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Abstract We prove that a Finsler spacetime endowed with a smooth
reference measure whose induced weighted Ricci curvature RicN is bounded
from below by a real number K in every timelike direction satisfies the
timelike curvature-dimension condition TCDq(K, N) for all q ∈ (0, 1). The
converse and a nonpositive-dimensional version (N ≤ 0) of this result
are also shown. Our discussion is based on the solvability of the Monge
problem with respect to the q-Lorentz–Wasserstein distance as well as the
characterization of q-geodesics of probability measures. One consequence
of our work is the sharp timelike Brunn–Minkowski inequality in the
Lorentz–Finsler case.

1 Introduction
The investigation of lower Ricci curvature bounds on generalizations of Lorentzian
manifolds is making breathtaking progress in recent time. Most importantly,
McCann [45] pioneered the equivalence between the lower weighted timelike
Ricci curvature bound and the convexity of an entropy functional in terms of
optimal transport theory (see [52] as well), and then in [21] Cavalletti–Mondino
developed the synthetic theory of non-smooth measured Lorentzian spaces with
timelike Ricci curvature bounded below on top of the framework of Lorentzian
length spaces introduced by Kunzinger–Sämann [37] (see also [13, 51] for recent
alternatives to either approaches).

This development is reminiscent of (and motivated by) the highly successful
theory of curvature-dimension condition CD(K,N) for metric measure spaces
developed by Lott, Sturm, Villani, and many others (we refer to [65] for a good
overview). This condition is defined by a convexity property of an entropy
functional along geodesics in the Wasserstein space of probability measures (in
other words, along optimal transports with respect to a specific cost function).
For a weighted Riemannian manifold (M, g, e−ψ volg), where ψ is a weight
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function, CD(K,N) is equivalent to the lower bound RicN ≥ K for the weighted
Bakry–Émery Ricci tensor RicN [7]. Thus, a metric measure space satisfying
CD(K,N) can be regarded as a non-smooth space with RicN ≥ K.

In the Lorentzian setting, the characterizations [45, 52] of McCann and
Mondino–Suhr yield in particular a non-smooth analogue of the Hawking–Penrose
strong energy condition [32, 34]. This property is regarded as the reason for
which gravity is attractive, and not repulsive [19]. A second physically relevant
consequence is the prediction of singularities in the presence of e.g. trapped
surfaces. In fact, through their approach Cavalletti–Mondino obtained a synthetic
Hawking singularity theorem which generalizes classical [32, 33] and recent
[20, 27, 30, 38] results for high and low regularity spacetimes, cf. the recent work
[15] of Braun–Calisti. This shows the strength of these tools and makes them
interesting both in smooth and non-smooth settings.

In the Lorentzian framework of weighted Finsler spacetimes, some singularity
theorems, comparison theorems, and a timelike splitting theorem have been
established by Lu–Minguzzi–Ohta in [40, 41, 42]. As seen before, such results are
implied by timelike curvature bounds. It is thus natural to expect that the known
characterization of the lower weighted timelike Ricci curvature bound RicN ≥ K
by the timelike curvature-dimension condition TCD(K,N) (here we suppress
the dependence on a parameter q ∈ (0, 1) for simplicity) can be generalized to
weighted Finsler spacetimes (equipped with an appropriate reference measure).

The aim of this paper is to establish this equivalence (Theorems 5.9, 6.1),
followed by the timelike Brunn–Minkowski inequality as a geometric application
(Theorem 5.11). Our characterization not only covers N ∈ [n,+∞], but also
the case of non-positive “dimension” N ∈ (−∞, 0] (going back to [56, 57] in the
Riemannian or Finsler framework), which is new even in the Lorentzian case.
We refer to [23, 66, 67] for some works on this range of N .

Our characterization of RicN ≥ K by TCD(K,N) has two major contribu-
tions. On the one hand, it enlarges the availability of TCD(K,N) to Lorentz–
Finsler manifolds; the “sharp” TCD condition from Definition 5.7, in contrast
to its entropic or reduced counterparts, is new even in the genuine Lorentzian
setting. Lorentz–Finsler manifolds form a much wider class than Lorentzian
manifolds and allow for more room in physical interpretations. In fact, they play
a key role in several approaches to gravity, e.g. fields in media, or models for
dark matter or dark energy, and have resolved some important difficulties; see
[10, 35, 43, 47, 64] and the references therein. Then the validity of TCD(K,N)
is obviously meaningful progress. On the other hand, this validity strongly
motivates the study of some appropriate “Lorentzian” condition in addition to
TCD(K,N) in order to discuss genuinely Lorentzian properties, namely an ana-
logue of the Riemannian curvature-dimension condition RCD(K,N) for metric
measure spaces in the Lorentzian context. One motivation behind the introduc-
tion of RCD(K,N) was that Finsler manifolds can satisfy CD(K,N). Precisely,
the equivalence between CD(K,N) and RicN ≥ K holds true also in the Finsler
context, as shown by Ohta [55, 58]. To discuss genuinely Riemannian properties
such as isometric splitting theorems, as obtained by Gigli in [28], the linearity
of the heat flow was added to CD(K,N) by Gigli [29], see also [4, 5, 25]. On
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Finsler manifolds, this linearity is equivalent to the manifold being Riemannian.
Besides the above characterization of TCD(K,N), we show that synthetic

timelike sectional curvature bounds (from below or above) in terms of triangle
comparison [2, 31, 37, 51] rule out non-Lorentzian Lorentz–Finsler manifolds
(Proposition 2.8). Moreover, we provide a simpler proof of the absolute continuity
of intermediate measures along optimal transports following the idea of Figalli–
Juillet [26] relying on the measure contraction property.

This article is organized as follows. In Section 2 we review the basics of
Lorentz–Finsler geometry (including variation formulae of arclength and the
invalidity of triangle comparison). Section 3 is concerned with the Lorentz–
Finsler distance function; we especially show the semi-convexity and the failure
of semi-concavity on timelike cut loci. In Section 4 we introduce the q-Lorentz–
Wasserstein distance for q ∈ (0, 1] and study the associated optimal transports
(q-geodesics). The useful notion of q-separation will be introduced following
McCann [45]. Then Section 5 is devoted to the first half of our main result, namely
we establish that RicN ≥ K in the timelike directions implies TCD(K,N). We
also show the timelike Brunn–Minkowski inequality as an application. Finally,
in Section 6 we show the converse implication from TCD(K,N) to RicN ≥ K.
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2 Finsler spacetimes
We review the theory of Finsler spacetimes required to develop our program.
We refer the readers to [11, 33, 59] for the basics of Lorentzian geometry, and
to the works [46, 48, 49, 50] of Minguzzi for some generalizations including
Lorentz–Finsler manifolds.

Throughout the paper, let M be a connected C∞-manifold without boundary
of dimension dimM = n ≥ 2. Given a local coordinate system (xα)nα=1 on an
open set U ⊂ M , we will represent a tangent vector v ∈ TxM with x ∈ U as
v =

∑n
α=1 v

α (∂/∂xα)|x.

2.1 Preliminaries for Lorentz–Finsler manifolds
The following notations follow the conventions used in Lu–Minguzzi–Ohta [40,
41, 42] except that dimM has been set to n+ 1 therein.
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Definition 2.1 (Lorentz–Finsler structure). A Lorentz–Finsler structure of M
is a function L : TM −→ R satisfying the following conditions.

(1) L ∈ C∞(TM \ 0), where 0 denotes the zero section.

(2) L(c v) = c2 L(v) for all v ∈ TM and all c > 0.

(3) For any v ∈ TM \ 0, the symmetric matrix(
gαβ(v)

)n
α,β=1 :=

(
∂2L

∂vα∂vβ
(v)
)n
α,β=1

(2.1)

is non-degenerate with signature (−,+, . . . ,+).

Then we call (M,L) a Lorentz–Finsler manifold.

We say that (M,L) is reversible if L(−v) = L(v) for all v ∈ TM . Given any
v ∈ TxM \ {0}, we define a Lorentzian metric gv on TxM by using (2.1) as

gv

(
n∑
α=1

aα
∂

∂xα

∣∣∣∣
x

,

n∑
β=1

bβ
∂

∂xβ

∣∣∣∣
x

)
:=

n∑
α,β=1

gαβ(v) aα bβ . (2.2)

Then we have gv(v, v) = 2L(v) by Euler’s homogeneous function theorem.
A tangent vector v ∈ TM is said to be timelike (or null, respectively) if

L(v) < 0 (or L(v) = 0, respectively). We say that v is lightlike if it is null and
nonzero, and causal (or non-spacelike) if it is timelike or lightlike (i.e. L(v) ≤ 0
and v ̸= 0). Spacelike vectors are those for which L(v) > 0 or v = 0. We denote
by Ω′

x ⊂ TxM the set of timelike vectors, and we set Ω′ :=
⋃
x∈M Ω′

x. For later
use, we define, for causal vectors v,

F (v) :=
√

−2L(v) =
√

−gv(v, v). (2.3)

Next we introduce the covariant derivative and the Ricci curvature. Given
any v ∈ TM \ 0 and any α, β, δ = 1, 2, . . . , n, define

Γαβδ(v) := 1
2

n∑
λ=1

gαλ(v)
(
∂gλδ
∂xβ

(v) + ∂gβλ
∂xδ

(v) − ∂gβδ
∂xλ

(v)
)
,

where (gαβ(v))nα,β=1 is the inverse matrix of (gαβ(v))nα,β=1,

Gα(v) := 1
2

n∑
β,δ=1

Γαβδ(v) vβ vδ, Nα
β (v) := ∂Gα

∂vβ
(v),

and

Γαβδ(v) := Γαβδ(v) − 1
2

n∑
λ,µ=1

gαλ(v)
(
∂gλδ
∂vµ

(v)Nµ
β (v)

+ ∂gβλ
∂vµ

(v)Nµ
δ (v) − ∂gβδ

∂vµ
(v)Nµ

λ (v)
)
.

(2.4)
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Then the covariant derivative of a vector field X =
∑n
α=1 X

α (∂/∂xα) in the
direction v ∈ TxM with reference vector w ∈ TxM \ {0} is defined as

Dw
v X :=

n∑
α,β=1

(
vβ

∂Xα

∂xβ
(x) +

n∑
δ=1

Γαβδ(w) vβ Xδ(x)
)

∂

∂xα

∣∣∣∣
x

.

We remark that the functions Γαβδ in (2.4) are the coefficients of the Chern
connection (or Chern–Rund connection). In the Lorentzian case, gαβ is constant
in each tangent space (thus Γαβδ = Γαβδ) and the covariant derivative does not
depend on the choice of a reference vector.

The geodesic equation for L is written as Dγ̇
γ̇ γ̇ = 0. A C∞-vector field J along

a geodesic γ is called a Jacobi field if it satisfies Dγ̇
γ̇D

γ̇
γ̇J +Rγ̇(J) = 0. Here the

curvature tensor is defined by setting, for v, w ∈ TxM ,

Rv(w) :=
n∑

α,β=1
Rαβ (v)wβ ∂

∂xα
,

where

Rαβ (v) := 2 ∂G
α

∂xβ
(v) −

n∑
δ=1

(
∂Nα

β

∂xδ
(v) vδ − 2

∂Nα
β

∂vδ
(v)Gδ(v)

)

−
n∑
δ=1

Nα
δ (v)Nδ

β(v).

A Jacobi field is also characterized as the variational vector field of a geodesic
variation. Note that Rv(w) is linear in w, thereby Rv : TxM −→ TxM is an
endomorphism for each v ∈ TxM .
Definition 2.2 (Ricci curvature). For v ∈ TxM , we define the Ricci curvature
(or Ricci scalar) of v as the trace of Rv, i.e. Ric(v) := trace(Rv).

We remark that Ric(c v) = c2 Ric(v) for every c > 0. For later use, we also
recall that

Rv(v) = 0, gv
(
w1, Rv(w2)

)
= gv

(
Rv(w1), w2

)
(2.5)

for any v ∈ Ω′
x and w1, w2 ∈ TxM (see [48, Proposition 2.4], [40, Proposition

3.4]).

2.2 Preliminaries for Finsler spacetimes
Definition 2.3 (Finsler spacetime). If a Lorentz–Finsler manifold (M,L) admits
a smooth timelike vector field X, then (M,L) is said to be time oriented (by
X). A time oriented Lorentz–Finsler manifold is called a Finsler spacetime.

In such a Finsler spacetime, a causal vector v ∈ TxM is said to be future-
directed if it lies in the same connected component of Ω′

x \ {0} as X(x). We
denote by Ωx ⊂ Ω′

x the set of future-directed timelike vectors, and define

Ω :=
⋃
x∈M

Ωx, Ω :=
⋃
x∈M

Ωx, Ω \ 0 :=
⋃
x∈M

(Ωx \ {0}).
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A C1-curve in (M,L) is said to be timelike (or causal, respectively) if its tangent
vector is always timelike (or causal, respectively). All causal curves will be
future-directed unless otherwise indicated.

We recall some fundamental concepts in causality theory. Given x, y ∈ M ,
we write x ≪ y (or x < y, respectively) if there is a future-directed timelike (or
causal, respectively) curve from x to y, and x ≤ y means that x = y or x < y.
Then the chronological past and the chronological future of x are defined by

I−(x) := {y ∈ M | y ≪ x}, I+(x) := {y ∈ M | x ≪ y},

and its causal past and its causal future are defined by

J−(x) := {y ∈ M | y ≤ x}, J+(x) := {y ∈ M | x ≤ y}.

For a general set S ⊂ M , we define I−(S), I+(S), J−(S), and J+(S) analogously.
For a Borel probability measure µ on M , we abbreviate I−(µ) := I−(sptµ) in
terms of its support sptµ ⊂ M , and analogously for I+(µ), J−(µ), and J+(µ).

Definition 2.4 (Causality conditions). Let (M,L) be a Finsler spacetime.

(1) (M,L) is said to be chronological if x /∈ I+(x) for all x ∈ M .

(2) We say that (M,L) is causal if there is no closed causal curve.

(3) (M,L) is said to be strongly causal if, for all x ∈ M , every neighborhood
U of x contains another neighborhood V of x such that no causal curve
intersects V more than once.

(4) We say that (M,L) is globally hyperbolic if it is strongly causal and, for
any x, y ∈ M , J+(x) ∩ J−(y) is compact.

We also define the Lorentz–Finsler distance l(x, y) for x, y ∈ M (also called
the time separation function) by

l(x, y) := sup
γ

L(γ), L(γ) :=
∫ 1

0
F
(
γ̇(t)

)
dt,

where γ : [0, 1] −→ M runs over all causal curves from x to y (recall (2.3) for
the definition of F ). A causal curve attaining the above supremum is said to
be maximizing. Similarly to [45], we set l(x, y) := −∞ if there is no causal
curve from x to y (namely x ̸< y). (Note that we set l(x, y) = 0 for x ̸< y in
[40, 41, 42].) In general, the distance function l is only lower semi-continuous on
{l ≥ 0} [48, Proposition 6.7] and can be infinite. In globally hyperbolic Finsler
spacetimes, l is finite and continuous on {l ≥ 0} and upper semi-continuous on
M ×M [48, Proposition 6.8], and any pair of points x, y ∈ M with x < y admits
a maximizing geodesic from x to y [48, Proposition 6.9]. More details about the
regularity of l under global hyperbolicity are deferred to Section 3.

To consider the dual structure to L and the Legendre transform (see [47],
[49, §3.1], or [41, §4.4] for further discussions), define the polar cone to Ωx by

Ω∗
x :=

{
ζ ∈ T ∗

xM | ζ(v) < 0 for all v ∈ Ωx \ {0}
}
.
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This is an open convex cone in T ∗
xM . For ζ ∈ Ω∗

x, we define

L∗(ζ) := −1
2
(
sup ζ(v)

)2 = −1
2 inf

(
ζ(v)

)2
,

where the supremum and the infimum run over v ∈ F−1(1) ∩ Ωx. Then we have
the reverse Cauchy–Schwarz inequality

4L∗(ζ)L(v) ≤
(
ζ(v)

)2 (2.6)

for every v ∈ Ωx and every ζ ∈ Ω∗
x, as well as the following variational definition

of the Legendre transform.

Definition 2.5 (Legendre transform). The Legendre transform L ∗ : Ω∗
x −→ Ωx

is defined as the map sending ζ ∈ Ω∗
x to the unique element v ∈ Ωx satisfying

L(v) = L∗(ζ) = ζ(v)/2. We also define L ∗(0) := 0.

A coordinate expression of the Legendre transform is given by

L ∗(ζ) =
n∑
α=1

∂L∗

∂ζα
(ζ) ∂

∂xα
, where ζ =

n∑
α=1

ζα dxα.

The inverse map L := (L ∗)−1 is written in the same way as

L (v) =
n∑
α=1

∂L

∂vα
(v) dxα.

We refer to Lu–Minguzzi–Ohta [41] and Minguzzi [47, 49] for some basic proper-
ties of the Legendre transforms.

2.3 Variations of arclength
Here we present variation formulas for arclength in the Lorentz–Finsler setting.
Although they are obtained by the standard arguments, we give outlines for
completeness. We refer to O’Neill’s book [59] for the semi-Riemannian case
(including Lorentzian manifolds) and to Bao–Chern–Shen [9, Chapter 5] or Ohta
[58, Chapter 7] for the Finsler case.

