)/

√
N − 1)

sN−1(`(γ)/
√

N − 1)

}N−1

µ(Am) dΠx,Am(γ)

=
M∑

m=1

∫
Am

{
sin(τm(|x − y|X)|x − y|X)

sin(|x − y|X)

}N−1

dµ(y)

=
M∑

m=1

∫
Am

{
sin(|x − y|X − π + tm−1 + tm)

sin(|x − y|X)

}N−1

dµ(y)

=
M∑

m=1

∫
Am

[{
sin(π − |x − y|X)

sin(|x − y|X)

}N−1

+ θ(δ)

]
dµ(y)

=
M∑

m=1

µ(Am) + θ(δ)

→ µ
(
A(x; π − t, π − s)

)
as M diverges to the infinity. 2

Theorem 4.3 (Bonnet-Myers theorem) If a metric measure space (X,µ) satisfies the
(K,N)-MCP for some K > 0 and N > 1, then we have diam X ≤ π

√
(N − 1)/K.
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Proof. It suffices to consider the case of K = N − 1. Suppose that there exist two points
x, y ∈ X with |x − y|X = π + ε for some ε > 0. Since X is a length space, for any small
δ ∈ (0, ε), we can take a unit speed curve γ : [0, π + ε + δ′] −→ X such that γ(0) = x,
γ(π + ε + δ′) = y, and that δ′ ∈ [0, δ]. If we put zδ := γ(ε + 2δ + δ′), then we find

ε + 2δ ≤ |x − zδ|X ≤ ε + 2δ + δ′, π − 2δ − δ′ ≤ |zδ − y|X ≤ π − 2δ.

Put

t :=
π − ε − 2δ − δ′

π − δ
, A := et(supp Πzδ ,B(y,δ)).

Then it follows from the (N − 1, N)-MCP that

µ(A) ≥ t

{
sin(t(|y − zδ|X + δ))

sin(|y − zδ|X − δ)

}N−1

µ
(
B(y, δ)

)(
(et)∗Πzδ ,B(y,δ)

)
(A)

≥
(

1 − ε + δ + δ′

π − δ

){
sin(π − ε − 2δ − δ′)

sin(π − 3δ − δ′)

}N−1

µ
(
B(y, δ)

)
≥

(
1 − ε + 2δ

π − δ

){
sin(π − ε − 3δ)

sin(π − 4δ)

}N−1

µ
(
B(y, δ)

)
=

(
1 − ε + 2δ

π − δ

){
sin(ε + 3δ)

sin(4δ)

}N−1

µ
(
B(y, δ)

)
.

On one hand, we observe

A ⊂ B
(
zδ, t(|zδ − y|X + δ)

)
⊂ B

(
x, ε + 2δ + δ′ + t(π − δ)

)
= B(x, π).

On the other hand, for any ξ ∈ supp Πzδ ,B(y,δ), we see

|x − ξ(t)|X ≥ |x − ξ(1)|X − (1 − t)`(ξ)

> (π + ε) − δ − (1 − t)(|zδ − y|X + δ)

≥ π + ε − δ − (1 − t)(π − δ)

= π + ε − δ − (ε + δ + δ′)

= π − 2δ − δ′

≥ π − 3δ

and hence A ⊂ X \B(x, π−3δ). Thus we have, by Lemma 4.2 and the doubling condition
(Lemma 2.5 with K = 0),

µ(A) ≤ µ
(
A(x; π − 3δ, π)

)
≤ µ

(
B(x, 3δ)

)
≤ 3Nµ

(
B(x, δ)

)
.

Therefore we obtain, since N > 1,

µ(B(x, δ))

µ(B(y, δ))
≥ 3−N

(
1 − ε + 2δ

π − δ

){
sin(ε + 3δ)

sin 4δ

}N−1

→ ∞

as δ tends to zero. However, this is a contradiction because we can exchange the roles of
x and y. 2
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Recall that we set S(x, r) = {y ∈ X | |x − y|X = r} for x ∈ X and r > 0.

Lemma 4.4 Let (X,µ) satisfy the (N − 1, N)-MCP for some N > 1.

(i) For every x ∈ X, the set S(x, π) has a null measure.

