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Abstract

In proper, geodesic Gromov hyperbolic spaces, we investigate discrete-time gradi-
ent flows via the proximal point algorithm for unbounded Lipschitz convex functions.
Assuming that the target convex function has negative asymptotic slope along some
ray (thus unbounded below), we first prove the uniqueness of such a negative direc-
tion in the boundary at infinity. Then, using a contraction estimate for the proximal
(resolvent) operator established in our previous work, we show that the discrete-time
gradient flow from an arbitrary initial point diverges to that unique direction of nega-
tive asymptotic slope. This is inspired by and generalizes results of Karlsson–Margulis
and Hirai–Sakabe on nonpositively curved spaces and a result of Karlsson concerning
semi-contractions on Gromov hyperbolic spaces.

1 Introduction

This article is a continuation of [30] concerning convex optimization on Gromov hyperbolic
spaces. We shall study the discrete-time gradient flow for a convex function f on a metric
space (X, d) built of the proximal (or resolvent) operator

Jfτ (x) := argmin
y∈X

{
f(y) +

d2(x, y)

2τ

}
, (1.1)

where τ > 0 is the step size. Iterating Jfτ is a well known scheme to construct a continuous-
time gradient flow for f in the limit as τ → 0. Generalizations of the theory of gradient flows
to convex functions on metric spaces have been making impressive progress since 1990s,
including those on CAT(0)-spaces [1, 3, 17, 25] (see [12, 14, 16] for some applications to
optimization theory), CAT(1)-spaces [32, 33], Alexandrov spaces and the Wasserstein spaces
over them [23, 27, 32, 35, 36], and RCD(K,∞)-spaces [37]. These spaces are, however, all
Riemannian in the sense that they exclude non-Riemannian Finsler manifolds (in particular,
non-inner product normed spaces). In fact, despite great success for Riemannian spaces,
much less is known for non-Riemannian spaces (even for normed spaces); we refer to [31, 34]
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for the failure of the contraction property. Motivated by this large gap and a fact that
some non-Riemannian Finsler manifolds can be Gromov hyperbolic (Example 2.1(b)), we
initiated investigation of convex optimization on Gromov hyperbolic spaces in [30] (see also
[29] for a related study on barycenters in Gromov hyperbolic spaces).

The Gromov hyperbolicity, introduced in a seminal work [11] of Gromov, is a notion of
negative curvature of large scale. A metric space (X, d) is said to be Gromov hyperbolic if
it is δ-hyperbolic for some δ ≥ 0 in the sense that

(x|z)p ≥ min{(x|y)p, (y|z)p} − δ (1.2)

holds for all p, x, y, z ∈ X, where

(x|y)p :=
1

2

{
d(p, x) + d(p, y)− d(x, y)

}
is the Gromov product. If (1.2) holds with δ = 0, then the quadruple p, x, y, z is isometrically
embedded into a tree. Therefore, the δ-hyperbolicity means that (X, d) is close to a tree up
to local perturbations of size δ (cf. Example 2.1(e)). Admitting such local perturbations is
a characteristic feature of the Gromov hyperbolicity.

In the investigation of gradient flows in Gromov hyperbolic spaces, we should employ
discrete-time gradient flows of large time step τ (“giant steps”), because of the inevitable
local perturbations. Precisely, for a convex function f : X −→ R and an arbitrary initial
point x0 ∈ X, we study the behavior of recursive applications of the proximal operator (1.1):

xk ∈ Jfτ (xk−1), k ∈ N. (1.3)

The resulting sequence x0, x1, x2, . . . can be regarded as a discrete approximation of a
(continuous-time) gradient curve for f starting from x0. If f is bounded below, then it
is natural to expect that xk converges to a minimizer of f ; we refer to, e.g., [2, 32] for such
convergence results in metric spaces with upper or lower curvature bounds. In [30, Theo-
rem 1.1], we established that xk is closer to a minimizer than xk−1, up to an additional term
depending on the hyperbolicity constant δ. The estimates in [30, Theorems 1.1, 1.3] can be
thought of as contraction properties akin to tress, and were the first contraction estimates
concerning gradient flows for convex functions on non-Riemannian spaces.

