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Abstract

We recently established a Toponogov type triangle comparison theorem for a
certain class of Finsler manifolds whose radial flag curvatures are bounded below by
that of a von Mangoldt surface of revolution. In this article, as its applications, we
prove the finiteness of topological type and a diffeomorphism theorem to Euclidean
spaces.

1 Introduction

This article is a continuation of [KOT]. In [KOT], we have established a Toponogov
type triangle comparison theorem for a certain class of Finsler manifolds whose radial
flag curvatures are bounded below by that of a von Mangoldt surface of revolution (see
Theorem 2.4 for the precise statement). In this article, we prove several applications
of our Toponogov theorem on the relationship between the topology and the curvature
of a Finsler manifold. We remark that, compared to the Riemannian case, there are
only a small number of such kind of results, e.g., Rademacher’s sphere theorem ([Ra]),
Shen’s finiteness theorem under lower Ricci and mean (or S-) curvature bounds ([Sh1]),
and the second author’s generalized splitting theorems under nonnegative weighted Ricci
curvature ([Oh4], see also the suspension theorem in [Oh1, Section 5] which is available
for (reversible) Finsler manifolds thanks to [Oh3]).

In order to state our results, let us introduce several notions in Finsler geometry as well
as the geometry of radial curvature. Let (M,F, p) denote a pair of a forward complete,
connected, n-dimensional C∞-Finsler manifold (M,F ) with a base point p ∈ M , and
d : M ×M −→ [0,∞) denote the distance function induced from F . We remark that the
reversibility F (−v) = F (v) is not assumed in general, so that d(x, y) 6= d(y, x) is allowed.
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For a local coordinate (xi)n
i=1 of an open subset O ⊂ M , let (xi, vj)n

i,j=1 be the coor-
dinate of the tangent bundle TO over O such that

v :=
n∑

j=1

vj ∂

∂xj

∣∣∣
x
, x ∈ O.

For each v ∈ TxM \ {0}, the positive-definite n × n matrix

(
gij(v)

)n

i,j=1
:=

(
1

2

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

provides us the Riemannian structure gv of TxM by

gv

(
n∑

i=1

ai ∂

∂xi

∣∣∣∣
x

,

n∑
j=1

bj ∂

∂xj

∣∣∣∣
x

)
:=

n∑
i,j=1

gij(v)aibj.

This is a Riemannian approximation (up to the second order) of F in the direction v. For
two linearly independent vectors v, w ∈ TxM \ {0}, the flag curvature is defined by

KM(v, w) :=
gv(R

v(w, v)v, w)

gv(v, v)gv(w,w) − gv(v, w)2
,

where Rv denotes the curvature tensor induced from the Chern connection (see [BCS, §3.9]
for details). We remark that KM(v, w) depends not only on the flag {sv + tw | s, t ∈ R},
but also on the flag pole {sv | s > 0}.

Given v, w ∈ TxM \ {0}, define the tangent curvature by

TM(v, w) := gX

(
DY

Y Y (x) − DX
Y Y (x), X(x)

)
,

where the vector fields X,Y are extensions of v, w, and Dw
v X(x) denotes the covariant

derivative of X by v with reference vector w. Independence of TM(v, w) from the choices
of X,Y is easily checked. Note that TM ≡ 0 if and only if M is of Berwald type (see [Sh2,
Propositions 7.2.2, 10.1.1]). In Berwald spaces, for any x, y ∈ M , the tangent spaces
(TxM,F |TxM) and (TyM,F |TyM) are mutually linearly isometric (cf. [BCS, Chapter 10]).
In this sense, TM measures the variety of tangent Minkowski normed spaces.

