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Abstract

We investigate barycenters of probability measures on proper Alexandrov spaces
of curvature bounded below, and show that they enjoy several properties relevant
to or different from those in metric spaces of curvature bounded above. We prove
the reverse variance inequality, and show that the push forward of a measure to the
tangent cone at its barycenter has the flat support.
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1 Introduction

In the Euclidean space Rn, the barycenter of a probability measure µ (with finite second
moment) is the point zµ =

∫
Rn x dµ(x). Among other ways, zµ is determined as the

unique minimizer of the function w 7−→
∫

Rn |w − x|2 dµ(x) for w ∈ Rn. This description
makes sense in metric spaces (see Section 3 for the precise definition). Then the map
µ 7−→ zµ gives a canonical way of contracting a measure to a point, and there are various
applications (see [Jo], [St2], [Oh3] and the references therein).

The behavior of barycenters is closely related to the curvature of X, and is well
investigated for metric spaces of curvature bounded above (CAT-spaces for short). For
instance, a barycenter zµ of µ uniquely exists in a CAT(0)-space (nonpositively curved
metric space), and then the map µ 7−→ zµ is 1-Lipschitz with respect to the L2-Wasserstein
distance. In contrast to this, the behavior of barycenters in metric spaces of curvature
bounded below (i.e., Alexandrov spaces) is less understood. Our aim of the present article
is to verify that barycenters are interesting objects also in such spaces.

Our results can be divided into two types: quantitative estimates relevant to known
results in CAT-spaces, and qualitative properties different from CAT-spaces. Our main
result of the first kind is the reverse variance inequality (Theorems 4.8, 5.2) which is
literally the reverse of the variance inequality known in CAT-spaces. As an application,
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in the Wasserstein space over an Alexandrov space, any two geodesics emanating from the
Dirac measure at their common barycenter have angle at most π/2 (Corollary 4.10). This
is a very different phenomenon than CAT-spaces. Another main result (Theorem 4.11)
asserts that the push forward of a measure to the tangent cone at its barycenter must
have the flat support. In particular, the origin of a singular cone can not be a barycenter
of a measure other than the Dirac measure at the origin (Corollary 4.12). This is also
different from CAT-spaces, and seems to have further applications.

The organization of the article is as follows. After reviewing the basics of Alexandrov
spaces and Wasserstein spaces in Section 2, we verify auxiliary lemmas on barycenters
in general proper metric spaces in Section 3. Then Section 4 is devoted to the study of
barycenters in Alexandrov spaces and our main results. Some estimates are improved in
Section 5 in the particular case of nonnegative (or positive) curvature, and we compare
them with nonpositively curved spaces.

Acknowledgements. This work stemmed from a discussion with Asuka Takatsu on her
work [TY] with Takumi Yokota. I am grateful to them for valuable comments throughout
the preparation of the article. Specifically, Yokota’s recent work [Yo] was essential to
improve the presentation of Theorem 4.11.

2 Preliminaries

We introduce some notations for later use. Let (X, d) be a metric space. The open ball of
center x ∈ X and radius r > 0 will be denoted by B(x, r). A rectifiable curve γ : [0, l] −→
X is called a geodesic if it is locally minimizing and parametrized proportionally to the
arc length. If γ is also globally minimizing, then it is said to be minimal. We call (X, d)
a geodesic space if every pair of points is connected by a minimal geodesic. Denote by
Γ(X) the set of all minimal geodesics γ : [0, 1] −→ X equipped with the uniform topology
induced from the distance dΓ(X)(γ, η) := supt∈[0,1] dX(γ(t), η(t)). For each t ∈ [0, 1], define
the evaluation map et : Γ(X) −→ X by et(γ) := γ(t). Observe that et is 1-Lipschitz.

Define P(X) as the set of all Borel probability measures on X, and define the subset
P2(X) ⊂ P(X) as µ ∈ P2(X) if

∫
X

d(w, x)2 dµ(x) < ∞ holds for some (and hence all)
w ∈ X. We denote by Pc(X) ⊂ P2(X) the subset of compactly supported measures.

2.1 Alexandrov spaces

We review the basics of Alexandrov spaces of curvature bounded below. We refer to
[ABN], [BGP], [OS] and [BBI] for further details.

For k ∈ R, we denote by M2(k) the two-dimensional simply-connected space form of
constant sectional curvature k. Then a geodesic space (X, d) is called an Alexandrov space
of curvature ≥ k if, given any three points x, y, z ∈ X (with d(x, y) + d(y, z) + d(z, x) ≤
2π/

√
k if k > 0) and any minimal geodesic γ : [0, 1] −→ X from x to y, it holds that

dX

(
z, γ(t)

)
≥ dM2(k)

(
z̃, γ̃(t)

)
(2.1)

for all t ∈ [0, 1], where 4x̃ỹz̃ ⊂ M2(k) is a comparison triangle satisfying

dX(x, y) = dM2(k)(x̃, ỹ), dX(y, z) = dM2(k)(ỹ, z̃), dX(z, x) = dM2(k)(z̃, x̃),
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and γ̃ : [0, 1] −→ M2(k) is the unique minimal geodesic from x̃ to ỹ. In the particular
case of k = 0, (2.1) is written as

d
(
z, γ(t)

)2 ≥ (1 − t)d(z, x)2 + td(z, y)2 − (1 − t)td(x, y)2. (2.2)

We present fundamental examples of Alexandrov spaces.

Example 2.1 (a) A complete Riemannian manifold is an Alexandrov space of curvature
≥ k if and only if its sectional curvature is not less than k everywhere.