In this article, inspired by Hirai–Sakabe’s recent work [16], we consider the case where the
target convex function is unbounded below. Then, instead of convergence to a minimizer,
we study divergence to the steepest direction in the boundary at infinity. Note that the
structure of boundary at infinity ∂X, constructed as equivalence classes of rays in X, is
well investigated under both nonpositive curvature and Gromov hyperbolicity. This kind of
divergent phenomenon has been established by Karlsson–Margulis [20] for semi-contractions
ϕ : X −→ X (namely d(ϕ(x), ϕ(y)) ≤ d(x, y)) on nonpositively curved metric spaces (X, d).
Precisely, their multiplicative ergodic theorem [20, Theorem 2.1] asserts that, for a complete,
uniformly convex metric space (X, d) of nonpositive curvature in the sense of Busemann and
almost every x0 ∈ X, there exists a ray ξ : [0,∞) −→ X such that

lim
k→∞

d(ξ(αk), xk)

k
= 0,

where xk := ϕ(xk−1), provided α := limk→∞ d(x0, xk)/k > 0. We refer to [8, Proposi-
tion 4.2] for an application to continuous-time gradient flows for Lipschitz convex functions
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on CAT(0)-spaces, and to [19, Proposition 5.1] for a generalization to semi-contractions on
Gromov hyperbolic spaces.

The multiplicative ergodic theorem in [20] is applicable to the proximal operator on
CAT(0)-spaces (thanks to the semi-contractivity of Jfτ ; see [3, Theorem 2.2.22]), while in
[16, §3.2] they also studied gradient descent in Hadamard manifolds. The results in [16]
extract and discretize convex optimization ingredients of the moment-weight inequality for
reductive group actions by Georgoulas–Robbin–Salamon [10] in geometric invariant theory,
and have applications to operator scaling problems (see also more recent [15]). In Gromov
hyperbolic spaces, we employ the proximal operator with large step size τ (compared with
the hyperbolicity constant δ) as we discussed above; however, it is not a semi-contraction (see
Remark 4.3). Nonetheless, using the contraction estimate [30, Theorem 1.1] and analyzing
the behavior of divergence to the boundary at infinity, we establish the following.

Theorem 1.1 (Divergence to the steepest direction). Let (X, d) be a proper, geodesic δ-
hyperbolic space with ∂X 6= ∅, and f : X −→ R be an L-Lipschitz convex function for some
L > 0. Assume that α := − infv∈∂X ∂∞f(v) > 0. Then, we have the following.

(i) There exists a unique element v∗ ∈ ∂X satisfying ∂∞f(v∗) < 0.

(ii) For any x0 ∈ X and

τ >
211L7

(4L2 + α2)2α4
δ, (1.4)

the discrete-time gradient curve (xk)k∈N as in (1.3) converges to v∗ ∈ ∂X.

Here, ∂∞f(v) is the asymptotic slope defined by

∂∞f(v) := lim
t→∞

f(ξ(t))

t

for a ray ξ : [0,∞) −→ X representing v ∈ ∂X. Since L ≥ α, for example,

τ >
82L7

α8
δ

is sufficient for (1.4). We remark that the uniqueness in (i) is a specific feature of the
negative curvature; there is no such uniqueness for CAT(0)-spaces. Note also that [16, §3.2]
includes finer analysis for gradient descent under a concavity condition on f (called the
L-smoothness).

Remark 1.2 (On Lipschitz continuity). It follows from the convexity of f that the (closed)
sublevel set X ′ := f−1((−∞, f(x0)]) is convex, and hence (X ′, d) is also a proper, geodesic
δ-hyperbolic space. For this reason, in Theorem 1.1, it is in fact sufficient to assume that f
is L-Lipschitz on X ′.

This article is organized as follows. After preliminaries in Section 2 for Gromov hyper-
bolic spaces, Section 3 is devoted to analysis of the asymptotic slope of unbounded convex
functions, including the proof of Theorem 1.1(i). In Section 4, we study discrete-time gra-
dient flows and prove Theorem 1.1(ii).
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2 Preliminaries for Gromov hyperbolic spaces

For a, b ∈ R, we set a ∧ b := min{a, b} and a ∨ b := max{a, b}. Besides Gromov’s original
paper [11], we refer to [5, 6, 9, 38] for the basics and various applications of the Gromov
hyperbolicity.

2.1 Gromov hyperbolic spaces

Let (X, d) be a metric space. Recall from the introduction that the δ-hyperbolicity for δ ≥ 0
is defined by

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ (2.1)

for all p, x, y, z ∈ X, where

(x|y)p :=
1

2

{
d(p, x) + d(p, y)− d(x, y)

}
is the Gromov product. Since the triangle inequality implies

0 ≤ (x|y)p ≤ d(p, x) ∧ d(p, y),

the Gromov product does not exceed the diameter diam(X) := supx,y∈X d(x, y). Hence, if
diam(X) ≤ δ, then (X, d) is δ-hyperbolic. This also means that the local structure of X
(up to size δ) is not influential in the δ-hyperbolicity.