Let M̃ be a complete 2-dimensional Riemannian manifold, which is homeomorphic to
R2 if M̃ is non-compact, or to S2 if M̃ is compact. Fix a base point p̃ ∈ M̃ . Then we call
the pair (M̃, p̃) a model surface of revolution if its Riemannian metric ds̃2 is expressed in
terms of the geodesic polar coordinate around p̃ as

ds̃2 = dt2 + f(t)2dθ2, (t, θ) ∈ (0, a) × S1
p̃,

where 0 < a ≤ ∞, f : (0, a) −→ R is a positive smooth function which is extensible

to a smooth odd function around 0, and S1
p̃ := {v ∈ Tp̃M̃ | ‖v‖ = 1}. Define the radial

curvature function G : [0, a) −→ R such that G(t) is the Gaussian curvature at γ̃(t), where

γ̃ : [0, a) −→ M̃ is any (unit speed) meridian emanating from p̃. Note that f satisfies the
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differential equation f ′′ + Gf = 0 with initial conditions f(0) = 0 and f ′(0) = 1. We call

(M̃, p̃) a von Mangoldt surface if G is non-increasing on [0, a). A round sphere is the only
compact, ‘smooth’ von Mangoldt surface, i.e., f satisfies limt→a f ′(t) = −1. Paraboloids
and 2-sheeted hyperboloids are typical examples of non-compact von Mangoldt surfaces.
An atypical example of such a surface is the following.

Example 1.1 ([KT1, Example 1.2]) Set f(t) := e−t2 tanh t on [0,∞). Then the non-

compact surface of revolution (M̃, p̃) with ds̃2 = dt2 + f(t)2dθ2 is of von Mangoldt type,
and G changes the sign. Indeed, limt↓0 G(t) = 8 and limt→∞ G(t) = −∞.

We say that a Finsler manifold (M,F, p) has the radial flag curvature bounded below

by that of a model surface of revolution (M̃, p̃) if, along every unit speed minimal geodesic
γ : [0, l) −→ M emanating from p, we have

KM

(
γ̇(t), w

)
≥ G(t)

for all t ∈ [0, l) and w ∈ Tγ(t)M linearly independent to γ̇(t). (Note that supq∈M d(p, q) ≤
supq̃∈fM d̃(p̃, q̃) is a priori assumed (d̃ is the distance function of (M̃, ds̃2)), however, the

curvature bound in fact excludes supq∈M d(p, q) > supq̃∈fM d̃(p̃, q̃).)

Our first main result is a finiteness theorem of topological type.

Theorem A Let (M,F, p) be a forward complete, non-compact, connected C∞-Finsler
manifold whose radial flag curvature is bounded below by that of a von Mangoldt surface
(M̃, p̃) satisfying f ′(ρ) = 0 for unique ρ ∈ (0,∞). Assume that, for some t0 > ρ,

(1) diam(∂B+
t (p)) = O(tα) for some α ∈ (0, 1) as t → ∞,

(2) gv(w,w) ≥ F (w)2 for all x ∈ M \ B+
t0(p), v ∈ Gp(x) and w ∈ TxM ,

(3) TM(v, w) = 0 for all x ∈ M \ B+
t0(p), v ∈ Gp(x) and w ∈ TxM ,

(4) the reverse curve c̄(s) := c(l − s) of any minimal geodesic segment c : [0, l] −→
M \ B+

t0(p) is geodesic.

Then M has finite topological type, i.e., M is homeomorphic to the interior of a compact
manifold with boundary.

We set

(1.1) Gp(x) := {γ̇(l) ∈ TxM | γ is a minimal geodesic segment from p to x},

where γ : [0, l] −→ M with l = d(p, x), and

B+
r (p) := {x ∈ M | d(p, x) < r}, diam

(
∂B+

r (p)
)

:= sup
q1, q2∈∂B+

r (p)

d(q1, q2).

The condition (2) is the 2-uniform convexity with the sharp constant (see [Oh2]), but only
for special points x and directions v. The sharpness means that gv(w,w) ≥ F (w)2 holds
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for all (x, v) ∈ TM \ {0} only if F is Riemannian. It is not difficult to construct non-
Riemannian spaces satisfying (2) (see [KOT]). The conditions (3) and (4) are satisfied

if (M,F ) is of Berwald type (on M \ B+
t0(p)). Of course (4) always holds true if F is

reversible (on M \ B+
t0(p)).

