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Abstract

Concerning quantitative isoperimetry for a weighted Riemannian manifold sat-
isfying Rics > 1, we give an L'-estimate exhibiting that the push-forward of the
reference measure by the guiding function (arising from the needle decomposition)
is close to the Gaussian measure. We also show LP- and Ws-estimates in the 1-
dimensional case.

1 Introduction

This short article is devoted to several further applications of the detailed estimates in
[MO] to quantitative isoperimetry. In [MO], on a weighted Riemannian manifold (M, g, m)
(with m = e~ ¥ vol,) satisfying m(M) = 1 and Ric,, > 1, we investigated the stability of
the Bakry—Ledouz isoperimetric inequality [BL]:

P(A) > Tr ) (m(A)) (1.1)

for any Borel set A C M, where P(A) is the perimeter of A, v(dz) = (2r)~/2e " /2 dz is
the Gaussian measure on R, and Z(g 4) is its isoperimetric profile written as

e—a%/?

Ly (0) = NorR 0 = ~((—0c0, a)). (1.2)

It is known by [Mo, Theorem 18.7] (see also [Ma, §3]) that equality holds in (1.1) for some
A with 0 = m(A) € (0,1) if and only if (M, g, m) is isometric to the product of (R, |-|,~)
and a weighted Riemannian manifold (X, g5, my) of Rics, > 1. Moreover, A is necessarily
of the form (—o0,ag| X X or [—ag,00) x X (so-called a half-space). Then, the stability
result [MO, Theorem 7.5] asserts that, if equality in (1.1) nearly holds, then A is close to
a kind of half-space in the sense that the symmetric difference between them has a small
volume.
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The proof as well as the formulation of [MO, Theorem 7.5] are based on the needle
decomposition paradigm (also called the localization), which was established by Klartag
[K]] for Riemannian manifolds and has provided a significant contribution specifically
in the study of isoperimetric inequalities (we refer to [CM] for a generalization to metric
measure spaces satisfying the curvature-dimension condition, and to [CMM] for a stability
result). The half-space we mentioned above is in fact a sub-level or super-level set of the
guiding function arising in the needle decomposition (see Section 3 and [MO] for more
details). The needle decomposition enables us to decompose a global inequality on M into
the corresponding 1-dimensional inequalities on minimal geodesics in M (called needles or
transport rays). Therefore, a more detailed 1-dimensional analysis on needles will furnish
a better estimate on M.

The 1-dimensional analysis in [MO)] is concentrated in Proposition 3.2 in it (restated
in Proposition 2.1 below), which gives a very detailed estimate on the difference from the
Gaussian measure «. In this article, as an application of the analysis developed in [MO],
we show an L!-bound between ~ and the push-forward measure u,m of m by the guiding
function u:

p-e¥e — Uiy < O(g,g)(;(lfe)/(%?»e),

where u,m = pdr and v = e %= dx (see Theorem 3.1 for the precise statement). In the
1-dimensional case (on intervals), we also prove an LP-bound with the improved (and
sharp) order 0'/7 (Proposition 2.2; see Example 2.3 for the sharpness) and an estimate
of the L?>-Wasserstein distance W, (Proposition 2.4). The use of L? and W, (instead of
the volume of the symmetric difference) is inspired by stability results for the Poincaré
and log-Sobolev inequalities (e.g., [BI', BGRS, CI| 11, IM]). We refer to Remark 3.2 for
some further related works and open problems.

Acknowledgements. We are grateful to Emanuel Indrei, whose question on the LP-estimate
led us to write this paper. CHM was supported by Grant-in-Aid for JSPS Fellows
20J11328. SO was supported in part by JSPS Grant-in-Aid for Scientific Research (KAK-
ENHI) 19H01786.

2 Quantitative estimates on intervals

We first consider the 1-dimensional case (on intervals) and establish quantitative sta-
bility estimates in terms of the LP-norm and the Ws-distance. The L!'-bound will be
instrumental to study the Riemannian case in the next section.