Another important fact is that trees are 0-hyperbolic; in this sense, a δ-hyperbolic space is
close to a tree up to an additive constant δ. The Gromov hyperbolicity can also be regarded
as a large-scale notion of negative curvature. Let us mention some typical examples.

Example 2.1. (a) Complete, simply connected Riemannian manifolds of sectional curvature
≤ −1 (or, more generally, CAT(−1)-spaces) are Gromov hyperbolic (see, e.g., [6, Propo-
sition H.1.2]).

(b) An important difference between CAT(−1)-spaces and Gromov hyperbolic spaces is
that the latter admits some non-Riemannian Finsler manifolds. For instance, Hilbert
geometry on a bounded convex domain in the Euclidean space is Gromov hyperbolic
under mild convexity and smoothness conditions (see [21], [28, §6.5]).

(c) For the Teichmüller space of a surface of genus g with p punctures, the Weil–Petersson
metric (which is incomplete, Riemannian) is known to be Gromov hyperbolic if and
only if 3g − 3 + p ≤ 2 [7], whereas the Teichmüller metric (which is complete, Finsler)
does not satisfy the Gromov hyperbolicity [24] (see also [28, §6.6]).

(d) The definition (2.1) makes sense for discrete spaces, and the Gromov hyperbolicity has
found rich applications in group theory. A discrete group whose Cayley graph satisfies
the Gromov hyperbolicity is called a hyperbolic group; we refer to [5, 11], [6, Part III].

(e) Suppose that (X, d) admits an isometric embedding ϕ : T −→ X from a tree (T, dT )
such that the δ-neighborhood B(ϕ(T ), δ) of ϕ(T ) covers X. Then, since (T, dT ) is 0-
hyperbolic, we can easily see that (X, d) is 6δ-hyperbolic.
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We call (X, d) a geodesic space if any two points x, y ∈ X are connected by a (minimal)
geodesic γ : [0, 1] −→ X satisfying γ(0) = x, γ(1) = y, and d(γ(s), γ(t)) = |s − t|d(x, y)
for all s, t ∈ [0, 1]. In this case, there are a number of characterizations of the Gromov
hyperbolicity, most notably by the δ-slimness of geodesic triangles (see, e.g., [6, §III.H.1]).
We remark that, by [4, Theorem 4.1], every δ-hyperbolic metric space can be isometrically
embedded into a complete δ-hyperbolic geodesic space.

In a δ-hyperbolic space, for any x, y, z ∈ X and any geodesic γ : [0, 1] −→ X from y to
z, we have

d(x, γ)− 2δ ≤ (y|z)x ≤ d(x, γ), (2.2)

where d(x, γ) := mins∈[0,1] d(x, γ(s)) (see [38, 2.33]). As a corollary, one can readily see the
following; we give a proof for completeness (cf. [6, Lemma III.H.1.15]).

Lemma 2.2. Let (X, d) be a δ-hyperbolic space and x, y ∈ X. Then, for any two geodesics
γ, η : [0, 1] −→ X from x to y, we have

d
(
γ(s), η(s)

)
≤ 4δ

for all s ∈ [0, 1].

Proof. Fix s ∈ [0, 1] and take s′ ∈ [0, 1] such that d(γ(s), η) = d(γ(s), η(s′)). It follows from
(2.2) and (x|y)γ(s) = 0 that d(γ(s), η(s′)) ≤ 2δ. For s′′ ∈ [0, 1] with |s− s′′|d(x, y) > 2δ, the
triangle inequality implies

d
(
γ(s), η(s′′)

)
≥

∣∣d(x, γ(s))− d
(
x, η(s′′)

)∣∣ = |s− s′′|d(x, y) > 2δ.

Hence, we find |s− s′|d(x, y) ≤ 2δ and

d
(
γ(s), η(s)

)
≤ d

(
γ(s), η(s′)

)
+ |s− s′|d(x, y) ≤ 2δ + 2δ = 4δ.

2.2 Gromov boundary

Next, we introduce the Gromov boundary ∂X of a proper, geodesic δ-hyperbolic space (X, d)
(the properness means that every bounded closed set is compact). We refer to [6, §III.H.3]
for further details, as well as to [38, §5] and [9, §3.4] for the more general non-proper,
non-geodesic situation (see Remark 2.4 below).

A ray ξ : [0,∞) −→ X is a geodesic of unit speed, i.e., d(ξ(s), ξ(t)) = |s − t| for all
s, t ≥ 0. Two rays ξ, ζ : [0,∞) −→ X are said to be asymptotic if

sup
t≥0

d
(
ξ(t), ζ(t)

)
< ∞.