Let σ : [a, b] × (−ε, ε) −→ M be a C∞-variation such that σs(t) := σ(t, s) is
a timelike curve for each s ∈ (−ε, ε). We set

L(s) := L(σs) =
∫ b

a

F (σ̇s) dt.

For brevity, we define the tangent and variation vector fields of σ as T := ∂tσ
and V := ∂sσ, respectively. We assume that T vanishes nowhere.
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Lemma 2.6 (First variation). For σ and L as above, we have

L′(s) = −
[
gT

(
V,

T

F (T )

)
(·, s)

]b
a

+
∫ b

a

gT

(
V,DT

T

[
T

F (T )

])
(t, s) dt

= −
∫ b

a

gT

(
DT
T V,

T

F (T )

)
(t, s) dt.

In particular, if σs is a geodesic, then

L′(s) = − 1
F (σ̇s)

[
gT (V, T )(·, s)

]b
a
.

Proof. This is shown in the same way as the Finsler case, cf. e.g. [58, Proposi-
tion 7.1], by recalling F 2(v) = −gv(v, v) for every v ∈ Ω in (2.3).

To write down the second variation, we define the index form for C1-vector
fields V,W along a timelike geodesic γ : [a, b] −→ M as

I(V,W ) := − 1
F (γ̇)

∫ b

a

(
gγ̇(Dγ̇

γ̇V,D
γ̇
γ̇W ) − gγ̇

(
Rγ̇(V ),W

))
dt,

see Beem–Ehrlich–Easley’s book [11, Chapter 10] for the Lorentzian case. Note
that I(V,W ) = I(W,V ) and, if V is a Jacobi field, then we have

I(V,W ) = − 1
F (γ̇)

[
gγ̇(Dγ̇

γ̇V,W )
]b
a
. (2.7)

Proposition 2.7 (Second variation). For σ and L as above, suppose that γ := σ0
is a geodesic. Then we have

L′′(0) = I(V0, V0) −
[
gγ̇

(
DT
V V (·, 0), γ̇

F (γ̇)

)]b
a

−
∫ b

a

(∂s[F (T )](t, 0))2

F (γ̇(t)) dt

= I(V ⊥
0 , V ⊥

0 ) −
[
gγ̇

(
DT
V V (·, 0), γ̇

F (γ̇)

)]b
a

,

where we set V0 := V (·, 0) and

V ⊥
0 := V0 + gγ̇

(
V0,

γ̇

F (γ̇)

)
γ̇

F (γ̇)
is the projection of V0 to the gγ̇-orthogonal subspace to γ̇.

Proof. We can again argue similarly to the Finsler case by taking care of the
signature, let us explain along the lines of [58, Theorem 7.6] and [9, §5.2]. By
differentiating L′(s) in Lemma 2.6 and by F 2(T ) = −gT (T, T ), we find

L′′(0) = − 1
F (γ̇)

∫ b

a

(
gγ̇
(
DT
V [DT

T V ], γ̇
)

+ gγ̇
(
Dγ̇
γ̇V0, D

γ̇
γ̇V0
))

dt

−
∫ b

a

(∂s[F (T )](t, 0))2

F (γ̇(t)) dt.
(2.8)
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Then, choosing local coordinates (xα)nα=1 such that γ̇ = ∂/∂x1, g11(γ̇) = −1,
gii(γ̇) = 1 for i = 2, . . . , n, and gαβ(γ̇) = 0 for distinct α, β = 1, . . . , n, we have

gγ̇
(
DT
V [DT

T V ] −DT
T [DT

V V ], γ̇
)

= −
n∑

α,β=1
R1
αβ1(γ̇)V α0 V β0 .

Now we apply the skew-symmetry [58, (5.11)] to see
n∑

α,β=1
R1
αβ1(γ̇)V α0 V β0 =

n∑
α,β,δ=1

gαδ(γ̇)Rδβ(γ̇)V α0 V β0 = gγ̇
(
Rγ̇(V0), V0

)
(thus [58, (7.2)] holds as it is). Plugging these into (2.8) yields the first equation.

The second equation can be derived following [9, Exercise 5.2.6]. Precisely,
we have

gγ̇(Dγ̇
γ̇V

⊥
0 , Dγ̇

γ̇V
⊥

0 ) = gγ̇(Dγ̇
γ̇V0, D

γ̇
γ̇V0) +

(
∂s[F (T )](·, 0)

)2

by calculation and

gγ̇
(
Rγ̇(V ⊥

0 ), V ⊥
0
)

= gγ̇
(
Rγ̇(V0), V0

)
by [40, Proposition 3.4]. This completes the proof.

2.4 Invalidity of triangle comparisons
Besides Ricci curvature bounds, synthetic lower and upper sectional curva-
ture bounds can be formulated in terms of triangle comparisons, akin to cel-
ebrated theories of Alexandrov spaces and CAT(k)-spaces arising from the
Alexandrov–Toponogov triangle comparison theorems in Riemannian geometry,
cf. e.g. Burago–Burago–Ivanov [18]. However, similarly to Alexandrov spaces
and CAT(k)-spaces, those curvature bounds by triangle comparisons rule out
genuinely non-Lorentzian Lorentz–Finsler structures. This means that, in partic-
ular, the splitting theorem in Beran–Ohanyan–Rott–Solis [12] is not applicable
to this framework.

A Lorentzian analogue to the triangle comparison property can be given as
follows along [37, Definition 4.7] by Kunzinger–Sämann. We denote by M2

k the
two-dimensional model space of constant sectional curvature k ∈ R, and by l̄
the distance function on it [37, Page 426]. When k = 0, this is simply the two-
dimensional Minkowski spacetime R2. Then, for any a, b, c > 0 with a+ b ≤ c,
additionally satisfying c < π/

√
k (or c < π/

√
−k, respectively) if a+ b = c and

k > 0 (or a+ b < c and k < 0, respectively), there exist x̄, ȳ, z̄ ∈ M2
k such that

x̄ ≪ ȳ ≪ z̄ and

l̄(x̄, ȳ) = a, l̄(ȳ, z̄) = b, l̄(x̄, z̄) = c.

(See the realizability lemmas in [2, Lemma 2.1] and [37, Lemma 4.6]). Such a
triangle △(x̄, ȳ, z̄) is unique up to isometry and called a comparison triangle of
△(x, y, z) in (M,L) when l(x, y) = a, l(y, z) = b, and l(x, z) = c.
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We say that (M,L) has timelike curvature bounded below by k ∈ R in the
sense of triangle comparison if every point in M admits a neighborhood U
satisfying the following: For any x, y, z ∈ U with x ≪ y ≪ z, a comparison
triangle △(x̄, ȳ, z̄) ⊂ M2

k and for any p, q on (the sides of) △(x, y, z) and the
corresponding points p̄, q̄ on (the sides of) △(x̄, ȳ, z̄), we have l(p, q) ≤ l̄(p̄, q̄).
By reversing the latter inequality, we define (M,L) to have timelike curvature
bounded above by k in the sense of triangle comparison.

The investigation of triangle comparison theorems in the Lorentzian setting
goes back to Harriss [31]. We refer to Alexander–Bishop [2] for the equivalence
between triangle comparison properties and the corresponding sectional curvature
bounds for general semi-Riemannian manifolds (see also [37, Example 4.9]).

Proposition 2.8 (Triangle comparison implies Lorentzianity). Let (M,L) be
globally hyperbolic. If (M,L) has timelike curvature bounded below or above by
some k ∈ R in the sense of triangle comparison, then gv = 2L holds on Ωx for
every v ∈ Ωx and every x ∈ M . In particular, L is necessarily quadratic in Ωx
for every x ∈ M .

Proof. We first consider the lower curvature bound. Fix arbitrary x ∈ M and
v, w ∈ Ωx. By taking a scaling limit of the triangle comparison inequality on M ,
we find that the curvature bound also holds for triangles in the tangent space
TxM with k = 0 (i.e. (TxM,L) is nonnegatively curved). Now, as a comparison
triangle for △(0, v, v+w), take △(0, v̄, v̄+ w̄) in the Minkowski space (M2

0, ⟨·, ·⟩).
Then for every t ∈ (0, 1) we obtain

⟨v̄ + t w̄, v̄ + t w̄⟩ = (1 − t) ⟨v̄, v̄⟩ + t ⟨v̄ + w̄, v̄ + w̄⟩ − (1 − t) t ⟨w̄, w̄⟩.

Therefore, it follows from the hypothesis that

2L(v + t w) ≥ (1 − t) ⟨v̄, v̄⟩ + t ⟨v̄ + w̄, v̄ + w̄⟩ − (1 − t) t ⟨w̄, w̄⟩
= 2 (1 − t)L(v) + 2 t L(v + w) − 2 (1 − t) t L(w).

On the other hand, considering the triangle △(0, t w, v + t w) and noticing

t w + t
(
(v + t w) − t w

)
= t (v + w),

we observe

L
(
t (v + w)

)
≥ (1 − t)L(t w) + t L(v + t w) − (1 − t) t L(v),

which is rewritten as

L(v + t w) ≤ (1 − t)L(v) + t L(v + w) − (1 − t) t L(w).

This yields

L(v + t w) = (1 − t)L(v) + t L(v + w) − (1 − t) t L(w),

and hence we have

gv(w,w) = d2

dt2

∣∣∣∣
0
L(v + t w) = 2L(w).
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This completes the proof for the lower curvature bound.
The case of upper curvature bound can be established in the same way by

reversing the inequalities.

3 Behavior of the Lorentz–Finsler distance
function

From now on, we assume (M,L) to be a globally hyperbolic Finsler spacetime.
Under this standing assumption, in this section we study the behavior of the
Lorentz–Finsler distance function l, and introduce the Lagrangian and the
Hamiltonian induced from the q-th power of F =

√
−2L for q ∈ (0, 1]. We follow

the exposition of McCann [45, Sections 2, 3].

3.1 Lagrangians and Hamiltonians
We first introduce the q-dependent Lagrangian Lq as in McCann [45] (see Suhr
[63] for the case of q = 1). Let q ∈ (0, 1], and define Lq : TM −→ (−∞, 0]∪{+∞}
as

Lq(v) :=
{

−q−1 (−2L(v)
)q/2 if v ∈ Ω,

+∞ otherwise.

Observe that Lq(v) = −q−1 F (v)q for v ∈ Ω. Its convex dual is the q-dependent
Hamiltonian Hq : T ∗M −→ [0,+∞] given by

Hq(ζ) := sup
v∈TM

(
ζ(v) − Lq(v)

)
, (3.1)

where ζ(v) is the usual duality pairing. When q ∈ (0, 1) and p < 0 denotes its
dual exponent, i.e. q−1 + p−1 = 1, we have

Hq(ζ) =
{

−p−1 (−2L∗(ζ)
)p/2 if ζ ∈ Ω∗,

+∞ otherwise,
(3.2)

while for q = 1 it is the {0,+∞}-valued indicator function of a solid hyperboloid
{L∗ ≤ −1/2} ⊂ Ω∗; see Corollary 3.2.

In view of (3.1), we can show an analogue of L = (L ∗)−1. Furthermore,
choosing q ∈ (0, 1) makes the Lagrangian Lq strictly convex on Ωx. Precisely,
we have the following result.

Lemma 3.1 (Duality and convexity of Lq). Fix q ∈ (0, 1) and x ∈ M .

(i) The maps

v 7−→
n∑
α=1

∂Lq
∂vα

(v) dxα, ζ 7−→
n∑
α=1

∂Hq

∂ζα
(ζ) ∂

∂xα

are the inverses of each other between Ωx and Ω∗
x.

11



(ii) The Lagrangian Lq is convex on TxM and strictly convex on Ωx.
Proof. (i) Observe that

n∑
α=1

∂Lq
∂vα

(v) dxα = F (v)q−2
n∑
α=1

∂L

∂vα
(v) dxα = F (v)q−2 L (v),

and similarly
n∑
α=1

∂Hq

∂ζα
(ζ) ∂

∂xα
= F ∗(ζ)p−2 L ∗(ζ)

for v ∈ Ωx and ζ ∈ Ω∗
x, where F ∗(ζ) :=

√
−2L∗(ζ). Since L ∗ = L −1 and both

involved maps are positively 1-homogeneous, we obtain the claim by noting that(
F (v)q−1)p−2

F (v)q−2 = 1.

(ii) Let v ∈ Ωx. Recalling the definition of gαβ(v) in (2.1), we observe

∂Lq
∂vα ∂vβ

(v) = F (v)q−4
(

(2 − q) ∂L
∂vα

(v) ∂L
∂vβ

(v) + F (v)2 gαβ(v)
)
.

Now note that, by writing w ∈ TxM as w =
∑n
α=1 w

α(∂/∂xα)|x,
n∑
α=1

∂L

∂vα
(v)wα = gv(v, w),

n∑
α,β=1

gαβ(v)wα wβ = gv(w,w).

Thus, if gv(w,w) ≥ 0 we immediately find
n∑

α,β=1

∂Lq
∂vα∂vβ

(v)wα wβ ≥ 0.

If instead gv(w,w) < 0, i.e. w is gv-timelike, then the reverse Cauchy–Schwarz
inequality for gv yields(

gv(v, w)
)2 ≥ gv(v, v) gv(w,w) = −F (v)2 gv(w,w).

Since the identity gv(v, w) = 0 holds only when w = 0 or gv(w,w) > 0, we get
the positive-definiteness. Hence Lq is strictly convex on Ωx and convex on TxM
(by the convexity of the set Ωx).

In the case of q = 1, note that L1 = −F is positively 1-homogeneous
and fails to be strictly convex in radial directions. In order to formulate the
corresponding next result, recall that a function u : TxM −→ [−∞,+∞] is said
to be subdifferentiable at v ∈ TxM with a subgradient ζ ∈ T ∗

xM if u(v) ∈ R and

u(v + w) ≥ u(v) + ζ(w) + o(|w|h)

holds for w ∈ TxM close to 0, where h is an auxiliary Riemannian metric.
We denote by ∂•u(v) the set of all subgradients. (See (3.7) below for the
case of functions on M and the concept of superdifferentiability.) Since the
subdifferentiability is a local notion, this property and subgradients do not
depend on the choice of h.
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Corollary 3.2 (The case of q = 1). Fix x ∈ M .

(i) The Lagrangian L1 is convex on TxM .

(ii) We have

H1(ζ) =
{

0 if ζ ∈ Ω∗
x and L∗(ζ) ≤ −1/2,

+∞ otherwise.

(iii) L1|TxM is not subdifferentiable on (L1|TxM )−1(0) \ {0}. At 0 ∈ TxM ,
L1|TxM is subdifferentiable with

∂•(L1|TxM )(0) = H−1
1 (0) ∩ T ∗

xM.

Proof. (i) This follows from the convexity of Lq by letting q → 1.
(ii) This is a standard fact following from (3.1) together with the reverse

Cauchy–Schwarz inequality, or from (3.2) by letting p → −∞.
(iii) The failure of the subdifferentiability of L1 (or the superdifferentiability

of F ) on (L1|TxM )−1(0) \ {0} is a consequence of the fact that, for s > 0,

∂

∂t

√
t2 − s2 = t√

t2 − s2
→ +∞ as t ↓ s.

At 0 ∈ TxM , on the one hand, ζ ∈ Ω∗
x with L∗(ζ) ≤ −1/2 satisfies, by the

reverse Cauchy–Schwarz inequality (2.6),

ζ(v) ≤ −
√

4L(v)L∗(ζ) = L1(v)
√

−2L∗(ζ) ≤ L1(v)

for arbitrary v ∈ TxM , which implies ζ ∈ ∂•(L1|TxM )(0). On the other hand, if
ζ ∈ ∂•(L1|TxM )(0), then

ζ(v) = ζ(c v)
c

≤ L1(c v) + o(c |v|h)
c

→ −1 as c ↓ 0

for any v ∈ F−1(1) ∩ Ωx. Thus L∗(ζ) ≤ −1/2 by the definition of L∗(ζ).

3.2 The q-Lorentz–Finsler distance functions
For q ∈ (0, 1], the q-action of a Lipschitz curve γ : [0, 1] −→ M induced by Lq is

Aq(γ) :=
∫ 1

0
Lq(γ̇) dt,

and we define lq : M ×M −→ [0,+∞] ∪ {−∞} by

lq(x, y) := − inf
γ

Aq(γ), (3.3)

where γ : [0, 1] −→ M runs over all Lipschitz curves with γ(0) = x and γ(1) = y.
We call lq the q-Lorentz–Finsler distance function; for q = 1, l1 coincides with
the Lorentz–Finsler distance function l introduced in Subsection 2.2.
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For notational simplicity, we will adopt the conventions:

(−∞) + ∞ := ∞ + (−∞) := −∞, (−∞)q = (−∞)1/q := −∞. (3.4)

Then l satisfies the reverse triangle inequality

l(x, y) ≥ l(x, z) + l(z, y), (3.5)

and, for every x, y ∈ M with l(x, y) > −∞ and every q ∈ (0, 1), we find

l(x, y) =
(
q lq(x, y)

)1/q (3.6)

(by re-parametrizing an appropriate curve γ so that L1(γ̇) is constant almost
everywhere). In particular, the sets {lq > 0} and {lq ≥ 0} do not depend on the
exponent q ∈ (0, 1].

The hypothesized global hyperbolicity of (M,L) entails finer properties of
the Lorentz–Finsler distance function l. First of all, by the relation (3.6), we
immediately observe the following.

Lemma 3.3 (Continuity of lq). For each q ∈ (0, 1], lq is finite and continuous
on {lq ≥ 0}, and upper semi-continuous on M ×M .

