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Abstract

We investigate barycenters of probability measures on Gromov hyperbolic spaces,
toward development of convex optimization in this class of metric spaces. We estab-
lish a contraction property (the Wasserstein distance between probability measures
provides an upper bound of the distance between their barycenters), a deterministic
approximation of barycenters of uniform distributions on finite points, and a kind of
law of large numbers. These generalize the corresponding results on CAT(0)-spaces,
up to additional terms depending on the hyperbolicity constant.

MSC (2020): 60B05 (Primary); 52A55, 53C23 (Secondary).

1 Introduction

This article is a continuation of [27] in which we studied discrete-time gradient flows for
geodesically convex functions on (geodesic, proper) Gromov hyperbolic spaces. The theory
of gradient flows for convex functions possesses fundamental importance in analysis, geome-
try and optimization theory, and has been well investigated in some classes of “Riemannian”
metric spaces including CAT(0)-spaces (nonpositively curved metric spaces in the sense of
triangle comparison; we refer to [4]). For “non-Riemannian” metric spaces such as normed
spaces and Finsler manifolds, however, much less is known and, in fact, there is a large gap
between properties of gradient flows in Riemannian and Finsler manifolds (see [27, 30] for
further discussions).

Intending to develop optimization theory in possibly non-Riemannian spaces, in [27] we
studied discrete-time gradient flows for geodesically convex functions on Gromov hyper-
bolic spaces and showed some contraction estimates. Gromov hyperbolic spaces are metric
spaces negatively curved in large-scale, and it is known that some non-Riemannian Finsler
manifolds can be Gromov hyperbolic (see Example 2.2). The class of geodesically convex
functions seems, however, restrictive when one has in mind the local flexibility of the Gro-
mov hyperbolicity condition. Thereby, it is desirable to generalize the theory of gradient
flows to a wider class of “convex functions” (we refer to [27, §3.4] for related discussions). As

∗Department of Mathematics, Osaka University, Osaka 560-0043, Japan (s.ohta@math.sci.osaka-u.ac.jp),
RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Tokyo 103-0027, Japan

1



an initial step toward such a generalization, in this article, we study the (squared) distance
function on a Gromov hyperbolic space, which should be included in the class of generalized
convex functions (in view of Lemmas 3.2, 4.2).

Given a probability measure µ on a metric space (X, d) with finite second moment, its
barycenter is defined as a minimizer of the function x 7→

∫
X
d2(x, z)µ(dz). If the (squared)

distance function is sufficiently convex, then barycenters enjoy a number of fine properties.
Specifically, in a CAT(0)-space (X, d) for which d2 is strictly convex by definition, every µ
admits a unique barycenter βµ ∈ X and we have a contraction property d(βµ, βν) ≤ W1(µ, ν)
in terms of the L1-Wasserstein distance W1 (see [32]). Moreover, a kind of law of large
numbers providing the almost sure convergence to barycenters by recursive applications
of the proximal (resolvent) operator was established in [32] (we refer to [28, 38] for some
generalizations).

A metric space (X, d) is said to be Gromov hyperbolic (attributed to [16]) if it is δ-
hyperbolic for some δ ≥ 0 in the sense that

(x|z)p ≥ min{(x|y)p, (y|z)p} − δ

holds for all p, x, y, z ∈ X, where

(x|y)p :=
1

2

{
d(p, x) + d(p, y)− d(x, y)

}
is the Gromov product. This is a large-scale notion of negative curvature and hence, on the
one hand, it is natural to expect some variants of the aforementioned results in CAT(0)-
spaces. On the other hand, since the Gromov hyperbolicity provides no local control (up
to the hyperbolicity constant δ), one cannot expect very sharp estimates as in the case of
CAT(0)-spaces. Accordingly, our results will have additional terms (compared with the case
of CAT(0)-spaces) those tend to 0 as δ → 0.

For a probability measure µ on a (geodesic) δ-hyperbolic space (X, d), its barycenter is
not unique but lives in a bounded set (whose diameter tends to 0 as δ → 0; see Proposi-
tion 3.3). For this reason, we introduce the set

B(µ, ε) :=
{
x ∈ X

∣∣∣∣ ∫
X

d2(x, z)µ(dz) ≤ inf
y∈X

∫
X

d2(y, z)µ(dz) + ε

}
for ε ≥ 0, and call it a barycentric set (here we consider only probability measures of finite
second moment for simplicity). Then, we show a contraction property of the form

d(x, y) ≤ W1(µ, ν) +
√
6ε+O(δ1/4)

for x ∈ B(µ, ε) and y ∈ B(ν, ε); see Theorem 4.5 for the precise statement.
How to find (or approximate) a barycenter of a given probability measure µ is a fun-

damental problem. In this respect, we show the following law of large numbers (see The-
orem 6.1 for the precise statement): Given a sequence (Zi)i≥1 of independent, identically
distributed random variables with distribution µ and an arbitrary initial point S0 ∈ X,
we consider a sequence (Sk)k≥0 recursively chosen as Sk+1 = γ((2τ + 1)−1) for a minimal
geodesic γ : [0, 1] −→ X from Zk+1 to Sk. Then, for any ε > 0, we have