In the Riemannian case, the diameter growth bound (1) is in a sense a restrictive
condition. Indeed, if we employ a non-negatively curved non-compact model surface
of revolution (M̃, p̃) having the diameter growth o(t1/2), then M is isometric to the n-

dimensional model space M̃n (see [ST, Theorem 1.2], [KT2, Example 1.1]). Other results
related to Theorem A include [KT2, Theorem 2.2] and [TK, Theorem 1.3], where we
proved the finiteness of topological type of a complete non-compact Riemannian manifold
with radial curvature bounded below by that of a non-compact model surface of revolution
having a finite total curvature.

If F is reversible, then we can improve Theorem A as follows (by an entirely different
technique).

Theorem B Let (M,F, p), f , ρ and t0 as in Theorem A, and in addition assume that
F is reversible. Then p has no cut point. In particular, M is diffeomorphic to Rn and,
for every unit speed minimal geodesic γ : [0,∞) −→ M emanating from p, we have
KM(γ̇(t), w) = G(t) for all t > 0.

One of the related results is Shiohama and the third author’s [ST, Theorem 1.2],
where it is proved that a complete non-compact Riemannian manifold is isometric to the
n-dimensional model space M̃n if its radial curvature is bounded below by that of a non-
compact model surface of revolution M̃ satisfying

∫ ∞
1

f(t)−2 dt = ∞. Observe that our
von Mangoldt surface always satisfies this integration assumption. In our Finsler situation,
however, it is difficult (and in fact impossible in many cases) to obtain isometry to a model
space. For instance, spaces of constant flag curvatures are not unique (all Minkowski
normed spaces have the flat flag curvature, all Hilbert geometries satisfy KM ≡ −1 (cf.
[Sh3]), and Bryant [Br] constructed a family of (non-reversible) Finsler metrics on S2 with
KM ≡ 1). Another related result to Theorem B is the first and the third authors’ [KT3,
Theorem 1.1] on a complete non-compact connected Riemannian manifold with smooth
convex boundary.

2 A Toponogov type triangle comparison theorem

We first recall the Toponogov type triangle comparison theorem established in [KOT,
Theorem 1.2]. We refer to [BCS] and [Sh2] for the basics of Finsler geometry.

Let (M,F, p) be a forward complete, connected C∞-Finsler manifold with a base point
p ∈ M , and denote by d its distance function. The forward completeness guarantees that
any two points in M can be joined by a minimal geodesic segment (by the Hopf-Rinow
theorem, [BCS, Theorem 6.6.1]). Since d(x, y) 6= d(y, x) in general, we also introduce

dm(x, y) := max{d(x, y), d(y, x)}.

It is clear that dm is a distance function of M . We can define the ‘angles’ with respect to
dm as follows.
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Definition 2.1 (Angles) Let c : [0, a] −→ M be a unit speed minimal geodesic segment

(i.e., F (ċ) ≡ 1) with p 6∈ c([0, a]). The forward and the backward angles
−→∠ (pc(s)c(a)),

←−∠ (pc(s)c(0)) ∈ [0, π] at c(s) are defined via

cos
−→∠

(
pc(s)c(a)

)
:= − lim

h↓0

d(p, c(s + h)) − d(p, c(s))

dm(c(s), c(s + h))
for s ∈ [0, a),

cos
←−∠

(
pc(s)c(0)

)
:= lim

h↓0

d(p, c(s)) − d(p, c(s − h))

dm(c(s − h), c(s))
for s ∈ (0, a].

(These limits indeed exist in [−1, 1] thanks to the definition of dm, see [KOT, Lemma 2.2]).