For analyzing the behavior of l, we introduce the singular set.

Definition 3.4 (Singular set of l). We define sing(l) as the set of all pairs
(x, y) ∈ M ×M such that l(x, y) ≤ 0 or no maximizing geodesic contains x and
y in its relative interior.

Then, thanks to Lemma 3.3, it is not difficult to show that sing(l) is a closed
set; see McCann [45, Theorem 3.6] for instance.

The following two lemmas are shown in exactly the same way as [45, Lem-
mas 2.4, 2.5]. We remark that the limit curve theorems in [11] generalize to our
Lorentz–Finsler framework by Minguzzi [48, Proposition 6.1].

Lemma 3.5 (Continuity of intermediate points). For every t ∈ [0, 1] and every
(x, y) ∈ (M ×M) \ sing(l), there exists a unique point z ∈ M , henceforth denoted
by zt(x, y), such that

l(x, z) = t l(x, y), l(z, y) = (1 − t) l(x, y).

Moreover, zt(x, y) depends smoothly on (t, x, y) ∈ [0, 1] × ((M ×M) \ sing(l)).

Lemma 3.6 (Compactness of intermediate point sets). For x, y ∈ M , t ∈ [0, 1],
and E ⊂ M ×M , we set

Zt(x, y) :=
{
z ∈ M | l(x, z) = t l(x, y), l(z, y) = (1 − t) l(x, y)

}
if l(x, y) ≥ 0 and Zt(x, y) := ∅ otherwise, as well as

Zt(E) :=
⋃

(x,y)∈E

Zt(x, y), Z(E) :=
⋃

t∈[0,1]

Zt(E).

Then Z(E) is precompact if E is. If E is compact, so are Z(E) and Zt(E).
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Remark 3.7. Take x, y ∈ M with l(x, y) > 0. For t ∈ (0, 1), by concatenating
timelike geodesics, note that z ∈ Zt(x, y) if and only if z is the t-intermedi-
ate point of a timelike maximizing geodesic from x to y. Similarly, we have
Z0(x, y) = {x} and Z1(x, y) = {y} since maximizing curves do not change the
causal type.

3.3 Convexity, concavity, and smoothness
Definition 3.8 (Semi-convexity and semi-concavity). Let U ⊂ M be open. A
function u : U −→ R is said to be semi-convex if for some smooth Riemannian
metric h on M there exists c ∈ R such that

lim inf
w→0

u(exphx(w)) + u(exphx(−w)) − 2u(x)
2 |w|2h

≥ c

for every x ∈ U , where w ∈ TxM . The largest possible such constant c is called
the semi-convexity constant of u on U . Lastly, we call u semi-concave if −u is
semi-convex.

We remark that, if U is relatively compact, the semi-convexity is independent
of the choice of h, whereas the semi-convexity constant depends on h.

Proposition 3.9 (Semi-convexity of l). Let h be a smooth Riemannian metric
on M , and let (x, y) ∈ {l > 0}. Then

c(x, y) := lim inf
w→0

l(exphx(w), y) + l(exphx(−w), y) − 2 l(x, y)
2 |w|2h

is real-valued, where w ∈ TxM . Moreover, the quantity c(x, y) depends continu-
ously on (x, y) ∈ {l > 0}.

Proof. Let γ : [0, 1] −→ M be a maximizing geodesic from x to y. Take w ∈ TxM
with |w|h = 1 and extend it to a vector field P along γ which is parallel with
respect to gγ̇ , namely Dγ̇

γ̇P = 0 and P (0) = w. Consider the vector field

W (t) := (1 − t)P (t)

along γ and define a smooth variation σ : [0, 1] × (−ε, ε) −→ M of γ, where ε > 0
is a fixed small parameter, by

σs(t) = σ(t, s) := exphγ(t)
(
sW (t)

)
.

Note that σ0 = γ and σs(1) = γ(1) = y for all s ∈ (−ε, ε). Set

L(s) :=
∫ 1

0
F (σ̇s) dt = −A1(σs).

Then it follows from (3.3) that

l(σs(0), y) + l(σ−s(0), y) − 2 l(x, y)
2 s2 ≥ L(s) + L(−s) − 2L(0)

2 s2 ,
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and the right-hand side smoothly depends on x, y, γ̇(0), and w. Precisely, it is
written by the second variation formula from Proposition 2.7 as

I(W⊥,W⊥) −
[
gγ̇

(
DT
V V (·, 0), γ̇

l(x, y)

)]1

0
,

where T := ∂tσ, V := ∂sσ, and

W⊥ := W + gγ̇

(
W,

γ̇

l(x, y)

)
γ̇

l(x, y) .

Observing that

c(x, y) = inf
w,γ

(
I(W⊥,W⊥) −

[
gγ̇

(
DT
V V (·, 0), γ̇

l(x, y)

)]1

0

)
shows the claim, where the infimum runs over all w ∈ TxM with |w|h = 1 and
over all maximizing geodesics γ : [0, 1] −→ M from x to y.

The following characterization of timelike cut loci plays an important role in
the sequel. We refer to McCann [45, Theorem 3.5] for the Lorentzian case and
to Ohta [55, Lemma 3.1] for the Finsler case.

Theorem 3.10 (Semi-concavity fails on timelike cut loci). Let h be a smooth
Riemannian metric on M . If (x, y) ∈ {l > 0} ∩ sing(l), then we have

lim sup
w→0∈TxM

l(exphx(w), y) + l(exphx(−w), y) − 2 l(x, y)
2 |w|2h

= +∞.

Proof. Note that either there are two distinct maximizing geodesics from x to y,
or y is the first conjugate point of x along a unique maximizing geodesic that
connects x to y.

In the former case, let γ, η : [0, l(x, y)] −→ M be distinct maximizing geodesics
of unit speed from x to y (i.e. F (γ̇) = 1). Set v := γ̇(0), w := η̇(0), and
yε := γ(l(x, y) − ε) for small ε > 0. Then, on the one hand, we deduce from the
reverse triangle inequality and the first variation formula from Lemma 2.6 that

l
(
η(−t), y

)
− l(x, y) ≥ l

(
η(−t), yε

)
+ ε− (l(x, yε) + ε)

= gv(v,−t w) +O(t2)

for t > 0, where we extended the domain of the geodesic η to (−τ, l(x, y)] for
small τ > 0. On the other hand,

l
(
η(t), y

)
− l(x, y) = −t.

Thus we have
l(η(t), y) + l(η(−t), y) − 2 l(x, y)

t2

≥ −gv(v, w) + 1
t

+ 1
t2
O(t2) → +∞ as t → 0
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since by the reverse Cauchy–Schwarz inequality (2.6),

gv(v, w) = L (v)(w) < −
√

4L(v)L(w) = −1.

In the latter case, note first that, along the argument in the proof of [45,
Theorem 3.5], it is sufficient to show

lim sup
w→0∈TxM

l(ξw(1), y) + l(ξw(−1), y) − 2 l(x, y)
2 |w|2h

= +∞,

where ξw : [−1, 1] −→ M denotes the geodesic with ξ̇w(0) = w with respect to
L (where the values ξw(±1) exist provided |w|h is sufficiently small). Let J be
a Jacobi field along the unique maximizing geodesic γ : [0, 1] −→ M from x to
y vanishing only at 0 and 1. Then w := Dγ̇

γ̇J(0) ∈ TxM \ {0} and, in the same
manner as in the proof of Proposition 3.9, we consider the vector field P along
γ with Dγ̇

γ̇P = 0 and P (0) = w, and set

W (t) := (1 − t)P (t).

We further define Jε := J + εW for small ε > 0. Observe that Jε(0) = εw and
Jε(1) = 0. We remark that J is gγ̇-orthogonal to γ̇ since it is a Jacobi field
vanishing at t = 0 and t = 1, and that

gγ̇
(
P (t), γ̇(t)

)
= gγ̇

(
w, γ̇(0)

)
= d

dt

∣∣∣∣
0
gγ̇(J, γ̇) = 0

for all t ∈ [0, 1]. Hence, Jε is gγ̇-orthogonal to γ̇. Now, for a small parameter
ε > 0 we consider the variation σ : [0, 1] × (−ε, ε) −→ M given by

σs(t) = σ(t, s) := ξJε(t)(s).

Note that σs(0) = ξw(ε s). Setting again

L(s) :=
∫ 1

0
F (σ̇s) dt,

we observe from the second variation formula from Proposition 2.7 that

l(ξw(ε s), y) + l(ξw(−ε s), y) − 2 l(x, y)
2 (ε s)2

≥ L′′(0)
ε2 + o(ε2)

ε2 = I(Jε, Jε)
ε2 + gγ̇(DT

V V (0, 0), γ̇(0))
ε2 F (γ̇) + o(ε2)

ε2 ,

where T = ∂tσ and V := ∂sσ. As J is a Jacobi field, the first summand of the
latter term is rewritten with the help of (2.7) as

I(J, J)
ε2 + 2 I(J,W )

ε
+ I(W,W ) = 2 gγ̇(w,w)

ε l(x, y) + I(W,W ).
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Note also that, since w ̸= 0 and gγ̇
(
w, γ̇(0)

)
= 0, we have gγ̇(w,w) > 0. As

for the second summand above, we directly infer from the definition of σ that
DV
V V = 0. Then we have

gγ̇
(
DT
V V (0, 0), γ̇(0)

)
= gγ̇

(
DT
V V (0, 0) −DV

V V (0, 0), γ̇(0)
)

= −ε2 Tγ̇(0)(w),

where
Tv(w) :=

n∑
α,β,δ,λ=1

gαλ(v)
(
Γαβδ(w) − Γαβδ(v)

)
wβ wδ vλ

is called the T-curvature (or the tangent curvature) measuring the variation of
tangent spaces; see [58, §6.3.2, §8.3.3]. Therefore, we deduce that

l(ξw(ε s), y) + l(ξw(−ε s), y) − 2 l(x, y)
2 (ε s)2

≥ 2 gγ̇(w,w)
ε l(x, y) + I(W,W ) −

Tγ̇(0)(w)
F (γ̇) + o(ε2)

ε2 → +∞

as ε → 0. This completes the proof.

Finally, we address smoothness properties of lq. We start with the usual case
of q = 1 in Theorem 3.11, based on which we establish the case of q ∈ (0, 1)
in Corollary 3.12. From Lemma 3.3, we already know that lq is upper semi-
continuous on M × M and continuous on {l ≥ 0}. In addition, recall from
Subsection 3.2 that the singular set sing(l) from Definition 3.4 is closed.

For a function u : M −→ [−∞,+∞], we say that u is subdifferentiable at
x ∈ M with a subgradient ζ ∈ T ∗

xM if u(x) ∈ R and

u
(
expx(v)

)
≥ u(x) + ζ(v) + o(|v|h) (3.7)

for v ∈ TxM close to 0, where h is an auxiliary Riemannian metric. The set of
subgradients of u at x will be denoted by ∂•u(x). The superdifferentiability and
supergradients ∂•u(x) are defined in the same way with the reverse inequality.
As for the notions of subdifferentiability and subgradients of a function on M
introduced above, the properties defined in the previous clauses do not depend
on the choice of h.

Theorem 3.11 (Smoothness of l). The Lorentz–Finsler distance function l
satisfies the following properties.

(i) It is smooth precisely on the complement of sing(l).

(ii) It is locally Lipschitz and locally semi-convex on the open superlevel set
{l > 0} of M ×M . Furthermore, for (x, y) ∈ {l > 0} and any maximizing
geodesic γ : [0, l(x, y)] −→ M of unit speed from x to y, we have

L
(
γ̇(0)

)
∈ ∂•

(
l(·, y)

)
(x), −L

(
γ̇
(
l(x, y)

))
∈ ∂•

(
l(x, ·)

)
(y).

(iii) For (x, y) ∈ {l = 0}, l(·, y) is not superdifferentiable at x unless x = y,
and ∂•(l(·, x)

)
(x) = H−1

1 (0) ∩ T ∗
xM .
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Proof. (i) and (ii) are seen in the same way as [45, Theorem 3.6] with the help
of Proposition 3.9 and Theorem 3.10. (We remark that −L (γ̇(l(x, y))) can
be regarded as L (γ̇(0)) for the Legendre transform L with respect to the
reverse Lorentz–Finsler structure L(v) := L(−v) and the reverse curve γ(t) :=
γ(l(x, y) − t) which is a maximizing geodesic with respect to L.) (iii) also follows
from a similar argument to [45, Theorem 3.6] by virtue of Corollary 3.2(iii).

We recall from (3.6) that lq(x, y) = l(x, y)q/q provided l(x, y) > −∞.
Corollary 3.12 (Properties of lq). For q ∈ (0, 1), lq satisfies the following.

(i) lq is smooth precisely on (M × M) \ sing(l) and is locally Lipschitz and
locally semi-convex on {l > 0}.

(ii) Given y ∈ M , if lq(·, y) has a supergradient ζ ∈ T ∗
xM , then l(x, y) > 0

necessarily holds and we have

y = expx

(
n∑
α=1

∂Hq

∂ζα
(ζ) ∂

∂xα

)
.

(iii) The following matrix is non-degenerate for (x, y) ∈ (M ×M) \ sing(l):(
∂2lq

∂xα∂yβ
(x, y)

)n
α,β=1

.

(iv) For every (x, y) ∈ {l > 0} ∩ sing(l) and every smooth Riemannian metric
h on M , we have

sup
0<|w|h<1

lq(exphx(w), y) + lq(exphx(−w), y) − 2 lq(x, y)
2 |w|2h

= +∞.

Proof. (i) This is shown along the same lines as [45, Corollary 3.7] thanks to
Theorem 3.11(i), (ii).

(ii) It follows from Theorem 3.11(iii) that l(x, y) > 0. Then, together with
the subdifferentiability asserted in Theorem 3.11(ii), l(·, y) is differentiable at x
and we have the claim by noting that

ζ = d
(
lq(·, y)

)
x

= l(x, y)q−1 · d
(
l(·, y)

)
x

and, recalling Lemma 3.1,
n∑
α=1

∂Hq

∂ζα
(ζ) ∂

∂xα
= F ∗(ζ)p−2 L ∗(ζ) = l(x, y) L ∗(ζ)

F ∗(ζ) = l(x, y) γ̇(0).

(iii) Note first that (xα)nα=1 and (yβ)nβ=1 are local coordinate systems around
x and y, respectively. If the matrix in question is degenerate, then there exists
v ∈ TxM \ {0} such that

n∑
α=1

vα
∂2lq

∂xα∂yβ
(x, y) = 0
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for all β. By the first variation formula from Lemma 2.6, this implies that the
function f(z) := gwz (v, wz) = L (wz)(v) with wz := exp−1

x (z) satisfies dfy = 0,
which cannot happen.

(iv) This is an immediate consequence of Theorem 3.10.

The non-degeneracy in (iii) corresponds to a twist condition for lq, cf. [65].

4 Geodesics of probability measures
Now we study the spacetime geometry of the space P(M) of Borel probability
measures on M . This geometry is described by the concept of q-geodesics taken
from McCann [45, Definition 1.1], cf. Definition 4.2. We continue assuming the
global hyperbolicity of (M,L).

In Section 4.1 we recall basics of optimal transport in Lorentzian geometry
(cf. e.g. the works of Cavalletti–Mondino [21], Eckstein–Miller [24], or McCann
[45]), which carry over to the Lorentz–Finsler setting with no change. Then we
show q-geodesics to exist in large generality in Section 4.2. Finally, based on the
duality theory outlined in Section 4.3, in Section 4.4 we address the uniqueness
of q-geodesics (and simultaneously the one of couplings attaining the supremum
in (4.1)). Here we follow [45, Sections 2, 4, 5].

4.1 The q-Lorentz–Wasserstein distance and q-geodesics
Let proji : M ×M −→ M denote the projection map defined by proji(x) := xi,
where i = 1, 2; similarly, for i, j = 1, 2, 3 with i ̸= j we will define projij : M ×
M × M −→ M × M by projij(x) := (xi, xj). As said, P(M) is the space of
Borel probability measures on M . Let Pc(M) be the set of all µ ∈ P(M) with
compact support sptµ ⊂ M . Given any Borel measure m on M , let Pac(M,m)
denote the space of all m-absolutely continuous elements of P(M), and set
Pac

c (M,m) := Pac(M,m) ∩ Pc(M).
Given µ, ν ∈ P(M), let Π(µ, ν) be the set of all couplings π of µ and ν. We

call such a coupling causal if π[{l ≥ 0}] = 1, and chronological if π[{l > 0}] = 1.
By Lemma 3.3, π is causal if and only if sptπ ⊂ {l ≥ 0}.

Throughout, we fix q ∈ (0, 1], and we state explicitly when q < 1 is assumed
in addition. Recalling (3.6) and (3.4), let ℓq : P(M)×P(M) −→ [0,+∞]∪{−∞}
denote the q-Lorentz–Wasserstein distance

ℓq(µ, ν) := sup
π∈Π(µ,ν)

(∫
M×M

l(x, y)q dπ(x, y)
)1/q

. (4.1)

Our choice of the cost function lq which can drop to −∞ ensures ℓq(µ, ν) ≥ 0 if
and only if µ and ν admit a causal coupling.

We term π ∈ Π(µ, ν) ℓq-optimal if it is causal and it attains the supremum
in (4.1). We occasionally employ the subsequent standard result, which follows
from Lemma 3.3 and [65, Theorem 4.1].
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Lemma 4.1 (Existence of ℓq-optimal couplings). Assume µ, ν ∈ Pc(M) to obey
ℓq(µ, ν) ≥ 0. Then there exists an ℓq-optimal coupling of µ and ν.