2.1 An [P-estimate

Throughout this section, let I C R be an open interval equipped with a probability
measure m = e~¥ dz such that 1) is 1-conver in the sense that

9((L= ) +1y) < (1= () +19(y) ~ 51— Dtz — P

for all 2,y € I and t € (0,1). This means that (I,]|- |, m) satisfies Ric, > 1 (or the
curvature-dimension condition CD(1,00)), and (1.1) holds. The 1-dimensional isoperi-
metric inequality is well investigated in convex analysis. An important fact due to Bobkov
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[Bo, Proposition 2.1] is that an isoperimetric minimizer can be always taken as a half-
space of the form (—oo,a] NI or [b,00) NI. Now we restate [VMO, Proposition 3.2, which
is the source of all the estimates. Recall that v = e ¥& dz is the Gaussian measure.

Proposition 2.1 ([MO]) Fiz 6 € (0,1) and suppose that

m((—o0,ag)N1) =6 (2.1)
and
e V() < o~¥sas) | § (2.2)
hold for sufficiently small § > 0 (relative to 0). Then we have
() — pg(w) > (¢ (ag) — ag) (z — ag) — C(0)d (2.3)
for every x € I, and
(@) — Py (@) < (U (ag) — ap) (x — ag) + C(0)VS (2.4)
for every x € [S,T] C I such that lims_,o.S = —oc0 and lims_,o T = oo, where Y denotes

the right derivative of ¥ and C(0) is a positive constant depending only on 6.

The first condition (2.1) means that [ is “centered” in comparison with ~ which
satisfies v((—o0, ag]) = 6 (as in (1.2)). Note also that e™¥(®) > e~¥:(@) holds by the
isoperimetric inequality (1.1) (since P((—o0,ag] N 1) = e~%(9)) and then (2.2) tells that
the deficit of (—oo, ap] N I in the isoperimetric inequality is less than or equal to 6.

Besides the above proposition, we also need the following estimate in its proof (see
MO, (3.9)]):

lim supM < C(0). (2.5)
6—0 0

The lower bound (2.3) enables us to obtain the following LP-estimate between v = e~¥& dx
and m = e¥e ¥ v|;. (We remark that the upper bound (2.4) will not be used.)

Proposition 2.2 (An LP-estimate on ) Assume (2.1) and (2.2). Then we have
e = 1| 1oy < Clp, 0)8*77

forallp € [1,00) and sufficiently small § > 0 (relative to 6 and p), where we set e¥==% := ()
on R\ I.

Proof. In this proof, we denote by C' a positive constant depending on #, and put a := ag
for brevity. Since e¥s¥ —1 > —1 and m(/) = v(R) = 1, we find

Hewgfw _ 1”121)(7) — /] [eﬂ’gﬂﬁ _ 1}i dry +/_ [1 _ ewgﬂb]idv

o0

< / [ewg_zﬁ — 1K d~y +/ [1 — ewg_whd'y
I

—00

= /] [e'l/’g_w _ 1}id7+/l[e¢g_¢ _ 1]+d"}’,



where [r], := max{r,0}. Thus, we need to estimate only [e¥s~% — 1], . Observe that
[ee=0@) _ 1]7 < (Cle=atC5 _ 1)P < on(Cle-al+08) _ 1

from (2.3) and (2.5), and hence
g~V _ > Slz—al4+Cs)
/[ [e¥e ¥ —1]% dy < /_OO (er(@lr=altC0) 1) y(dx)

epC6 oo ZEQ
= N exp (—? —|—pC’(5]:c—a]> dr — 1.