Being asymptotic is an equivalence relation on the set of rays, and we denote by ∂X the
associated equivalence classes. The equivalence class of a ray ξ will be denoted by ξ(∞) ∈
∂X. For any p ∈ X and v ∈ ∂X, there exists a ray ξ with ξ(0) = p and ξ(∞) = v (see [6,
Lemma III.H.3.1]).

We set X := X t ∂X (called the Gromov closure or bordification of X). To endow X
with a topology, we fix a point p ∈ X and consider geodesics ξ : [0, l) −→ X of unit speed
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with ξ(0) = p. If l = ∞, then ξ is a ray. If l < ∞, then we extend ξ by letting ξ(t) := ξ(l)
for t > l, and put ξ(∞) := ξ(l). In either case, we call ξ : [0,∞) −→ X a generalized ray.
We say that two generalized rays ξ, ζ : [0,∞) −→ X (emanating from p) are equivalent if
ξ(∞) = ζ(∞) (in X or ∂X). Then, the set of equivalence classes of generalized rays is
identified with X. A sequence (ξi)i∈N of generalized rays is said to converge to a generalized
ray ξ if ξi converges to ξ uniformly on each bounded interval in [0,∞). This defines a
topology of X. Note that, thanks to the properness, this topology restricted to X coincides
with the original topology of X by the Arzelà–Ascoli theorem.

One can see that X is compact (see [6, Proposition III.H.3.7], [9, Proposition 3.4.18]).

Proposition 2.3. Let (X, d) be a proper, geodesic Gromov hyperbolic space. Then, X and
∂X are compact.

Moreover, X is metrizable, though we will not use it (see [6, Exercise III.H.3.18(4)], [9,
Proposition 3.6.13]).

Remark 2.4 (Gromov sequences). Alternatively, one can introduce ∂X by considering se-
quences (xi)i∈N in X such that limi,j→∞(xi|xj)p = ∞, where p ∈ X is an arbitrarily fixed
point. Such a sequence is called a Gromov sequence. Two Gromov sequences (xi)i∈N and
(yi)i∈N are defined to be equivalent if limi→∞(xi|yi)p = ∞. Then, there exists a natural bi-
jection from the equivalence classes of Gromov sequences to ∂X (see [6, Lemma III.H.3.13]).
Precisely, each Gromov sequence (xi)i∈N converges to a point in ∂X, and its inverse map is
given by associating a ray ξ with the Gromov sequence (ξ(i))i∈N. We stress that, for non-
proper, non-geodesic Gromov hyperbolic spaces, these two notions of the boundary may not
coincide (see [38, Remark 5.5], [9, Remark 3.4.4]).

3 Unbounded convex functions

Let (X, d) be a proper, geodesic δ-hyperbolic space, and f : X −→ R be an L-Lipschitz
function for some L > 0 (i.e., |f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ X). We say that
f is (weakly, geodesically) convex if, for any pair of points x, y ∈ X, there is a geodesic
γ : [0, 1] −→ X from x to y such that

f
(
γ(s)

)
≤ (1− s)f(x) + sf(y) (3.1)

for all s ∈ [0, 1]. We remark that, iteratively choosing a midpoint satisfying (3.1), one can
actually find a geodesic γ such that f ◦ γ is convex on [0, 1].

We are interested in the case where infX f = −∞. Then, to investigate the asymptotic
behavior of f at infinity, we shall utilize the Gromov boundary ∂X.

3.1 Asymptotic slope

Define the descending slope of f at x ∈ X by

|∇−f |(x) := lim sup
y→x

[f(x)− f(y)] ∨ 0

d(x, y)
∈ [0,∞].
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For v ∈ ∂X represented by a ray ξ : [0,∞) −→ X, we define the asymptotic slope

∂∞f(v) := lim
t→∞

f(ξ(t))

t
= lim

t→∞

f(ξ(t))− f(ξ(0))

t
∈ (−∞,∞].

Note that, as a subsequential limit of geodesics γi : [0, i] −→ X from ξ(0) to ξ(i) along which
f is convex, there is a ray ζ such that ζ(0) = ξ(0), ζ(∞) = v, and f ◦ ζ is convex (recall
Lemma 2.2). Then, the function

t 7−→ f(ζ(t))− f(ζ(0))

t
(3.2)

is non-decreasing, thereby the limit as t → ∞ indeed exists. Moreover, since ζ is asymptotic
to ξ (i.e., d(ξ(t), ζ(t)) is bounded), we have∣∣∣∣f(ξ(t))t

− f(ζ(t))

t

∣∣∣∣ ≤ Ld(ξ(t), ζ(t))

t
→ 0

as t → ∞. Thus, ∂∞f is well-defined. In what follows, we will always choose a ray ξ such
that f ◦ ξ is convex.