Definition 4.2 (Geodesics of probability measures). Given any q ∈ (0, 1], a
family (µt)t∈[0,1] in P(M) is called a q-geodesic if

(1) ℓq(µ0, µ1) is positive and finite, and

(2) for every s, t ∈ [0, 1] with s < t,

ℓq(µs, µt) = (t− s) ℓq(µ0, µ1).

Akin to the corresponding property of Wasserstein distances, ℓq satisfies
the reverse triangle inequality. This follows from a standard gluing argument,
cf. e.g. [24, Theorem 13]. To analyze q-geodesics, we also need to study cases of
equality. This is collected in Proposition 4.3 taken from [45, Proposition 2.9].
One immediate consequence of it is that the property of having endpoints with
compact support propagates through the interior of q-geodesics, cf. Corollary
4.4, a proof of which we give for convenience.

Recall Lemma 3.6 for the definitions of Zs(E) and Z(E).

Proposition 4.3 (Reverse triangle inequality and cases of equality). For every
µ1, µ2, µ3 ∈ P(M), we have

ℓq(µ1, µ3) ≥ ℓq(µ1, µ2) + ℓq(µ2, µ3). (4.2)

Moreover, if ℓq(µ1, µ2)+ℓq(µ2, µ3) ̸= ±∞ according to our conventions (3.4) and
there are Borel sets X1, X3 ⊂ M with µ1[X1] = µ3[X3] = 1 yet µ2[Z(X1 ×X3)] <
1, then the inequality in (4.2) is strict.

Conversely, assume that

(1) q < 1,

(2) ℓq(µ1, µ3) is positive and finite,

(3) equality holds in (4.2), and

(4) µ1 and µ2 as well as µ2 and µ3 admit ℓq-optimal couplings (e.g. when µ1,
µ2, and µ3 are compactly supported, cf. Lemma 4.1).

Then there exists a measure ω ∈ P(M ×M ×M) such that πij := (projij)♯π is
an ℓq-optimal coupling of its marginals µi and µj for every i, j ∈ {1, 2, 3} with
i < j, and every (x, z, y) ∈ sptω satisfies

l(x, z) = t l(x, y), l(z, y) = (1 − t) l(x, y),

where t := ℓq(µ1, µ2)/ℓq(µ1, µ3). Furthermore, if π13 is concentrated on a Borel
set E ⊂ M ×M , then µ2 is concentrated on Zt(E). In particular, if Zt(x, y) is
a singleton {zt(x, y)} for π13-a.e. (x, y) ∈ M ×M , then

ω = (z0, zt, z1)♯π13, µ2 = (zt)♯π13.
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Corollary 4.4 (Interpolants inherit compact support). Let (µt)t∈[0,1] be a q-
geodesic in P(M) for some q ∈ (0, 1). If the endpoints µ0 and µ1 are compactly
supported, so is the intermediate point µt for every t ∈ (0, 1); more precisely,
sptµt ⊂ Zt(sptµ0 × sptµ1).

Proof. Lemma 3.6 yields the compactness of Z(E) and Zt(E), where we set
E := sptµ0 × sptµ1. Since ℓq(µ0, µ1) ∈ (0,+∞), applying the first part of Pro-
position 4.3 yields µt[Z(E)] = 1. In particular, µt has compact support. Then,
moreover, it follows from Lemma 4.1 that µ0 and µt as well as µt and µ1 admit
ℓq-optimal couplings. Hence, by the latter part of Proposition 4.3, we obtain in
fact µt[Zt(E)] = 1.

4.2 Existence of q-geodesics
Employing a standard measurable selection argument [3, 65], we now construct
q-geodesics by taking a chronological ℓq-optimal coupling π between appropriate
endpoints µ0 and µ1 under consideration, connecting π-a.e. (x, y) ∈ M ×M by
a maximizing timelike geodesic, and a lifting procedure.

We need the subsequent technical Lemma 4.5; its proof uses Lemma 3.3
and Remark 3.7 and is analogous to its Lorentzian version by McCann [45,
Lemma 2.8]. Recall that a real-valued map defined on a topological space X is
termed universally measurable if for every Borel probability measure µ on X, it
is measurable with respect to the completion of the Borel σ-algebra of X with
respect to µ.

Lemma 4.5 (Selecting intermediate points on the timelike cut locus). For
every t ∈ [0, 1], the map zt : (M × M) \ sing(l) −→ M from Lemma 3.5 has a
non-relabeled universally measurable extension zt : {l > 0} −→ M such that for
every (x, y) ∈ {l > 0}, t 7−→ zt(x, y) is a maximizing geodesic from x to y.

Corollary 4.6 (Existence of q-geodesics). Let µ0, µ1 ∈ P(M), and let π ∈
Π(µ0, µ1) be a chronological ℓq-optimal coupling with finite total ℓq-cost. Then
the following hold.

(i) The assignment µt := (zt)♯π, where zt is the map provided by Lemma 4.5,
defines a q-geodesic (µt)t∈[0,1] connecting µ0 to µ1.

(ii) For every s, t ∈ [0, 1] with s < t, (zs, zt)♯π is a chronological ℓq-optimal
coupling of the members µs and µt of that q-geodesic.

Proof. The coupling (zs, zt)♯π of µs and µt is well-defined and chronological by
Lemma 4.5. In addition,

ℓq(µs, µt)q ≥
∫
M×M

l
(
zs(x, y), zt(x, y)

)q dπ(x, y)

= (t− s)q
∫
M×M

l(x, y)q dπ(x, y)

= (t− s)q ℓq(µ0, µ1)q.

22



Since s and t are arbitrary, this estimate combined with the reverse triangle
inequality from Proposition 4.3 forces the inequality appearing in the above
computation to become equality. Thus, (µt)t∈[0,1] is a q-geodesic, and (zs, zt)♯π
is an ℓq-optimal coupling of µs and µt.

4.3 Kantorovich duality
Now we revisit the duality theory developed by McCann in [45, Section 4] in
the Lorentzian setting (see also Cavalletti–Mondino [21, §2.4]). Therein, the
additional difficulty is that l drops to −∞ at points not in causal relation, hence
the infimum in (4.3) below might not be attained in general (see [36] for an
example). To ensure that the infimum is a minimum, cf. Theorem 4.9, the
q-separation property stated in Definition 4.8 below has been introduced in [45,
Definition 4.1]. Lemma 4.10 will show that this notion is not void: q-separation
holds for every pair of measures for which every transport stays away from the
light cone in a uniform way. This property is in practice easier to verify than
q-separation, yet it does not suffice to consider only such measures. Indeed,
the intermediate points µs and µt of a q-geodesic (µt)t∈[0,1] will not satisfy this
condition in general as their supports typically overlap for s, t ∈ [0, 1] close to
each other. On the other hand, q-separation is well-behaved along q-geodesics,
cf. Proposition 4.14.

Since l is bounded from above on compact subsets of M ×M , the standard
Kantorovich duality [65, Theorem 5.10] yields the following.

Proposition 4.7 (Basic duality). For every µ, ν ∈ Pc(M) we have

q−1 ℓq(µ, ν)q = inf
(u,v)

(∫
M

udµ+
∫
M

v dν
)
, (4.3)

where (u, v) : M −→ R2 runs over all pairs of functions in L1(M,µ) × L1(M,ν)
satisfying lq/q ≤ u⊕ v on M ×M , where

(u⊕ v)(x, y) := u(x) + v(y).

Moreover, given any X ⊃ sptµ and Y ⊃ spt ν, the infimum in (4.3) is unchanged
if we restrict it to those pairs of lower semi-continuous functions u ∈ L1(M,µ)
and v ∈ L1(M,ν) such that u = (lq)v on X and v = u(lq) on Y , where

(lq)v(x) := sup
y∈Y

(
q−1 l(x, y)q − v(y)

)
,

u(lq)(y) := sup
x∈X

(
q−1 l(x, y)q − u(x)

)
.

(4.4)

Note that the transforms in (4.4) depend on X and Y , respectively.

Definition 4.8 (q-separation). We term (µ, ν) ∈ Pc(M) × Pc(M) q-separated
(by (π, u, v)) if there exist π ∈ Π(µ, ν) and lower semi-continuous functions
u : sptµ −→ R∪{+∞} and v : spt ν −→ R∪{+∞} with the following properties.
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(1) We have lq/q ≤ u⊕ v on sptµ× spt ν.

(2) The equality set

E :=
{

(x, y) ∈ sptµ× spt ν | u(x) + v(y) = q−1 l(x, y)q
}

(4.5)

satisfies sptπ ⊂ E ⊂ {l > 0}.

Note that the lower semi-continuity of u and v plus the upper semi-continuity
of l imply the compactness of E, cf. Theorem 4.9 below.

We omit the technical proof of the following Theorem 4.9, which can be
found in [45, Theorem 4.3]. It transfers verbatim to the Lorentz–Finsler case
by employing Theorem 3.11, Corollary 3.12, as well as an auxiliary smooth
Riemannian metric on M .

To formulate it, we recall that a set E ⊂ M ×M is lq-cyclically monotone
(cf. e.g. [21, Definition 2.6] and [65, Definition 5.1]) if for every k ∈ N, every
(x1, y1), . . . , (xk, yk) ∈ E, and every permutation σ of length k we have

k∑
i=1

l(xi, yi)q ≥
k∑
i=1

l(xi, yσ(i))q.

Every ℓq-optimal coupling is concentrated on an lq-cyclically monotone set, but
unlike the case of real-valued cost functions discussed in Villani’s monograph [65,
Theorem 5.10], the converse requires an additional hypothesis on the coupling,
cf. Cavalletti–Mondino [21, Proposition 2.8].

Theorem 4.9 (Duality by q-separation). Assume (µ, ν) ∈ Pc(M) × Pc(M) to
be q-separated by (π, u, v). Then the following hold.

(i) We have u = (lq)v on sptµ and v = u(lq) on spt ν according to (4.4).

(ii) The equality set E from (4.5) is compact and lq-cyclically monotone.

(iii) The coupling π is ℓq-optimal, while (u, v) minimizes the right-hand side of
(4.3).

(iv) The functions u and v extend to semi-convex Lipschitz functions on open
neighborhoods of sptµ and spt ν, respectively, with Lipschitz and semi-
convexity constants estimated by those of lq|E.

Lemma 4.10 (Existence of q-separation). Let µ, ν ∈ Pc(M) satisfy sptµ ×
spt ν ⊂ {l > 0}. Then (µ, ν) is q-separated.

Proof. By Lemma 3.3, the function l is continuous, bounded, and bounded away
from 0 on sptµ× spt ν. Thus the supremum in (4.1) and, by [65, Theorem 5.10],
the infimum in (4.3) are attained by some π ∈ Π(µ, ν) and uniformly continuous
functions u : sptµ −→ R and v : spt ν −→ R of the form (4.4), respectively. This
duality also implies π to be concentrated on the equality set E as in (4.5), and
E ⊂ sptµ× spt ν ⊂ {l > 0}.
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4.4 Characterization of q-geodesics
Now we turn to the description of q-geodesics between q-separated endpoints,
ultimately stated in Corollary 4.18. To this aim, a central part is the solvability
of the ℓq-Monge problem shown in Theorem 4.17. This is the Lorentz–Finsler
analogue of the Brenier–McCann theorem in Riemannian geometry [16, 44] and
of the Lorentzian result by McCann [45]. Comparable results are obtained in
[63] under certain geometric conditions on the support of the target measure.

Since this subsection constitutes a central part of our work, and in order to
emphasize the difference between the Lorentz–Finsler and the genuine Lorentzian
settings, we provide full proofs even if they are essentially identical to those in
[45, Section 5].

We start by collecting various properties linked to intermediate points of
geodesics in M and P(M). Proposition 4.11 and Lemma 4.13 are based on the
following trivial consequence of (3.5): for every triple (x, z, y) ∈ M × M × M
and every t ∈ (0, 1),

l(x, y) ≥ t
l(x, z)
t

+ (1 − t) l(z, y)
1 − t

. (4.6)

Proposition 4.11 (Lagrangian trajectories do not cross). Let q ∈ (0, 1), t ∈
(0, 1), and x, x′, y, y′ ∈ M with l(x, y) > 0 and l(x′, y′) > 0. If the set Zt(x, y)
intersects Zt(x′, y′) yet

l(x, y′)q + l(x′, y)q ≤ l(x, y)q + l(x′, y′)q, (4.7)

then we have x = x′ and y = y′.

Proof. Given any z ∈ Zt(x, y) ∩ Zt(x′, y′), the inequality (4.6) for the triple
(x, z, y′), our conventions (3.4), and the concavity of r 7−→ rq on [0,+∞) yield

l(x, y′)q ≥
(
l(x, z) + l(z, y′)

)q
=
(
t l(x, y) + (1 − t) l(x′, y′)

)q
≥ t l(x, y)q + (1 − t) l(x′, y′)q,

(4.8)

and analogously

l(x′, y)q ≥ t l(x′, y′)q + (1 − t) l(x, y)q. (4.9)

This gives l(x, y′) > 0 and l(x′, y) > 0. Furthermore, by (4.7), summing up the
previous inequalities forces equalities all over (4.6) — namely for the triples
(x, z, y′) and (x′, z, y) —, (4.8), and (4.9). By Remark 3.7, equality in (4.6)
implies z to lie in the interior of a maximizing geodesic from x to y′ and in
the interior of a maximizing geodesic from x′ to y. Hence, all five points under
consideration lie on the same maximizing geodesic γ : [0, 1] −→ M . Finally,
identity in the second inequality of (4.8), together with strict concavity of
r 7−→ rq on [0,+∞), implies l(x, y) = l(x′, y′). Since z divides the segments of γ
from x to y and from x′ to y′ in the same ratio, we obtain x = x′ and y = y′.
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Theorem 4.12 (Continuous inverse maps). Let q ∈ (0, 1) and t ∈ (0, 1). Suppose
(µ0, µ1) ∈ Pc(M)×Pc(M) to be q-separated. Then there exists a continuous map
W : Zt(E) −→ E such that zt ◦W is the identity map on zt(E), and whenever
µt ∈ P(M) is a t-intermediate point of a q-geodesic from µ0 to µ1, W♯µt belongs
to Π(µ0, µ1) and maximizes ℓq(µ0, µ1). Here E ⊂ sptµ0 × sptµ1 denotes the
equality set from (4.5), and zt is the map given by Lemma 4.5.

Proof. Recall that E is compact and lq-cyclically monotone by Theorem 4.9.
Furthermore, E ⊂ {l > 0} by Definition 4.8. Given any z ∈ Zt(E) we define
W (z) := (x, y), where (x, y) ∈ E is chosen such that z ∈ Zt(x, y) according to
the definition of Zt(E) from Lemma 3.6.

We claim that W is well-defined and continuous. If z ∈ Zt(x, y) ∩ Zt(x′, y′)
for (x, y), (x′, y′) ∈ E, the lq-cyclical monotonicity of E yields (4.7), whence
x = x′ and y = y′ by Proposition 4.11. Concerning continuity, let (zk)k∈N be a
sequence in Zt(E) converging to z ∈ Zt(E), and consider a fixed non-relabeled
subsequence of (W (zk))k∈N. Then the compactness of E entails the existence of
a limit (x′, y′) ∈ E of a further non-relabeled subsequence of the latter. By the
above well-definedness proof, (x′, y′) necessarily coincides with the unique pair
(x, y) ∈ E with z ∈ Zt(x, y), i.e. with W (z). Since the initial subsequence was
arbitrary, the continuity of W follows. The construction also ensures that W is
the right-inverse of zt on zt(E).

Finally, let µt be as hypothesized. Since the pair (µ0, µ1) is q-separated and l
is bounded from above on the compact set sptµ0 ×sptµ1 by Lemma 3.3, we have
ℓq(µ0, µ1) ∈ (0,+∞); in particular ℓq(µ0, µt) > 0 and ℓq(µt, µ1) > 0. Hence, by
applying Corollary 4.4, Lemma 3.6, and Lemma 4.1, µ0 and µt as well as µt and µ1
admit ℓq-optimal couplings. Proposition 4.3 thus yields ω ∈ P(M×M×M) with
marginals µ0, µt, and µ1 such that πij := (projij)♯ω is ℓq-optimal for µi and µj
for every i, j = 0, t, 1 with i < j. By duality, cf. Theorem 4.9 and Proposition 4.7,
π01 is concentrated on E. By Proposition 4.3, µt = (projt)♯ω is concentrated on
Zt(E), which is compact by Lemma 3.6. Setting Wi := proji ◦W for i = 0, 1, the
above argument gives the concentration of ω on W0(Zt(E))×Zt(E)×W1(Zt(E)).
This implies ω = (W0, Id,W1)♯µt by [1, Lemma 3.1], and hence π01 = W♯µt.

Lemma 4.13 (Variational characterization of geodesic endpoints). Let q ∈ (0, 1)
and γ : [0, 1] −→ M be a maximizing timelike geodesic. Then for every t ∈ (0, 1)
and x ∈ M , we have

l
(
x, γ(1)

)q ≥ t1−q l
(
x, γ(t)

)q + (1 − t)1−q l
(
γ(t), γ(1)

)q
. (4.10)

Equality holds therein if and only if x = γ(0).

