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Abstract Motivated by recent breathtaking progress in the synthetic study of Lorentzian
geometry, we investigate the local concavity of time separation functions on Finsler
spacetimes as a Lorentzian counterpart to Busemann’s convexity in metric geometry.
We show that a Berwald spacetime is locally concave if and only if its flag curvature is
nonnegative in timelike directions. We also give another characterization of nonnegative
flag curvature by the convexity of future (or past) capsules, inspired by Kristdly-Kozma’s
result in the positive definite case. These characterizations are new even for Lorentzian
manifolds.
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1 Introduction

The aim of this article is to develop the synthetic study of Lorentzian geometry. Synthetic
geometry is concerned with geometric spaces without differentiable structures, such as metric
(measure) spaces. For instance, for a complete Riemannian manifold, every small triangle
drawn with geodesics is thinner than its comparison triangle (with the same sidelengths) in
R? if and only if the sectional curvature is nonpositive everywhere (Alexandrov’s triangle
comparison theorem; see, e.g., [BIH, Theorem II.1A.6]). Then, the triangle comparison
property can be adopted as a synthetic notion of nonpositive curvature; a (geodesic) metric
space (X, d) is called a CAT(0)-space if triangles in X are thinner than R?. In the same
manner, one can define metric spaces of sectional curvature bounded below (Alexandov spaces;
see [ , ]), and metric measure spaces of Ricci curvature > K and dimension < N
(MCP(K, N)-spaces (MCP stands for measure contraction property) and CD(K, N)-spaces
(CD stands for curvature-dimension condition); see [LV, , , 5t2]). These synthetic
approaches enable us to understand the influence of curvature in a geometric and intuitive way,
and to investigate metric (measure) spaces arising as limit spaces of Riemannian manifolds,
leading on to fruitful applications in Riemannian geometry and beyond.

Recently, there is a growing interest in synthetic approaches to Lorentzian geometry, partly
motivated by the appearance of less regular spacetimes in general relativity (as solutions
to the Einstein equation). For time-oriented Lorentzian manifolds (spacetimes), suitable
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counterparts to the triangle comparison properties are known to characterize lower and upper
sectional curvature bounds in timelike directions (see [AB, , Hal]). Then, as a platform
for synthetic Lorentzian geometry, Lorentzian (pre-)length spaces are introduced [I<5], and the
structure of Lorentzian (pre-)length spaces of curvature bounded below or above in the sense
of triangle comparison is the subject of current active research (see, e.g., | , BS]). We
also refer to [\, , ] for a synthetic approach to lower Ricci curvature bounds (timelike
curvature-dimension condition TCD(K, N)), to name a few.

For metric spaces, there is also a weaker notion of nonpositive curvature than CAT(0)-
spaces, going back to a seminal work of Busemann [Bu], called the convezity or the Busemann
nonpositive curvature. Let (X, d) be a geodesic space, i.e., any pair z,y € X of points can be
joined by a curve v: [0, 1] — X such that v(0) = =z, v(1) = y and d(v(s),(t)) = |t — s|d(z,y)
for all s,t € [0,1] (then 7 is called a minimizing geodesic). We say that (X,d) is locally
convex if every point z € X has a neighborhood U such that, for any minimizing geodesics
~71,72: [0,1] — X included in U, the function ¢ — d(y1(t),v2(t)) is convex. If we can take
U = X, (X,d) is said to be globally convex. For Riemannian manifolds, local convexity is
equivalent to having the nonpositive sectional curvature everywhere.

An important feature of Busemann’s convexity is that it does not rule out Finsler manifolds.
For example, strictly convex Banach spaces are clearly globally convex, while only Hilbert
spaces are CAT(0) among Banach spaces. Therefore, it had been an intriguing problem to
characterize convex spaces among Finsler manifolds. It was first shown in | | that a
Berwald manifold, a special kind of Finsler manifold, of nonpositive flag curvature is locally
convex (flag curvature in Finsler geometry corresponds to sectional curvature in Riemannian
geometry). Then, [I[{I{] proved that a Berwald manifold is locally convex only if its flag
curvature is nonpositive everywhere. Finally, it was established in [I].] that a Finsler manifold
is locally convex if and only if it is a Berwald manifold of nonpositive flag curvature. We refer
to [F (G, ] for recent studies of the structure of convex metric spaces, where we need to deal
with the Finsler (non-Riemannian) nature of those spaces.

As a Lorentzian counterpart to Busemann’s convexity, the concavity of time separation
functions on Lorentzian pre-length spaces of nonnegative curvature in the sense of triangle
comparison was proved in | , Section 6]. Moreover, a globalization result for such a
concavity was established in [[/(] (see Remark 3.9). Then, in comparison with convexity, it is
natural to ask an analog to the above characterization of convex Finsler or Berwald manifolds.
Our main theorem provides an answer to this question in the setting of Berwald spacetimes.

Theorem 1.1 (Characterizations of concavity). Let (M, L) be a Berwald spacetime. Then,
the following are equivalent.

(I) (M, L) has nonnegative flag curvature K > 0 in timelike directions, namely K(v,w) > 0
for every pair of linearly independent vectors v,w € T, M such that v is future-directed
timelike.

M, L) is locally concave.

M, L) is locally timelike concave.
M, L) has convex future capsules.
M, L)

has convex past capsules.