(ii) If x, y ∈ X satisfies |x − y|X = π, then we have, for any ε ∈ (0, π/2),

µ
(
B(x, ε)

)
= µ

(
B(y, ε)

)
.

Proof. (i) We can suppose that S(x, π) 6= ∅, in particular, X contains more than two
points. Fix an arbitrary ε > 0 and let {xi}M

i=1 be a maximal 2ε-discrete set in S(x, 3ε), i.e.,
{xi}M

i=1 ⊂ S(x, 3ε), |xi−xj|X ≥ 2ε holds if i 6= j, and {B(xi, 2ε)}M
i=1 covers S(x, 3ε). Note

that B(xi, ε)’s are mutually disjoint. For any y ∈ S(x, π), there exists a point z ∈ S(x, 3ε)
such that |y − z|X < π − 2ε, and |z − xi|X < 2ε holds for some i. For such i, we observe

|y − xi|X ≤ |y − z|X + |z − xi|X < π,

|y − xi|X ≥ |y − x|X − |x − xi|X = π − 3ε.

Namely, we see y ∈ A(xi; π − 3ε, π). Combining this with Lemma 4.2(i), we obtain

µ
(
S(x, π)

)
≤ µ

( M∪
i=1

A(xi; π − 3ε, π)

)

≤
M∑
i=1

µ
(
A(xi; π − 3ε, π)

)
≤

M∑
i=1

µ
(
B(xi, 3ε)

)
≤ 3N

M∑
i=1

µ
(
B(xi, ε)

)
= 3Nµ

( M∪
i=1

B(xi, ε)

)
≤ 3Nµ

(
B(x, 4ε)

)
→ 0

as ε tends to zero by Corollary 2.6. This completes the proof.
(ii) It is a straightforward corollary to Lemma 4.2 through Theorem 4.3 and (i) of this

lemma. Indeed, we have

µ
(
B(x, ε)

)
≥ µ

(
A(x; π − ε, π)

)
= µ

(
X \ B(x, π − ε)

)
≥ µ

(
B(y, ε)

)
.

The converse inequality is obtained similarly. 2

We remark that Lemma 4.4(i) is not covered by Lemma 2.5. Now we obtain a result
concerning the maximal diameter situation.

Theorem 4.5 If a metric measure space (X,µ) satisfies the (K,N)-MCP for some K > 0
and N > 1, then, for any x ∈ X, the set S(x, π

√
(N − 1)/K) consists of at most one

point.

Proof. Suppose that K = N − 1 and that there exist two points y, z ∈ S(x, π) satisfying
ε := |y − z|X/2 > 0. Then, by Lemma 4.4, Theorem 4.3, and by Lemma 4.2, we obtain

2µ
(
B(x, ε)

)
= µ

(
B(y, ε)

)
+ µ

(
B(z, ε)

)
= µ

(
B(y, ε) ∪ B(z, ε)

)
≤ µ

(
A(x; π − ε, π)

)
≤ µ

(
B(x, ε)

)
.

This contradicts to µ(B(x, ε)) > 0, and hence we complete the proof. 2
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5 Bishop-Gromov volume comparison theorem

This section is devoted to proving an analogue of the Bishop-Gromov volume comparison
theorem. See [Cl, Theorem 3.10] for the Riemannian case.

Theorem 5.1 (Bishop-Gromov volume comparison theorem) Let (X,µ) be a metric space
satisfying the (K,N)-MCP. Then, for any x ∈ X, the function

µ
(
B(x, r)

)/{ ∫ r

0

sK

(
s√

N − 1

)N−1

ds

}
is monotone non-increasing in r ∈ (0,∞) (r ∈ (0, π

√
(N − 1)/K) if K > 0).