(b) If (X, d) is an Alexandrov space of curvature ≥ k, then the scaled metric space
(X, c · d) with c > 0 is an Alexandrov space of curvature ≥ k/c2.

(c) Every Hilbert space is an Alexandrov space of nonnegative curvature.
(d) For a convex domain D in the Euclidean space Rn, the boundary ∂D equipped

with the length distance is an Alexandrov space of nonnegative curvature.
(e) The L2-Wasserstein space over a compact Alexandrov space of nonnegative curva-

ture is a compact (but infinite dimensional) Alexandrov space of nonnegative curvature.
See the next subsection for more details.

We briefly discuss the infinitesimal structure of an Alexandrov space (X, d). Fix z ∈ X
and let Σ̂z be the set of all (nontrivial) unit speed geodesics γ : [0, l] −→ X with γ(0) = z.
For γ, η ∈ Σ̂z, by virtue of the curvature bound (2.1), the joint limit

∠z(γ, η) := arccos

(
lim
s,t↓0

s2 + t2 − dX(γ(s), η(t))2

2st

)
∈ [0, π]

exists and is a pseudo-distance of Σ̂z. We define the space of directions (Σz, ∠z) at z as
the completion of Σ̂z/ ∼ with respect to ∠z, where γ ∼ η if ∠z(γ, η) = 0. The tangent
cone (Cz, dCz) is the Euclidean cone over (Σz,∠z), that is to say,

Cz := Σz × [0,∞)/Σz × {0},
dCz

(
(γ, s), (η, t)

)
:=

√
s2 + t2 − 2st cos ∠z(γ, η).

We also define the inner product of u = (γ, s),v = (η, t) ∈ Cz by

〈u,v〉z := st cos ∠z(γ, η) =
1

2
{s2 + t2 − dCz(u,v)2}.

We will denote the origin of Cz by oz. In Riemannian manifolds, spaces of directions and
tangent cones correspond to unit tangent spheres and tangent spaces, respectively.

Finite (Hausdorff) dimensional Alexandrov spaces are known to have remarkably nice
local structure. For instance, spaces of directions and tangent cones become Alexandrov
spaces of curvature ≥ 1 and ≥ 0, respectively, and (X, d) has a weak differentiable struc-
ture ([BGP], [OS]). However, infinite dimensional spaces can be much wilder: tangent
cones may not be even geodesic ([Ha]).

Given z ∈ X, we take the subset Dz ⊂ Cz consisting of elements v = (γ, t) ∈ Cz

associated with some unit speed minimal geodesic γ : [0, l] −→ X with γ(0) = z and l ≥ t.
On Dz, we can define the exponential map expz : Dz −→ X by expz(γ, t) := γ(t). As a
consequence of Lemmas 3.3, 4.2 below, there exists a measurable map logz : X −→ Dz

such that expz ◦ logz = idX . We call such a map logz a logarithmic map at z.
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2.2 Wasserstein spaces

We next explain (Kantorovich-Rubinstein-)Wasserstein spaces which play a key role in
the geometric aspect of optimal transport theory. We refer to the recent comprehensive
book of Villani [Vi] for further reading.

Let (X, d) be a proper metric space. For µ, ν ∈ P2(X), we say that π ∈ P(X × X) is
a coupling of µ and ν if π(A × X) = µ(A) and π(X × A) = ν(A) hold for all Borel sets
A ⊂ X. For instance, the product measure µ×ν is a coupling of µ and ν. Then we define
the (L2-)Wasserstein distance by

dW
2 (µ, ν) := inf

π

( ∫
X×X

d(x, y)2 dπ(x, y)

)1/2

, (2.3)

where π runs over all couplings of µ and ν. Note that dW
2 (µ, ν) is finite since µ, ν ∈ P2(X).

We call the metric space (P2(X), dW
2 ) the (L2-)Wasserstein space over X.

The following lemma is concerned with the non-branching property. We say that a
metric space (X, d) is non-branching if four points x, y0, y1, y2 ∈ X satisfy d(x, y0) =
d(x, yi) = d(y0, yi)/2 for i = 1, 2 only if y1 = y2. Observe that any Alexandrov space of
curvature bounded below is non-branching (see also Remark 5.1).

Lemma 2.2 ([Vi, Corollary 7.32]) Let (X, d) be a proper metric space. If (X, d) is non-
branching, then so is (P2(X), dW

2 ).

It is known by [LV, Theorem A.8] and [St4, Proposition 2.10] that the Wasserstein
space over a compact geodesic space (X, d) is an Alexandrov space of nonnegative cur-
vature if and only if so is (X, d) (recall Example 2.1(e)). However, over an Alexandrov
space of curvature ≥ −1 but not of nonnegative curvature, the Wasserstein space is not an
Alexandrov space of curvature ≥ k for any k ∈ R ([St4, Proposition 2.10]). Nonetheless,
we see in [Oh2, Theorem 3.6] that the angle between two geodesics in the Wasserstein
space makes sense. To be precise, for any minimal geodesics α, β : [0, δ] −→ Pc(X) with
the common starting point α(0) = β(0) =: µ, the limit

σµ(α, β) := lim
t↓0

dW
2 (α(t), β(t))

t

exists and, moreover, the angle

∠µ

(
α̇(0), β̇(0)

)
:= arccos

(
dW

2 (µ, α(δ))2 + dW
2 (µ, β(δ))2 − δ2σµ(α, β)2

2dW
2 (µ, α(δ))dW

2 (µ, β(δ))

)
(2.4)

is independent of reparametrizations of α and β. This means that (P2(X), dW
2 ) carries a

kind of Riemannian structure, and there are applications in gradient flow theory.