Dividing the integral into (—oo,a] and [a, 00), we continue the calculation as

a I‘Q 00 .TQ
oo (=5 - pcot - ) dot [Tew (<G pCote-a)) da

a 2 2
/ exp <_(m+]2005) + (p(;é) +pCa6) dx

+/a°°exp( (fﬁ-pCé) (pCd)? —pca5> s

L
gexp((p +pCa 5) {/ I /2dx+p(]6}
+exp( 5){

e 2 4y + pccs}
< exp (< + C|a|(5) \/27r + 2pC’5).

Therefore, we obtain

T P (pC9)? 2pCo
/I[e —1Ld’7§exp(p05+p0]a\5+ 5 1—1—\/% -1
< C(p,0)d.

This completes the proof. O

We remark that, since

2 1/p 2
{exp (pC’5 + (pic?) ) — 1} > exp (05 + p(C’25) ) -1,

the constant C(p, #) given by the above proof necessarily depends on p. The order 6'/7 in
Proposition 2.2 may be compared with LP-estimates in [[I{] for the log-Sobolev inequality
on Gaussian spaces. One can see that the order 6'/? is optimal from the following example.

Example 2.3 Let [ = (=D, D) and m = (1 +9) - 7y|r, where 6 > 0 is given by vy(I) =
(1+6)"'. Then, at 0 = 1/2, we have a1/ =0, m((—o0,0] N 1) =1/2,

e—V(0) _ o—%a(0) _

8-

2

5" 5\ 1\
Vs~V 1|10y = G - 5P,
e Hlere <1+5+1+5) ( 1+0 )
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2.2 A Ws-estimate

From Proposition 2.1, one can also derive an upper bound of the L?- Wasserstein distance
between m and «. We refer to [Vi] for the basics of optimal transport theory. What we
need is only the following Talagrand inequality with - as the base measure (see [Ta], [Vi,
Theorem 22.14)):

W3 (m, ) < 2Bnty ) =2 [ (s, = 0, (2.6)

where Ent.(m) is the relative entropy of m with respect to . We remark that both ~
and m have finite second moment (by the 1-convexity of ).

Proposition 2.4 (A Ws-estimate on ) Assume (2.1) and (2.2). Then we have
Wy(m, ) < C(O)V
for sufficiently small 6 > 0 (relative to 6).

Proof. We again denote ag by a, and C' will be a positive constant depending only on 6.
Similarly to the proof of Proposition 2.2, we observe from (2.3) and (2.5) that

/I<¢g _ ¢)e¢g—¢ dy < /Oo (05|z _ a| + 05)606\x—a|+057(dx)

[e§) 2
= %eca 7oo(|x —al+1)exp (—% + Cdlx — a|) dx

00 2
§C(5{/ ]x—a]exp(—%+05\x—a|) dm—l—C’},

o] .172
/ exp <—? + Cé|x — a|) de < C

[e.9]

where we used

from the proof of Proposition 2.2. Then we have

/;(a — ) exp (—%2 —CS(w — a)> da
= exp (Oa5 + (025)2) /a (a — z) exp (—M) dx

. 2
< (1+C9) {<a+05> /_;exp (—@) ot {exp (‘@Hm}
< (1+C9) {a/; e /2 dx + C§ + exp (—@)}

< a/ e 2 dy 4+ e 4 0.

—0o0



We similarly find
oo $2
/ (x — a)exp (—? +Cé(x — a)) dx
2 00 _ 2
= exp (—Ca(5 + <C26> ) / (x —a)exp (—%) dx

< (1+05){(—a+06) /aooexp Gﬂ) dv - {exp (_w)r}

o0 52
< (1+C9) {—a/ e 2 dx 4+ C8 + exp (—@)}

< —a/ e 2 4y + e~/ 4 O

Therefore, together with the Talagrand inequality (2.6), we obtain the desired estimate
W2(m,~v) < C6. O

We do not know whether the order v/§ in Proposition 2.4 is optimal. Since W, (m,~) <
Wa(m, ) for any p € [1,2) by the Holder inequality, we have, in particular, a bound of
the L'-Wasserstein distance:

Wi (m, ) < C(O)V5.