Proof. The claimed bound (4.10) follows from (4.6) for (x, γ(t), γ(1)) and the
concavity of the function r 7−→ rq. Moreover, it is clear that x = γ(0) achieves
equality therein. Now, assume that equality holds in (4.10) for some x ∈ M .
Then equality holds in (4.6) for (x, γ(t), γ(1)), which implies some timelike
maximizing geodesic ending at γ(1) to pass through x and γ(t). As γ(t) lies
in the interior of γ, this geodesic necessarily coincides with γ, and equality in
(4.10) and the strict concavity of r 7−→ rq on [0,+∞) force x = γ(0).
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Proposition 4.14 (Star-shapedness of q-separation). Let q ∈ (0, 1), µ0, µ1
∈ Pc(M) and (µt)t∈[0,1] be a q-geodesic from µ0 to µ1. If (µ0, µ1) is q-separated,
then so is (µs, µt) for every s, t ∈ [0, 1] with s < t.

Proof. It clearly suffices to prove the q-separation of (µ0, µt) and (µt, µ1) for
every t ∈ (0, 1). We concentrate on (µ0, µt); (µt, µ1) is treated analogously by
taking Remark 4.15 into account (or reduced to the reverse Lorentz–Finsler
structure).

Assume the pair (µ0, µ1) to be q-separated by (π, u, v). Theorem 4.9 implies
the continuity of u and v on sptµ0 and sptµ1, respectively. Denote by E the
equality set from (4.5) relative to (µ0, µ1), let W : Zt(E) −→ E be the continuous
map provided by Theorem 4.12, and define Wi := proji ◦W for i = 1, 2. We
claim the q-separation of (µ0, µt) by (πt, ut, vt), where

πt := (W1, Id)♯µt,
ut := tq−1 u,

vt := tq−1 v ◦W2 − tq−1 (1 − t)1−q q−1 lq ◦ (Id,W2).
(4.11)

It follows from Theorem 4.12 that πt ∈ Π(µ0, µt). By Proposition 4.3 and
the compactness of Zt(E) from Lemma 3.6, we find sptµt ⊂ Zt(E). Since
(Id,W2)

(
Zt(E)

)
⊂ {l > 0}, Theorem 4.12 and Lemma 3.3 then imply the

continuity of ut and vt on sptµ0 and sptµt, respectively. Now, given any
x ∈ sptµ0, z ∈ sptµt, and y := W2(z), the hypothesized q-separation of (µ0, µ1)
entails

u(x) + v(y) ≥ q−1 l(x, y)q.

By Remark 3.7 and Lemma 4.13, this yields

tq−1 u(x) + tq−1 v(y) ≥ q−1 tq−1 l(x, y)q

≥ q−1 l(x, z)q + q−1 tq−1 (1 − t)1−q l(z, y)q.

Thus, we have
ut(x) + vt(z) ≥ q−1 l(x, z)q. (4.12)

Moreover, we deduce from Lemma 4.13 and W (z) ∈ E that equality holds in
(4.12) if and only if x = W1(z). This proves πt to be concentrated on

Et :=
{

(x, z) ∈ sptµ0 × sptµt | ut(x) + vt(z) = q−1 l(x, z)q
}
,

which is compact by the compactness of sptµ0 × sptµt (cf. Corollary 4.4)
and by Lemma 3.3. Hence, we have sptπt ⊂ Et. It remains to prove Et ⊂
{l > 0}. For any (x, z) ∈ Et, recall that x = W1(z) necessarily holds, and
W (Zt(E)) ⊂ E ⊂ {l > 0} yields l(W1(z),W2(z)) > 0. Since z ∈ Zt(E), this
implies l(x, z) = t l(W1(z),W2(z)) > 0.
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Remark 4.15. To prove the q-separation of (µt, µ1), the appropriate replace-
ments of the quantities from (4.11) are

π′
t := (Id,W2)♯µt,
u′
t := (1 − t)q−1 u ◦W1 − (1 − t)q−1 t1−q q−1 lq ◦ (W1, Id),
v′
t := (1 − t)q−1 v.

Now we recall the definition of sub- and superdifferentiability of a function
u : M −→ [−∞,+∞] before Theorem 3.11. For x ∈ M we write x ∈ D(du) if
u(x) ∈ R and u is differentiable at x. The latter is equivalent to u being both sub-
and superdifferentiable at x, in which case ∂•u(x) = ∂•u(x) = {du(x)}. Finally,
D(d2u) is the set of all x ∈ D(du) at which u is twice differentiable.

In the rest of this section, let m be an arbitrary measure on M comparable
with the Lebesgue measure in each local coordinate system. It is only used to
distinguish m-negligible sets in view of differentiability properties: for example,
by Alexandrov’s theorem, semi-convex or semi-concave functions are twice
differentiable m-a.e. (see [8, 54] for the Riemannian and Finsler cases, as well as
[65, Chapter 14] for more details).

In the sequel, we adopt the following conventions without further notice.
Given any X ⊂ M , every semi-convex Lipschitz function u : X −→ R (may and)
will be treated as the restriction of an appropriate semi-convex Lipschitz function
defined on a neighborhood of X, cf. Theorem 4.9. Moreover, any map defined
on D(du) will be extended to M by an arbitrarily chosen constant. Our results
will not depend on the respective choices of extensions.

We also make use of the reverse Lorentz–Finsler strucure L(v) := L(−v)
(briefly mentioned in the proof of Theorem 3.11), equipped with the time
orientation that v ∈ TM is future-directed timelike for L if and only if −v is
future-directed timelike for L. Note that, given a timelike geodesic γ : [0, 1] −→
M for L, its reverse curve defined by γ(t) := γ(−t) is a timelike geodesic for L.

Lemma 4.16 (Transport maps and Jacobi fields). Let q ∈ (0, 1), X,Y ⊂ M
be compact, U ⊂ M be a given relatively compact neighborhood of X, and
u : U −→ R be semi-convex and Lipschitz continuous with

u(x) ≥ (lq)(u(lq))(x) (4.13)

for every x ∈ U according to (4.4) defined in terms of X and Y . For t ∈ [0, 1],
define Ft : M −→ M and Gt : M −→ M by

Ft(x) := expx
(
t F ∗(du)p−2 L ∗(du)

)
,

Gt(y) := expy
(
−t F ∗(−du(lq))p−2 L ∗(−du(lq))

)
,

(4.14)

provided x ∈ D(du) and y ∈ D(du(lq)), respectively, where expy denotes the
exponential map for the reverse structure L.

(i) For every (x, y) ∈ U × Y , we have

u(x) + u(lq)(y) ≥ q−1 l(x, y)q. (4.15)
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Also, assuming that equality holds at (x, y) ∈ (X × Y ) ∩ {l > 0}, we have
y = F1(x) if x ∈ D(du), and (x, y) /∈ sing(l) if x ∈ D(d2u). Analogously,
y ∈ D(du(lq)) implies x = G1(y), and y ∈ D(d2u(lq)) gives (x, y) /∈ sing(l).

(ii) For m-a.e. x ∈ X ∩ {du ̸= 0}, the derivative dFt(x) : TxM −→ TFt(x)M
exists, depends smoothly on t ∈ [0, 1], and t 7−→ dFt(x)(w) is a Jacobi field
along the geodesic γx(t) := Ft(x) for every w ∈ TxM .

(iii) For m-a.e. x ∈ X ∩ {du ̸= 0} and every w ∈ TxM , we have

Dγ̇x

γ̇x

[
dFt(x)(w)

]
0 = F ∗(du(x)

)p−2 ∇2u(w) + d[F ∗(du)p−2](w) ∇u(x),

where ∇u := L ∗(du) is the gradient vector and ∇2u : TxM −→ TxM is
the Hessian defined by

∇2u(w) := D∇u
w (∇u). (4.16)

Proof. (i) The first claim (4.15) is a consequence of the definition (4.4) and
(4.13). We turn to the equality case. When x ∈ D(du), the first claim and our
assumption on x and y entail that, for every sufficiently small w ∈ TxM ,

q−1 l
(

exphx(w), y
)q ≤ u

(
exphx(w)

)
+ u(lq)(y)

= u(x) + du(w) + u(lq)(y) + o(|w|h)
= q−1 l(x, y)q + du(w) + o(|w|h).

In other words, q−1 l(·, y)q is superdifferentiable at x with a supergradient
du ∈ T ∗

xM . Hence, Corollary 3.12(ii) implies y = F1(x) as claimed.
Next, let x ∈ D(d2u). Arguing similarly to the previous step and employing

Taylor’s theorem around x we obtain

q−1 l
(

exphx(w), y
)q ≤ u

(
exphx(w)

)
+ u(lq)(y)

= u(x) + du(w) + d2u(w ⊗ w) + u(lq)(y) + o(|w|2h)
= q−1 l(x, y)q + du(w) + d2u(w ⊗ w) + o(|w|2h)

for every sufficiently small w ∈ TxM . By replacing w with −w and adding up
the resulting inequalities, the terms involving du cancel out. Thus, we get an
upper bound for the numerator in Corollary 3.12(iv), and we find (x, y) /∈ sing(l).

The analogous statements replacing the role of x and y can be seen by the
same argument for L (by noticing F ∗(ζ) = F ∗(−ζ) and L ∗(ζ) = −L ∗(−ζ) for
−ζ ∈ Ω∗

y, where F ∗ and L ∗ are associated with L).
(ii) On the one hand, since u is semi-convex, it is twice differentiable m-a.e.

In particular, for m-a.e. x ∈ X, du(x) exists and, when du(x) ̸= 0, the Hessian
∇2u as in (4.16) is well-defined. On the other hand, by definition, γz(t) = Ft(z)
is a geodesic for every z ∈ D(du). Hence, dFt(x) exists and t 7−→ dFt(x)(w) is
a Jacobi field (and hence smooth).
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(iii) Observe that

γ̇x(0) = F ∗(du)p−2L ∗(du) = F ∗(du)p−2 ∇u(x).

This implies, for every w ∈ TxM ,

Dγ̇x

γ̇x

[
dFt(x)(w)

]
0 = Dγ̇x

w

[
F ∗(du)p−2 ∇u

]
= F ∗(du)p−2 ∇2u(w) + d[F ∗(du)p−2](w) ∇u(x).

This terminates the proof.

We remark that, when equality holds in (4.15) as in (i), then du(x) ∈ Ω∗
x.

Therefore, F ∗(du(x)) is well-defined and ∇u(x) = L ∗(du(x)) ∈ Ωx. Analo-
gously, we find −du(lq)(y) ∈ Ω∗

y and L ∗(−du(lq)(y)) ∈ Ωy. Thus, the vector
−L ∗(−du(lq)(y)) is future-directed with respect to the reverse structure L, and
the map t 7−→ Gt(y) constitutes a future-directed timelike geodesic for L.

Theorem 4.17 (Characterizing optimal maps). Let q ∈ (0, 1) and assume
(µ, ν) ∈ Pc(M) × Pc(M) to be q-separated by (π, u, v). Then the following hold.

(i) Suppose µ ∈ Pac(M,m) and define F1 : M −→ M as in (4.14). Then
we have π = (Id,F1)♯µ, which is a unique maximizer of ℓq(µ, ν), and
(x,F1(x)) /∈ sing(l) holds for µ-a.e. x ∈ M .

(ii) The map F1 in (i) is unique in the following sense. Assume that ũ : U −→ R
is a Lipschitz function defined on a neighborhood U of sptµ with

ũ(x) = sup
y∈spt ν

(
q−1 l(x, y)q − ũ(lq)(y)

)
, (4.17)

and suppose that the map F̃1 : M −→ M given by

F̃1(x) = expx
(
F ∗(dũ)p−2 L ∗(dũ)

)
provided x ∈ D(dũ), obeys ν = (F̃1)♯µ. Then dũ = du µ-a.e.

(iii) In addition to the hypothesis of (i), assume ν ∈ Pac(M,m) and define
G1 : M −→ M as in (4.14). Then we have F1 ◦ G1(y) = y for ν-a.e. y ∈ M
as well as G1 ◦ F1(x) = x for µ-a.e. x ∈ M .

Proof. (i) Theorem 4.9 yields that u = (lq)v on sptµ, v = u(lq) on spt ν, and that
u and v extend to semi-convex Lipschitz functions on neighborhoods of sptµ
and spt ν, respectively. Rademacher’s theorem ensures that u is differentiable
m-a.e. and thus µ-a.e. In particular, the measure (Id,F1)♯µ makes sense.

Again by Theorem 4.9, π and (u, v) attain the respective supremum and
infimum in (4.3). Let E be the equality set from (4.5). By Lemma 4.16(i), for
π-a.e. (x, y) ∈ E with x ∈ D(d2u) we have y = F1(x) and (x,F1(x)) /∈ sing(l).
Since M \D(d2u) is m-negligible by Alexandrov’s theorem and hence µ-negligible,
we obtain π = (Id,F1)♯µ, therefore, (Id,F1)♯µ is a maximizer of ℓq(µ, ν). Given
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any such maximizer π′, Proposition 4.7 gives π′[E] = 1, and arguing as above
shows π′ = π and hence the uniqueness of π.

(ii) First, we claim that π̃ := (Id, F̃1)♯µ maximizes ℓq(µ, ν). By Lemma
4.16(i), for every x ∈ D(dũ) the supremum of (4.17) is necessarily attained at
y = F̃1(x). As in (i), we see that M \ D(dũ) is µ-negligible. Therefore,

q−1 l
(
x, F̃1(x)

)
= ũ(x) + ũ(lq)(F̃1(x)

)
for µ-a.e. x ∈ M . By integrating this inequality against µ and using ν = (F̃1)♯µ
as well as Proposition 4.7, we deduce the claim.

The uniqueness part of (i) thus gives (Id,F1)♯µ = (Id, F̃1)♯µ, whence F1 = F̃1
µ-a.e. We claim that in fact du = dũ on D(du) ∩ D(dũ) (a set which has µ-full
measure, as seen above). If that fails at all points x ∈ D(du) ∩ D(dũ) with
F1(x) = F̃1(x) in a set of positive µ-measure, there are two different maximizing
geodesics connecting x and F1(x). Hence (x,F1(x)) ∈ sing(l), contradicting (i).

(iii) An analogous argument as in (i), taking into account that v = u(lq)

on spt ν, gives π = (G1, Id)♯ν. Therefore, π is concentrated on D(du) × D(dv).
Hence y = F1(x) and x = G1(y) for π-a.e. (x, y) ∈ M × M by Lemma 4.16(i),
which is the claim.

Corollary 4.18 (Lagrangian characterization of q-geodesics). Given any q ∈
(0, 1), assume (µ0, µ1) ∈ Pac

c (M,m)×Pc(M) to be q-separated by (π, u, v). Define
Ft : M −→ M as in (4.14), where t ∈ [0, 1]. Then ((Ft)♯µ0)t∈[0,1] is a unique
q-geodesic from µ0 to µ1.

Proof. By Theorem 4.17, π is the unique ℓq-optimal coupling of µ0 and µ1, and
has the form π = (Id,F1)♯µ0. In particular, since

l
(
Fs(x),Ft(x)

)q = (t− s)q l
(
x,F1(x)

)q
for µ0-a.e. x ∈ M and every s, t ∈ [0, 1] with s < t, ((Ft)♯µ0)t∈[0,1] is a q-geodesic
from µ0 to µ1; Corollary 4.4 thus implies the compactness of spt[(Ft)♯µ0].

To prove the uniqueness, let (µt)t∈[0,1] be a q-geodesic from µ0 to µ1, and fix
t ∈ (0, 1). Again µt is compactly supported by Corollary 4.4. In particular, by
Lemma 4.1 µ0 and µt as well as µt and µ1 admit ℓq-optimal couplings. Then we
fix ω ∈ P(M × M × M) as given by Proposition 4.3. The ℓq-optimality of its
marginals and uniqueness of π ensures that π13 = π, where π13 := (proj13)♯ω.
Hence π13[sing(l)] = 0 by Theorem 4.17(i). Combining Lemma 3.5 with the last
part of Proposition 4.3 and zt(x,F1(x)) = Ft(x) for every x ∈ D(du), cf. Remark
3.7, finally implies

µt = (zt)♯π13 = (zt)♯
(
(Id,F1)♯µ0

)
= (Ft)♯µ0

and hence the desired conclusion.

In fact, under the hypotheses of Corollary 4.18 the interpolants (Ft)♯µ0 are
absolutely continuous with respect to m provided t < 1. We defer the proof of
the following corresponding proposition to the next section since we need the
measure contraction property stated in Lemma 5.4.
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Proposition 4.19 (Absolute continuity of interpolants). Given any q ∈ (0, 1),
let (µt)t∈[0,1] denote a unique q-geodesic joining a pair of q-separated endpoints
(µ0, µ1) ∈ Pac

c (M,m) × Pc(M). Then µt ∈ Pac
c (M,m) for all t ∈ (0, 1).

A direct consequence is the following Monge–Ampère type equation (also called
the Jacobian equation; cf. Villani [65, Theorem 11.1]). It is shown in exactly
the same way as McCann’s result [45, Corollary 5.11] (whose main ingredient
[45, Theorem 5.10] is a local statement that can be established chart-wise in our
setting) and thus the proof is omitted.

Corollary 4.20 (Monge–Ampère type equation). Retain the assumptions and
the notation of Proposition 4.19, and set µt := (Ft)♯µ0 = ρtm for t ∈ [0, 1).
Then, for every t ∈ (0, 1) and µ0-a.e. x ∈ M , dFt(x) exists and we have

ρ0(x) = ρt
(
Ft(x)

)
detm[dFt(x)].