We summarize necessary properties of the asymptotic slope ∂∞f in the next proposition
(cf. [18, Lemma 3.2], [16, Proposition 2.1] on CAT(0)-spaces). We will consider the case
where infv∈∂X ∂∞f(v) < 0.

Proposition 3.1. Let (X, d) be a proper, geodesic δ-hyperbolic space with ∂X 6= ∅, and
f : X −→ R be an L-Lipschitz convex function.

(i) If infv∈∂X ∂∞f(v) > 0, then f is bounded below and its minimum is attained at some
point in X.

(ii) We have
inf
x∈X

|∇−f |(x) ≥ − inf
v∈∂X

∂∞f(v). (3.3)

In particular, if infv∈∂X ∂∞f(v) < 0, then infx∈X |∇−f |(x) > 0.

(iii) ∂∞f : ∂X −→ (−∞,∞] is lower semi-continuous.

(iv) In the case of infv∈∂X ∂∞f(v) < 0, there exists unique v∗ ∈ ∂X such that ∂∞f(v∗) < 0.

Proof. (i) On the contrary, suppose that there is a sequence (xi)i∈N such that f(xi) → −∞.
Then, by the Lipschitz continuity of f , d(x1, xi) → ∞ necessarily holds. Fix p ∈ X. Since
f is convex, we have f ≤ f(p) ∨ f(xi) on some geodesic from p to xi. Thanks to the
compactness of X, as a subsequential limit of those geodesics, we obtain a ray ξ such that
ξ(0) = p and f(ξ(t)) ≤ f(p) for all t > 0. Hence, ∂∞f(ξ(∞)) ≤ 0 holds, a contradiction.

The above argument actually shows that each sublevel set of f is bounded. Then, by
the properness of X and the continuity of f , we can find a minimizer of f .

(ii) Fix x ∈ X and v ∈ ∂X represented by a ray ξ with ξ(0) = x. Then, we deduce from
the convexity of f along ξ that

|∇−f |(x) ≥ lim
t→0

f(x)− f(ξ(t))

t
≥ f(x)− f(ξ(t))

t
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for all t > 0. Letting t → ∞ shows |∇−f |(x) ≥ −∂∞f(v), which completes the proof.
(iii) Take p ∈ X and a sequence (vi)i∈N in ∂X converging to some v ∈ ∂X, and let ξi

and ξ be rays representing vi and v with ξi(0) = ξ(0) = p, respectively.
We first assume that ∂∞f(v) < ∞. By the definition of ∂∞f(v), for any ε > 0, we have

f(ξ(t0))− f(p)

t0
> ∂∞f(v)− ε

for some t0 > 0. Since f is continuous and ξi uniformly converges to ξ on each bounded
interval, we find N ∈ N such that, for all i ≥ N ,

f(ξi(t0))− f(p)

t0
> ∂∞f(v)− 2ε.

The monotonicity of the function (3.2) then implies ∂∞f(vi) > ∂∞f(v)− 2ε, and hence

lim inf
i→∞

∂∞f(vi) ≥ ∂∞f(v)− 2ε.

Letting ε → 0 completes the proof of the asserted lower semi-continuity:

lim inf
i→∞

∂∞f(vi) ≥ ∂∞f(v).

When ∂∞f(v) = ∞, the same argument shows that, for any R > 0,

f(ξ(t0))− f(p)

t0
≥ 2R

for some t0 > 0, and

∂∞f(vi) ≥
f(ξi(t0))− f(p)

t0
≥ R

for some N ∈ N and all i ≥ N . Therefore, we have lim infi→∞ ∂∞f(vi) ≥ R and letting
R → ∞ yields lim infi→∞ ∂∞f(vi) = ∞ as desired.

(iv) The existence is obvious, thereby it suffices to prove the uniqueness. Assume, on
the contrary, that there are distinct v1, v2 ∈ ∂X such that

∂∞f(v1) ∨ ∂∞f(v2) ≤ −ε

for some ε > 0. Fix p ∈ X and let ξ1 and ξ2 be rays representing v1 and v2 with ξ1(0) =
ξ2(0) = p, respectively. Thanks to the monotonicity of the function (3.2), it follows that

f(ξ1(t))− f(p)

t
∨ f(ξ2(t))− f(p)

t
≤ −ε

for all t > 0. Given t > 0, let γt : [0, 1] −→ X be a geodesic from ξ1(t) to ξ2(t) along which
f is convex, and xt be a point on γt attaining d(p, γt). Then, we deduce from the convexity
of f along γt that

f(xt) ≤ f
(
ξ1(t)

)
∨ f

(
ξ2(t)

)
≤ f(p)− tε.