Proof. The proof is based on the discretization of that in the Riemannian case (roughly
speaking, the integration of the Bishop inequality). Take r > 0. By Theorems 4.3 and
4.5, we can suppose r ≤ π

√
(N − 1)/K if K > 0. For a small t ∈ (0, 1) and any l,m ∈ N

with l < m, it follows from the (K,N)-MCP with x = x, A = A(x; tlr, tl−1r), and t = tm−l

that

µ
(
A(x; tmr, tm−1r)

)
≥ tm−l sup

t≤s≤1

{
sK(stm−1r/

√
N − 1)

sK(stl−1r/
√

N − 1)

}N−1

µ
(
A(x; tlr, tl−1r)

)
≥ tm−l

[{
inf

t≤s≤1
sK

(
stm−1r√
N − 1

)}/{
sup

t≤s≤1
sK

(
stl−1r√
N − 1

)}]N−1

× µ
(
A(x; tlr, tl−1r)

)
.

Thus we have, for all l ≤ j ≤ m − 1,

µ
(
A(x; tjr, tj−1r)

) ∞∑
i=m

ti inf
t≤s≤1

sK(sti−1r/
√

N − 1)N−1

≤
{ ∞∑

i=m

µ
(
A(x; tir, ti−1r)

)}
tj sup

t≤s≤1
sK(stj−1r/

√
N − 1)N−1

= µ
(
B(x, tm−1r)

)
tj sup

t≤s≤1
sK(stj−1r/

√
N − 1)N−1.
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Therefore we obtain

µ
(
B(x, tl−1r)

)
= µ

(
B(x, tm−1r)

)
+

m−1∑
j=l

µ
(
A(x; tjr, tj−1r)

)
≤

[
1 +

{ m−1∑
j=l

tj sup
t≤s≤1

sK

(
stj−1r√
N − 1

)N−1}/{ ∞∑
i=m

ti inf
t≤s≤1

sK

(
sti−1r√
N − 1

)N−1}]
× µ

(
B(x, tm−1r)

)
≤

[{ ∞∑
j=l

tj sup
t≤s≤1

sK

(
stj−1r√
N − 1

)N−1}/{ ∞∑
i=m

ti inf
t≤s≤1

sK

(
sti−1r√
N − 1

)N−1}]
× µ

(
B(x, tm−1r)

)
,

and hence

µ
(
B(x, tl−1r)

)/{ ∞∑
j=l

(tj−1r − tjr) sup
t≤s≤1

sK

(
stj−1r√
N − 1

)N−1}

≤ µ
(
B(x, tm−1r)

)/{ ∞∑
i=m

(ti−1r − tir) inf
t≤s≤1

sK

(
sti−1r√
N − 1

)N−1}
.

This completes the proof by letting t tend to 1 as well as l and m go to the infinity. 2

6 Stability and compactness

In this section, we consider the behavior of the (K,N)-MCP under the measured Gromov-
Hausdorff convergence. The Wasserstein space will play a crucial role. See [F] and [KS2]
for the measured Gromov-Hausdorff convergence, and see [LV], [S2], and [V] for the
Wasserstein space.

6.1 Measured Gromov-Hausdorff topology

We first recall the Gromov-Hausdorff distance between compact metric spaces. See [G]
for more details. For two closed subsets A and A′ in a metric space Z, the Hausdorff
distance dZ

H between them is defined by

dZ
H(A,A′) := inf{ε > 0 |A ⊂ B(A′, ε), A′ ⊂ B(A, ε)}.

More generally, for two compact metric spaces X and Y , we define the Gromov-Hausdorff
distance dGH between them by

dGH(X,Y ) := inf
Z,ϕ,ψ

dZ
H

(
ϕ(X), ψ(Y )

)
,

where the infimum is taken over all metric spaces Z and isometric embeddings ϕ : X −→ Z
and ψ : Y −→ Z. If we denote by C the isometric classes of compact metric spaces, then
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(C, dGH) is a complete metric space. The topology of C induced from dGH is called the
Gromov-Hausdorff topology. It is convenient to estimate the Gromov-Hausdorff distance
in terms of the ε-approximating map. For metric spaces X and X ′, a (not necessarily
continuous) map ϕ : X −→ X ′ is called an ε-approximating map for ε ≥ 0 if it satisfies

B
X′

(ϕ(X), ε) ⊃ X ′ and if ∣∣|ϕ(x) − ϕ(y)|X′ − |x − y|X
∣∣ ≤ ε

holds for all x, y ∈ X. Note that a 0-approximating map is nothing but an isometry.