E
[
d2(p, Sk0)

]
≤ ε+O(

√
δ)
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for some k0 ≤ C/(ε
√
δ) by taking τ proportional to

√
δ, where p ∈ B(µ, 0) is a barycenter

of µ. We remark that the construction of Sk+1 from Sk is written by the proximal oper-
ator Sk+1 ∈ Jfkτ (Sk) for the distance function fk = d2(Zk+1, ·) (see (5.1)), and that such
an operation is meaningful only for large τ compared with δ due to the local flexibility of
δ-hyperbolic spaces. By a similar analysis, we prove in Theorem 5.2 a deterministic approx-
imation of barycenters of uniform distributions on finite points, as a generalization of [23]
in CAT(0)-spaces (we refer to [2, 3, 17, 28] for some related results).

We briefly mention related results on hyperbolic groups (discrete groups whose Cayley
graphs are Gromov hyperbolic). Laws of large numbers can be formulated in terms of the
behavior of the distance function d(g1g2 · · · gk(x0), x0) for a sequence (gi)i≥1 of independent,
identically distributed random variables taking values in the group of isometric transfor-
mations acting on a metric space (X, d) and a base point x0 ∈ X. Indeed, Kingman’s
subadditive ergodic theorem [21, 22] ensures that

lim
k→∞

d(g1g2 · · · gk(x0), x0)

k

exists almost surely and is constant almost everywhere. We refer to [19] and the references
therein for more details as well as refined results including the case of hyperbolic groups.
In this context, central limit theorems in hyperbolic groups were also established in [5, 7].
Our law of large numbers (Theorem 6.1) associated with a probability measure µ on a
Gromov hyperbolic space X is concerned with a more general setting and provides a direct
approximation of barycenters. In this generality, it is difficult even to formulate central limit
theorems.

This article is organized as follows. In Section 2, we review the basics of Gromov hyper-
bolic spaces and some facts on barycenters in CAT(0)-spaces. In Section 3, we introduce
and analyze barycentric sets for probability measures on Gromov hyperbolic spaces. Then
we discuss the Wasserstein contraction property, a deterministic approximation, and a law
of large numbers in Sections 4, 5, and 6, respectively.

2 Preliminaries

We review the basics of Gromov hyperbolic spaces, as well as some facts on barycenters
in CAT(0)-spaces related to our results. For a, b ∈ R, we set a ∧ b := min{a, b} and
a ∨ b := max{a, b}.

2.1 Gromov hyperbolic spaces

Besides the original paper [16], we refer to [9, 10, 13, 31, 34] for the basics and various
applications of the Gromov hyperbolicity.

Let (X, d) be a metric space. For three points x, y, z ∈ X, we define the Gromov product
(y|z)x by

(y|z)x :=
1

2

{
d(x, y) + d(x, z)− d(y, z)

}
.

Observe from the triangle inequality that 0 ≤ (y|z)x ≤ d(x, y) ∧ d(x, z). In the Euclidean
plane R2, (y|z)x is understood as the distance from x to the intersection of the triangle
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4xyz and its inscribed circle. If x, y, z are the endpoints of a tripod, then (y|z)x coincides
with the distance from x to the branching point.

Definition 2.1 (Gromov hyperbolic spaces). A metric space (X, d) is said to be δ-hyperbolic
for δ ≥ 0 if

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ (2.1)

holds for all p, x, y, z ∈ X. We say that (X, d) is Gromov hyperbolic if it is δ-hyperbolic for
some δ ≥ 0.

Since the Gromov product does not exceed the diameter diam(X) := supx,y∈X d(x, y),
if diam(X) ≤ δ, then (X, d) is δ-hyperbolic. This also means that the local structure of
X (up to size δ) is not influential in the δ-hyperbolicity. Another fact worth mentioning is
that, if (2.1) holds for some p ∈ X and all x, y, z ∈ X, then (X, d) is 2δ-hyperbolic (see [16,
Corollary 1.1.B]).

The Gromov hyperbolicity can be regarded as a large-scale notion of negative (sectional)
curvature. We recall some fundamental examples (see also [16, §1]).

Example 2.2. (a) Complete, simply connected Riemannian manifolds of sectional curvature
≤ −1 (or, more generally, CAT(−1)-spaces) are Gromov hyperbolic (see, for example,
[16, §1.5]).

(b) An important difference between the class of CAT(−1)-spaces and that of Gromov
hyperbolic spaces is that the latter admits non-Riemannian Finsler manifolds. For in-
stance, Hilbert geometry on a bounded convex domain in the Euclidean space is Gromov
hyperbolic under mild convexity and smoothness conditions (see [20], [26, §6.5]).