Moreover, (2.2) yields
d(p, xt) ≤

(
ξ1(t)|ξ2(t)

)
p
+ 2δ.
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Now, since v1 6= v2, there is C > 0 such that (ξ1(t)|ξ2(t))p ≤ C for all t > 0 (recall
Remark 2.4). This implies d(p, xt) ≤ C + 2δ for all t > 0; however,

lim
t→∞

f(xt) ≤ lim
t→∞

{
f(p)− tε

}
= −∞.

This contradicts the Lipschitz continuity of f .

We remark that the uniqueness in (iv) is a consequence of negative curvature (cf. Exam-
ple 3.3), and then we readily find that v∗ satisfies ∂∞f(v∗) = inf∂X ∂∞f (without applying
the lower semi-continuity of ∂∞f).

The inequality (3.3) is called the weak duality in [16, Lemma 2.2]. Then, the strong
duality means that infX |∇−f | > 0 if and only if inf∂X ∂∞f < 0. To show the only if part, in
[18, Lemma 3.4] and [16, Theorems 3.1, 3.7], continuous-time gradient flows or a concavity
condition on f are used. Intuitively speaking, in Gromov hyperbolic spaces, it seems not
easy to control infinitesimal quantities like |∇−f |.

3.2 Hadamard spaces

For the sake of comparison, here we briefly discuss the case of nonpositively curved spaces.
We refer to [16, 18] for more details.

A geodesic space (Y, d) is called a CAT(0)-space if, for any x, y, z ∈ Y and any geodesic
γ : [0, 1] −→ Y from y to z, we have

d2
(
x, γ(s)

)
≤ (1− s)d2(x, y) + sd2(x, z)− (1− s)sd2(y, z)

for all s ∈ [0, 1] (in other words, d2(x, ·) is 2-convex). A complete CAT(0)-space is called an
Hadamard space. A complete, simply connected Riemannian manifold is a CAT(0)-space if
and only if its sectional curvature is nonpositive everywhere (thus, an Hadamard manifold).
Trees and Euclidean buildings are fundamental non-smooth examples of CAT(0)-spaces.

For an Hadamard space (Y, d), one can define ∂Y as the equivalence classes of rays in
the same manner as Subsection 2.2. Moreover, ∂Y is equipped with a natural metric ∠T

called the Tits metric, which can be defined by

2 sin

(
∠T (v1, v2)

2

)
= lim

t→∞

d(ξ1(t), ξ2(t))

t

for rays ξ1, ξ2 associated with v1, v2. We call (∂Y,∠T ) the Tits boundary. For example, when
Y is a Euclidean space Rn, then its Tits boundary is isometric to Sn−1. The Tits boundary
of a hyperbolic space Hn is discrete (∠T (v1, v2) = π for any distinct v1, v2).

Given a Lipschitz convex function f : Y −→ R on an Hadamard space, the asymptotic
slope ∂∞f : ∂Y −→ (−∞,∞] can be defined as in the previous subsection. In this case,
∂∞f is Lipschitz with respect to ∠T and strictly convex on {v ∈ ∂Y | ∂∞f(v) < 0}.
Therefore, when inf∂Y ∂∞f < 0, we can find a unique minimizer v∗ ∈ ∂Y of ∂∞f , similarly
to Proposition 3.1 (see [18, Lemma 3.2]).

Remark 3.2 (Recession functions). In [16], ∂∞f (or its canonical extension to the Euclidean
cone C[∂Y ]) is called a recession function in connection with convex analysis.
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Example 3.3 (Busemann functions). Given a ray ξ : [0,∞) −→ Y in an Hadamard space,
define the associated Busemann function bξ : Y −→ R by

bξ(x) := lim
t→∞

{
d
(
x, ξ(t)

)
− t

}
.

Inheriting the properties of the distance function, bξ is 1-Lipschitz and convex. Note also
that bξ(ξ(t)) = −t. A level (resp. sublevel) set of bξ is called a horosphere (resp. horoball). If
Y = Rn, then we have bξ(x) = −〈x− ξ(0), ξ̇(0)〉 with the Euclidean inner product 〈·, ·〉, and
horospheres are hyperplanes perpendicular to (the extension of) ξ. When Y is a hyperbolic
space of Poincaré model, each horosphere of bξ is drawn as a sphere tangent to the boundary
at ξ(∞). In either case, v∗ for bξ is given by ξ(∞).