One can alternatively infer this estimate from the Kantorovich-Rubinstein duality (see
[Vi]); in fact,

[e.e]

Wi (m, ) < / & — a]- [ I@ _ 1] 4(dz) < C(B)V.

—00

We also remark that, when we take a detour via the reverse Poincaré inequality in
MO, Proposition 5.1] and the stability result [C'F, Theorem 1.2], we arrive at a weaker
estimate

Wi(m,~) < C(0,¢)61=)/4,

We refer to [CMS, FGS] for stability results for the Poincaré inequality (equivalently, the
spectral gap) on CD(N — 1, N)-spaces and RCD(N — 1, N)-spaces with N € (1, c0).

3 An L'-estimate on weighted Riemannian manifolds

Next, we consider a weighted Riemannian manifold, namely a connected, complete C>-
Riemannian manifold (M, g) of dimension n > 2 equipped with a probability measure
m = e~ ¥ vol,, where ¥ € C*°(M) and vol, is the Riemannian volume measure. Assuming
Ricy, > 1, we have the Bakry-Ledoux isoperimetric inequality (1.1).

We begin with an outline of the proof of (1.1) via the needle decomposition (see
[K1]). Given a Borel set A € M with § = m(A) € (0,1), we employ the function
f = xa — 0 (xa denotes the characteristic function of A) and an associated 1-Lipschitz
function u : M — R attaining the maximum of [ 1 J@ dm among all 1-Lipschitz functions
¢. Then, analyzing the behavior of u, one can build a partition {X,},eq of M consisting
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of (the image of ) minimal geodesics (called needles), and @ is endowed with a probability

measure v. For v-almost every ¢ € @, u|x, has slope 1 (|u(xz) — u(y)| = d(z,y) for all
z,y € X,) and X, is equipped with a probability measure m, such that m,(AN X,) =6
and (X, | - |, m,) satisfies Ric,, > 1. Moreover, we have

/Mhdm:/Q(/thqu) v(dq) (3.1)

for all h € L'(m). Then, (1.1) for A is obtained by integrating its 1-dimensional counter-
parts for A N X, with respect to v.

The 1-Lipschitz function u is called the guiding function. We can assume | yudm =0
without loss of generality, and X, will be identified with an interval via u (in other words,
X, is parametrized by u). Denote m, = e ?¢dx and p := u,m = pdz. Note that supp p
is an interval and may not be the whole R. Through the parametrization of X, by u, we
deduce from (3.1) that

pla) = [ e u(d), (3.2)
Q
where we set e=71@) .= 0 if z ¢ X,.

Theorem 3.1 (An L'-estimate on M) Assume Ricy, > 1 and fize € (0,1). IfP(A) <
Tir)(0)+6 holds for some Borel set A C M with § = m(A) € (0,1) and sufficiently small
d (relative to 6 and €), then w,m = pdx satisfies

lp- €% =11y < C(6,2)50 7=/,
where u is the guiding function associated with A such that fMudm = 0.

Proof. First of all, by (3.2) and Fubini’s theorem, we have

lp-e¥ =1 L) :/ ’/Q(e%”" — 1)V(d9)‘d’)’ < /Q V77 — 1| 1) v(dg).-

We shall estimate ||e¥s=% — 1||z1(y) by dividing into “good” needles and “bad” needles.
Note that v(Q,) > 1 — /3 holds for

Qr=1{q€Q|m(ANX,) =0, P(ANX,) < L~ (0) + 5}

by [MO, Lemma 7.1], where P(A N X,) denotes the perimeter of AN X, in (X, ||, my,).
Moreover, it follows from [MO, Proposition 7.3] that there exists a measurable set Q. C @
such that v(Q.) > 1 — §(1=5)/=3¢) and

max {|ag — 7, |, |as_g — r} |} < C(6,£)509/O39)

for all ¢ € Q. N Qp, where m,((—oo,r;] N Xy) = my([rf,00) N X,) = 0 (recall that
Y((=00, ag]) = ¥([a1-9, ) = 0).