This conclusion also holds for t = 1 provided µ1 ∈ Pac
c (M,m).

Here, detm[dFt(x)] is the Jacobian (determinant) of dFt(x) with respect to
m, namely

detm[dFt(x)] :=
mFt(x)[dFt(x)(A)]

mx[A] ,

where mx is the Lebesgue measure on TxM induced from m via coordinates
and A ⊂ TxM is an arbitrary nonempty, bounded open set. We remark that
detm[dF0(x)] = 1 and detm[dFt(x)] > 0 for µ0-a.e. x ∈ M .

Finally, we remark that the statements from Theorem 4.17, Corollary 4.18,
and Proposition 4.19 can be extended beyond q-separated measures. Compare
this with Remark 5.8 below.

Corollary 4.21 (Optimal maps and q-geodesics without duality). Let q ∈ (0, 1),
and let µ0 ∈ Pac

c (M,m) as well as µ1 ∈ Pc(M).

(i) There exists at most one chronological ℓq-optimal coupling π ∈ Π(µ0, µ1).

Moreover, if π is such a coupling, then we have the following.

(ii) It can be written as π = (Id,F1)♯µ0, where F1 : M −→ M is a certain
Borel map, and satisfies π[sing(l)] = 0.

(iii) It decomposes as π =
∑
i∈N πi, where (πi)i∈N is a sequence of mutually

singular sub-probability measures on M×M with the following properties for
every i ∈ N: The set sptµi × spt νi, where µi and νi are the marginals of
π̂i := πi[M ×M ]−1 πi, is compact and disjoint from {l ≥ 0}. In particular,
the pair (µi, νi) is q-separated. F1 agrees µi-a.e. with the transport map
F i

1 pushing forward µi to νi from Theorem 4.17. Lastly, the above sum is
finite if and only if sptπ is compact and disjoint from {l ≤ 0}.

(iv) The assignment µt := (zt)♯π, where zt designates the map from Lemma
4.5, defines a q-geodesic (µt)t∈[0,1] from µ0 to µ1 such that µt ∈ Pac

c (M,m)
provided t < 1. Subject to the decomposition of π from (ii), ((zt)♯πi)i∈[0,1]
are mutually singular sub-probability measures for t < 1.
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Proof. This is proven in the same way as [45, Theorem 7.1]. A decomposition
of π as in (ii) is obtained by dividing {l > 0} ∩ sptπ into countably many open
and relatively compact rectangles whose closures are contained in the open set
{l > 0}, and restriction of π to these. We skip the details.

In view of the last claim of (iii), we stress that the condition π[{l > 0}] = 1
does not imply the disjointness of sptπ from {l ≤ 0}. The latter is thus a strictly
stronger property.

5 Curvature-dimension condition from Ricci
curvature bounds

In the previous section we saw that optimal transports are done along geodesics,
and hence Jacobi fields play a key role to control their behavior. Then, it
is natural to expect that the Ricci curvature comes into play, and we show
in this section that a lower bound of the weighted Ricci curvature provides
a convexity estimate for a certain entropy functional, called the curvature-
dimension condition. We refer to [22, 39, 60, 61, 62] for the Riemannian case
and [55] for the Finsler case.

5.1 Weighted Ricci curvature
Here and henceforth, we fix a smooth positive measure m on a Finsler spacetime
(M,L). Then the associated weight function ψm : Ω \ {0} −→ R is defined by

dm = e−ψm(γ̇(t))
√

−det
[
gαβ
(
γ̇(t)

)]
dx1 dx2 · · · dxn

along timelike geodesics γ. We remark that ψm is positively 0-homogeneous in
the sense that ψm(cv) = ψm(v) for every v ∈ Ω \ {0} and c > 0.

Remark 5.1. In Lu–Minguzzi–Ohta [40, 41, 42], we dealt with a more general
framework by directly considering a positively 0-homogeneous weight function
ψ : Ω \ {0} −→ R, which is not necessarily associated with a measure as above.
In this paper, however, we begin with a measure m since we need it as a reference
measure to define entropy functionals. In addition, we will not use the ϵ-range
introduced in [40] (in other words, we put ϵ = 1).

For later convenience, along a timelike geodesic γ : [0, l) −→ M , we denote

ψγ(t) := ψm

(
γ̇(t)

)
. (5.1)

Definition 5.2 (Weighted Ricci curvature). Given a causal vector v ∈ Ω \ {0},
let γ : (−ε, ε) −→ M be the causal geodesic with γ̇(0) = v. Then, for N ∈ R\{n},
we define the weighted Ricci curvature at v by

RicN (v) := Ric(v) + ψ′′
γ (0) −

ψ′
γ(0)2

N − n
, (5.2)
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where Ric(v) is the usual Ricci curvature defined in Definition 2.2. We also set

Ric∞(v) := Ric(v) + ψ′′
γ (0), Ricn(v) := lim

N↓n
RicN (v),

and RicN (0) := 0.

Remark 5.3. (a) By definition, the quantity RicN (v) is non-decreasing in
N in the ranges [n,+∞] and (−∞, n). Moreover, for N ∈ (n,+∞) and
N ′ ∈ (−∞, 0) we have

Ricn(v) ≤ RicN (v) ≤ Ric∞(v) ≤ RicN ′(v) ≤ Ric0(v).

(b) In our previous papers [40, 41, 42], we chose the notation dimM = n+ 1
but adopted the same definition (5.2). As a result, RicN+1 in this paper
(and [45]) corresponds to RicN in [40, 41, 42].

One can obtain several singularity theorems [40] and comparison theorems
[41] under the curvature bound RicN ≥ K for K ∈ R, by which we mean
RicN (v) ≥ KF 2(v) = −2KL(v) for all v ∈ Ω (and hence for all v ∈ Ω by con-
tinuity). For giving a deferred proof of Proposition 4.19, here we explain the
timelike measure contraction property as a corollary to (the proof of) the Bishop–
Gromov volume comparison theorem in [41, Theorem 5.10] (see [53, 62] for the
Riemannian measure contraction property). To this end, we define

sκ(r) :=


1√
κ

sin(
√
κr) κ > 0,

r κ = 0,
1√
−κ

sinh(
√

−κr) κ < 0

for r ∈ R when κ ≤ 0, and for r ∈ [0, π/
√
κ] when κ > 0, as well as

τ
(t)
K,N (r) := t1/N

(
sK/(N−1)(tr)
sK/(N−1)(r)

)(N−1)/N
(5.3)

for K ∈ R, N ∈ (−∞, 0) ∪ [n,+∞), and t ∈ (0, 1), which is defined for r > 0
when K/(N − 1) ≤ 0, and for r ∈ (0, π

√
(N − 1)/K) when K/(N − 1) > 0. We

also define τ (t)
K,N (0) := t. The case N = 0 is not included in the definition (5.3)

and will be dealt with separately in Definition 5.7.

Lemma 5.4 (Timelike measure contraction property). Let (M,L,m) satisfy
RicN ≥ K for some K ∈ R and N ∈ [n,+∞). Then we have

m[Zt(x,B)] ≥ inf
y∈B

τ
(t)
K,N

(
l(x, y)

)N
m[B]

for every x ∈ M , every compact set B ⊂ I+(x), and every t ∈ (0, 1). Moreover,

m[Zt(A, y)] ≥ inf
x∈A

τ
(1−t)
K,N

(
l(x, y)

)N
m[A]

for every y ∈ M , every compact set A ⊂ I−(y), and every t ∈ (0, 1).
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Proof. First of all, if K > 0, then the Lorentzian counterpart to the Bonnet–
Myers theorem [40, Theorem 5.17] implies l(x, y) ≤ π

√
(N − 1)/K, and hence

l(x, y) < π
√

(N − 1)/K for m-a.e. y ∈ I+(x).
We first consider the set Zt(x,B). Note that x and m-a.e. y ∈ I+(x) are

connected by a unique maximizing timelike geodesic γy : [0, 1] −→ M , and

m[Zt(x,B)] =
∫
B

detm[dΨt] dm,

where detm[dΨt] is the Jacobian of the map Ψt(y) := γy(t) with respect to the
measure m. Precisely, setting wy := γ̇y(0) ∈ TxM and using an orthonormal
basis (eα)nα=1 of (TxM, gv) with e1 = wy/l(x, y) as well as the vector fields
Ji(t) := d[exptwy

](tei) along γy, where i = 2, . . . , n, we have

detm[dΨt(y)] = t ϕy(t)
ϕy(1) , ϕy(t) := e−ψγy (t)

√
det
[
gγ̇y(t)

(
Ji(t), Jj(t)

)]
.

The function s 7−→ ϕy(s/l(x, y))1/(N−1) coincides with h = h1 in the proof of [41,
Theorem 5.10] with ϵ = 1 and c = 1/(N − 1), and it follows from the hypothesis
RicN ≥ K that h/sK/(N−1) is non-increasing. Hence,

m[Zt(x,B)] =
∫
B

t ϕy(t)
ϕy(1) dm(y)

≥
∫
B

t
sK/(N−1)(t l(x, y))N−1

sK/(N−1)(l(x, y))N−1 dm(y)

≥ inf
y∈B

τ
(t)
K,N

(
l(x, y)

)N
m[B].

The assertion on Zt(A, y) can be reduced to the reverse structure L, for
which RicN ≥ K (with respect to m) also holds since

RicLN (v) = RicLN (−v) ≥ −2KL(−v) = −2KL(v)

for every tangent vector v which is causal with respect to L.

5.2 Absolute continuity of intermediate measures
We are ready to provide a proof of Proposition 4.19, which we restate below
for convenience. The Lorentzian version of it has been shown by McCann [45,
Theorem A.1] by establishing a modified Monge–Mather shortening estimate, see
also [17, 65]. We propose an alternative proof based on ideas of Figalli–Juillet
[26]; a byproduct of the proof is a qualitative density bound we do not state
explicitly, but which should be compared to Braun [14].

Proposition 5.5. Given any q ∈ (0, 1), let (µt)t∈[0,1] denote a unique q-geodesic
joining a pair of q-separated endpoints (µ0, µ1) ∈ Pac

c (M,m) × Pc(M) according
to Corollary 4.18. Then µt ∈ Pac

c (M,m) for every t ∈ (0, 1).
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Proof. We first check the case sptµ0 × sptµ1 ⊂ {l > 0}, i.e. l is bounded
and bounded away from zero on the product sptµ0 × sptµ1. Let K ∈ R and
N ∈ (n,+∞) be fixed numbers such that RicN ≥ K in all timelike directions on
the compact causal diamond J+(µ0) ∩ J−(µ1). Then we claim that∫

{ρ0>0}
f ◦ Ft dm ≤ sup

x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)−N
∫
M

f dm (5.4)

for every nonnegative, continuous function f on M with compact support.
To this aim, we fix a sequence (µk1)k∈N of compactly supported probability

measures of the form µk1 = λk1 δxk
1

+ · · · + λkk δxk
k

which weakly converges to µ1;
here, given any k ∈ N, xk1 , . . . , xkk are points in sptµ1, and λk1 , . . . , λ

k
k are

nonnegative real numbers which sum up to 1. Since sptµ0 × sptµk1 ⊂ {l > 0},
(µ0, µ

k
1) is q-separated by Lemma 4.10. Theorem 4.17 and Corollary 4.18 imply

the existence of appropriate Borel maps Fk
t : M −→ M , where t ∈ [0, 1], with

the properties
• Fk

1 induces the unique ℓq-optimal coupling of (µ0, µ
k
1), and

• ((Fk
t )♯µ0)t∈[0,1] constitutes the unique q-geodesic from µ0 to µk1 .

Let Aki ⊂ {ρ0 > 0} be the set of all points x ∈ {ρ0 > 0} with Fk
1 (x) = xki , where

i = 1, . . . , k. Then Ak1 , . . . , A
k
k are mutually disjoint, and their union has full

µ0-measure. Given any i = 1, . . . , k, Theorem 4.17 and Remark 3.7 imply the
curve (Fk

t (x))t∈[0,1] to form the unique maximizing timelike geodesic from x
to xki for µ0-a.e. x ∈ Aki . Since µ0 and m are equivalent on {ρ0 > 0}, the
same statement holds for every x ∈ Bki , where Bki ⊂ Aki is an appropriate Borel
set with m[Aki \Bki ] = 0. In particular Zt(E′, xki ) = Fk

t (E′) for every Borel set
E′ ⊂ Bki , for which Lemma 5.4 (applied to the Finsler spacetime built by the
causal diamond J+(µ0) ∩ J−(µ1)) implies

m
[
Fk
t (E′)

]
≥ inf
x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)N
m[E′].

In particular, by appropriately decomposing an arbitrary Borel set E ⊂ {ρ0 > 0}
we get

m
[
Fk
t (E)

]
≥ inf
x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)N
m[E].

This inequality can be rewritten as

m[F ] ≥ inf
x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)N
m
[
(Fk

t )−1(F ) ∩ {ρ0 > 0}
]

for every Borel set F ⊂ Fk
t ({ρ0 > 0}), or equivalently∫

{ρ0>0}
f ◦ Fk

t dm ≤ sup
x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)−N
∫
M

f dm (5.5)

for every function f as above. Now by the q-separation of (µ0, µ1) and the
stability of optimal maps [65, Corollary 5.23], (Fk

t )k∈N converges to Ft in µ0-
measure, and thus Fk

t → Ft m-a.e. on {ρ0 > 0} as k → +∞ up to a non-relabeled
subsequence. Passing to the limit in (5.5) then shows (5.4).
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An approximation argument now allows us to extend (5.4) to nonnegative
Borel functions f on M . For f := 1Ft({ρ0>0}) h ρ0 ◦ F−1

t , where h is a given
nonnegative and bounded Borel function on M , this translates into∫

Ft({ρ0>0})
hdµt =

∫
{ρ0>0}

h ◦ Ft dµ0

=
∫

{ρ0>0}
(h ◦ Ft) ρ0 dm

≤ sup
x∈sptµ0,y∈sptµ1

τ
(1−t)
K,N

(
l(x, y)

)−N
∫
M

h ρ0 ◦ F−1
t dm.

This implies the claim under our initial assumptions on µ0 and µ1.
The general case now follows by sub-partition as in [13, Proposition 3.38].

The proof is similar to the one of Corollary 4.21. We skip the details.

5.3 Timelike curvature-dimension condition
To introduce the timelike curvature-dimension conditions we will study in a
moment, we need to define several entropy functionals on P(M). Though we
give a definition for general probability measures, in fact we only deal with
m-absolutely continuous measures.

Definition 5.6 (Entropies). Let µ = ρm + µ⊥ denote the Lebesgue decomposi-
tion of a given probability measure µ ∈ P(M) into its m-absolutely continuous
and m-singular parts.

(1) The Boltzmann–Shannon entropy of µ is defined by

Entm(µ) :=
∫
M

ρ log ρdm

if µ ∈ Pac(M,m) and
∫

{ρ<1} ρ log ρdm > −∞, otherwise Entm(µ) := +∞.

(2) For n ≤ N < +∞ we define the N -Rényi entropy of µ by

SNm (µ) := −
∫
M

ρ(N−1)/N dm.

(3) For N < 0, the corresponding N -Rényi entropy of µ is

SNm (µ) :=
∫
M

ρ(N−1)/N dm

if µ ∈ Pac(M,m), otherwise SNm (µ) := +∞.

(4) The 0-Rényi entropy of µ is given by

S0
m(µ) := ess sup

x∈M
ρ(x) = ∥ρ∥L∞(M,m)

if µ ∈ Pac(M,m), otherwise S0
m(µ) := +∞.
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We remark that the generation functions r 7−→ r log r, r 7−→ −r(N−1)/N (for
n ≤ N < +∞), and r 7−→ r(N−1)/N (for N < 0) are all convex on [0,∞). (This
explains the change of sign for SNm in passing from positive to negative N .) In
addition, we have Entm(µ) ≥ − logm[sptµ] for µ ∈ Pc(M) by Jensen’s inequality,
and similarly we obtain a lower bound for SNm (µ) for N ∈ (−∞, 0] ∪ [n,+∞),
see the proof of Theorem 5.11.

Now we introduce the timelike curvature-dimension condition TCDq(K,N)
partly using the function τ

(t)
K,N in (5.3).

Definition 5.7 (Timelike curvature-dimension condition). Let q ∈ (0, 1), K ∈ R,
and N ∈ (−∞, 0] ∪ [n,+∞]. We say that a weighted Finsler spacetime (M,L,m)
satisfies TCDq(K,N) if, for every q-separated (µ0, µ1) ∈ Pac

c (M,m)×Pac
c (M,m)

there exist a q-geodesic (µt)t∈[0,1] from µ0 and µ1 and an ℓq-optimal coupling
π ∈ Π(µ0, µ1) such that the following hold.

(1) When N = +∞, for every t ∈ [0, 1] we have

Entm(µt) ≤ (1 − t) Entm(µ0) + tEntm(µ1)

− K

2 t (1 − t)
∫
M×M

l(x, y)2 dπ(x, y).
(5.6)

(2) When n ≤ N < +∞, for every N ′ ≥ N and every t ∈ [0, 1] we have

SN
′

m (µt) ≤ −
∫
M×M

τ
(1−t)
K,N ′

(
l(x, y)

)
ρ0(x)−1/N ′

dπ(x, y)

−
∫
M×M

τ
(t)
K,N ′

(
l(x, y)

)
ρ1(y)−1/N ′

dπ(x, y).
(5.7)

Here ρ0 and ρ1 denote the m-densities of µ0 and µ1, respectively.