(c) The definition (2.1) makes sense for discrete spaces. In fact, the Gromov hyperbolic-
ity has found rich applications in group theory (a discrete group whose Cayley graph
satisfies the Gromov hyperbolicity is called a hyperbolic group; we refer to [9, 16], [10,
Part III]). In the sequel, however, we do not consider discrete spaces.

(d) Assume that a metric space (X, dX) admits a map ϕ : T −→ X from a tree (T, dT )
such that dX(ϕ(a), ϕ(b)) = dT (a, b) for all a, b ∈ T and the δ-neighborhood B(ϕ(T ), δ)
of ϕ(T ) covers X. Then, since (T, dT ) is 0-hyperbolic, we can easily see that (X, dX) is
6δ-hyperbolic.

We call (X, d) a geodesic space if any two points x, y ∈ X are connected by a minimal
geodesic γ : [0, 1] −→ X satisfying γ(0) = x, γ(1) = y, and d(γ(s), γ(t)) = |s− t| ·d(x, y) for
all s, t ∈ [0, 1]. In this case, there are several characterizations of the Gromov hyperbolicity
(see, for example, [16, §6], [10, §III.H.1]). We also remark that, by [8, Theorem 4.1],
every δ-hyperbolic metric space can be isometrically embedded into a complete, geodesic
δ-hyperbolic space.

2.2 CAT(0)-spaces

A geodesic space (X, d) is called a CAT(0)-space if, for any x, y, z ∈ X and any minimal
geodesic γ : [0, 1] −→ X from x to y,

d2
(
z, γ(t)

)
≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y) (2.2)
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holds for all t ∈ (0, 1). A complete, simply connected Riemannian manifold is a CAT(0)-
space if and only if its sectional curvature is nonpositive everywhere. Moreover, there
are a number of rich classes of non-smooth CAT(0)-spaces such as Euclidean buildings,
trees, phylogenetic tree spaces, and the orthoscheme complexes of modular lattices (see
[4, 6, 12, 18]).

The CAT(0)-inequality (2.2) can be regarded as the uniform strict convexity of the
squared distance function d2(z, ·), and such a convexity is known to be quite useful to study
barycenters. In fact, as we mentioned in the introduction, every probability measure µ on X
with finite second (or first) moment admits a unique barycenter βµ ∈ X, and the contraction
property d(βµ, βν) ≤ W1(µ, ν) holds. Moreover, a law of large numbers was established in
[32], followed by many variants and generalizations [3, 17, 23, 28, 38] (see also [15, 24] for
related works on a different notion of barycenter).

3 Barycentric sets

Henceforth, throughout the article, let (X, d) be a geodesic δ-hyperbolic space. We first
recall the Wasserstein distance between probability measures (we refer to [35] for further
reading).

Denote by Pp(X) (p ∈ [1,∞)) the set of Borel probability measures on X of finite p-th
moment, that is, µ ∈ Pp(X) if ∫

X

dp(x0, x)µ(dx) < ∞

for some (and hence any) x0 ∈ X. For µ, ν ∈ Pp(X), the Lp-Wasserstein distance (or the
Kantorovich distance) between µ and ν is defined by

Wp(µ, ν) := inf
π

(∫
X×X

dp(x, y) π(dx dy)

)1/p

,

where π runs over all couplings of (µ, ν) (namely probability measures on X × X with
marginals µ and ν). A coupling π attaining the above infimum is called an Lp-optimal
coupling of (µ, ν). Observe that

Wp(δx, µ) =

(∫
X

dp(x, y)µ(dy)

)1/p

for all x ∈ X and µ ∈ Pp(X), where δx denotes the Dirac mass at x.
Note that P2(X) ⊂ P1(X) by the Hölder (or Cauchy–Schwarz) inequality. According

to [32], we will consider barycenters of probability measures not only in P2(X) but also in
P1(X). Fix an arbitrary point x0 ∈ X. For µ ∈ P1(X), we define

Vx0(µ) := inf
x∈X

∫
X

{
d2(x, z)− d2(x0, z)

}
µ(dz). (3.1)

We remark that the integral above is well-defined since∫
X

|d2(x, z)− d2(x0, z)|µ(dz) ≤
∫
X

d(x, x0)
{
d(x, z) + d(x0, z)

}
µ(dz)

= d(x, x0)
{
W1(δx, µ) +W1(δx0 , µ)

}
< ∞
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by the triangle inequality.
In a complete CAT(0)-space, every µ ∈ P1(X) admits a unique point x ∈ X attaining

the infimum in (3.1). Such a point x is independent of the choice of x0 and called the
barycenter of (or the center of mass for) µ (see [32, Proposition 4.3], and [36] for the case
of CAT(1)-spaces of small radii). More precisely, what we consider is an L2-barycenter
involving the squared distance. We refer to [1, 37] for related works on Lp-barycenters.