See Definition 3.1 for the precise definition of local (timelike) concavity. Having convex
future or past capsules is a condition inspired by [I[<I<]; see Definition 4.1. Finsler spacetimes
generalize usual (Lorentzian) spacetimes in the same way that Finsler manifolds generalize
Riemannian manifolds, and the Berwald condition is defined in the same way as well. Finsler
and Berwald spacetimes have been studied from both geometric and physical viewpoints (see
Section 2).

Theorem 1.1 is new even in the case of Lorentzian manifolds. Then, the equivalence
between local (timelike) concavity and nonnegative sectional curvature can be regarded as a
direct generalization of the aforementioned result of Busemann [Bu].

Corollary 1.2 (Lorentzian case). Let (M, g) be a Lorentzian spacetime. Then, the following
are equivalent.

(I)
(11

,g) has nonnegative sectional curvature in timelike directions.

) ,g) 1s locally concave.
(I11)

(IV)

(M, g)
(M, g)
(M, g) is locally timelike concave.
(M, g) has convex future capsules.
(M, g)

(V) ,g) has convex past capsules.

Our proof of Theorem 1.1 follows the lines of [I<I<, ]. Due to a common difficulty in
Lorentzian geometry, the noncompactness of the indicatrix in the tangent spaces, we could not
generalize the argument in [I1.]. Thus, it remains an open question whether locally (timelike)
concave Finsler spacetimes necessarily satisfy the Berwald condition (see Subsection 5.1 for
more details).

This article is organized as follows. After reviewing the basics of Finsler spacetimes in
Section 2, we prove the equivalence between concavity and nonnegative flag curvature in
Section 3. We then give another characterization of nonnegative flag curvature by convex
capsules in Section 4. Finally, Section 5 is devoted to discussing some open problems on
concavity, compared to the convexity of metric spaces.

2 Finsler spacetimes

We review the basics of Finsler spacetimes (see | , ON] for the standard theory of Lorentzian
spacetimes). Our definition of Finsler spacetimes follows Beem’s one [Bec] (see [ , §2.1]
for the relationship with other definitions). Concerning recent development, we refer to
[ , ] for singularity and comparison theorems, | , | for timelike splitting
theorems, and to [BO] for the timelike curvature-dimension condition.

2.1 Lorentz—Finsler manifolds

Throughout the article, let M be a connected C'**°-manifold without boundary of dimension
n > 2.

Definition 2.1 (Lorentz-Finsler structures). A Lorentz-Finsler structure on M is a function
L: TM — R satisfying the following conditions:



(1) L e C>(TM\{0});
(2) L(cv) = ?L(v) for all v € TM and ¢ > 0;

(3) For any v € TM \ {0}, the symmetric matrix
n
) = (@) @
J=
is non-degenerate with signature (—,+,...,+).
Then, we call (M, L) a (C*°-) Lorentz—Finsler manifold.
For each v € T, M \ {0}, we can define a Lorentzian metric g, on T, M via (2.1) as

Gv <Z A ~— i > = zn: gij(v)azbj
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Note that we have g,(v,v) = 2L(v) by Euler’s homogeneous function theorem.

A tangent vector v € T'M is said to be timelike (resp. null) if L(v) < 0 (resp. L(v) = 0).
We say that v is lightlike if it is null and nonzero, and causal if it is timelike or lightlike.
Spacelike vectors are v € TM such that L(v) > 0 or v = 0. Denote by Q. C T,,M the set of
timelike vectors. For causal vectors v, we define

F(v) = /2L (v) = \/—gu(v,v). (2.2)

Definition 2.2 (Finsler spacetimes). If a Lorentz—Finsler manifold (M, L) admits a smooth
timelike vector field X, then (M, L) is said to be time-oriented (by X). A time-oriented
Lorentz—Finsler manifold is called a Finsler spacetime.

In a Finsler spacetime time-oriented by X, a causal vector v € T, M is said to be future-
directed if it lies in the same connected component of Q. \ {0} as X (x). We denote by Q, C Q,
the set of future-directed timelike vectors, and define

= Q.

reM

A C'-curve in M is said to be timelike (resp. causal) if its tangent vector is always timelike
(resp. causal). Henceforth, unless explicitly stated otherwise, all causal curves are assumed to
be future-directed (i.e., its tangent vector is future-directed causal).

Next, we introduce the covariant derivative. Define

Ogi. . Ogj1  Ogjk
’Ll
v Zg (8aﬂ Pk~ 0l )(”)

for 4,5,k =1,...,n and v € TM \ {0}, where (¢ (v)) is the inverse matrix of (g;;(v));
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for v € TM \ {0}, and G*(0) = N;(O) := 0. Moreover, we set
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on TM \ {0}, and the covariant derivative of a vector field Y = Y"1 | Y¥(9/0x") is defined as

D;;’Y:—Z{ aY’ +ZF’ w)r! YR ( )}(fzi

ij=1

for v € T, M with a reference vector w € T, M \ {0}. We remark that the functions I'} Gk In
(2.3) are the coefficients of the Chern(—Rund) connection.

In the Lorentzian case, g;; is constant in each tangent space (thus, F;k = 'y;k) and the
covariant derivative does not depend on the choice of a reference vector. In the Lorentz—Finsler
setting, the following class is worth considering.

Definition 2.3 (Berwald spacetimes). A Finsler spacetime (M, L) is said to be of Berwald
type (or called a Berwald spacetime) if F?k is constant on the slit tangent space T, M \ {0} for
every .