Lemma 6.1 Let X,Y ∈ C and ε > 0.

(i) If dGH(X,Y ) < ε, then there exists a 2ε-approximating map from X to Y .

(ii) If there exists an ε-approximating map from X to Y , then dGH(X,Y ) ≤ 2ε holds.

In particular, a sequence {Xi}∞i=1 ⊂ C converges to X ∈ C if and only if there exists a
sequence of εi-approximating maps ϕi : Xi −→ X with limi→∞ εi = 0. For the later use,
we recall an easily proved lemma.

Lemma 6.2 Let {Xi}∞i=1 ⊂ C be a sequence of compact, geodesic metric spaces converging
to a compact metric space X ∈ C in the Gromov-Hausdorff topology with a sequence {εi}∞i=1

tending to zero and εi-approximating maps {ϕi}∞i=1. For a sequence of minimal geodesics
γi : [0, 1] −→ Xi, i ∈ N, if the sequences of end points {ϕi(γi(0))}∞i=1 and {ϕi(γi(1))}∞i=1

converge to some points x, y ∈ X, respectively, then a subsequence of {ϕi◦γi}∞i=1 converges
to a minimal geodesic from x to y uniformly.

We next recall the measured Gromov-Hausdorff convergence introduced in [F].

Definition 6.3 (Measured Gromov-Hausdorff convergence, [F]) A directed system of
metric measure spaces {(Xα, µα)}α∈A is said to converge to a metric measure space (X,µ)
in the sense of the measured Gromov-Hausdorff convergence if there exists a directed
system of positive numbers {εα}α∈A satisfying the following conditions:

(1) {εα}α∈A converges to zero;

(2) For each α ∈ A, we have a Borel, measurable, and εα-approximating map ϕα : Xα −→
X;

(3) A directed system of push-forward measures {(ϕα)∗(µα)}α converges to µ weakly, i.e.,
for any f ∈ C(X), we have

lim
α∈A

∫
X

f d
(
(ϕα)∗(µα)

)
=

∫
X

f dµ.

Here C(X) denotes the set of all continuous functions on X.
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If we define CM as the isomorphic classes of all compact metric spaces equipped with
Radon measures, then the measured Gromov-Hausdorff convergence gives a topology on
CM, and we call it the measured Gromov-Hausdorff topology. We know that this topology
is Hausdorff ([F, Proposition 2.7]) and that the projection CM(V ) −→ C is proper, where
we set

CM(V ) := {(X,µ) ∈ CM|µ(X) ≤ V }

for V > 0 ([F, Proposition 2.10]). For K ∈ R, N ≥ 1, V > 0, and D > 0, we define
CM(K,N, V,D) ⊂ CM(V ) as the isomorphic classes of compact metric measure spaces
(X,µ) in CM(V ) satisfying the (K,N)-MCP and diam X ≤ D. The following is an
easy corollary of Gromov’s precompactness theorem ([G, Proposition 5.2]) by virtue of
Theorem 5.1.

Theorem 6.4 Let {(Xi, µi)}∞i=1 ⊂ CM(K,N, V,D). Then it has a subsequence which is
convergent in the measured Gromov-Hausdorff topology.

If we denote by (X,µ) ∈ CM that limit space, then we immediately observe µ(X) ≤ V
and diam X ≤ D. To show that (X,µ) also satisfies the (K,N)-MCP, we need to recall
the Wasserstein space and some results in [LV].

6.2 Wasserstein spaces

Let X be a complete, separable metric measure space, and recall that P2(X) denotes the
set of all Borel probability measures, say µ, satisfying

∫
X
|x − y|2X dµ(y) < ∞ for some

(and hence all) x ∈ X. Given two probability measures µ, ν ∈ P2(X), a Borel measure
q on X × X is called a coupling of µ and ν if, for any measurable set A ⊂ X, we have
q(A × X) = µ(A) and q(X × A) = ν(A). For example, the product measure µ × ν is a
coupling of µ and ν. We define the L2-Wasserstein distance dW on P2(X) by

dW (µ, ν) := inf

{( ∫
X×X

|x − y|2X dq(x, y)

)1/2 ∣∣∣ q : coupling of µ and ν

}
for µ, ν ∈ P2(X), and we call (P2(X), dW ) the L2-Wasserstein space over X. Then
(P2(X), dW ) is a complete and separable metric space (see [S2, Proposition 2.10]). Fur-
thermore, (P2(X), dW ) is compact or a length space if and only if so is X, respectively.
In particular, if X is compact and geodesic, then so is (P2(X), dW ).