In a δ-hyperbolic space, however, we do not have a unique barycenter. For this reason,
we introduce the following set:

B(µ, ε) :=
{
x ∈ X

∣∣∣∣ ∫
X

{
d2(x, z)− d2(x0, z)

}
µ(dz) ≤ Vx0(µ) + ε

}
(3.2)

for µ ∈ P1(X) and ε ≥ 0. We shall call B(µ, ε) a barycentric set. We remark that B(µ, ε) is
independent of the choice of x0. Note also that B(µ, 0) may be empty (unless X is proper),
while B(µ, ε) 6= ∅ for any ε > 0.

Our goal in this section is to estimate the diameter of B(µ, ε) in terms of ε and δ. To
this end, we first generalize the CAT(0)-inequality (2.2) to δ-hyperbolic spaces, with an
inevitable additional term depending on δ.

Lemma 3.1 (CAT(0) + δ). For any x, y, z ∈ X and any midpoint w between x and y, we
have

d2(z, w) ≤ d2(z, x)

2
+

d2(z, y)

2
− d2(x, y)

4
+ 2δ

{
d(z, x) + d(z, y)

}
+ 4δ2. (3.3)

Proof. Since w is a midpoint of x and y (namely d(x,w) = d(w, y) = d(x, y)/2), we have
(x|y)w = 0. Then the δ-hyperbolicity (2.1) implies

0 ≥ (x|z)w ∧ (z|y)w − δ =
1

2

{
d(z, w) +

d(x, y)

2
− d(z, x) ∨ d(z, y)

}
− δ.

Hence,

d2(z, w) ≤
(
d(z, x) ∨ d(z, y)− d(x, y)

2
+ 2δ

)2

.

Setting a = d(z, x) ∨ d(z, y) and b = d(z, x) ∧ d(z, y), we observe that(
a− d(x, y)

2

)2

= a2 +
d2(x, y)

4
− ad(x, y)

=
a2 + b2

2
− d2(x, y)

4
− 1

2

{
d(x, y)− (a− b)

}{
(a+ b)− d(x, y)

}
≤ d2(z, x)

2
+

d2(z, y)

2
− d2(x, y)

4
,

since a+ b ≥ d(x, y) ≥ a− b by the triangle inequality. Moreover, we find

0 ≤ a− d(x, y)

2
≤ a− a− b

2
=

d(z, x) + d(z, y)

2
.

6



Combining these, we obtain

d2(z, w) ≤
(
a− d(x, y)

2

)2

+ 4δ

(
a− d(x, y)

2

)
+ 4δ2

≤ d2(z, x)

2
+

d2(z, y)

2
− d2(x, y)

4
+ 2δ

{
d(z, x) + d(z, y)

}
+ 4δ2

as desired.

We also present the corresponding inequality for general intermediate points between x
and y.

Lemma 3.2 (General intermediate points). For any x, y, z ∈ X and any minimal geodesic
γ : [0, 1] −→ X from x to y, we have

d2
(
z, γ(t)

)
≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y) + 4δ

(
d(z, x)∨ d(z, y)

)
+ 4δ2 (3.4)

for all t ∈ (0, 1).

Proof. Put w = γ(t), then we have (x|y)w = 0 again. Thus, it follows from the δ-
hyperbolicity (2.1) that

0 ≥ (x|z)w ∧ (z|y)w − δ

=
1

2

{
d(z, w) +

(
td(x, y)− d(z, x)

)
∧
(
(1− t)d(x, y)− d(z, y)

)}
− δ,

and hence

d2(z, w) ≤
{(

d(z, x)− td(x, y)
)
∨
(
d(z, y)− (1− t)d(x, y)

)
+ 2δ

}2

.

Now, we claim that {(
d(z, x)− td(x, y)

)
∨
(
d(z, y)− (1− t)d(x, y)

)}2

≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y) (3.5)

holds. In fact, the inequality(
d(z, x)− td(x, y)

)2 ≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y)

can be rearranged as

td2(z, x)− 2td(z, x)d(x, y) + td2(x, y) ≤ td2(z, y),

which holds true by the triangle inequality. We can similarly show(
d(z, y)− (1− t)d(x, y)

)2 ≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y),

thereby we obtain (3.5). Therefore, we deduce that

d2(z, w) ≤ (1− t)d2(z, x) + td2(z, y)− (1− t)td2(x, y) + 4δ
(
d(z, x) ∨ d(z, y)

)
+ 4δ2.
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Note that, in the case of δ = 0, (3.4) boils down to the CAT(0)-inequality (2.2). For
δ = 0, moreover, one can infer (3.4) from (3.3) by the standard subdivision argument (see,
for example, (ii) ⇒ (iii) of [4, Theorem 1.3.3]). For δ > 0, however, iterating subdivisions
makes the additional term (depending on δ) diverge, thereby we gave a direct argument to
prove Lemma 3.2. We also remark that (3.4) is not meaningful for t close to 0 or 1, since
then the triangle inequality could give a better estimate.