By definition, the covariant derivative on a Berwald spacetime is defined independently
of the choice of a reference vector. Thus, in the sequel, reference vectors will be omitted in
Berwald spacetimes. An important property of Berwald spacetimes is that, for any C'-curve
n: [0,1] — M whose velocity does not vanish, the parallel transport along 1 gives a linear
isometry between (T;,)M, L) and (T),(1;)M, L), i.e., for any vector field V' along 7 such that
DyV =0, L(V) is constant (see, e.g., [Oh2, Proposition 6.5] in the positive definite case). In
particular, all tangent spaces are mutually linearly isometric.

Remark 2.4 (Metrizability). In the positive definite case, Szab6 showed that a Finsler
manifold of Berwald type (M, F') admits a Riemannian metric h whose Levi-Civita connection
coincides with the Chern connection of F', i.e., the Christoffel symbols of h coincide with I‘;k of
F (see [57], [ , Exercise 10.1.4]). This is called the (Riemannian) metrizability theorem. It
is not known whether the metrizability can be generalized to Berwald spacetimes. In [ I,
some counter-examples were constructed for Lorentz—Finsler structures defined only on a
subset of T'M. Their discussion is not applicable to Lorentz—Finsler structures defined on the
entire tangent bundle as in Definition 2.1.

The geodesic equation is D?]n = 0. Then, the exponential map is defined in the same way
as the Riemannian (or Finsler) case. For C'!-vector fields V, W along a nonconstant geodesic
1, we have

d . .
Moreover, for C'-vector fields V, W along a C'-curve 7 such that V is nowhere vanishing,
d v 1%
g v (VeW)] = gv(Dy V.W) + gv (V. Dy W) (2.5)
(see, e.g., [ , (3.1), (3.2)], [Oh2, Lemmas 4.8, 4.9]).



A C®™-vector field J along a geodesic 7 is called a Jacobi field if it satisfies the Jacobi
equation DnDnJ + Ry(J) =0, where

)= Z Rj(v)w’ py
7,7=1 T
for v,w € T, M and
i 8GZ S aNZ k 8NZ k i k
Ri(0) i= o) = Y G 0k = 520064 0) + NN o)

k=1

is the curvature tensor. A Jacobi field is also characterized as the variational Vector field of a
geodesic variation. One can further expand this as R} (v) = 37 ;- ng »(v)vFvl) where

i 81-\21 - mar};l l . i m i m
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(see | , (3.3.2)], [Oh2, (5.10)] in the positive definite setting).
For v € Q, and w € T, M linearly independent of v, define the flag curvature of the 2-plane
(flag) v A w with flagpole v as

go(Ry(w), w)

K(U,?U) = gv(v,'[))gv(w,UJ) - gv(”vw)Q.

Note that the denominator is negative (by the reverse Cauchy—Schwarz inequality for g, as in
(3.3) below). We say that the timelike flag curvature is nonnegative or K > 0 holds in timelike
directions if K(v,w) > 0 for all v and w as above.

Remark 2.5 (Sign of K). The sign of K (in timelike directions) above is the same as
[ , | and opposite to | |. Thus, the nonnegative flag curvature K > 0 in timelike
directions corresponds to the nonpositive timelike curvature in the sense of [A3, , KS] (ct.
[KXS, Example 4.9], | , Remark 2.2]). Note also that K > 0 holds in timelike directions
for the de Sitter space (Lorentzian pseudo-sphere) and product spacetimes (R x N, —dt? + h)
where (N, h) is an Hadamard manifold.

2.2 Causality conditions and geodesics

Given x,y € M, we write x < y (resp. < y) if there is a timelike (resp. causal) curve from x
to vy, and = < y means that x = y or x < y. Then, we define the chronological past and future
of x by

I"(@)={yeMly<a}, I"(z):={yeMlz<y},

and the causal past and future of x by
J () ={yeMly<az}, J'(2):={yeM|z<y}
Definition 2.6 (Causality conditions). Let (M, L) be a Finsler spacetime.

(1) (M, L) is said to be chronological if x ¢ It (x) for all z € M.



(2) We say that (M, L) is causal if there is no closed causal curve.

(3) (M, L) is said to be strongly causal if, for all x € M, every neighborhood U of = contains
another neighborhood V' of x such that no causal curve intersects V' more than once. In
particular, the topology contains a basis of causally convex sets.

(4) We say that (M, L) is globally hyperbolic if it is strongly causal and, for any z,y € M,
JT(z) N J(y) is compact.

Define the time separation (also called the Lorentz—Finsler distance) 7(z,y) for z,y € M
by

1
rlog) =S, L) = [ Fi) e
n 0

where the supremum is taken over all (piecewise C!) causal curves n: [0,1] — M from z to y.
We set 7(x,y) := 0 if £ y. A curve 7 attaining the above supremum is said to be mazimizing.
In general, 7 is only lower semi-continuous and can be infinite (see, e.g., [ , Proposition 6.7]).
In globally hyperbolic Finsler spacetimes, 7 is finite and continuous, and any pair of points
x,y € M with z < y admits a maximizing geodesic from z to y (Avez—Seifert-type theorem;
see [Mi2, Propositions 6.8, 6.9]).

3 Concavity of Berwald spacetimes

Let (M, L) be a Finsler spacetime. For each x € M, there exists a convex normal neighborhood
U C M of z in the sense that, for every y € U, the exponential map exp, gives a Cl-
diffeomorphism from an open star-shaped set U, C T, M onto U (see [Mil, Theorem 4]). In
particular, for any y, z € U, there is a unique geodesic from y to z contained in U. In this and
the following sections, since we shall deal only with local structures (governed by curvature),
we are concerned with causal relations and the time separation restricted to U. They coincide
with the global ones if (M, L) is strongly causal (by taking U smaller if necessary).