Definition 2.2 (Forward triangles) For three distinct points p, x, y ∈ M ,

4(−→px,−→py) := (p, x, y; γ, σ, c)

will denote the forward triangle consisting of unit speed minimal geodesic segments γ
emanating from p to x, σ from p to y, and c from x to y. Then the corresponding interior

angles
−→∠x,

←−∠y at the vertices x, y are defined by

−→∠x :=
−→∠

(
pc(0)c(d(x, y))

)
,

←−∠y :=
←−∠

(
pc(d(x, y))c(0)

)
.

Definition 2.3 (Comparison triangles) Fix a model surface of revolution (M̃, p̃).
Given a forward triangle 4(−→px,−→py) = (p, x, y; γ, σ, c) ⊂ M , a geodesic triangle 4(p̃x̃ỹ) ⊂
M̃ is called its comparison triangle if

d̃(p̃, x̃) = d(p, x), d̃(p̃, ỹ) = d(p, y), d̃(x̃, ỹ) = Lm(c)

hold, where we set

Lm(c) :=

∫ d(x, y)

0

max{F (ċ), F (−ċ)} ds.

Now, the main result of [KOT] asserts the following.

Theorem 2.4 (TCT, [KOT]) Assume that (M,F, p) is a forward complete, connected
C∞-Finsler manifold whose radial flag curvature is bounded below by that of a von Man-
goldt surface (M̃, p̃) satisfying f ′(ρ) = 0 for unique ρ ∈ (0,∞). Let 4(−→px,−→py) =
(p, x, y; γ, σ, c) ⊂ M be a forward triangle satisfying that, for some open neighborhood
N (c) of c,

(1) c([0, d(x, y)]) ⊂ M \ B+
ρ (p),

(2) gv(w,w) ≥ F (w)2 for all z ∈ N (c), v ∈ Gp(z) and w ∈ TzM ,

(3) TM(v, w) = 0 for all z ∈ N (c), v ∈ Gp(z) and w ∈ TzM , and the reverse curve
c̄(s) := c(d(x, y) − s) of c is also geodesic.

If such 4(−→px,−→py) admits a comparison triangle 4(p̃x̃ỹ) in M̃ , then we have
−→∠x ≥ ∠x̃

and
←−∠y ≥ ∠ỹ.

5



3 Fundamental tools on model surfaces

We next introduce some fundamental tools in the geometry of model surfaces of revolution.
We refer to [SST, Chapter 7] for more details. Let (M̃, p̃) be a non-compact model surface
of revolution with its metric ds̃2 = dt2+f(t)2dθ2 on (0, a)×S1

p̃. Given a unit speed geodesic

c̃ : [0, a) −→ M̃ (0 < a ≤ ∞) expressed as c̃(s) = (t(s), θ(s)), there exists a non-negative
constant ν such that

(3.1) ν = f
(
t(s)

)2|θ′(s)| = f
(
t(s)

)
sin ∠

(
˙̃c(s), (∂/∂t)|c̃(s)

)
for all s ∈ [0, a). The equation (3.1) is called the Clairaut relation, and ν is called the
Clairaut constant of c̃. Note that ν = 0 if and only if c̃ is (a part of) a meridian. Since c̃
has unit speed, we deduce from |t′|2 + |f(t)θ′|2 = 1 that

|t′(s)| =

√
f(t(s))2 − ν2

f(t(s))
.

Thus we observe that t′(s) = 0 if and only if f(t(s)) = ν. Moreover, if a < ∞, then the
length L(c̃) of c̃ is not less than

(3.2) t(a) − t(0) +
ν2

2

∫ t(a)

t(0)

1

f(t)
√

f(t)2 − ν2
dt.

The proof of (3.2) can be found in (the proof of) [ST, Lemma 2.1].

4 Proof of Theorem A

Let (M,F, p), f and ρ be as in Theorem A. The following fact on the cut loci of a von
Mangoldt surface is important.