4 Discrete-time gradient flows

As in Theorem 1.1, let (X, d) be a proper, geodesic δ-hyperbolic space with ∂X 6= ∅, and
f : X −→ R be an L-Lipschitz convex function.

4.1 Proximal point algorithm

For τ > 0 and x ∈ X, the proximal (or resolvent) operator is defined by

Jfτ (x) := argmin
y∈X

{
f(y) +

d2(x, y)

2τ

}
.

Roughly speaking, an element in Jfτ (x) can be regarded as an approximation of a point on
the gradient curve of f at time τ from x. Note that Jfτ (x) 6= ∅ by the properness of (X, d)
(see also the beginning of [30, §3.1]).

For any x ∈ X and xτ ∈ Jfτ (x), we infer from the L-Lipschitz continuity of f that

f(xτ ) +
d2(x, xτ )

2τ
≤ f(x) ≤ f(xτ ) + Ld(x, xτ ).

This implies
d(x, xτ ) ≤ 2τL. (4.1)

By using the convexity of f , we can also provide a lower bound of d(x, xτ ).

Lemma 4.1. Suppose that α := − inf∂X ∂∞f > 0. Then, for any x ∈ X and xτ ∈ Jfτ (x),
we have

d(x, xτ ) ≥
(
L−

√
L2 − α2

)
τ ≥ α2τ

2L
. (4.2)

Moreover,

f(xτ ) ≤ f(x)− α4τ

8L2
. (4.3)

We remark that, by (3.3),

L ≥ inf
X

|∇−f | ≥ − inf
∂X

∂∞f = α.
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Proof. Let v∗ ∈ ∂X be the unique element satisfying ∂∞f(v∗) = −α, and ξ be a ray with
ξ(0) = x and ξ(∞) = v∗. By the monotonicity of the function (3.2), we have

f(ξ(t))− f(x)

t
≤ −α

for all t > 0. Since d(x, ξ(t)) = t, the above inequality is rewritten as

f
(
ξ(t)

)
+

d2(x, ξ(t))

2τ
≤ f(x)− αt+

t2

2τ
,

and the right hand side takes its minimum at t = ατ , yielding

f
(
ξ(ατ)

)
+

d2(x, ξ(ατ))

2τ
≤ f(x)− α2τ

2
. (4.4)

Now, for any y ∈ X with d(x, y) < (L −
√
L2 − α2)τ , we deduce from the L-Lipschitz

continuity of f that

f(y) +
d2(x, y)

2τ
≥ f(x)− Ld(x, y) +

d2(x, y)

2τ

= f(x) +
1

2τ

{(
Lτ − d(x, y)

)2 − L2τ 2
}

> f(x) +
1

2τ

{
(L2 − α2)τ 2 − L2τ 2

}
= f(x)− α2τ

2
.

Comparing this with (4.4) shows that y 6∈ Jfτ (x), thereby the former inequality d(x, xτ ) ≥
(L−

√
L2 − α2)τ in (4.2) necessarily holds. The latter inequality in (4.2) is immediate.

The second assertion (4.3) follows from the choice of xτ together with (4.2) as

f(x) ≥ f(xτ ) +
d2(x, xτ )

2τ
≥ f(xτ ) +

α4τ

8L2
.

We remark that the δ-hyperbolicity was not used in the lemma above. It will come into
play via the following estimate from [30] (we state only the case of K = 0).

Theorem 4.2 ([30]). Let (X, d) be a proper, geodesic δ-hyperbolic space and f : X −→ R
be an L-Lipschitz convex function. Then, for any x ∈ X, y ∈ Jfτ (x), and p ∈ X with
f(p) ≤ f(y), we have

d(p, y) ≤ d(p, x)− d(x, y) + 4
√
2τLδ. (4.5)

We remark that, in [30, Theorem 1.1], p was chosen as a minimizer of f ; however, by
having a look on its proof, it is sufficient to assume f(p) ≤ f(y).