The following is a Lorentzian analog to the convezity of metric spaces (also called the
Busemann nonpositive curvature; recall the introduction), inspired by | , ].

Definition 3.1 (Concavity). Let (M, L) be a Finsler spacetime.

(1) We say that (M, L) is locally timelike concave if every x € M admits a convex normal
neighborhood U such that, for any timelike geodesics 1, ¢: [0,1] — U with n(t) <y &(t)
or n(t) =&(t) at t = 0,1, we have

T (n(t),£(t)) = (1 = t)7u(n(0),£(0)) + tru (n(1),£(1))
for all ¢ € [0, 1].

(2) We say that (M, L) is locally concave if every x € M admits a convex normal neighborhood
U such that, for any geodesics n,&: [0,1] — U with n(t) <y &£(t) or n(t) = £(t) at t = 0,1,
we have

T (n(t),£(t)) = (1 = t)7u(n(0),£(0)) + tru (n(1),£(1))
for all ¢t € [0, 1].



Here we respectively denote by <y and 7y the timelike relation and time separation on
(U, L|y).

In the sequel, for simplicity, we will suppress U in <y and 7.

Remark 3.2 (Causal character of geodesics). Note that 1, in (2) above are not necessarily
causal, and that local concavity clearly implies local timelike concavity. It was proved in
[ , Proposition 6.1] that a Lorentzian pre-length space of timelike nonpositive curvature
in the sense of strict causal triangle comparison is locally timelike concave (recall Remark 2.5
for the sign convention in timelike curvature bounds). In such a synthetic setting, it is natural
to consider only timelike geodesics, since we do not know how to define spacelike geodesics.
Then, in [/(;, Definition 2.1], local timelike concavity as in (1) above is termed local concavity.
For Berwald spacetimes, we will see that local timelike concavity and local concavity are, in
fact, equivalent.

To show the local concavity from K > 0, we can apply a similar calculation to the positive
definite case (cf. | ], [Oh2, Theorem 8.30]), while causality needs to be addressed. A
related result in the Lorentzian case can be found in | , Proposition 11.15(1)].

Proposition 3.3 (Concave norm). Let (M, L) be a Berwald spacetime of nonnegative flag
curvature K > 0 in timelike directions. If o: [0,1] x (—e,e) — U is a variation in a convex
normal neighborhood U such that o5(t) := o(t,s) is a geodesic for each s € (—¢,¢) and that
V(t,s):= 0s0(t,s) is timelike for all (t,s), then, for every s, the function t — F(V (t,s)) is
concave.

Proof. Put T'(t,s) := 0i0(t,s). Observe from (2.2) and (2.5) that

O F2(V Plgv(V,V
[at2( )] — _ [gva(tZ )] = —29‘/(‘/, DTDTV) — QQV(DT‘/: DTV)

(recall that we can omit reference vectors in Berwald spacetimes). Since V' (-, s) is a Jacobi
field by the hypothesis for o, we find

n . , 9
gv(V,DrDrV) = —gv(V,Rr(V)) = —gv (V, > ;jk(T)V]Tleaa:i>- (3.1)
ijikl=1

Note that Rfjk(T) = Rfjk(V) by the Berwald condition, and that

ij k=1 (3.2)

= K(V7 T){gV(V7 V)gV (Ta T) - gV(V7 T)2}7
where the first equation follows from [Oh2, Lemma 5.15(iv)] (which is valid regardless of the
signature of metrics).

Now, K(V,T) > 0 by hypothesis and, choosing a local chart (z*)"_; which is gy -orthonormal
with 8/0z! = V/F(V), we observe

F*(V)gy(T,T) + gv(V,T)* =V} (—Tf + ZT2> + ()% > 0. (3.3)
=2

8



Hence, we obtain

O*[F(V)] 1 o[FA(v) 1 (G[F(V)]>2

oz~ 2F(V) o2 F(V)\ ot
_gv(DrV,DrV) 1 (gv<v,DTV))2 (3.4)
= F(V) FOOY\ F(V)
1

— 2 2
= g U V)av (DrV, DrV) + gu (V. DrV )2,
Since F2(V)gy(D7V, DrV) + gy (V, DrV)? > 0 by (3.3), this implies that 8?[F(V)]/0t? < 0.
Therefore, F(V (t,s)) is concave in t. O

The following two lemmas are concerned with the causality issue.

Lemma 3.4 (Timelike homotopy). Let U be a convex normal neighborhood in a Finsler
spacetime (M, L). Then, for any timelike curves a, 3: [0,1] — U, there exists a homotopy
h:[0,1] x [0,1] — U such that h(0;s) = a(s), h(1;s) = B(s) and s — h(t;s) is timelike for
each t, and that h and Osh are continuous.

Proof. Put z = «(0), y = 5(0) and let n: [0,1] — U be the geodesic from = to y. Consider a
smooth timelike vector field X that exists by time orientation and, replacing it with ¢X for
small ¢ > 0 if necessary, we assume that exp, ) (sX(n(t))) € U for all ¢, s € [0, 1].

We first choose a homotopy h; from « to the geodesic from z to a(e) for small € > 0, and
take v € Q, with a(e) = exp,(v). Then, set

ha(t; s) := exp, (s((l -t + tX(:n))), hs(t; 5) == exp, () (sX(n(t)))

for t,s € [0,1]. Concatenating hi1, he and h3, and connecting h3(1;s) = exp, (sX(y)) and 3 in
the same way, we obtain a homotopy that satisfies the desired property. O

Lemma 3.5 (Timelike variation). Let (M, L) be a Berwald spacetime of nonnegative flag
curvature K > 0 in timelike directions, and U C M be a convex normal neighborhood. Given
timelike curves o, B: [0,1] — U, let t — o(t,s) be the geodesic from a(s) to S(s) in U.
Then, 0so is timelike and t — F(0s0(t, s)) is concave for each s € [0, 1].