Remark 4.1 The cut locus Cut(x̃) of x̃ 6= p̃ is either an empty set, or a ray properly
contained in the meridian θ−1(θ(x̃) + π) opposite to x̃. Moreover, the endpoint of Cut(x̃)
is the first conjugate point to x̃ along the minimal geodesic from x̃ passing through p̃ ([Ta,
Main Theorem]).

We first show an auxiliary lemma on the model surface.

Lemma 4.2 If two distinct points x̃, ỹ ∈ M̃ \ Bρ(p̃) satisfy d̃(p̃, x̃) ≤ d̃(p̃, ỹ), then

∠
(
˙̃c(0), (∂/∂t)|x̃

)
< π/2

holds for any unit speed minimal geodesic segment c̃ emanating from x̃ to ỹ. In particular,
we have c̃([0, d(x̃, ỹ)]) ⊂ M̃ \ Bρ(p̃).

Proof. Let us write c̃(s) = (t(s), θ(s)). Suppose that ∠( ˙̃c(0), (∂/∂t)|x̃) ≥ π/2 which is
equivalent to t′(0) ≤ 0. Since f ′ < 0 on (ρ,∞), it follows from [SST, (7.1.15)] that

t′′(0) = f
(
t(0)

)
f ′(t(0)

)
θ′

(
t(0)

)2
< 0.
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Hence t(s) is decreasing on [0, δ] for some small δ > 0. Since t(d(x̃, ỹ)) = d̃(p̃, ỹ) ≥
d̃(p̃, x̃) = t(0), there exists s0 ∈ (0, d̃(p̃, ỹ)) such that t′(s0) = 0 and t(s0) < t(0). By the
Clairaut relation (3.1), for any s ∈ [0, d̃(p̃, ỹ)], we observe

f
(
t(s0)

)
= f

(
t(s)

)
sin ∠

(
˙̃c(s), (∂/∂t)|c̃(s)

)
≤ f

(
t(s)

)
.

Since f ′ < 0 on (ρ,∞) and t(s0) < t(0), this shows t(s0) < ρ. Thus c̃ intersects the
parallel t = ρ twice in θ−1((θ(x̃), θ(x̃) +π)), where we assume that θ(x̃) ≤ θ(ỹ). However,
since f ′(ρ) = 0, the parallel t = ρ is geodesic. Therefore (by rotation) x̃ has a cut point
in θ−1((θ(x̃), θ(x̃) + π)). This contradicts the structure of Cut(x̃) (see Remark 4.1). 2

Lemma 4.3 If two points x, y ∈ M \ B+
ρ (p) satisfy d(p, y) > d(p, x) À t0, then

c
(
[0, d(x, y)]

)
∩ ∂B+

t0
(p) = ∅

holds for any minimal geodesic segment c emanating from x to y, where t0 > ρ is as in
the assumption of Theorem A.

Proof. By the assumption (1) of Theorem A, there is a constant C > 0 such that

(4.1)
diam(∂B+

t (p))

tα
< C

for all t À t0. Suppose that c([0, d(x, y)])∩∂B+
t0(p) 6= ∅ for some minimal geodesic segment

c emanating from x to y. Let S be the set of all s ∈ (0, d(x, y)) such that c(s) ∈ ∂B+
t0(p),

and set s0 := sup S. Since d(p, y) > d(p, x), there exists s1 ∈ (s0, d(x, y)) such that
c(s1) ∈ ∂B+

t1(p), where t1 := d(p, x). Observe from the triangle inequality that

s1 − s0 = d
(
c(s0), c(s1)

)
≥ d

(
p, c(s1)

)
− d

(
p, c(s0)

)
= t1 − t0.

Since diam(∂B+
t1(p)) ≥ s1 > s1 − s0 ≥ t1 − t0, we obtain

diam(∂B+
t1(p))

tα1
> t1−α

1 − t0
tα1

.

This contradicts (4.1), because t1 À t0 and α < 1. 2

Analogously to [GS], we define critical points of the distance function dp := d(p, ·) as
follows. Recall (1.1) for the definition of Gp(x).