Proposition 6.5 (cf. [V, Theorem 7.12]) A sequence {µi}∞i=1 ⊂ P2(X) converges to µ ∈
P2(X) with respect to dW if and only if µi converges to µ weakly and

lim
R→∞

sup
i∈N

∫
X\B(x,R)

|x − y|2X dµi(y) = 0 (6.1)

holds for some (and hence every) point x ∈ X.

We observe that (6.1) automatically holds true if X is bounded. The following two
results obtained in [LV] will play key roles in our discussions.
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Proposition 6.6 ([LV, Proposition 4.1, Corollary 4.3]) If ϕ : X −→ X ′ is a Borel,
ε-approximating map, then ϕ∗ : (P2(X), dW ) −→ (P2(X ′), dW ) is ε̃-approximating with

ε̃ = 4ε + {ε(2 diam X ′ + ε)}1/2.

In particular, if a sequence of compact metric spaces {Xi}∞i=1 converges to a compact
metric space X in the Gromov-Hausdorff topology equipped with Borel, εi-approximating
maps ϕi, i ∈ N, then the sequence {(P2(Xi), dW )}∞i=1 converges to (P2(X), dW ) in the
Gromov-Hausdorff topology with ε̃i-approximating maps (ϕi)∗.

Proposition 6.7 ([LV, Proposition 2.10]) Let X be a compact geodesic metric space.
Then any minimal geodesic in (P2(X), dW ) is given by the displacement interpolation
associated to some dynamical transference plan.

6.3 Stability and compactness

Now we prove the stability of the (K,N)-MCP under the measured Gromov-Hausdorff
convergence. The idea of the proof is as follows. If we consider the dynamical transference
plan Π = Πx,A as a family of geodesics in X, then, as it contains uncountably many
geodesics, it is impossible to control the behaviors of all of them simultaneously. However,
we can regard it as one geodesic from δx to (µ|A)− in the Wassestein space (P2(X), dW ),
and then usual techniques are applicable. All spaces in this subsection are assumed to be
compact.

Theorem 6.8 (Stability) A measured Gromov-Hausdorff limit, with a positive (possibly
infinite) total mass, of a sequence of metric measure spaces satisfying the (K,N)-MCP
also satisfies the (K,N)-MCP.

Proof. We first assume K ≤ 0. Let {(Xi, µi)}∞i=1 ⊂ CM be a sequence of metric measure
spaces satisfying the (K,N)-MCP. We suppose that it converges to some metric measure
space (X,µ) with µ(X) > 0 in the measured Gromov-Hausdorff topology, so that we have
a sequence {εi}∞i=1 tending to zero and a Borel, measurable, and εi-approximating map
ϕi : Xi −→ X, i ∈ N, as in Definition 6.3.

Fix a point x ∈ X and a measurable set A ⊂ X with µ(A) > 0. For each (large) i ∈ N,

we choose a point xi ∈ ϕ−1
i (B

X
(x, εi)) and put Ai := ϕ−1

i (A). We remark that, by the

definition of the εi-approximating map, ϕ−1
i (B

X
(x, εi)) is not an empty set. Moreover, as

µ(A) > 0, we know µi(Ai) = ((ϕi)∗µi)(A) > 0 and hence Ai in not empty for large i. By
the (K,N)-MCP, for each i ∈ N, we have a dymanical transference plan Πi = Πxi,Ai

such
that the displacement interpolation associated to it satisfies the conditions (1) and (2) in
Definition 2.1. Note that