Proof. Let h(\;s) be a homotopy between a and /5 given by Lemma 3.4, i.e., h(0;s) = a(s),
h(1;s) = B(s) and Osh is always timelike. For each A € [0,1], we consider the variation
E(X\;+, ) [0,1) x [0,1] — U such that t — Z(\; ¢, s) is the geodesic from =(\; 0, s) := h(A; s)
to E(A\;1,8) := B(s) in U. Observe that Z(0;t,s) = o(t,s) and Z(1;¢,s) = B(s).

Now, we set

Ao :=sup{\ € [0,1] | 8sE(A;¢t, s) is not timelike for some ¢, s € [0,1]}.

Note that A < 1, since 9,Z(1;t,s) = 5(s) is timelike and being timelike is an open condition.
Then, for any A € (Ao, 1], since 0;2(A;t, s) is timelike for all ¢,s € [0,1], it follows from
Proposition 3.3 that F(9s=(\;t,s)) is concave in ¢t. Taking the limit as A — Ao, we find that
F(0sE(\o;t,8)) is concave in t. Hence,

F(0sE(Xost, s)) > (1 —t)F(0s2(Xo3 0, 8)) + tF(9s=(Xo; 1, 8))

= (1 —=t)F(0sh(No; s)) +tF(B(s)) >0



for all t, s € [0,1]. This shows that 0sZ(\o; ¢, s) is also timelike for all ¢, s € [0, 1].

If A\p > 0, then we deduce from the openness of being a timelike vector that 9;Z(\;t, s) is
timelike for all t,s € [0,1] and A € (\g — ¢, 1] for sufficiently small £ > 0, contradicting the
definition of Ag. Consequently, A\g = 0 and 9sZ(\; t, s) is timelike for all A, ¢, s € [0, 1]. Taking
A = 0 implies that ds0 is timelike, and F(09s0(t,s)) = F(0s=(0;t,s)) is concave in t. O

We are ready to prove (I) = (II) in Theorem 1.1.

Theorem 3.6 (K > 0 implies concavity). Let (M, L) be a Berwald spacetime of nonnegative
flag curvature K > 0 in timelike directions. Then, (M, L) is locally concave.

Proof. Let U C M be a convex normal neighborhood. We first consider geodesics ,¢: [0, 1] —
U with n(0) < £(0) and n(1) < £(1). Then, take the geodesics a from 7(0) to £(0) and
from n(1) to £(1), and let o: [0,1] x [0,1] — U be the variation such that ¢(0,s) = a(s),
o(1,s) = B(s), and that ¢t — o(t, s) is the geodesic from «(s) to 5(s). Then, it follows from
Lemma 3.5 that Oso is timelike and F(0s0(t, s)) is concave in ¢. This implies that

1
L(t) := / F(9s0(t,s))ds
0
is concave, and hence

7(n(t),£()) = L(t) = (1 = H)L(0) + tL(1) = (1 — £)7(n(0), £(0)) + t(n(1),£(1)),

as desired.
The case of n(0) = £(0) or (1) = &(1) is obtained as the limit, thanks to the continuity of
geodesics in their endpoints (in U). O

The converse implication (from concavity to the Berwald condition and K > 0) was
established in the positive definite case in [I[L]; however, their argument cannot apply to the
Lorentzian setting (see Subsection 5.1 for more details). Here we consider a weaker result in
the spirit of [KI{], putting the Berwald condition in the assumption. To this end, we need
another preliminary lemma.

Lemma 3.7 (Concavity yields concave norm). Let J be a timelike Jacobi field along a timelike
geodesic n: [0,0] — U in a conver normal neighborhood U C M. If T is timelike concave in
U (in the sense of Definition 3.1), then t — F(J(t)) is concave. Similarly, if T is concave in
U, then F(J) is concave for every timelike Jacobi field J along any geodesic n in U.

Proof. Let o: [0,9]x(—¢,e) — U be any geodesic variation associated with J, i.e., o5 := o (-, 5)
is a geodesic for every s, oo =1, and 0s0(t,0) = J(¢) for all . Note that o5 is timelike for s
close to 0. Moreover, since J(t) is timelike, t — 7(n(t), 05(t)) is concave for small s > 0 by
timelike concavity. Then, the concavity of ¢t — F(J(t)) follows from

T(n(t), os(t))

li =F(J(1)).
i —= (/1)
The latter assertion is shown in the same way. O

The next theorem shows (III) = (I) in Theorem 1.1.

10



Theorem 3.8 (Timelike concavity implies K > 0). Let (M, L) be a Berwald spacetime. If
(M, L) is locally timelike concave, then we have K > 0 in timelike directions.

Proof. Suppose to the contrary that g,(R,(w),w) > 0 holds for some linearly independent
timelike vectors v, w € Q.. Let n: [0,d] — M be the geodesic with 7(0) = w and J be the
Jacobi field along 7 with J(0) = v and D;;J(0) = 0. Then, we have

Dy Dy J(0) = =Ry (v)
and, by (2.5),

d 1d

GULU®)| =55 le 0. I0)] = e(0.DiI(0) =0.