(3) When N < 0, for every N ′ ∈ [N, 0) and every t ∈ [0, 1] we have

SN
′

m (µt) ≤
∫
M×M

τ
(1−t)
K,N ′

(
l(x, y)

)
ρ0(x)−1/N ′

dπ(x, y)

+
∫
M×M

τ
(t)
K,N ′

(
l(x, y)

)
ρ1(y)−1/N ′

dπ(x, y),
(5.8)

where we set τ (t)
K,N ′(r) := +∞ if K < 0 and r ≥ π

√
(N ′ − 1)/K.

(4) When N = 0, for every t ∈ [0, 1] we have

S0
m(µt) ≤ ess sup

(x,y)∈sptπ
max

{
s−K((1 − t) l(x, y))
(1 − t) s−K(l(x, y)) ρ0(x),

s−K(t l(x, y))
t s−K(l(x, y)) ρ1(y)

}
,

(5.9)

where we set s−K(tl(x, y))/(ts−K(l(x, y))) := 1 if l(x, y) = 0.
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We refer to Ohta [56, 57] for the curvature-dimension condition for Rieman-
nian or Finsler manifolds with N < 0 and N = 0, respectively. Note that, in the
case of N < 0 and K < 0, TCDq(K,N) provides only a local control since the
defining inequality (5.8) is trivial if

π
[{

(x, y) ∈ M ×M
∣∣ l(x, y) ≥ π

√
(N − 1)/K

}]
> 0.

We also remark that π is an ℓq-optimal coupling of µ0 and µ1, thereby the
last term

∫
M×M l(x, y)2 dπ(x, y) in (5.6) is not directly written as a transport

cost. In fact, π is a unique ℓq-optimal coupling of µ0 and µ1 by Lemma 4.10 and
Theorem 4.17, and (µt)t∈[0,1] is a unique q-geodesic connecting its endpoints by
Corollary 4.18. Here we have implicitly used that all couplings of µ0 and µ1 are
chronological, which leads us to a further remark on the chronology assumption
on µ0 and µ1 in Definition 5.7.
Remark 5.8 (Timelike q-dualizability). The hypothesis of q-separation in
Definition 5.7 lies in between strong timelike p-dualizability and timelike p-
dualizability of (µ0, µ1) as introduced by Cavalletti–Mondino [21, Definitions
2.18, 2.27]. These are the properties in whose terms strong and weak timelike
curvature-dimension conditions have been defined in Cavalletti–Mondino [21]
and Braun [13]. In the young literature about TCD spaces this distinction is
still necessary for stability questions, since chronology is not a closed condition.

The results in Theorem 5.9 and Theorem 6.1 still hold if Definition 4.8 was
instead given for timelike p-dualizable or strongly timelike p-dualizable pairs
(µ0, µ1). For N ∈ [n,+∞) the equivalence of these various TCD conditions is
due to Braun [13]. The proof employs a construction similar to Corollary 4.21,
convexity, and a timelike non-branching property (which is clear in our case).
With some work, this can be extended to the range N ∈ (−∞, 0] ∪ {+∞}. One
could even merely assume (µ0, µ1) to obey sptµ0 × sptµ1 ⊂ {l > 0}, cf. Lemma
4.10. This property should be easier to verify in practice, but as observed in
Section 4.3, unlike the other conditions (see Proposition 4.14 and [14, Lemma
3.1]) it does not propagate along q-geodesics.

Integrating the behavior of optimal transports in the previous section and
the control of m by the weighted Ricci curvature, we arrive at the following main
result.
Theorem 5.9 (RicN ≥ K implies TCDq(K,N)). Let (M,L,m) be a globally
hyperbolic weighted Finsler spacetime satisfying RicN ≥ K in timelike directions
for some K ∈ R and N ∈ (−∞, 0] ∪ [n,+∞]. Then it satisfies TCDq(K,N) for
any q ∈ (0, 1).
Proof. We divide the proof into five steps.

Step 1. We start with some preparations. Throughout this proof, we fix a
pair (µ0, µ1) ∈ Pac

c (M,m) × Pac
c (M,m) which is q-separated, say by (π, u, v).

Let (µt)t∈[0,1] be the unique q-geodesic which connects µ0 to µ1. Recall from
Theorem 4.17 and Corollary 4.18 that µt = (Ft)♯µ0 for every t ∈ (0, 1), where

Ft(x) := expx
(
t F ∗(du)p−2 L ∗(du)

)
.
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Moreover, µt = ρtm is m-absolutely continuous, and Corollary 4.20 yields

ρ0(x) = ρt
(
Ft(x)

)
detm[dFt(x)]

for µ0-a.e. x ∈ M . To be more precise, if du(x) ̸= 0 (equivalently, x ̸= F1(x)),
one can write down

detm[dFt(x)] = eψγ (0)−ψγ (t) det[dFt(x)]

for the maximizing geodesic γ : [0, 1] −→ M from x to F1(x) and ψγ given by
(5.1), where det[dFt(x)] denotes the Jacobian associated with the measure volgγ̇

along γ induced from the Lorentzian metric gγ̇ as in (2.2).

Step 2. Now, we can follow essentially the same lines as the Lorentzian case in
[45], however, we need more detailed calculations to improve TCD∗(K,N) to
TCD(K,N). Here we give the detailed proof for completeness. Fix x ∈ sptµ0
with du(x) ̸= 0 as above and take an gγ̇-orthonormal basis (eα)nα=1 of TxM
with e1 = γ̇(0)/F (γ̇(0)). That is, we have gγ̇(e1, e1) = −1, gγ̇(ei, ei) = 1 for
i ≥ 2, and gγ̇(eα, eβ) = 0 for 1 ≤ α < β ≤ n. We consider the gγ̇-parallel vector
fields Eα along γ with Eα(0) = eα (i.e. Dγ̇

γ̇Eα = 0) as well as the Jacobi fields
Jα(t) := dFt(x)(eα) along γ. We remark that J1(t) is not necessarily tangent
to γ̇(t). For simplicity, we denote the covariant derivative along γ by ′, namely
J ′
α := Dγ̇

γ̇Jα. Then we define the n× n matrix J(t) = (Jαβ(t))nα,β=1 by

Jα(t) :=
n∑
β=1

Jαβ(t)Eβ(t).

We have J ′′
α =

∑n
β=1 J

′′
αβ Eβ and observe from the Jacobi equation that

J ′′
α = −Rγ̇(Jα) = −

n∑
δ=1

Jαδ Rγ̇(Eδ)

=
n∑
δ=1

Jαδ gγ̇
(
Rγ̇(Eδ), E1

)
E1 −

n∑
δ=1

n∑
j=2

Jαδ gγ̇
(
Rγ̇(Eδ), Ej

)
Ej

= −
n∑

β,δ=1
Jαδ gγ̇

(
Rγ̇(Eδ), Eβ

)
Eβ ;

in the last line, we have used the identity gγ̇(Rγ̇(Eδ), E1) = gγ̇(Rγ̇(E1), Eδ) = 0
provided by E1 = γ̇/F (γ̇) and (2.5). Hence, by letting

B := J ′ J−1, R(t) :=
(
gγ̇
(
Rγ̇(Eα), Eβ

)
(t)
)n
α,β=1

,

we have the Riccati equation

B′ = J ′′ J−1 − (J ′ J−1)2 = −J RJ−1 −B2. (5.10)
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This can be rewritten as

D′ = −J−1 J ′ J−1 B J −R− J−1 B2 J + J−1 B J ′ = −R−D2,

where D := J−1 B J . Therefore, taking the trace yields

trace[B′] + trace[B2] = trace[D′] + trace[D2] = −Ric(γ̇). (5.11)

Step 3. Next, we have a closer look on trace[B2] at t = 0. This is the step
where we need a more delicate analysis to achieve TCD(K,N). First of all, since
Jα(0) = Eα(0), J(0) is the identity matrix and we have D(0) = B(0). By the
choice of (eα)nα=1,

Bα1(0) = −gγ̇
(
J ′
α(0), e1

)
, Bαj(0) = gγ̇

(
J ′
α(0), ej

)
for every j ≥ 2. We recall from Lemma 4.16(iii) that

J ′
α(0) = F ∗(du)p−2 ∇2u(eα) + d[F ∗(du)p−2](eα) ∇u(x),

and observe from the identities F ∗(du)2 = −g∇u(∇u,∇u), [40, (3.2)], as well as
e1 = ∇u(x)/F ∗(du) that

d[F ∗(du)p−2](eα) ∇u(x) = −(p− 2)F ∗(du)p−4 g∇u
(
∇2u(eα),∇u

)
∇u(x)

= −(p− 2)F ∗(du)p−2 g∇u
(
∇2u(eα), e1

)
e1.

Therefore,
Bα1(0) = (1 − p)F ∗(du)p−2 g∇u

(
∇2u(eα), e1

)
,

while for j ≥ 2 we obtain

Bαj(0) = F ∗(du)p−2 g∇u
(
∇2u(eα), ej

)
.

Thus we can decompose B(0) = F ∗(du)p−2 HuQ2, where

Hu :=
(
g∇u

(
∇2u(eα), eβ

))n
α,β=1

, Q := diag
(√

1 − p, 1, . . . , 1
)
. (5.12)

Note that Hu is symmetric [41, Lemma 4.13].
Since D(0) = B(0), we deduce from (5.10), (2.5), and the symmetry of Hu

that

D′
11(0) = −

n∑
α=1

D1α(0)Dα1(0)

= −F ∗(du)2p−4 (HuQ2 HuQ2)
11

= −F ∗(du)2p−4

(
(1 − p)2 (Hu

11)2 + (1 − p)
n∑
j=2

(Hu
1j)2

)
≤ −F ∗(du)2p−4 (1 − p)2 (Hu

11)2

= −D11(0)2.

(5.13)

41



We set ϕ(t) := log det[dFt(x)] = log det[J(t)] and decompose it as

ϕ1(t) :=
∫ t

0
D11(s) ds, ϕ2(t) := ϕ(t) − ϕ1(t).

Note that ϕ(0) = ϕ1(0) = ϕ2(0) = 0 and

ϕ′(t) = trace
[
J ′(t) J(t)−1] = trace[B(t)] = trace[D(t)],

ϕ′
2(0) =

n∑
i=2

Dii(0) = F ∗(du)p−2
n∑
i=2

Hu
ii,

and (5.13) yields [
eϕ1(t)]′′

0 =
(
D′

11(0) +D11(0)2) eϕ1(0) ≤ 0. (5.14)

Moreover, (5.11) implies

ϕ′′
2(t) = ϕ′′(t) − ϕ′′

1(t) = −Ric
(
γ̇(t)

)
− trace[D(t)2] −D′

11(t).

If follows from the symmetry of Hu and the Cauchy–Schwarz inequality that

trace[D(0)2] +D′
11(0) =

n∑
α,β=1

Dαβ(0)Dβα(0) −
n∑
β=1

D1β(0)Dβ1(0)

= F ∗(du)2p−4

(
(1 − p)

n∑
j=2

(Hu
1j)2 +

n∑
i,j=2

(Hu
ij)2

)

≥ F ∗(du)2p−4
n∑
i=2

(Hu
ii)2

≥ F ∗(du)2p−4 1
n− 1

(
n∑
i=2

Hu
ii

)2

= 1
n− 1 ϕ

′
2(0)2.

Combining these we obtain[
eϕ2(t)/(n−1)]′′

0
eϕ2(0)/(n−1) = ϕ′′

2(0)
n− 1 + ϕ′

2(0)2

(n− 1)2 ≤ −Ric(γ̇(0))
n− 1 . (5.15)

We further consider the functions, for N ∈ (−∞, 0] ∪ (n,+∞),

c(t) := detm[dFt(x)]1/N , c1(t) := exp
(
ψγ(0) − ψγ(t)

N − n

)
,

c2(t) := eϕ(t)/n, c3(t) := c1(t)(N−n)/(N−1) eϕ2(t)/(N−1),
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where we assume N ̸= 0 for c(t) and c2(t) will be used in the proof of Theorem 6.1.
Note that, since N ∈ (−∞, 0] ∪ (n,+∞),

(N − 1) c
′′
3
c3

= (N − n) c
′′
1
c1

+ (n− 1) [eϕ2/(n−1)]′′
eϕ2/(n−1)

− (n− 1)(N − n)
N − 1

(
c′

1
c1

− [eϕ2/(n−1)]′
eϕ2/(n−1)

)2

≤ −ψ′′
γ +

(ψ′
γ)2

N − n
+ (n− 1) [eϕ2/(n−1)]′′

eϕ2/(n−1) .

Therefore, at t = 0, we obtain from (5.15) and the hypothesis RicN ≥ K that

(N − 1) c
′′
3(0)
c3(0) ≤ −RicN

(
γ̇(0)

)
≤ −K F 2(γ̇(0)

)
. (5.16)

Step 4. We shall generalize (5.14) and (5.16) to t > 0. When we perform the
same calculation at t0 ∈ (0, 1) with the orthonormal basis (Eα(t0))nα=1, then
J(t), B(t), and D(t) are respectively replaced by

J t0(t) = J(t0)−1 J(t), Bt0(t) = J(t0)−1 B(t) J(t0), Dt0(t) = D(t)

for t ≥ t0. This immediately implies (5.14) as well as (5.15) at t0, and then
(5.16) also follows.

On the one hand, we deduce from the concavity inequality (5.14) that

eϕ1(t) ≥ (1 − t) eϕ1(0) + t eϕ1(1) = (1 − t) + t eϕ1(1). (5.17)

On the other hand, (5.16) implies that −(N−1) log c3 is (KF 2(γ̇), N−1)-convex
in the sense of [25, Lemma 2.2] for N ∈ (n,+∞) or [56, Lemma 2.1] for N ≤ 0,
respectively. Thus, we obtain

c3(t) ≥
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x)) +
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1) (5.18)

for N ∈ (n,+∞), and

c3(t) ≤
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x)) +
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1) (5.19)

for N ≤ 0, where we set d(x) := l(x,F1(x)) = F (γ̇) for simplicity.

Step 5. In this final step, we turn to the proofs of the respective entropic
displacement semi-convexity. We first consider the case of N ∈ (n,+∞). We
remark that, thanks to the monotonicity as in Remark 5.3, it suffices to show
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(5.7) for N ′ = N . Combining (5.17), (5.18), and Hölder’s inequality, we obtain

c(t) = c3(t)(N−1)/N eϕ1(t)/N

≥
(
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x)) +
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1)

)(N−1)/N

×
(
(1 − t) + t eϕ1(1))1/N

≥
(
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x))

)(N−1)/N
(1 − t)1/N

+
(
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1)

)(N−1)/N(
t eϕ1(1))1/N

= τ
(1−t)
K,N

(
d(x)

)
+ τ

(t)
K,N

(
d(x)

)
c(1).

We remark that this inequality holds as equality for µ0-a.e. x ∈ {du = 0} since
d(x) = 0. Therefore, with the help of Corollary 4.20, we obtain the desired
convexity (5.7) of SNm as

SNm (µt) = −
∫
M

ρt
(
Ft(x)

)(N−1)/N detm[dFt(x)] dm(x)

= −
∫
M

ρ0(x)(N−1)/N detm[dFt(x)]1/N dm(x)

≤ −
∫
M

ρ0(x)(N−1)/Nτ
(1−t)
K,N

(
d(x)

)
dm(x)

−
∫
M

ρ0(x)(N−1)/N τ
(t)
K,N

(
d(x)

)
detm[dF1(x)]1/N dm(x)

= −
∫
M

τ
(1−t)
K,N

(
d(x)

)
ρ0(x)(N−1)/N dm(x)

−
∫
M

τ
(t)
K,N

(
d(x)

)
ρ1
(
F1(x)

)(N−1)/N detm[dF1(x)] dm(x)

= −
∫
M×M

τ
(1−t)
K,N

(
l(x, y)

)
ρ0(x)−1/N dπ(x, y)

−
∫
M×M

τ
(t)
K,N

(
l(x, y)

)
ρ1(y)−1/N dπ(x, y).

This completes the proof in the case of N ∈ (n,+∞). Then the case of N = n
is obtained by a limit argument, since Ricn ≥ K implies RicN ≥ K for N > n.
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For N < 0, we make use of (5.19) instead of (5.18) to see

c(t) = c3(t)(N−1)/N eϕ1(t)/N

≤
(
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x)) +
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1)

)(N−1)/N

×
(
(1 − t) + t eϕ1(1))1/N

≤
(
sK/(N−1)((1 − t) d(x))

sK/(N−1)(d(x))

)(N−1)/N
(1 − t)1/N

+
(
sK/(N−1)(t d(x))
sK/(N−1)(d(x)) c3(1)

)(N−1)/N (
t eϕ1(1))1/N

= τ
(1−t)
K,N

(
d(x)

)
+ τ

(t)
K,N

(
d(x)

)
c(1),

where the latter inequality follows from the Hölder inequality of the form

(a1 + b1)(N−1)/N =
(
a1 · a1/(N−1)

2

a
1/(N−1)
2

+ b1 · b1/(N−1)
2

b
1/(N−1)
2

)(N−1)/N

≤ (a(N−1)/N
1 a

1/N
2 + b

(N−1)/N
1 b

1/N
2 ) (a2 + b2)−1/N

for a1, a2, b1, b2 > 0. Then (5.8) is deduced along the same lines as above.
Next, in the case of N = +∞, we more directly see that log[detm[dFt(x)]] =

ψγ(0) − ψγ(t) + ϕ(t) satisfies

[ψγ(0) − ψγ(t) + ϕ(t)]′′ = −ψ′′
γ (t) − trace[D(t)2] − Ric

(
γ̇(t)

)
≤ −Ric∞

(
γ̇(t)

)
≤ −K d(x)2.