3 Barycenters in proper metric spaces

We verify some auxiliary lemmas on barycenters in general proper metric spaces.
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Let (X, d) be a metric space. For µ ∈ P2(X), a barycenter (or a center of mass) of µ
is a point in X which attains the infimum of the function

w 7−→
∫

X

d(w, x)2 dµ(x). (3.1)

Note that the infimum is finite for µ ∈ P2(X). In the language of Wasserstein geometry,
the Dirac measure δz at a barycenter z of µ is closest to µ among all Dirac measures. In
the Euclidean space Rn with the standard distance structure, every µ ∈ P2(Rn) admits
the unique barycenter

∫
Rn x dµ(x). In general metric spaces, however, neither existence

nor uniqueness can be expected:

Example 3.1 (a) Let X be the infinite dimensional ellipsoid of axes of lengths cn =
(n + 1)/2n with n ∈ N, namely

X =

{
(x1, x2, . . .) ∈ R∞

∣∣∣ ∑
n∈N

x2
n

c2
n

= 1

}
.

Then X is complete, but µ = (δ(1,0,0,...) + δ(−1,0,0,...))/2 has no barycenter in X.
(b) Let X be the n-dimensional sphere Sn (n ∈ N) and µ be the sum of one halves

of Dirac measures on the north and south poles. Then every point on the equator is a
barycenter of µ.

(c) Let X` be the Euclidean cone over a circle of length ` ∈ (0, 2π), and µ be the
normalized uniform distribution on B(o, 1), where o is the origin of the cone. Cutting
X` along a meridian and developing it in R2, we find that o is not a barycenter of µ.
Then, by symmetry, there is r` ∈ (0, 2/3) such that every point on the circle ∂B(o, r`) is
a barycenter, and r` tends to 0 (resp. 2/3) as ` goes to 2π (resp. 0).

This is a typical example demonstrating the difference between nonnegatively and
nonpositively curved spaces. On the one hand, the cone X` as above for l ∈ (0, 2π) is
an Alexandrov space of nonnegative curvature. On the other hand, for ` ≥ 2π, X` is a
CAT(0)-space (see Subsection 5.1) and the origin is a unique barycenter of µ.

Nevertheless, it is easy to see existence in proper metric spaces.

Lemma 3.2 If (X, d) is a proper metric space, then any µ ∈ P2(X) has a barycenter.

Proof. Fix z0 ∈ X and take r > 1 large enough to satisfy µ(B(z0, r)) ≥ 1/2 as well as∫
X\B(z0,r)

d(z0, x)2 dµ(x) ≤ 1. Then we have∫
X

d(z0, x)2 dµ(x) ≤ r2 · µ
(
B(z0, r)

)
+ 1 ≤ r2 + 1,

while for every w ∈ X \ B(z0, 3r)∫
X

d(w, x)2 dµ(x) ≥
∫

B(z0,r)

d(w, x)2 dµ(x) > (2r)2 · µ
(
B(z0, r)

)
≥ 2r2

holds. Therefore it is sufficient to consider the infimum of (3.1) only for w ∈ B(z0, 3r),
and it is achieved at some point due to the compactness of the closure of B(z0, 3r). 2
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Next we consider the contraction of a measure to its barycenter. Although the fol-
lowing measurable selection property is rather standard, we give a sketch of proof for
completeness.

Lemma 3.3 Let (X, d) be a proper geodesic space. Then, for any z ∈ X, there exists a
measurable map Φ : X −→ Γ(X) satisfying e0 ◦Φ(x) = z and e1 ◦Φ(x) = x for all x ∈ X.

Proof. As (X, d) is proper, (Γ(X), dΓ(X)) is also proper. We consider the map F : X −→
2Γ(X) defined by F (x) := e−1

0 (z) ∩ e−1
1 (x) ( 6= ∅). We shall show that

{x ∈ X |F (x) ∩ G 6= ∅} = e1(G ∩ Γz)

is a Borel set for every open set G ⊂ Γ(X), where Γz := e−1
0 (z). Then Kuratowski and

Ryll-Nardzewski’s classical selection theorem [KR] provides a measurable map Φ : X −→
Γ(X) with Φ(x) ∈ F (x) for all x ∈ X, as desired.

Fix a (nonempty) open set G ⊂ Γ(X). For δ > 0, let Aδ be the complement of the
open δ-neighborhood of Γ(X) \ (G ∩ Γz). Note that

⋃
δ>0 Aδ = G ∩ Γz. Given ε > 0, we

consider the set Uε of points x ∈ X such that there is a rectifiable curve ξ : [0, 1] −→ X
with ξ(0) = z, ξ(1) = x as well as infγ∈Aδ

supt∈[0,1] d(ξ(t), γ(t)) < ε. Observe that Uε is an
open set and that

⋂
ε>0 Uε = e1(Aδ). Hence

⋃
δ>0 e1(Aδ) = e1(G ∩ Γz) is a Borel set. 2

In particular, for any µ ∈ P(X), we find that Π = Φ]µ ∈ P(Γ(X)) satisfies (e0)]Π = δz

and (e1)]Π = µ.

Lemma 3.4 Let (X, d) be a proper geodesic space. Given a barycenter z of µ ∈ P2(X)
and Π ∈ P(Γ(X)) so that (e0)]Π = δz and (e1)]Π = µ, z is a barycenter of (et)]Π for all
t ∈ [0, 1).