Combining these and recalling F' = /—2L, we obtain

d2 d 1 d
PO =g [ VW) A [L“(”)”t:o
5 0.
1

= W - o (v, Ry (V).

However, as we saw in (3.1) and (3.2), the Berwald condition ensures that

Gv (v, Ryy(v)) = gu(Ry(w), w) > 0.
This contradicts Lemma 3.7, and completes the proof. ]

Remark 3.9 (Globalization). (a) In the case of metric spaces, Busemann’s convexity is
known to enjoy the globalization property (called the Cartan-Hadamard theorem): If
a complete, connected metric space (X, d) is locally convex, then its universal cover X
with its induced length metric is globally convex (see [BI1, Theorem I1.4.1(1)] and the
references therein). In particular, if (X, d) is itself a simply connected length space, then
it is globally convex.

(b) In the Lorentzian setting, an analogous statement was proved in [X(;, Theorem 4.9]: If
a globally hyperbolic, regular Lorentzian length space X is locally concave and future
one-connected, then it is globally concave. Here, global hyperbolicity replaces the metric
completeness assumption, and future one-connectedness refers to the requirement that X
be timelike path-connected and any pair of future-directed timelike curves with common
endpoints be homotopic through a family of timelike curves. Recall from Remark 3.2 that
concavity in [/(G] means timelike concavity in the sense of Definition 3.1.

4 Convex capsules

We next consider another kind of characterization of the concavity condition for Berwald
spacetimes. Inspired by [I[{I{], we introduce the following.

11



Figure 1: The convex past capsule associated to a geodesic ~.

Definition 4.1 (Convex capsules). A Finsler spacetime (M, L) is said to have convex future
capsules if, for every x € M, there exists a convex normal neighborhood U, of x and r > 0
such that the set

Ki.(y)=HL(wNU,
yey

is geodesically convex for any geodesic v contained in U,, where
Hi (y)={z€ M |1(y,z) > r}.
To have convez past capsules is defined in the same way with

KZ,(v) = H:,W)NU:,  H:(y):={z€ M|7(z,y) >r}.

(To be more precise, 7 in the definitions of H;, (y) should be read as 1ys,.)

In [KK, Definition 3], they considered the convexity of a neighborhood of a short geodesic
in a metric space, whose shape indeed resembles a capsule. In our definition, K iﬂ, (v) does
not look like a capsule (see Figure 1), but we keep the name and notation to make the
correspondence with [I[{I{] transparent.

Proposition 4.2 (Concavity implies convex capsules). If a Berwald spacetime (M, L) is
locally concave, then it has convex future and past capsules.

Proof. Given z € M, let U, be a convex normal neighborhood of x and ~ be any geodesic
in U,. Take 21,20 € K := K;(y) C U, and let a: [0,1] — U, be the geodesic from z; to
z9. Since 21,22 € K, we find t1,ty € [0,1] such that 7(y(t1),21) > r and 7(y(t2),22) > 7. If
t1 < tg, then, we infer from the assumed concavity that, for any s € [0, 1],

7'(7((1 — 8)ty + stg),a(s)) > (1= s)7(y(t1), 21) + sT(7(t2), 22) > 1.

This shows that a(s) € K. If to < t;, then we observe from the Berwald condition that
the reversal of 'y|[t2,t1] is still a geodesic from v(¢1) to v(t2) and the above argument shows
a(s) € K. This completes the proof for the future case.

We can see that concavity implies convex past capsules in the same way. ]
In the converse implication, we can roughly follow the argument in [I[XI] ((e) = (a) of
Theorem 1).

12



Figure 2: The geodesic variation o and a tangent hyperbola.

Proposition 4.3 (Convex capsules imply K > 0). Let (M, L) be a Berwald spacetime having
convex future capsules. Then, we have K > 0 in timelike directions. Similarly, if (M, L) is a
Berwald spacetime having convex past capsules, then K > 0 in timelike directions.

Proof. Let z € M. It is sufficient to show K(v,w) > 0 for any v € , and w € T, M satisfying
F(v) =1, gy(v,w) =0 and g,(w,w) = 1. For small r > 0, let n: [0,7] — U, be the geodesic
with 7(0) = v and W be the vector field along 7 such that W (0) = w and D,W = 0. (Recall

that we can drop reference vectors in Berwald spacetimes.) It follows from (2.4) or (2.5) that

d . . .
37 (9300, W)] = 9a(Di, W) + g4 63, D) = 0.

Hence, g;(7(t), W(t)) = 0 holds for all t € [0, 7].

Consider the variation o: [0,7] x (—¢,e) — U, such that o.(s) := o(t, s) is the geodesic
with 64(0) = W (t), and define T' := 00 and V := 0s0 (thus V (¢,0) = W (t)). Note that
o, is tangent to HI () N U, at n(r) by g;(n(r), W(r)) = 0 (see Figure 2). Moreover, we
deduce from g;(n, W) = 0 and the first variation formula for L(s) := [j F(T(t,s))dt (see [BO,
Lemma 2.6]) that L’(0) = 0 and n(¢) ¢ K for ¢t € [0, r), where

K:=KZ(00)= |J HI.(00(s)NU,.
SE( )

Since K is a geodesically convex set (by hypothesis) including H;L,, () N U,, we infer that o,
is also tangent to K. This implies that, by the convexity of K, o, does not enter the interior
of K. In particular, o,(s) is not in the interior of H;(Uo(s)) N U,. Hence,

L(s) < 7(00(s),0.(s)) <.