(ϕi)∗
(
(e0)∗Πi

)
= (ϕi)∗δxi

= δϕi(xi) → δx

and, by Proposition 6.5,

(ϕi)∗
(
(e1)∗Πi

)
= (ϕi)∗(µi|Ai

)− =
(
[(ϕi)∗(µi)]|A

)− → (µ|A)−
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in (P2(X), dW ) as i diverges to the infinity, respectively. Thus it follows from Lemma
6.2 and Proposition 6.6 that a subsequence of {(ϕi)∗[(et)∗Πi]}t∈[0,1], i ∈ N, converges to a
minimal geodesic {νt}t∈[0,1] between δx and (µ|A)−. Again we denote this convergent subse-
quence by {(ϕi)∗[(et)∗Πi]}t∈[0,1], i ∈ N. Moreover, Proposition 6.7 implies that {νt}t∈[0,1] is
the displacement interpolation associated to some dynamical transference plan Π = Πx,A

which clearly satisfies (e0)∗Π = δx and (e1)∗Π = (µ|A)−.
Now we consider the the condition (2) in Definition 2.1. We fix t ∈ (0, 1) and put

dνi := (et)∗

(
t

{
sK(t`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µi(Ai) dΠi(γ)

)
,

dν := (et)∗

(
t

{
sK(t`(γ)/

√
N − 1)

sK(`(γ)/
√

N − 1)

}N−1

µ(A) dΠ(γ)

)
on Xi and X, respectively. Since (ϕi)∗[(et)∗Πi] converges to (et)∗Π weakly and Xi con-
verges to X in the Gromov-Hausdorff topology, we find that (ϕi)∗(νi) converges to ν
weakly as i diverges to the infinity. The (K,N)-MCP of (Xi, µi) yields that µi ≥ νi

holds as measures for every i. Therefore we have µ ≥ ν and hence (X,µ) satisfies the
(K,N)-MCP. This completes the proof in the case of K ≤ 0.

If K > 0, then we take A ⊂ BX(x, π
√

(N − 1)/K) and set, for each i ∈ N,

Ai := ϕ−1
i (A) ∩ BXi(xi, π

√
(N − 1)/K).

Then a completely similar discussion proves the theorem. 2

Combining this stability with Theorem 6.4, we obtain the compactness of the family

CM(K,N, V ′, V,D) := {X ∈ CM(K,N, V,D) |µ(X) ≥ V ′},

where 0 < V ′ ≥ V .

Theorem 6.9 (Compactness) For any K ∈ R, N ≥ 1, V ≥ V ′ > 0, and any D > 0, the
set CM(K,N, V ′, V,D) is compact in the measured Gromov-Hausdorff topology.

In particular, the family CM(K,N, 1, 1, D) (i.e., spaces with probability measures) is
compact.

6.4 Non-compact case

The discussion in the previous subsection is also applicable to the non-compact case by
weakening the measured Gromov-Hausdorff convergence to the pointed one. We suppose
that all metric spaces appearing in this subsection are complete.

Definition 6.10 (Pointed measured Gromov-Hausdorff convergence) A directed system
of pointed metric measure spaces {(Xα, µα, zα)}α∈A is said to converge to a pointed metric
measure space (X,µ, z) in the sense of the pointed measured Gromov-Hausdorff conver-
gence if there exist two directed systems {εα}α∈A and {rα}α∈A satisfying the following:

(1) {εα}α∈A tends to zero and {rα}α∈A diverges to the infinity;
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(2) For each α ∈ A, we have a Borel, measurable, and εα-approximating map ϕα :
BXα(zα, rα) −→ BX(z, rα);

(3) A directed system of push-forward measures {(ϕα)∗(µα)}α∈A converges to µ vaguely,
i.e., for any f ∈ C0(X), we have

lim
α∈A

∫
X

f d
(
(ϕα)∗(µα)

)
=

∫
X

f dµ.

Here C0(X) denotes the set of all continuous functions on X whose supports are
compact.

Theorem 6.11 A pointed measured Gromov-Hausdorff limit, with positive total mass, of
a sequence of pointed metric measure spaces satisfying the (K,N)-MCP also satisfies the
(K,N)-MCP.

Proof. Take a point x ∈ X and a measurable set A ⊂ X. As X is proper, we can apply
the discussion in the proof of Theorem 6.8 to each A ∩ B(x,m), m ∈ N. This completes
the proof. 2
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