Proof. Put µt := (et)]Π for t ∈ [0, 1]. Then
∫

X
d(z, y)2 dµt(y) = t2

∫
X

d(z, x)2 dµ(x)
clearly holds. Fix w ∈ X, t ∈ (0, 1) and γ ∈ supp Π. The triangle inequality verifies
d(w, γ(1)) ≤ d(w, γ(t)) + d(γ(t), γ(1)), and the convexity of the function s 7−→ s2 shows

d
(
w, γ(1)

)2 ≤ 1

t
d
(
w, γ(t)

)2
+

1

1 − t
d
(
γ(t), γ(1)

)2

=
1

t
d
(
w, γ(t)

)2
+ (1 − t)d

(
z, γ(1)

)2
.

Hence we have
d
(
w, γ(t)

)2 ≥ td
(
w, γ(1)

)2 − (1 − t)td
(
z, γ(1)

)2
. (3.2)

Integrating (3.2) with respect to Π yields∫
X

d(w, y)2 dµt(y) ≥ t

∫
X

d(w, x)2 dµ(x) − (1 − t)t

∫
X

d(z, x)2 dµ(x).

As z is a barycenter of µ, this implies∫
X

d(w, y)2 dµt(y) ≥ t2
∫

X

d(z, x)2 dµ(x) =

∫
X

d(z, y)2 dµt(y).

Therefore z is a barycenter of µt. The case of t = 0 is clear. 2
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We remark that, in Lemma 3.4, z is not necessarily a unique barycenter of µt.

Example 3.5 Let In := [−2−n+1, 2−n+1] for each n ∈ N and set

X :=

( ⊔
n∈N

In ∪ {z}
)/

∼,

where −2−n, 2−n ∈ In are identified with −2−n, 2−n ∈ In+1, respectively, and z is attached
as the limit point of the sequence {2−n+1 ∈ In}n∈N (or {−2−n+1 ∈ In}n∈N) as n goes to
infinity. Observe that X is compact with respect to the length distance, but not locally
simply connected at z. Now we consider unique minimal geodesics γ± : [0, 1] −→ X
from z to ±1 ∈ I1, and put µt := (δγ−(t) + δγ+(t))/2. Then z is a barycenter of µt for all
t ∈ [0, 1], but 0 ∈ In is also a barycenter of µt for t ∈ [2−n+1, 1]. Note that the point of
this construction is branching geodesics in X, compare this with Lemma 4.3.

The persistence of barycenter along a geodesic in the Wasserstein space holds true only
when contracting to the Dirac measure at the barycenter. That is to say, even if endpoints
α(0), α(1) of a minimal geodesic α : [0, 1] −→ P2(X) have a common berycenter z, it
does not necessarily imply that z is a barycenter of α(t) for t ∈ (0, 1). In fact, we can
show the following.

Proposition 3.6 Let (M, g) be a Riemannian manifold satisfying the property:

(∗) For any minimal geodesic α : [0, 1] −→ P2(M) such that a point z is a barycenter
of both α(0) and α(1), z is also a barycenter of α(t) for all t ∈ (0, 1).

Then (M, g) is flat.

Proof. Fix z ∈ M and unit vectors u,v ∈ TzM with ∠(u,v) = π/3. Let γ, η be geodesics
such that γ̇(0) = u and η̇(0) = v. For 0 < ε ¿ τ ¿ 1, we put

µ0 :=
τ

τ + ε
δγ(−2ε) +

ε

τ + ε
δγ(2τ), µ1 :=

τ

τ + ε
δη(−ε) +

ε

τ + ε
δη(τ).

Then z = γ(0) = η(0) is the unique barycenter of both µ0 and µ1. Moreover, the
optimal transport (minimal geodesic in the Wasserstein space) from µ0 to µ1 is done
along geodesics ξ : [0, 1] −→ M from γ(−2ε) to η(−ε) as well as ζ : [0, 1] −→ M from
γ(2τ) to η(τ). Let us consider the midpoint of µ0 and µ1:

µ1/2 =
τ

τ + ε
δξ(1/2) +

ε

τ + ε
δζ(1/2).

Note that the angle ∠η(τ)zζ(1/2) coincides with arccos(2/
√

7) if (M, g) is flat, and it
is smaller (larger, resp.) than arccos(2/

√
7) if the sectional curvature κ of the 2-plane

spanned by u and v is positive (negative, resp.). However, the angle ∠η(−ε)zξ(1/2)
can be arbitrarily close to arccos(2/

√
7) for small ε > 0. Therefore ∠η(τ)zζ(1/2) <

∠η(−ε)zξ(1/2) if κ > 0, and ∠η(τ)zζ(1/2) > ∠η(−ε)zξ(1/2) if κ < 0. Thus the minimal
geodesic between ξ(1/2) and ζ(1/2) does not pass through z if κ 6= 0, so that z is not a
barycenter of µ1/2. Hence (∗) is false unless (M, g) is flat. 2

It is easy to see that (∗) holds true in Hilbert spaces and, more generally, complete
geodesic spaces satisfying equality in (2.2).
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4 Barycenters in Alexandrov spaces

This section is the main part of the article. Throughout the section, (X, d) is a proper
Alexandrov space of curvature ≥ −1. Due to the scaling property as in Example 2.1(b),
choosing −1 as the lower bound does not lose any generality.

4.1 Preliminary lemmas

We start with preliminary lemmas for later convenience.

Lemma 4.1 Fix z ∈ X and take Π, Ξ ∈ P(Γ(X)) with (e0)]Π = (e0)]Ξ = δz as well as
(e1)]Π, (e1)]Ξ ∈ P2(X). Then we have

lim
t↓0

1

t2

∫
Γ(X)×Γ(X)

d
(
γ(t), η(t)

)2
dΠ(γ)dΞ(η) =

∫
Γ(X)×Γ(X)

lim
t↓0

d(γ(t), η(t))2

t2
dΠ(γ)dΞ(η).