Combining this with L(0) = r and L'(0) = 0, we obtain L”(0) < 0.
For each t € [0,7], s — T'(t, s) is a Jacobi field along o; by construction. Thus, we find
that
O°[F*(T)]
0s?

= 2910 R (1)) — 20(Dw T, Dw T)

S=
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(recall V' (t,0) = W (t)). In the first term, by (3.1), (3.2) and D,W = 0, we infer that
93 (1, R (1)) = K, W) {94 (0, 1) ga(W, W) — g3 (2, W)*} = =K (5, W),
As to the second term, we have
DyT(t,0) = DrV (t,0) = D;W(t) = 0.

Hence, by a similar calculation to (3.4) (using F'(77) = 1), we obtain

L"(0) = /07“{132[1“2(7”)] =0 (WE&T)] s=o)2}dt

2 0s?
= —/0 {K(7, W) + g;(n, DwT)?} dt

:—/OTK(ﬁ,W)dt.

Since K is continuous, letting r — 0 yields K(v,w) > 0.
The case of convex past capsules is shown in the same way, using the geodesic n: [—r,0] —
U, with 17(0) = v. Alternatively, we can reduce the past case for L to the future case with

respect to the reverse Lorentz—Finsler structure L(v) := L(—v), for the curvature bound
K > 0 (in timelike directions) for L is equivalent to that for L (cf. | , Remark 8.14],
[Oh2, §2.5]). ]

Remark 4.4 (Spacelike geodesics). Note that, by construction, 4(0) = W(t) is spacelike with
respect to g;(¢). This is the reason why we introduced not only local timelike concavity but also
local concavity in Definition 3.1, although it is desirable to deal only with causal curves. In
fact, for spacelike geodesics, nothing can be said about their maximality or minimality; thus, it
is not known how to consider spacelike geodesics in the synthetic setting like [ , , KSJ.

The proof of Theorem 1.1 is now complete: (I) = (II) by Theorem 3.6, (II) = (III) is
obvious, (IIT) = (I) by Theorem 3.8, (II) = (IV) and (V) by Proposition 4.2, (IV) or (V) =
(I) by Proposition 4.3.

5 Further problems

This section is devoted to discussions on some remaining open problems.

5.1 From concavity to the Berwald condition

In this subsection, we consider general (non-Berwald) Finsler spacetimes and explain difficulties
in following the argument in [IL] in the positive definite case. Notice that Lemma 3.1 and
Proposition 4.1 in [I[.] can be generalized as follows.

Lemma 5.1 (cf. [[L, Lemma 3.1]). Let (M, L) be a locally concave Finsler spacetime. Then, for
every parallel vector field V' along any nonconstant geodesic n: [0,1] — M with V(0) € Q(0)

(i.e., DZV =0), L(V) is constant. In particular, V (t) € Q) for all t € [0,1].

14



Proof. Let J be the Jacobi field along 1 with J(0) = 0 and DZJ(O) = V(0). Observe that
DIDIJ(0) = —R;(0) = 0.

Comparing this with D[tV (t)] = V(t) and D} DJ[tV (t)] = 0, we find J(t) = tV (t) + O(t*). It
follows that
F(J(t) =tF(V(t) +0(*) ast—0.

Combining this with the concavity of ¢ — F(J(t)) by Lemma 3.7, we obtain F(J(t)) <
tF(V(0)). Hence, we have

FV(1) = TF(I(0) +0() < F(V(0)) +O().

This implies q
SIFV®)] <o,
and similarly &[F(V(¢))] < 0 for all ¢ € (0,1) such that V(¢) is timelike.
The same argument for the reverse Lorentz—Finsler structure L(v) := L(—v) shows that
%[F(V(t))] > 0 for all ¢ € (0,1] such that V(¢) is timelike. Indeed, 7(t) := n(1 —t) is a
geodesic for L and &[F(—V (¢))] > 0 follows with

F(=V) = \/—20(~V) = F(V).

Therefore, FI(V(t)) is constant and V (¢) is timelike for all ¢ € [0, 1]. O

Proposition 5.2 (cf. [I1., Proposition 4.1]). Let (M, L) be a Finsler spacetime, and suppose
that there is a Lorentzian metric g on M which is preserved by every parallel transport along
any geodesic. Then, g and L have the same geodesics and, in particular, L is of Berwald type.

Proof. In this proof, we emphasize “g-” for objects considered with respect to g; otherwise,
they are with respect to L.
Denote by VY the g-covariant derivative. Fix x € M and, for v € T, M, we define

w(v) := Vi[m](0) € T, M,

where 7, is the geodesic with 7,(0) = v. We shall show that x vanishes for all v € T, M,
namely 7, is also a g-geodesic.
Given w € T; M, let W be the parallel vector field along 7, such that W (0) = w (i.e.,
D*W = 0). We claim that
d

o [H(v + Sw)L:o =2ViW(0). (5.1)

The left-hand side can be understood in terms of local coordinates as

z": % [ﬁi(v + sw)} o 8(?31'

=1

e T, M.

xT

To this end, we employ a normal coordinate system with respect to g around z (see, e.g., [ON,
Proposition 3.33]). Then, the g-Christoffel symbols at x vanish, thereby

ooy O 0

L WIW(0) = S W)
x =1

T
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This implies that

d " d -~ 0
45 [’f(” +sw } 0 pat ds {nv—&—sw } =0 8:102 ; dt? [88 [%"FSW(t)} s=0:| =0 0’ x
We set

0

noH .
= Zzz:l % [anrsw (t)}s:() ’ Ozt .

which is a Jacobi field along 7, such that J(0) = 0 and DZ;) J(0) = w. It follows that
J(t) = tW(t) + O(t3) (as in the proof of Lemma 5.1

; J10) &L‘z

)

), and hence
=320
or'|,

= 2VIW(0).