Definition 4.4 We say that a point x ∈ M is a forward critical point for p ∈ M if, for
every w ∈ TxM \ {0}, there exists v ∈ Gp(x) such that gv(v, w) ≤ 0.

An important consequence of the criticality is that, for any y ∈ M and any forward

triangle 4(−→px,−→py), we have
−→∠x ≤ π/2. We can prove Gromov’s isotopy lemma [Gr] by a

similar arguments to the Riemannian case.

Lemma 4.5 Given 0 < r1 < r2 ≤ ∞, if B+
r2

(p) \ B+
r1

(p) has no critical point for p ∈ M ,

then B+
r2

(p) \ B+
r1

(p) is homeomorphic to ∂B+
r1

(p) × [r1, r2].
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Now we are ready to prove Theorem A.

Proof of Theorem A. By virtue of Lemma 4.5, it is sufficient to prove that the set of
forward critical points for p is bounded. Suppose that there is a divergent sequence
{qi}i∈N of forward critical points for p. Then there exist i1, i2 ∈ N such that

d(p, qi2) > d(p, qi1) À t0 > ρ.

Let c : [0, a] −→ M be a minimal geodesic segment emanating from qi1 to qi2 . Note that
−→∠ (pc(0)c(a)) ≤ π/2 by the criticality of qi1 , and c([0, a]) ∩ ∂B+

t0(p) = ∅ by Lemma 4.3.
We first consider the case where d(p, qi1) = mins∈[0,a] d(p, c(s)). For sufficiently small

s1 ∈ (0, a), the forward triangle 4(−−→pqi1 ,
−−−→
pc(s1)) admits a comparison triangle 4(p̃q̃i1 c̃(s1))

in M̃ . Then, by Theorem 2.4, we observe that ∠q̃i1 ≤
−→∠ (pc(0)c(a)) ≤ π/2. Since

d̃(p̃, q̃i1) = d(p, qi1) ≤ d
(
p, c(s1)

)
= d̃

(
p̃, c̃(s1)

)
,

this contradicts Lemma 4.2. If mins∈[0,a] d(p, c(s)) < d(p, qi1), then we fix s0 ∈ (0, a)

such that d(p, c(s0)) = mins∈[0,a] d(p, c(s)). By construction, it holds
−→∠ (pc(s0)c(a)) = π/2

(note that
−→∠ (pc(s0)c(a)) > π/2 can not happen by Theorem 2.4). Thus we derive a

contradiction from the same argument as the first case. 2

5 Proof of Theorem B

Let (M,F, p), f , ρ and t0 be as in Theorem B. Suppose that the cut locus Cut(p) of p
is not empty. Then, since M is non-compact, Cut(p) is an unbounded set (consider a
sequence in the open set Dp := {v ∈ UpM | γv((0,∞)) ∩ Cut(p) 6= ∅} whose limit belongs
to the complement Dc

p = {v ∈ UpM | γv is a ray}, where UpM := TpM ∩ F−1(1) and
γv(t) := expp(tv) for t ≥ 0). Let N(p) denote the set of all points x ∈ M admitting at
least two minimal geodesic segments emanating from p to x. Note that N(p) is dense in
Cut(p) (see [TS, Proposition 2.6]).

Take a divergent sequence {xi}i∈N ⊂ N(p), and fix i0 ∈ N such that d(p, xi0) > t0.
Since M is non-compact and complete, there exists a unit speed ray σ : [0,∞) −→ M
emanating from p. Take a divergent sequence {rj}j∈N ⊂ (d(p, xi0),∞) and, for each j, let
cj : [0, aj] −→ M be a unit speed minimal geodesic segment emanating from xi0 to σ(rj).
By Lemma 4.3, cj([0, aj]) ∩ ∂Bt0(p) = ∅ holds for all j ∈ N.