On the one hand, for ¢ € Q.NQy, note that either P(ANX,) > e (") or P(ANX,) >
¢=24(r7) holds by [Bo, Proposition 2.1] (recall Subsection 2.1). When P(ANX,) > e~7a(ra),
we put

pyq(dx) — e—'lpg,q(m) dr = e—¢g(z+a9_rq_) d(L’,

which is a translation of « satisfying ~,((—o0,r;]) = 6. Then, it follows from Proposi-
tion 2.2 (with e=7a("1) < P(AN X,) < e ¥esa(ra) + \/§) and Cavalieri’s principle that

6% = 12 < fle¥s5700 = 1|y + lle™ — |
lag — 1|
< COWS + 21"
<C(0) Jor

< 0(8,2)50-2)/0=39),

We have the same bound also in the case where P(AN X,) > eoa(r) by reversing I in
Proposition 2.2.
On the other hand, for ¢ € @ \ (Q. N Qy), we have the trivial bound

%77 — 1l ity < l€¥ 77| Lagy) + 1l L1¢y) = 2.
Therefore, we obtain
- e¥s — 1|1y < C(6,2)5079/0739) L 9(1 - 1(Q.NQy)) < C(B,e)s172V/O=3),
O

Note that ¢ € Q. N @y is well-behaved and can be handled by the 1-dimensional
analysis, whereas one has a priori no information of ¢ € Q \ (Q. N Q). This could
be a common problem for stability estimates via the needle decomposition (see, e.g.,
(MO, Theorem 6.2] showing a reverse Poincaré inequality on a manifold from a sharper
estimate on intervals). In particular, it may be difficult to achieve the same order ¢ as in
the 1-dimensional case (Proposition 2.2) by the needle decomposition. In the LP-case, it is
unclear (to the authors) with what we can replace the trivial bound [[e¥s™7¢ — 1|14y < 2.
For the Wasserstein distance W5 or Wi, we have the same problem on the control of

qEQ\(QchZ)'

Remark 3.2 (Further related works and open problems) (a) Theorem 3.1 holds
true also for reversible Finsler manifolds by the same proof (see [MO, Remark 7.6(c)]
and [Ohl, Oh2]).

(b) As we mentioned in the introduction, our LP- and Ws-estimates are inspired by the
quantitative stability for functional inequalities. We refer to [BGRS, FIL, 11X, IM] for
the study of the log-Sobolev inequality on the Gaussian space:

1 L OIVAIP
Ent, (fv) < §Iw(f'7) = i/n 7 d,

where L, (f«) is the Fisher information of a probability measure f~ with respect to
~. They investigated the difference between v and f-y, in terms of the additive deficit
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(c)

0(f) =1,(fv)/2 — Ent,(f~). For instance, Wp-bounds (under certain convexity and
concavity conditions on f) were given in [BGRS, IM], and L'- and LP-bounds can be
found in [TK]. In the setting of weighted Riemannian manifolds satisfying Ric,, > 1
(as in Theorem 3.1), we have only the rigidity (see [OT]) and the stability is an open
problem.

We have seen in [MO), §6] that the reverse forms of the Poincaré and log-Sobolev
inequalities can be derived from the isoperimetric deficit. The reverse Poincaré in-
equality then implies a Wj-estimate for the push-forward by an eigenfunction thanks
to [BE, Theorem 1.3] (see also ['GS]). We also expect a direct W3- or Wa-estimate
for the push-forward by the guiding function, which remains an open question (see
[MO, Remark 7.6(g)]).

Another direction of research is a generalization to negative effective dimension, i.e.,
Ricy > K > 0 with N < —1. We have established rigidity in the isoperimetric
inequality in [Ma], thereby it is natural to consider quantitative isoperimetry, though
it seems to require longer calculations.
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