Proof. Given R > 0, we set BR := e−1
1 (B(z,R)) ⊂ Γ(X) and Bc

R := Γ(X) \ BR. On the
one hand, the dominated convergence theorem yields∫

BR×BR

lim
t↓0

d(γ(t), η(t))2

t2
dΠ(γ)dΞ(η) = lim

t↓0

1

t2

∫
BR×BR

d
(
γ(t), η(t)

)2
dΠ(γ)dΞ(η).

On the other hand, it follows from the triangle inequality that

1

t2

∫
Bc

R×Γ(X)

d
(
γ(t), η(t)

)2
dΠ(γ)dΞ(η)

≤ 2

t2

∫
Bc

R

d
(
z, γ(t)

)2
dΠ(γ) +

2Π(Bc
R)

t2

∫
Γ(X)

d
(
z, η(t)

)2
dΞ(η)

= 2

∫
Bc

R

d
(
z, γ(1)

)2
dΠ(γ) + 2Π(Bc

R)

∫
Γ(X)

d
(
z, η(1)

)2
dΞ(η) → 0

as R diverges to infinity. Combining these, we complete the proof. 2

Given z ∈ X, put Γz := e−1
0 (z) ⊂ Γ(X). We define the one-to-one map Θ : Γz −→

Dz ⊂ Cz as the inverse of (γ, s) 7−→ γ̂, where γ̂(t) := γ(st).

Lemma 4.2 The map Θ : Γz −→ Cz is measurable.

Proof. It is sufficient to show that Θ−1(B(v, r)) is a Borel set for any v ∈ Cz and r > 0.
By approximation, we can assume that v is represented as v = (γ, s) with γ ∈ Σ̂z. Then
we observe

Θ−1
(
B(v, r)

)
=

{
η ∈ Γz

∣∣∣ lim
t↓0

d(γ(st), η(t))

t
< r

}
=

⋃
N∈N

⋂
m≥N

{
η ∈ Γz | d

(
γ(s/m), η(1/m)

)
< r/m

}
.

As every {η ∈ Γz | d(γ(s/m), η(1/m)) < r/m} is clearly Borel, so is Θ−1(B(v, r)). 2
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Composing Θ with the map Φ : X −→ Γz given by Lemma 3.3 ensures the existence
of a measurable logarithmic map logz : X −→ Dz. Combination of Lemmas 2.2, 3.4
immediately shows the following.

Lemma 4.3 Given a barycenter z of µ ∈ P2(X) and Π ∈ P(Γ(X)) with (e0)]Π = δz and
(e1)]Π = µ, z is a unique barycenter of (et)]Π for every t ∈ [0, 1).

Proof. If µt admits a barycenter z′ 6= z for some t ∈ (0, 1), then z′ is also a barycenter
of µ since

dW
2 (δz′ , µ) ≤ dW

2 (δz′ , µt) + dW
2 (µt, µ) = dW

2 (δz, µt) + dW
2 (µt, µ) = dW

2 (δz, µ).

Then, however, the non-branching property (Lemma 2.2) yields δz = δz′ , this is a contra-
diction. The case of t = 0 is clear. 2

The following lemma (to be improved in Lemma 4.6) is regarded as an infinitesimal
(and quantitative) version of Lemma 4.3.

Lemma 4.4 Let z be a barycenter of µ ∈ P2(X). Then, for any v ∈ Σz, any logarithmic
map logz : X −→ Cz and Λ := (logz)]µ, we have

∫
Cz
〈u,v〉z dΛ(u) ≤ 0. In other words,∫

Cz

dCz(v,u)2dΛ(u) ≥ dCz(oz,v)2 +

∫
Cz

dCz(oz,u)2 dΛ(u) (4.1)

holds. In particular, oz is a unique barycenter of Λ.

Proof. Let Φ : X −→ Γ(X) be the map associating x ∈ X with the geodesic γ ∈ Γ(X) so
that γ(t) = γ̄(td(z, x)) with logz(x) = (γ̄, d(z, x)) (see also Lemma 3.3), and put Π := Φ]µ.
Note that [Φ(x)](0) = z and [Φ(x)](1) = x, thus (e0)]Π = δz and (e1)]Π = µ.

As
∫

Cz
〈u,v〉z dΛ(u) is continuous in v, we can assume that v = (η, s) for some geodesic

η : [0, ε) −→ X with η(0) = z. Since z is a barycenter of µ, we have

0 ≥ 1

t

∫
X

{
d(x, z)2 − d

(
x, η(st)

)2}
dµ(x)

for t ∈ (0, ε). For each x, by putting logz(x) = (γ, d(z, x)), it follows from the (directional)
first variation formula ([OS, Fact (c-2)], [BBI, Proposition 4.5.2]) that

lim
t↓0

d(x, z)2 − d(x, η(st))2

t
≥ 2d(x, z)s cos

(
γ̇(0), η̇(0)

)
= 2〈logz(x),v〉z.

Thus we obtain
∫

Cz
〈u,v〉z dΛ(u) ≤ 0 by the dominated convegence theorem (as in

Lemma 4.1). 2
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4.2 Lang and Schroeder’s inequality and key lemma

We introduce Lang and Schroeder’s useful and important inequality. Their original version
([LS, Proposition 3.2]) is concerned with finitely supported measures, so that we slightly
generalize it to arbitrary measures.

Lemma 4.5 For any z ∈ X, µ ∈ P2(X), any logarithmic map logz : X −→ Cz and
Λ := (logz)]µ, we have ∫

Cz×Cz

〈u,v〉z dΛ(u)dΛ(v) ≥ 0.