We are ready to estimate the diameter of barycentric sets B(µ, ε) defined in (3.2). Recall
that x0 ∈ X is an arbitrary point fixed at the beginning of this section.

Proposition 3.3 (Diameter of B(µ, ε)). For any µ ∈ P1(X), x, y ∈ X and any midpoint
w between x and y, we have∫

X

{
d2(w, z)− d2(x0, z)

}
µ(dz) ≤

∫
X

{
d2(x, z)

2
+

d2(y, z)

2
− d2(x0, z)

}
µ(dz)

− d2(x, y)

4
+ 2δ

{
W1(δx, µ) +W1(δy, µ)

}
+ 4δ2.

In particular, for any x ∈ B(µ, ε1) and y ∈ B(µ, ε2) with ε1, ε2 ≥ 0, we have

d(x, y) ≤
√
8δ
{
W1(δx, µ) +W1(δy, µ)

}
+ 16δ2 + 2(ε1 + ε2). (3.6)

Proof. The first assertion is shown by integrating (3.3) in z with respect to µ. Then, when
x ∈ B(µ, ε1) and y ∈ B(µ, ε2), we find

Vx0(µ) ≤
∫
X

{
d2(w, z)− d2(x0, z)

}
µ(dz)

≤ Vx0(µ) +
ε1 + ε2

2
− d2(x, y)

4
+ 2δ

{
W1(δx, µ) +W1(δy, µ)

}
+ 4δ2.

Therefore, we obtain

d2(x, y) ≤ 8δ
{
W1(δx, µ) +W1(δy, µ)

}
+ 16δ2 + 2(ε1 + ε2).

This completes the proof.

The second assertion (3.6) (with ε2 = 0) can be regarded as a generalization of the
variance inequality (see [32, Proposition 4.4]; the reverse inequality under lower curvature
bounds can be found in [25, 33]). Note that, when we are interested in the case of ε1 = ε2 = 0
(the set of barycenters), (3.6) implies diam(B(µ, 0)) ≤ O(

√
δ) as δ → 0.

Remark 3.4 (When µ ∈ P2(X)). In the case of µ ∈ P2(X), instead of Vx0(µ) as in (3.1),
we can directly consider

inf
x∈X

W 2
2 (δx, µ) = inf

x∈X

∫
X

d2(x, z)µ(dz),

which is called the variance of µ. One can simply write down the first assertion of Propo-
sition 3.3 as

W 2
2 (δw, µ) ≤

W 2
2 (δx, µ)

2
+

W 2
2 (δy, µ)

2
− d2(x, y)

4
+ 2δ

{
W1(δx, µ) +W1(δy, µ)

}
+ 4δ2

and, if W 2
2 (δx, µ) ≤ infp∈X W 2

2 (δp, µ) + ε1 and W 2
2 (δy, µ) ≤ infp∈X W 2

2 (δp, µ) + ε2, then we
have (3.6).
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4 Wasserstein contraction property

We next consider a contraction property in terms of the Wasserstein distance, which in the
case of (complete) CAT(0)-spaces means that

d(βµ, βν) ≤ W1(µ, ν)

holds for µ, ν ∈ P1(X), where βµ and βν are the (unique) barycenters of µ and ν, respectively
(see [32, Theorem 6.3]). In the current setting of δ-hyperbolic spaces, we shall estimate the
distance between points in the barycentric sets.

We begin with a generalization of the Busemann nonpositive curvature (Busemann NPC
for short). We say that a geodesic space (Z, dZ) has the Busemann NPC (or (Z, dZ) is
convex ) if, for any geodesics ξ, ζ : [0, 1] −→ Z with ξ(0) = ζ(0), we have dZ(ξ(t), ζ(t)) ≤
tdZ(ξ(1), ζ(1)) for all t ∈ [0, 1]. Then, by the triangle inequality,

dZ
(
ξ(t), ζ(t)

)
≤ (1− t)dZ

(
ξ(0), ζ(0)

)
+ tdZ

(
ξ(1), ζ(1)

)
holds for any geodesics ξ, ζ : [0, 1] −→ Z (regardless of whether ξ(0) = ζ(0) or not). We
refer to [10, 18] for further reading.

Remark 4.1 (Busemann NPC versus CAT(0)). In his celebrated paper [11], Busemann
showed that a complete, simply connected Riemannian manifold has the Busemann NPC if
and only if its sectional curvature is nonpositive everywhere. Nonetheless, in general, the
Busemann NPC is a weaker condition than the CAT(0)-property. On the one hand, it is
easily seen that CAT(0)-spaces have the Busemann NPC. On the other hand, every strictly
convex Banach space has the Busemann NPC, whereas it is a CAT(0)-space if and only if
it is a Hilbert space.