Take a subdivision s0 := 0 < s1 < · · · < sk−1 < sk := aj of [0, aj] such that

4(
−−−−−→
pcj(sl−1),

−−−−→
pcj(sl)) admits a comparison triangle 4̃l := 4(p̃ ˜cj(sl−1)c̃j(sl)) ⊂ M̃ for each

l = 1, 2, . . . , k. Note that, by the reversibility of F ,

(5.1) d̃( ˜cj(sl−1), c̃j(sl)) = Lm(cj|[sl−1, sl]) = sl − sl−1.

It follows from Theorem 2.4 that

(5.2)
−→∠ cj(sl−1) ≥ ∠

(
p̃ ˜cj(sl−1)c̃j(sl)

)
,

←−∠ cj(sl) ≥ ∠
(
p̃c̃j(sl) ˜cj(sl−1)

)
8



for each l = 1, 2, . . . , k. Starting from 4̃1, we inductively draw a geodesic triangle 4̃l+1 ⊂
M̃ which is adjacent to 4̃l so as to have a common side p̃c̃j(sl), where 0 ≤ θ(c̃j(s0)) ≤
θ(c̃j(s1)) ≤ · · · ≤ θ(c̃j(sk)). We observe from the definition of the angles that

←−∠ cj(sl) +
−→∠ cj(sl) ≤ π for each l = 1, 2, . . . , k − 1. Together with (5.2), we obtain

(5.3) ∠
(
p̃c̃j(sl) ˜cj(sl−1)

)
+ ∠

(
p̃c̃j(sl) ˜cj(sl+1)

)
≤ π.

Let ξ̂j : [0, aj] −→ M̃ denote the broken geodesic segment consisting of minimal

geodesic segments from ˜cj(sl−1) to c̃j(sl), l = 1, 2, . . . , k. We set ξ̂j(s) = (t(ξ̂j(s)), θ(ξ̂j(s))).

Then (5.3) gives us the unit speed (not necessarily minimal) geodesic η̃j : [0, bj] −→ M̃ em-

anating from c̃j(0) to c̃j(aj) and passing under ξ̂j([0, aj]), i.e., θ(η̃j) ∈ [θ(c̃j(0)), θ(c̃j(aj))]

on [0, bj] and t(ξ̂j(s)) > t(η̃j(b)) for all (s, b) ∈ (0, aj) × (0, bj) with θ(ξ̂j(s)) = θ(η̃j(b)).
On the one hand, by (5.1), we have

L(η̃j) ≤ L(ξ̂j) =
k∑

l=1

d̃
( ˜cj(sl−1), c̃j(sl)

)
= sk − s0 = aj,

where L(η̃j) denotes the length of η̃j. Moreover, the reversibility of F and the triangle
inequality show

(5.4) L(η̃j) ≤ aj = d
(
xi0 , σ(rj)

)
≤ d(p, xi0) + rj.

On the other hand, it follows from (3.2) that

L(η̃j) ≥ rj − d(p, xi0) +
ν2

j

2

∫ rj

d(p, xi0
)

1

f(t)
√

f(t)2 − ν2
j

dt

≥ rj − d(p, xi0) +
ν2

j

2

∫ rj

d(p, xi0
)

f(t)−2 dt,

where νj denotes the Clairaut constant of η̃j. Together with (5.4), we find

4d(p, xi0) ≥ ν2
j

∫ rj

d(p, xi0
)

f(t)−2 dt.

Since f is decreasing on (ρ,∞), this implies limj→∞ νj = 0. Hence we have

lim
j→∞

∠
(
˙̃ηj(0), (∂/∂t)|

eηj(0)

)
= 0.

Combining this with ∠( ˙̃ηj(0), (∂/∂t)|
eηj(0)) = π − ∠(p̃c̃j(0)c̃j(s1)) and (5.2), we obtain

limj→∞
−→∠ cj(0) = π. This is a contradiction, since cj(0) = xi0 ∈ N(p). Hence Cut(p) = ∅,

so that M is diffeomorphic to Rn. The curvature equality follows from the same argument
as [KT3, Theorem 4.8]. 2
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