Proof. Similarly to Lemma 4.1, it is sufficient to consider µ satisfying supp µ ⊂ B(z,R)
for some R > 0. We approximate µ by finitely supported measures {µi}i∈N with respect
to the weak convergence. Define the map Φ : X −→ Γ(X) as in Lemma 4.4 and put
µt := (et ◦Φ)]µ and µi

t := (et ◦Φ)]µ
i for t ∈ [0, 1]. We also set Λi := (logz)]µ

i and deduce
from [LS, Proposition 3.2] that

∫
Cz×Cz

〈u,v〉z dΛi(u)dΛi(v) ≥ 0, in other words,

2

∫
X

d(z, x)2 dµi(x) ≥
∫

X×X

lim
t↓0

d(x, y)2

t2
dµi

t(x)dµi
t(y).

Note that the lower curvature bound of X implies∫
X×X

lim
t↓0

d(x, y)2

t2
dµi

t(x)dµi
t(y) ≥

(
1 + θR(s)

) ∫
X×X

d(x, y)2

s2
dµi

s(x)dµi
s(y)

for sufficiently small s > 0 independent of i, where lims↓0 θR(s) = 0. As the closure of
B(x,R) is compact, letting i → ∞ and then s ↓ 0 yields (as in Lemma 4.1)

2

∫
Cz

dCz(oz,u)2 dΛ(u) ≥
∫

Cz×Cz

dCz(u,v)2 dΛ(u)dΛ(v).

This completes the proof. 2

The following lemma will be a key tool throughout the remainder of the article.

Lemma 4.6 Let z be a barycenter of µ ∈ P2(X). Then, for any v ∈ Σz, any logarithmic
map logz : X −→ Cz and Λ := (logz)]µ, we have∫

Cz

〈u,v〉z dΛ(u) = 0. (4.2)

Proof. Recall from Lemma 4.4 that
∫

Cz
〈u,v〉z dΛ(u) ≤ 0 generally holds. Combining this

with Lemma 4.5, we obtain
∫

Cz×Cz
〈u,w〉z dΛ(u)dΛ(w) = 0. We next apply Lemma 4.5

to (1 + ε)−1(Λ + εδv) and find∫
Cz×Cz

〈u,w〉z dΛ(u)dΛ(w) + 2ε

∫
Cz

〈u,v〉z dΛ(u) + ε2〈v,v〉z ≥ 0

for arbitrary ε > 0. As we saw that the first term vanishes, dividing both sides by ε and
letting ε go to zero show

∫
Cz
〈u,v〉z dΛ(u) ≥ 0. 2
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Remark 4.7 If every geodesic γ : [0, δ) −→ X can be extended to a slightly longer
geodesic γ̃ : (−ε, δ) −→ X (e.g., in Riemannian manifolds without boundary), then we
can find a direction −v ∈ Σz with ∠z(v,−v) = π for every v ∈ Σz, and easily deduce (4.2)
by comparing derivatives in the directions v and −v. For instance, however, geodesics can
not be extended beyond the origin of a singular cone. Lang and Schroeder’s inequality is
the key to overcome the difficulty arising from the absence of −v.

The equation (4.2) is rewritten as∫
Cz

dCz(v,u)2dΛ(u) = dCz(oz,v)2 +

∫
Cz

dCz(oz,u)2 dΛ(u). (4.3)

It is essential in (4.3) that the barycenter is the origin of a cone. More generally, inequality
(in the different directions) holds in (4.3) in nonnegatively or nonpositively curved spaces
(see Theorem 5.2(i) and (5.4)).

4.3 Reverse variance inequality and applications

Lemma 4.6 enables us to extend Sturm’s reverse variance inequality [St3, Lemma 8.4] to
spaces in which geodesics may not be extended (see Remark 4.7).

Theorem 4.8 Let z be a barycenter of µ ∈ P2(X). Then we have, for all w ∈ X,∫
X

cosh d(w, x)
d(z, x)

sinh d(z, x)
dµ(x) ≤ cosh d(z, w)

∫
X

cosh d(z, x)
d(z, x)

sinh d(z, x)
dµ(x).

Proof. Take a logarithmic map logz : X −→ Cz, put Λ := (logz)]µ, and fix a minimal
geodesic γ : [0, 1] −→ X from z to w. We deduce from (2.1) with k = −1 that∫

X

{cosh d(w, x) − cosh d(z, w) cosh d(z, x)} d(z, x)

sinh d(z, x)
dµ(x)

≤ −
∫

Cz

sinh d(z, w) sinh d(oz,u) cos ∠z

(
u, γ̇(0)

) d(oz,u)

sinh d(oz,u)
dΛ(u) = 0.

We used Lemma 4.6 in the last equality. 2

Applying Theorem 4.8 twice, we immediately obtain the following corollary.

Corollary 4.9 Let z, w ∈ X be barycenters of µ, ν ∈ P2(X), respectively. Then we have∫
X×X

cosh d(x, y)
d(z, x)

sinh d(z, x)

d(w, y)

sinh d(w, y)
dµ(x)dν(y)

≤ cosh d(z, w)

∫
X

cosh d(z, x)
d(z, x)

sinh d(z, x)
dµ(x)

∫
X

cosh d(w, y)
d(w, y)

sinh d(w, y)
dν(y).

Conversely, choosing ν = δw in Corollary 4.9 recovers Theorem 4.8. See Theorem 5.2
below for the analogue in nonnegatively or positively curved spaces.