Recall that (X, d) will always denote a geodesic δ-hyperbolic space. It is known that
δ-hyperbolic spaces have the Busemann NPC up to an additive constant depending only on
δ (see [16, §7.4]). We give an outline of the proof for completeness.

Lemma 4.2 (Busemann NPC + δ). Let x, y, p, q ∈ X. For any minimal geodesics γ :
[0, 1] −→ X from x to p and η : [0, 1] −→ X from y to q, we have

d
(
γ(t), η(t)

)
≤ (1− t)d(x, y) + td(p, q) + 8δ (4.1)

for all t ∈ (0, 1).

Proof. Let ξ : [0, 1] −→ X and ζ : [0, 1] −→ X be minimal geodesics from x to q and from
p to q, respectively. Denote by 4xpq the triangle formed by (the image of) γ, ξ and ζ. We
can construct a map T : 4xpq −→ Y to a tripod (Y, dY ) with three edges of lengths (p|q)x,
(x|q)p and (x|p)q from the branching point such that the restrictions T |γ, T |ξ and T |ζ are
isometric (see Figure 1, where T (a) = T (b) = T (c) is the branching point O of the tripod).
We set x̃ := T (x), p̃ := T (p) and q̃ := T (q). Then T is 1-Lipschitz (non-expanding) and

dY
(
T (u), T (v)

)
≥ d(u, v)− 4δ

holds for all u, v ∈ 4xpq by the triangle inequality and the tripod lemma (see, for instance,
[34, 2.15], [27, Lemma 2.3]). Together with the Busemann NPC of (Y, dY ), we deduce that

d
(
γ(t), ξ(t)

)
≤ dY

(
T
(
γ(t)

)
, T
(
ξ(t)

))
+ 4δ ≤ tdY

(
p̃, q̃
)
+ 4δ = td(p, q) + 4δ.

9



T
−→a

b

c

x

p

q

(x|q)p

(p|q)x
O

x̃

p̃

q̃

(p|q)x

(x|q)p

(x|p)q

Figure 1: A 1-Lipschitz map from a triangle to a tripod

We similarly obtain d(ξ(t), η(t)) ≤ (1 − t)d(x, y) + 4δ, and hence the triangle inequality
yields (4.1).

We remark that, similarly to (3.4) in Lemma 3.2, the inequality (4.1) does not give a
meaningful estimate for t close to 0 or 1. One can use a 1-Lipschitz map to a tripod also
for showing a variant of the CAT(0)-inequality, whereas then the additional term seems to
be necessarily dependent on the size of a triangle (as in (3.4)), since we take the square of
the distance.

Now, let d be the L2-distance function on X ×X × R, namely

d
(
(x, y, r), (p, q, s)

)
:=
√
d2(x, p) + d2(y, q) + (r − s)2.

The following subset will play a role:

A := {(x, y, r) ∈ X ×X × R | d(x, y) ≤ r}.

If (X, d) is a CAT(0)-space, then A is a (geodesically) convex set thanks to the Busemann
NPC.

We will make use of the nearest point projection to A to prove the Wasserstein contrac-
tion property. We remark that (X × X × R, d) is not a Gromov hyperbolic space (it is a
CAT(0)-space if so is (X, d)), thereby the contraction property of projection maps as in [16,
Lemma 7.3.D] does not directly apply.

Lemma 4.3. For (x, y, r) ∈ (X ×X × [0,∞)) \ A, we have

d
(
(x, y, r), A

)
=

d(x, y)− r√
3

.

Proof. We first show d((x, y, r), A) ≥ (d(x, y) − r)/
√
3. Given (p, q, s) ∈ A, if s < r, then

(p, q, r) ∈ A and
d
(
(x, y, r), (p, q, r)

)
< d
(
(x, y, r), (p, q, s)

)
.

Hence, to show d((x, y, r), (p, q, s)) ≥ (d(x, y) − r)/
√
3, we can assume s ≥ r without loss

of generality (otherwise we replace (p, q, s) with (p, q, r)). Then we have, together with the

10



triangle inequality,

d
(
(x, y, r), (p, q, s)

)
=
√
d2(x, p) + d2(y, q) + (r − s)2

≥ 1√
3

{
d(x, p) + d(y, q) + (s− r)

}
≥ 1√

3

{
d(x, y)− d(p, q) + (s− r)

}
≥ 1√

3

{
d(x, y)− r}.

This implies d((x, y, r), A) ≥ (d(x, y)− r)/
√
3.

To see the reverse inequality, we consider a minimal geodesic γ : [0, 1] −→ X from x to
y and put

(p, q, s) :=

(
γ

(
λ

d(x, y)

)
, γ

(
1− λ

d(x, y)

)
, r + λ

)
, λ :=

d(x, y)− r

3
∈
(
0,

d(x, y)

3

]
.