This yields (5.1).
Now, for any parallel vector fields V, W along 7,,, we infer from the hypothesis that
d
0= = |9(V.W)| = g(V{V, W) + g(V, VIW). (5.2)
On the one hand, plugging V' =W = 1,44, into (5.2) at ¢t = 0 implies g(k(v+ sw), v+ sw) = 0.
Combining this with (5.1), we find, for W as in (5.1),

0= % [g(/f(v + sw), v + sw)L:O =2g(ViW(0),v) + g(x(v), w).

On the other hand, (5.2) with V' =1, and W as in (5.1) at ¢ = 0 shows

g(k(v),w) 4+ g(v, VIW(0)) =

Comparing these equations, we obtain g(k(v),w) = 0. Since w € T, M was arbitrary, x(v) = 0
holds. Therefore, g and L have the same geodesics. This implies that the Chern connection of
L coincides with the Levi-Civita connection of g, thereby L is of Berwald type. O

Remark 5.3 (Canonical Lorentzian metrics). In order to build a bridge between Lemma 5.1
and Proposition 5.2, in the situation of Lemma 5.1, we need to construct a Lorentzian metric
g satisfying the hypothesis in Proposition 5.2. In the positive definite case, it was done in
[IL., Proposition 4.2] by using a Riemannian metric “canonically” associated with a Finsler
metric. Such a construction is not known in Lorentz—Finsler geometry; this is indeed a major
obstacle in the metrization problem (recall Remark 2.4). It is sufficient to find a “canonical”
way of choosing a finite measure on each tangent space T, M, as taking an average of g, in
v € T, M with that measure provides a Lorentzian metric (in the positive definite case, the
uniform measure on the unit ball or sphere plays a role). However, the noncompactness of the
isometry group of Minkowski metrics arises as an essential difficulty in such a construction.

5.2 Concavity and the variance functional

In the positive definite case, there is an interesting nonsmooth characterization of Busemann’s
convexity in terms of optimal transport theory. We refer to [Vi] for the basic knowledge of
optimal transport theory.
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Let (X, d) be a complete geodesic space. Given a Borel probability measure p € Pa(X) of
finite second moment, its variance is defined by

var(p) r=mlg)f( d*(x, y) p(dy).

A point x € X achieving the above infimum is called a barycenter (also called center of mass

or Fréchet mean) of p. If (X, d) is globally convex, then the set of barycenters of 1 is a convex
set. In the case where (X, d) is a complete CAT(0)-space, any p admits a unique barycenter.

Proposition 5.4 (Kim—Pass [[<P]). A complete separable geodesic space (X,d) is globally
convez if and only if \/var is convex along geodesics in the L?-Wasserstein space (Pa(X), Wa).

Proof. To be precise, it was shown in [I[<I’, Proposition 2.1] that d? is convex if and only if var
is convex. For completeness, we give a proof along the same lines as [I[<]].

In the “if” part, given minimizing geodesics v1,72: [0,1] — X, with 1(0) = ~2(0),
consider probability measures p; := (3, () + 0~y(r))/2- Then, (put)sejo,1] is @ Wa-geodesic and

var(ug) = %dQ (m1(t),72(1))

for all t € [0,1] (any midpoint of ~;(t) and ~2(t) is a barycenter of u;). Hence, the convexity

of y/var(u) implies that ¢t — d(y1(t),v2(t)) is convex.

For general minimizing geodesics 71,72 [0,1] — X, let n: [0,1] — X be a minimizing
geodesic from v1(0) to y2(1). Then, we deduce from the triangle inequality and the above
estimate that

d(mi(t),v2(t)) < d(vi(t),n(t)) + d(n(t),v2(t))
td(y1(1),72(1)) + (1 = t)d(71(0),72(0)).

IN

Thus, (X, d) is globally convex.

To see the “only if” part, let pu; = (er)«Il be a Wa-geodesic induced from a probability
measure II on the set I'(X) of minimizing geodesics n: [0,1] — X, where e;(n) := n(t) and
(e¢)+II denotes the push-forward of II by e; (see [Li, Theorem 6]). For arbitrary ¢ > 0, take
x; € X such that

1/2
([ Eamnn) < paru) +e, i=0.1
X

Let : [0,1] — X be the (unique) minimizing geodesic from zp to z1. Then, it follows from
the global convexity of (X, d) that

var(pe) < </X d*(7(t),y) ut(dy)>1/2 = </F(X) d* (v(t),n(t)) H(dn))1/2
1/2

< (/F(X (1= d(2(0).9(0)) + ta(3(1),n(1)) ' Ti(a))

a-0([, #eomonnan)” o[ e )

1/2

1—t< 220,y Mo(dy)>1/2+t(/X 2(o1,9) (dy))

(1 —t)\/var(up) + ty/var(u1) + €.
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Letting € — 0 shows that ¢ — y/var(u) is convex. O

Remark 5.5 (Variance and barycenter). To formulate a Lorentzian counterpart to Propo-
sition 5.4, we need an appropriate notion of variance, which is an open question. This is
related to another open question: how to define the barycenter of a probability measure
in a Lorentzian or Finsler spacetime? Even in the Minkowski space (R™, L), no reasonable
characterization of the linear average [g. « u(dz) in a synthetic/metric way seems to be known.
These notions will be helpful to develop probability theory and statistics on spacetimes.
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