The next corollary, inspired by [TY, Remark 4.3] in connection with [CG, (3.10)],
is concerned with an estimate in Wasserstein geometry. Recall (2.3) and (2.4) for the
Wasserstein distance dW

2 and the angle between geodesics in Pc(X).
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Corollary 4.10 Suppose that µ, ν ∈ Pc(X) \ {δz} have a common barycenter z, and let
Π, Ξ ∈ P(Γ(X)) satisfy (e0)]Π = (e0)]Ξ = δz, (e1)]Π = µ and (e1)]Ξ = ν. Then we have

∠δz

(
α̇(0), β̇(0)

)
≤ π

2
,

where we set α(t) := (et)]Π and β(t) := (et)]Ξ.

Proof. Note that, since α(t) × β(t) is a coupling of α(t) and β(t),

lim
t↓0

1

t2
dW

2

(
α(t), β(t)

)2 ≤ lim inf
t↓0

1

t2

∫
X×X

d(x, y)2 d[α(t)](x)d[β(t)](y).

Take R > 0 such that B(z,R) ⊃ supp µ ∪ supp ν and observe, for x, y ∈ B(z, tR),

d(x, y)2 = 2{cosh d(x, y) − 1} + O(t3),

2{cosh d(z, x) cosh d(z, y) − 1} = d(z, x)2 + d(z, y)2 + O(t3).

Thus it follows from Corollary 4.9 with z = w that∫
X×X

d(x, y)2 d[α(t)](x)d[β(t)](y)

≤
∫

X×X

{d(z, x)2 + d(z, y)2} d[α(t)](x)d[β(t)](y) + O(t3).

Therefore we have limt↓0 dW
2 (α(t), β(t))2/t2 ≤ dW

2 (δz, µ)2 + dW
2 (δz, ν)2, and hence

cos ∠δz

(
α̇(0), β̇(0)

)
=

dW
2 (δz, µ)2 + dW

2 (δz, ν)2 − limt↓0 dW
2 (α(t), β(t))2/t2

2dW
2 (δz, µ)dW

2 (δz, ν)
≥ 0.

2

Given z ∈ X, let Qz ⊂ Pc(X) be the set of measures adapting z as a barycenter. By
virtue of Lemma 3.4, Qz is starlike with the origin δz, however, Proposition 3.6 asserts
that Qz is not convex unless X is flat. In addition, Corollary 4.10 ensures that any pair
of geodesics in Qz emanating from δz has angle at most π/2. Lemma 4.3 shows that only
points at the boundary of Qz can also belong to some other stratum Qw.

4.4 Barycenters at the origins of tangent cones

Lemma 4.6 is also useful for deriving qualitative properties of barycenters. The follow-
ing theorem (inspired by Example 3.1(c)) asserts that a barycenter can live only in an
infinitesimally flat subset.

Theorem 4.11 Let z be a barycenter of µ ∈ P2(X) and suppose that (logz)]µ has sepa-
rable support for some logarithmic map logz : X −→ Cz. Then the support of (logz)]µ is
contained in a subset H ⊂ Cz which is isometric to a Hilbert space.
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Proof. Put Λ := (logz)]µ and note that Lemma 4.6 yields
∫

Cz×Cz
〈u,v〉z dΛ(u)dΛ(v) = 0.

Then, as supp Λ is separable, Yokota’s theorem [Yo, Theorems A, 27] can be applied and
shows that supp Λ is contained in a subset which is isometric to a Hilbert space. 2

Corollary 4.12 Suppose that, at a point z ∈ X, no pair of directions γ, η ∈ Σz satisfies
∠z(p, q) = π. Then, for µ ∈ P2(X) such that (logz)]µ has separable support for some
logarithmic map logz : X −→ Cz, z is a barycenter of µ if and only if µ = δz.

The assumption of separability in Theorem 4.11 holds true if µ has finite support or
if Cz itself is separable (e.g., if (X, d) is finite dimensional). The author does not know if
the separability of Cz generally follows from the properness of X.

In the finite dimensional case, the existence of a flat subset H ⊂ Cz as in Theorem 4.11
induces the isometric splitting Cz = Y×H, where Y is an Alexandrov space of nonnegative
curvature. The splitting theorem is also known in infinite dimensional Alexandrov spaces
of nonnegative curvature ([Mi, Theorem 1]). Lytchak [Ly, Remark 5.6] claims the splitting
of tangent cones of possibly infinite dimensional Alexandrov spaces, but then Y is not
necessarily an Alexandrov space.

5 In nonnegatively or positively curved spaces

In this last section, we consider a proper Alexandrov space (X, d) of curvature ≥ 0 or ≥ 1
where we can simplify or improve some of our results in the previous sections.

We first observe that the uniqueness of a barycenter as in Lemma 4.3 can be derived
in a more direct, quantitative way. To see this, in a proper Alexandrov space (X, d)
of nonnegative curvature, take a barycenter z of µ ∈ P2(X) and Π ∈ P(Γ(X)) with
(e0)]Π = δz and (e1)]Π = µ. We put µt := (et)]Π and observe that (2.2) improves (3.2)
into

d
(
w, γ(t)

)2 ≥ (1 − t)d(w, z)2 + td
(
w, γ(1)

)2 − (1 − t)td
(
z, γ(1)

)2
(5.1)

for any w ∈ X. As z is a barycenter of µ, the discussion as in Lemma 3.4 gives∫
X

d(w, y)2 dµt(y) ≥ (1 − t)d(z, w)2 +

∫
X

d(z, y)2 dµt(y).

Hence z is a unique barycenter of µt.