Then (p, q, s) ∈ A since

d(p, q) = d(x, y)− 2λ =
d(x, y) + 2r

3
= s,

and we have d((x, y, r), (p, q, s)) =
√
3λ. This completes the proof.

The next lemma is an essential step for our contraction result.

Lemma 4.4. For (x, y, r) ∈ (X ×X × [0,∞)) \ A such that

d
(
(x, y, r), A

)
≥ 8√

3
δ, (4.2)

let (x̃, ỹ, r̃) ∈ A be a point attaining d((x, y, r), A) given as in the proof of Lemma 4.3. Then,
for any (p, q, d(p, q)) ∈ A, we have

d2
(
(x̃, ỹ, r̃), (p, q, d(p, q))

)
≤ d2

(
(x, y, r), (p, q, d(p, q))

)
− d2

(
(x, y, r), A

)
+ 18D1

√
D1 + δ ·

√
δ,

where we set
D1 = D1(x, y, p, q) := diam

(
({x, y, p, q}, d)

)
.

Observe that, if δ = 0, then the assumption (4.2) is void and the assertion shows that
d((x̃, ỹ, r̃), (p, q, d(p, q))) is strictly smaller than d((x, y, r), (p, q, d(p, q))).

Proof. Put s := d(p, q) for brevity, and let γ : [0, 1] −→ X and η : [0, 1] −→ X be minimal
geodesics from x̃ to p and from ỹ to q, respectively. Note that Lemma 4.2 yields

d
(
γ(t), η(t)

)
≤ (1− t)d(x̃, ỹ) + td(p, q) + 8δ

11



for any t ∈ [0, 1]. Then we deduce from Lemma 4.3 that

d
((

γ(t), η(t), (1− t)r̃ + ts
)
, A
)

≤ 1√
3

{
(1− t)

(
d(x̃, ỹ)− r̃

)
+ t
(
d(p, q)− s

)}
+

8δ√
3

=
8√
3
δ.

Therefore, on the one hand,

d
(
(x, y, r),

(
γ(t), η(t), (1− t)r̃ + ts

))
≥ d
(
(x, y, r), A

)
− d
((

γ(t), η(t), (1− t)r̃ + ts
)
, A
)

≥ d
(
(x, y, r), A

)
− 8√

3
δ.

This implies that, since the right-hand side is nonnegative by the assumption (4.2) and
d((x, y, r), A) ≤ D1/

√
3 by Lemma 4.3 and r ≥ 0,

d2
(
(x, y, r),

(
γ(t), η(t), (1− t)r̃ + ts

))
≥ d2

(
(x, y, r), A

)
− 16

3
D1δ +

64

3
δ2. (4.3)

On the other hand, observe from (3.4) that

d2
(
x, γ(t)

)
≤ (1− t)d2(x, x̃) + td2(x, p)− (1− t)td2(x̃, p) + 4D1δ + 4δ2,

d2
(
y, η(t)

)
≤ (1− t)d2(y, ỹ) + td2(y, q)− (1− t)td2(ỹ, q) + 4D1δ + 4δ2

(recall that x̃ and ỹ are on a minimal geodesic between x and y). Summing up, we obtain

d2
(
(x, y, r),

(
γ(t), η(t), (1− t)r̃ + ts

))
≤ (1− t)d2

(
(x, y, r), (x̃, ỹ, r̃)

)
+ td2

(
(x, y, r), (p, q, s)

)
− (1− t)td2

(
(x̃, ỹ, r̃), (p, q, s)

)
+ 8D1δ + 8δ2.

Combining this with (4.3) shows

td2
(
(x, y, r), (p, q, s)

)
− (1− t)td2

(
(x̃, ỹ, r̃), (p, q, s)

)
≥ td2

(
(x, y, r), A

)
− 40

3
D1δ +

40

3
δ2.

By rearrangement, we find

d2
(
(x̃, ỹ, r̃), (p, q, s)

)
≤ d2

(
(x, y, r), (p, q, s)

)
− d2

(
(x, y, r), A

)
+ td2

(
(x̃, ỹ, r̃), (p, q, s)

)
+

40

3

D1δ

t
.

Moreover, it follows from d(x, x̃) = d(y, ỹ) ≤ d(x, y)/3, r̃ = d(x̃, ỹ) < d(x, y) and s = d(p, q)
that

d2
(
(x̃, ỹ, r̃), (p, q, s)

)
≤ 16

9
D2

1 +
16

9
D2

1 +D2
1 =

41

9
D2

1.
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Finally, letting t =
√
δ/(D1 + δ) ∈ (0, 1), we obtain

d2
(
(x̃, ỹ, r̃), (p, q, s)

)
≤ d2

(
(x, y, r), (p, q, s)

)
− d2

(
(x, y, r), A

)
+

(
41D2

1

9
√
D1 + δ

+
40

3
D1

√
D1 + δ

)√
δ

≤ d2
(
(x, y, r), (p, q, s)

)
− d2

(
(x, y, r), A

)
+ 18D1

√
D1 + δ ·

√
δ.