This implies

log detm[dFt(x)] ≥ t log detm[dF1(x)] + K

2 t (1 − t) d(x)2

(which again holds true also for µ0-a.e. x ∈ {du = 0} since d(x) = 0), and we
deduce

Entm(µt) =
∫
M

ρt
(
Ft(x)

)
log ρt

(
Ft(x)

)
detm[dFt(x)] dm(x)

=
∫
M

ρ0(x) log ρ0(x)
detm[dFt(x)] dm(x)

≤ (1 − t) Entm(µ0) + t

∫
M

ρ0(x) log ρ0(x)
detm[dF1(x)] dm(x)

− K

2 t (1 − t)
∫
M

d(x)2 dµ0(x)

= (1 − t) Entm(µ0) + tEntm(µ1) − K

2 t (1 − t)
∫
M×M

l(x, y)2 dπ(x, y).
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Finally, when N = 0, (5.19) is still available, namely

c3(t) ≤ s−K((1 − t) d(x))
s−K(d(x)) + s−K(t d(x))

s−K(d(x)) c3(1).

In this case, we have

c3(t) = c1(t)n e−ϕ2(t)

= eψγ (t)−ψγ (0) eϕ1(t) det[dFt(x)]−1

= eϕ1(t) detm[dFt(x)]−1.

Combining this with (5.17) yields

detm[dFt(x)] = eϕ1(t) c3(t)−1

≥
(
(1 − t) + t eϕ1(1))(s−K((1 − t) d(x))

s−K(d(x)) + s−K(t d(x))
s−K(d(x)) c3(1)

)−1

≥ min
{

(1 − t) s−K(d(x))
s−K((1 − t) d(x)) ,

t s−K(d(x))
s−K(t d(x)) detm[dF1(x)]

}
,

where the latter inequality follows from

a1 + a2

b1 + b2
= b1

b1 + b2

a1

b1
+ b2

b1 + b2

a2

b2
≥ min

{
a1

b1
,
a2

b2

}
for a1, a2, b1, b2 > 0. This implies

ρt
(
Ft(x)

)
= ρ0(x)

detm[dFt(x)]

≤ max
{
s−K((1 − t) d)
(1 − t) s−K(d) ρ0(x), s−K(t d)

t s−K(d)
ρ0(x)

detm[dF1(x)]

}
= max

{
s−K((1 − t) d)
(1 − t) s−K(d) ρ0(x), s−K(t d)

t s−K(d) ρ1
(
F1(x)

)}
,

while ρt(Ft(x)) = ρ0(x) = ρ1(F1(x)) for µ0-a.e. x ∈ {du = 0}. Therefore, we
obtain (5.9), and the proof is finished.

We remark that, in the Riccati equation in Ohta [55] concerning the Finsler
case, as Rαβ we employed gγ̇(Rγ̇(Jα), Jβ) instead of gγ̇(Rγ̇(Eα), Eβ). They both
work well in the positive definite case, however, we found that the latter is more
convenient in the current setting (due to the fact that gγ̇(Eα, Eβ) is not the
identity matrix).

Remark 5.10. For negative N , one can define the entropic timelike curvature-
dimension condition TCDe

q(K,N) akin to the approach of Cavalletti–Mondino
[21]. However, in this dimensional range it seems that TCDe

q(K,N) is stronger
than RicN ≥ K [56, Remark 4.16]. On the other hand, if n ≤ N < +∞ these
properties imply their entropic counterpart by Braun [13].
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5.4 Timelike Brunn–Minkowski inequality
An important consequence of Theorem 5.9 is the timelike Brunn–Minkowski
inequality. In either dimensional case, it follows quite directly from TCDq(K,N)
by Jensen’s inequality. In the range N ∈ [1,∞), it has been derived first in [21]
from the entropic timelike curvature-dimension condition after [25], and then in
[13] in sharp form. See e.g. [55, 56, 62, 65] for the positive signature case.

Theorem 5.11 (Timelike Brunn–Minkowski inequality). Assume that (M,L,m)
is a globally hyperbolic weighted Finsler spacetime obeying RicN ≥ K for some
K ∈ R and N ∈ (−∞, 0] ∪ [n,+∞]. Let A0, A1 ⊂ M be two relatively compact
Borel sets with positive m-measure with A0 ×A1 ⊂ {l > 0}. Then the following
hold for every t ∈ (0, 1).

(i) When N = +∞, we have

logm
[
Zt(A0, A1)

]
≥ (1 − t) logm[A0] + t logm[A1]

+ inf
x∈A0,y∈A1

K

2 t (1 − t) l(x, y)2.

(ii) When n ≤ N < +∞, we have

m
[
Zt(A0, A1)

]1/N ≥ inf
x∈A0,y∈A1

τ
(1−t)
K,N

(
l(x, y)

)
· m[A0]1/N

+ inf
x∈A0,y∈A1

τ
(t)
K,N

(
l(x, y)

)
· m[A1]1/N .

(iii) When N < 0, we have

m
[
Zt(A0, A1)

]1/N ≤ sup
x∈A0,y∈A1

τ
(1−t)
K,N

(
l(x, y)

)
· m[A0]1/N

+ sup
x∈A0,y∈A1

τ
(t)
K,N

(
l(x, y)

)
· m[A1]1/N .

(iv) When N = 0, we have

m
[
Zt(A0, A1)

]
≥ min

{
inf

x∈A0,y∈A1

(1 − t) s−K(l(x, y))
s−K((1 − t) l(x, y)) m[A0],

inf
x∈A0,y∈A1

t s−K(l(x, y))
s−K(t l(x, y)) m[A1]

}
.

Proof. Let µ0, µ1 ∈ Pac
c (M,m) be the uniform distributions of A0 and A1 with

respect to m, respectively, i.e. µ0 := m[A0]−1 m|A0 and µ1 := m[A1]−1 m|A1 . By
our assumption on A0 and A1, Lemma 4.10, and Theorem 5.9 there exists a
q-geodesic (µt)t∈[0,1] from µ0 to µ1 and an ℓq-optimal coupling π ∈ Π(µ0, µ1)
witnessing the entropic displacement semi-convexity given by TCDq(K,N).
Depending on the range of N , from the precise form of the latter we will derive
the claims in each respective case.
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Some small preparations are in order. By Lemma 4.10, the pair (µ0, µ1) is
q-separated. Therefore (µt)t∈[0,1] is in fact the unique q-geodesic connecting µ0
to µ1 by Corollary 4.18. By Proposition 4.19, it only consists of m-absolutely
continuous measures, and we write µt = ρtm. Moreover, recall that sptµt ⊂
Zt(A0, A1) by Corollary 4.4 for given t ∈ (0, 1).

(i) In the case N = +∞, the hypothesis implies

Entm(µt) ≤ (1 − t) Entm(µ0) + tEntm(µ1)

− K

2 t (1 − t)
∫
M×M

l(x, y)2 dπ(x, y).
(5.20)

It is easy to see that

Entm(µ0) = − logm[A0], Entm(µ1) = − logm[A1],

and thus the right-hand side of (5.20) is bounded from above by

−(1 − t) logm[A0] − t logm[A1] − inf
x∈A0,y∈A1

K

2 t (1 − t) l(x, y)2.

To bound the left-hand side of (5.20) from below, by Jensen’s inequality we find

Entm(µt) ≥ − logm[sptµt] ≥ − logm
[
Zt(A0, A1)

]
.

(ii) In the case n ≤ N < +∞, the hypothesis implies

SNm (µt) ≤ −
∫
M×M

τ
(1−t)
K,N

(
l(x, y)

)
ρ0(x)−1/N dπ(x, y)

−
∫
M×M

τ
(t)
K,N

(
l(x, y)

)
ρ1(y)−1/N dπ(x, y).

The right-hand side of this inequality is bounded from above by

− inf
x∈A0,y∈A1

τ
(1−t)
K,N

(
l(x, y)

)
m[A0]1/N − inf

x∈A0,y∈A1
τ

(t)
K,N

(
l(x, y)

)
m[A1]1/N .

The claim follows again by applying Jensen’s inequality to the convex function
r 7−→ −r(N−1)/N on [0,+∞), thereby obtaining

SNm (µt) ≥ −m[sptµt]1/N ≥ −m
[
Zt(A0, A1)

]1/N
.

(iii) This is argued analogously to the previous item and thus omitted.
(iv) In the case N = 0, the hypothesis implies

S0
m(µt) ≤ ess sup

(x,y)∈sptπ
max

{
s−K((1 − t) l(x, y))
(1 − t) s−K(l(x, y)) ρ0(x), s−K(t l(x, y))

t s−K(x, y) ρ1(y)
}
.
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The right-hand side of this inequality is bounded from above by

max
{

sup
x∈A0,y∈A1

s−K((1 − t) l(x, y))
(1 − t) s−K(l(x, y)) m[A0]−1,

sup
x∈A0,y∈A1

s−K(t l(x, y))
t s−K(l(x, y)) m[A1]−1

}
.

The claim follows by estimating

m
[
Zt(A0, A1)

]−1 ≤ m[sptµt]−1 ≤ ess sup
z∈sptµt

ρt(z) = S0
m(µt).

This terminates the proof.

6 Ricci curvature bounds from curvature-
dimension condition

Now we turn to the converse of Theorem 5.9, i.e. the derivation of the lower
bound on the weighted Ricci curvature given the timelike curvature-dimension
condition. Our strategy follows the proofs of Lott–Villani [39, Theorem 7.3] and
Mondino–Suhr [52, Theorem 4.3].

Theorem 6.1 (TCDq(K,N) implies RicN ≥ K). Let (M,L,m) be a globally
hyperbolic weighted Finsler spacetime satisfying TCDq(K,N) for some q ∈ (0, 1),
K ∈ R, and N ∈ (−∞, 0] ∪ [n,+∞]. Then we have RicN ≥ K in timelike
directions.

Proof. We first consider the case n < N < +∞. Let p < 0 denote the dual
exponent of q, i.e. p−1 + q−1 = 1. Suppose to the contrary that for some ε > 0,
z ∈ M , and a timelike tangent vector w ∈ Ωz,

RicN (w) < (K − 2 ε)F 2(w).

For every sufficiently small s > 0, we find δ > 0 as well as a smooth function
u : Bδ(z) −→ R defined on a ball Bδ(z) (with respect to a fixed Riemannian
metric) around z such that its first and second derivatives at z are prescribed as

F ∗(du(z)
)p−2

L ∗(du(z)
)

= sw,

F ∗(du(z)
)p−2

QHuQ = −
ψ′
γ(0)

N − n
In,

(6.1)

where we define γ(t) := expz(t sw) for t ∈ [0, 1], Q and Hu are the matrices
defined in (5.12), and In is the identity matrix. We choose s and δ such that
Ft : Bδ(z) −→ M , where

Ft(x) := expx
(
t F ∗(du)p−2 L ∗(du)

)
,
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becomes a diffeomorphism onto its image for every t ∈ [0, 1]. By (6.1) and [45,
Lemma 8.3], up to reducing s and δ we may and will assume u to be (lq/q)-convex,
so that the above map will eventually give an optimal transport. Lastly, by the
continuity of u and possibly reducing δ further, we may and will also assume
that the time derivative of the curve t 7−→ Ft(x) is timelike and lies uniformly
away from the light cone in x ∈ Bδ(z) and t ∈ [0, 1].

Define the measures µ0 := m[Bδ(z)]−1 m|Bδ(z) = ρ0 m and µt := (Ft)♯µ0 for
t ∈ [0, 1]. By further reducing δ if necessary, we achieve sptµ0 × sptµ1 ⊂ {l > 0}.
In particular, (µ0, µ1) is q-separated by Lemma 4.10 and the hypothesized (lq/q)-
convexity of u, and (µt)t∈[0,1] constitutes the unique q-geodesic connecting µ0 to
µ1 by Corollary 4.18. After rescaling, µt is m-absolutely continuous for every
t ∈ [0, 1] by Proposition 4.19.

Along γ(t) = expz(t sw) as above, we consider the decomposition

c(t) := detm[dFt(z)]1/N = c1(t)(N−n)/N c2(t)n/N

as in the proof of Theorem 5.9, where

c1(t) := exp
(
ψγ(0) − ψγ(t)

N − n

)
, c2(t) := eϕ(t)/n = det[dFt(z)]1/n.

Then we have, by ϕ′ = trace[B] and the Riccati equation (5.11),

N
c′′

c
= (N − n) c

′′
1
c1

+ n
c′′

2
c2

− n(N − n)
N

(
c′

1
c1

− c′
2
c2

)2

= −RicN (γ̇) − trace[B2] + (trace[B])2

n
− n(N − n)

N

(
c′

1
c1

− c′
2
c2

)2
.

At t = 0, recalling B(0) = F ∗(du(z))p−2 HuQ2, we deduce from (6.1) that

c′
1(0)
c1(0) = −

ψ′
γ(0)

N − n
= 1
n

trace[B(0)] = c′
2(0)
c2(0)

and, since Hu is symmetric,

trace[B(0)2] = (trace[B(0)])2

n
=

nψ′
γ(0)2

(N − n)2 .

Hence, we obtain

N
c′′(0)
c(0) = −RicN (sw) > −(K − 2 ε)F 2(sw).

Thus, by continuity and a further rescaling, we may and will assume

N
c′′(t)
c(t) > −(K − ε)F 2(Ḟt(x)

)
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for every x ∈ Bδ(z) and every t ∈ [0, 1]. This inequality implies, by putting
d(x) := F (Ḟt(x)),

c(t) ≤
s(K−ε)/N ((1 − t) d(x))

s(K−ε)/N (d(x)) c(0) +
s(K−ε)/N (t d(x))
s(K−ε)/N (d(x)) c(1) (6.2)

thanks to (an analogue of) [25, Lemma 2.2]. Then it follows from the Monge–
Ampère equation (Corollary 4.20) that

ρt
(
Ft(x)

)−1/N ≤
s(K−ε)/N ((1 − t) d(x))

s(K−ε)/N (d(x)) ρ0(x)−1/N

+
s(K−ε)/N (t d(x))
s(K−ε)/N (d(x)) ρ1

(
F1(x)

)−1/N
.

Therefore, we find from [13, Theorem 1.5(v)] the failure of the reduced timelike
curvature-dimension condition TCD∗

q(K,N), which is weaker than TCDq(K,N)
(see [13, Proposition 3.6]).

The case N = n can be reduced to the above argument by employing the
smoothness of (M,L,m). Precisely, if Ricn(w) < (K − 2 ε)F 2(w), then we
have RicN (w) < (K − ε)F 2(w) for sufficiently small N > n. This implies that
TCD∗

q(K,N) fails, and hence the stronger condition TCD∗
q(K,n) does not hold

as well (see [13, Proposition 3.7]).
The case N < 0 is also argued as in (6.2). We have

c(t) ≥
s(K−ε)/N ((1 − t) d(x))

s(K−ε)/N (d(x)) c(0) +
s(K−ε)/N (t d(x))
s(K−ε)/N (d(x)) c(1),

and hence

ρt
(
Ft(x)

)−1/N ≤
s(K−ε)/N ((1 − t) d(x))

s(K−ε)/N (d(x)) ρ0(x)−1/N

+
s(K−ε)/N (t d(x))
s(K−ε)/N (d(x)) ρ1

(
F1(x)

)−1/N
.

Recalling that the N -Rényi entropy has no minus sign for N < 0, we deduce that
TCD∗

q(K,N) fails, which is again weaker than TCDq(K,N) (which is argued as
for [56, Proposition 4.7]).

In the case N = +∞, we replace the second condition of (6.1) with Hu = 0.
Then we have, as in the proof of Theorem 5.9,

d2

dt2

∣∣∣∣
0

log detm[dFt(z)] = d2

dt2

∣∣∣∣
0

[
ψγ(0) − ψγ(t) + ϕ(t)

]
= −Ric∞(sw) > −(K − 2 ε)F 2(sw),

with which one can show the failure of TCDq(K,∞) in the same way.
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The case N = 0 uses the hierarchy from Remark 5.3. Upper bounds on Ric0
yield the same upper bounds on RicN for every N < 0, and following the above
arguments we have

ρt
(
Ft(x)

)
≥
(
s(K−ε)/N ((1 − t) d(x))

s(K−ε)/N (d(x)) ρ0(x)−1/N

+
s(K−ε)/N (t d(x))
s(K−ε)/N (d(x)) ρ1

(
F1(x)

)−1/N
)−N

.

By virtue of [56, Proposition 4.7], this implies

ρt
(
Ft(x)

)
≥
(
τ

(1−t)
K−ε,N

(
d(x)

)
ρ0(x)−1/N + τ

(t)
K−ε,N

(
d(x)

)
ρ1
(
F1(x)

)−1/N
)−N

.

Therefore, letting N → 0 (and therefore −1/N → +∞), we obtain

ρt
(
Ft(x)

)
≥ max

{
s−K+ε((1 − t) d(x))
(1 − t) s−K+ε(d(x)) ρ0(x), s−K+ε(t d(x))

t s−K+ε(d(x)) ρ1
(
F1(x)

)}
,

which shows the failure of TCDq(K, 0).
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