Remark 5.1 The above proof also works when we weaken the inequality (5.1) to

d
(
w, γ(t)

)2 ≥ 1 − t

C2
d(w, z)2 + td

(
w, γ(1)

)2 − (1 − t)td
(
z, γ(1)

)2
, (5.2)

where C ≥ 1 is a fixed constant. This condition is regarded as a generalization of the 2-
uniform convexity in Banach space theory, see [Oh1, Section 5], [Oh3] and the references
therein for more discussion. The 2-uniform convexity (5.2) implies the non-branching
property, so that the argument as in Lemma 4.3 is also applicable. To see the non-
branching property, take two minimal geodesics γ, η : [0, 1] −→ X with γ(1) = η(1) and
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γ(t) = η(t) for some t ∈ (0, 1). Then (5.2) implies

d
(
η(0), γ(t)

)2 ≥ 1 − t

C2
d
(
η(0), γ(0)

)2
+ td

(
η(0), γ(1)

)2 − (1 − t)td
(
γ(0), γ(1)

)2

=
1 − t

C2
d
(
η(0), γ(0)

)2
+ t2d

(
η(0), η(1)

)2
.

As d(η(0), γ(t)) = td(η(0), η(1)), we have η(0) = γ(0).

By a similar discussion to Theorem 4.8 and Corollary 4.9, we obtain the following.

Theorem 5.2 Let (X, d) be a proper Alexandrov space, and let z, w ∈ X be barycenters
of µ, ν ∈ P2(X), respectively.

(i) If (X, d) is of nonnegative curvature, then we have∫
X×X

d(x, y)2 dµ(x)dν(y) ≤ d(z, w)2 +

∫
X

d(z, x)2 dµ(x) +

∫
X

d(w, y)2 dν(y).

(ii) If (X, d) is of curvature ≥ 1, then we have∫
X×X

cos d(x, y)
d(z, x)

sin d(z, x)

d(w, y)

sin d(w, y)
dµ(x)dν(y)

≥ cos d(z, w)

∫
X

cosh d(z, x)
d(z, x)

sin d(z, x)
dµ(x)

∫
X

cos d(w, y)
d(w, y)

sin d(w, y)
dν(y).

The special case µ = ν of Theorem 5.2(i) reduces to∫
X×X

d(x, y)2 dµ(x)dµ(y) ≤ 2

∫
X

d(w, x)2 dµ(x) (5.3)

for all w ∈ X, without referring the barycenter. This is the global version of Lang and
Schroeder’s inequality (Lemma 4.5) used by Sturm [St1, Theorem 1.4, Proposition 1.7] to
characterize Alexandrov spaces of nonnegative curvature among geodesic spaces. What is
remarkable here is that (5.3) makes sense even in discrete spaces. See also [OP, Theorem
2.5] for another characterization by means of Ball’s Markov type.

5.1 Barycenters in CAT(0)-spaces as a counterpoint

We close the article with a short review on rather well investigated barycenters in non-
positively curved spaces which make an interesting contrast with our results. We refer to
[Jo] and [St2] for more details.

A geodesic space (X, d) is called a CAT(0)-space if the reverse inequality of (2.2) holds,
i.e., if

d
(
z, γ(t)

)2 ≤ (1 − t)d(z, x)2 + td(z, y)2 − (1 − t)td(x, y)2

holds for any three points x, y, z ∈ X and any minimal geodesic γ : [0, 1] −→ X from x to
y. In a complete CAT(0)-space, it is easy to see that every µ ∈ P2(X) admits a unique
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barycenter zµ ∈ X. Then the interesting fact is that the map b : P2(X) 3 µ 7−→ zµ ∈ X
is 1-Lipschitz with respect to the Wasserstein distance dW

2 .
The analogue of Lemma 4.3 is clear by Lemma 3.4 and the uniqueness of barycenters.

It is well known that the variance inequality∫
X

d(w, x)2 dµ(x) ≥ d(w, zµ)2 +

∫
X

d(zµ, x)2 dµ(x) (5.4)

holds for all µ ∈ P2(X) and w ∈ X. This implies the analogue of Lemma 4.4 (compare
(5.4) with (4.1)) as well as the reverse inequality of Theorem 5.2(i)∫

X×X

d(x, y)2 dµ(x)dν(y) ≥ d(zµ, zν)
2 +

∫
X

d(zµ, x)2 dµ(x) +

∫
X

d(zν , y)2 dν(y)

for µ, ν ∈ P2(X).
Besides Proposition 3.6, we can construct a simpler example where the property (∗)

is false. Consider two lines L0 = L1 = R and a segment [0, 1], and connect 0 ∈ [0, 1] to
0 ∈ L0, and 1 ∈ [0, 1] to 0 ∈ L1 as well. The resulting H-shaped space is a CAT(0)-space
when we equip it with the length distance. Put x = 1 ∈ L0, y0 = 1 ∈ L1, y1 = −1 ∈ L1,
and set µ0 := (δx + δy0)/2 and µ1 := (δx + δy1)/2. Then the minimal geodesic α from µ0

to µ1 is given by α(t) = (δx + δyt)/2 with yt = 1− 2t ∈ L1. The unique barycenter of α(t)
is zt := |1 − 2t|/2 ∈ [0, 1], so that z0 = z1 6= zt for t ∈ (0, 1).

As for Corollary 4.10, we see a completely different phenomenon in CAT(0)-spaces.
It is easy to construct rays having angle π. For instance, let X be the four-pod, X =⋃4

i=1 `i/ ∼ bound at 0 ∈ `i = [0,∞). Put xi = 1 ∈ `i and consider µ = (δx1 + δx2)/2 and
ν = (δx3 + δx4)/2. Then 0 is the common unique barycenter of µ and ν, and the pair of
geodesics from δ0 to µ and ν has angle π.

In the same four-pod X, let ω :=
∑4

i=1 δxi
/4. Then 0 is again the unique barycenter

of ω, but the analogue of Theorem 4.11 is clearly false.
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