Remark 4.3 (No semi-contraction). We also obtained a kind of contraction property in [30],
whereas it does not imply that the proximal operator is a semi-contraction. For yi ∈ Jfτ (xi)
(i = 1, 2) and any minimizer p ∈ X of f , [30, Theorem 1.3(ii)] (with K = 0) asserts that

d(y1, y2) ≤ d(x1, x2)− (p|x2)x1 + C(L,D, τ, δ),

where D := d(p, x1) ∨ d(p, x2), provided d(p, y1) ≤ d(p, y2) ∧ (x1|x2)p. If x2 → x1, then
d(x1, x2)− (p|x2)x1 → 0, but the additional term C(L,D, τ, δ) caused by the δ-hyperbolicity
remains.
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4.2 Proof of Theorem 1.1

We have shown (i) in Proposition 3.1, here we prove the remaining assertion (ii).

Proof of Theorem 1.1(ii). Fix an arbitrary initial point x0 ∈ X and recursively choose xk ∈
Jfτ (xk−1) for k ∈ N. We find from (4.3) and the Lipschitz continuity of f that d(x0, xk) → ∞
as k → ∞. By the compactness of X, (xk)k∈N admits a subsequence converging to some
v ∈ ∂X. We shall show that v necessarily coincides with v∗ given in Proposition 3.1(iv).

It follows from (4.1) and (4.3) that

d(x0, xk) ≤ 2kτL, f(xk) ≤ f(x0)− k
α4τ

8L2
,

and hence
f(xk)− f(x0)

d(x0, xk)
≤ −k

α4τ

8L2

1

2kτL
= − α4

16L3
.

Note also that

d(x0, xk) ≥
f(x0)− f(xk)

L
≥ k

α4τ

8L3
. (4.6)

Suppose that v 6= v∗. Let (xki)i∈N be a subsequence converging to v, and ξ be a ray
representing v∗ with ξ(0) = x0. Since v 6= v∗, we have

Θ := sup
t>0, i∈N

(
ξ(t)|xki

)
x0

< ∞

(recall Remark 2.4). Together with (4.6), this implies that

d
(
ξ(t), xki

)
≥ d

(
x0, ξ(t)

)
+ d(x0, xki)− 2Θ ≥ t+ ki

α4τ

8L3
− 2Θ (4.7)

for all t > 0, i ∈ N. On the other hand, it follows from (4.5) and (4.2) that, for large t > 0
satisfying f(ξ(t)) ≤ f(xk+1) (note that f(ξ(t)) → −∞ as t → ∞),

d
(
ξ(t), xk+1

)
− d

(
ξ(t), xk

)
≤ −d(xk, xk+1) + 4

√
2τLδ ≤ −α2τ

2L
+ 4

√
2τLδ.

Therefore, for t > 0 with f(ξ(t)) ≤ f(xki),

d
(
ξ(t), xki

)
≤ d

(
ξ(t), x0

)
− ki

(
α2τ

2L
− 4

√
2τLδ

)
.

Combining this with (4.7) yields

ki

(
α2τ

2L
− 4

√
2τLδ

)
≤ t− d

(
ξ(t), xki

)
≤ −ki

α4τ

8L3
+ 2Θ,

thereby

ki
√
τ

{(
α2

2L
+

α4

8L3

)√
τ − 4

√
2Lδ

}
≤ 2Θ.

Since the hypothesis (1.4) means(
α2

2L
+

α4

8L3

)√
τ − 4

√
2Lδ > 0,

letting i → ∞ induces a contradiction. Therefore, we obtain v = v∗.
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4.3 Further problems

We close the article with some further problems, including those discussed at the end of
[30].

(A) As we explained in Example 2.1(d), the Gromov hyperbolicity makes sense for discrete
spaces as well. Therefore, it is interesting to explore some generalizations of the results
in this article and [30] to discrete (non-geodesic) Gromov hyperbolic spaces. Then, it is
a challenging problem to formulate and analyze convex functions on discrete Gromov
hyperbolic spaces (possibly for some special classes such as hyperbolic groups). We
refer to [26] for the theory of convex functions on ZN (called discrete convex analysis),
and to [13, 22] for some generalizations to graphs and trees, respectively.

(B) Even in geodesic Gromov hyperbolic spaces, it is worthwhile considering a certain
“large-scale convexity” of functions, preserved by quasi-isometries, since the Gromov
hyperbolicity is preserved by quasi-isometries between geodesic spaces (see, e.g., [6,
Theorem III.H.1.9], [38, Theorem 3.18]).

(C) Since [16, 18, 20] are concerned with nonpositively curved spaces, it is natural to ex-
pect that our results can be extended to some class of metric spaces including both
CAT(0)-spaces and Gromov hyperbolic spaces, probably defined through an appropri-
ate relaxation (perturbation) of the CAT(0)-condition.
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22H04942, 24K00523, 24K21511.

References
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