We remark that, as is natural from the local flexibility of scale ≤ δ, the following con-
traction property is nontrivial only when δ is sufficiently small (δ � D2), and then we have
d(x, y) ≤ W1(µ, ν) +O(δ1/4) for ε1 = ε2 = 0.

Theorem 4.5 (Wasserstein contraction). For any µ, ν ∈ P1(X), x ∈ B(µ, ε1) and y ∈
B(ν, ε2) with ε1, ε2 ≥ 0, we have

d(x, y) ≤ W1(µ, ν) + 8δ ∨
√
54D2

√
D2 + δ

√
δ + 3(ε1 + ε2),

where
D2 = D2(x, y, µ, ν) := diam

(
({x, y} ∪ suppµ ∪ supp ν, d)

)
.

Proof. For arbitrary α > 0, let π ∈ P(X ×X) be a coupling of (µ, ν) with

r :=

∫
X×X

d(p, q) π(dp dq) ≤ W1(µ, ν) + α.

We define a map

Φ : X ×X 3 (p, q) 7−→
(
p, q, d(p, q)

)
∈ X ×X × R,

and put Π := Φ∗π (the push-forward of π by Φ). Note that suppΠ ⊂ Φ(suppπ) ⊂ A. Since
x ∈ B(µ, ε1) and y ∈ B(ν, ε2), together with the choice of r, we find∫

X×X×R

{
d2
(
(x, y, r), (p, q, s)

)
− d2(x0, p)− d2(x0, q)− s2

}
Π(dp dq ds)

=

∫
X

{
d2(x, p)− d2(x0, p)

}
µ(dp) +

∫
X

{
d2(y, q)− d2(x0, q)

}
ν(dq)

+

∫
X×X

{(
r − d(p, q)

)2 − d2(p, q)
}
π(dp dq)

≤ inf
(x̄,ȳ,r̄)∈X×X×R

∫
X×X×R

{
d2
(
(x̄, ȳ, r̄), (p, q, s)

)
− d2(x0, p)− d2(x0, q)− s2

}
Π(dp dq ds)

+ ε1 + ε2.

That is to say, (x, y, r) lives in the barycentric set B(Π, ε1 + ε2) in (X ×X × R, d).
Then we deduce from Lemma 4.4 that (x, y, r) necessarily satisfies

d2
(
(x, y, r), A

)
≤ 64

3
δ2 ∨

(
18D2

√
D2 + δ

√
δ + ε1 + ε2

)
.
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Indeed, if not, then (4.2) is fulfilled and, for any (p, q) ∈ supp π, (x̃, ỹ, r̃) ∈ A (given as in
the proof of Lemma 4.3) satisfies

d2
(
(x̃, ỹ, r̃), (p, q, d(p, q))

)
≤ d2

(
(x, y, r), (p, q, d(p, q))

)
− d2

(
(x, y, r), A

)
+ 18D2

√
D2 + δ

√
δ

< d2
(
(x, y, r), (p, q, d(p, q))

)
− (ε1 + ε2).

By integrating in (p, q) with respect to π, we find a contradiction to (x, y, r) ∈ B(Π, ε1+ε2).
Hence, it follows from Lemma 4.3 that

d(x, y)−W1(µ, ν) ≤ d(x, y)− r + α

≤ 8δ ∨
√
54D2

√
D2 + δ

√
δ + 3(ε1 + ε2) + α.

Letting α → 0 completes the proof.

5 Deterministic approximations of barycenters

We next discuss an approximation of barycenters of uniform distributions on finite points
by the gradient flow method. Given a function f : X −→ R, we define the proximal operator
(also called the resolvent operator) by

Jfτ (x) := argmin
y∈X

{
f(y) +

d2(x, y)

2τ

}
(5.1)

for x ∈ X and τ > 0 (that is, y ∈ Jfτ (x) if y attains the above minimum). Roughly speaking,
an element in Jfτ (x) can be regarded as an approximation of a point on the gradient curve
of f at time τ from x. Thus the iteration of the proximal operator can be regarded as
discrete-time gradient flow for f , which is expected to lead us to a minimizer of f . We
refer to [27] for some contraction properties of discrete-time gradient flows for geodesically
convex functions on Gromov hyperbolic spaces.

We will apply the proximal operator only to squared distance functions f = d2(z, ·). In
this case, each y ∈ Jfτ (x) is explicitly given as y = γ((2τ + 1)−1) for some minimal geodesic
γ : [0, 1] −→ X from z to x.

The next lemma (corresponding to [3, Lemma 3.2], [28, (4.5)]) provides a key estimate.
Precisely, those in [3, 28] are concerned with y ∈ Jfτ (x) for a convex function f , and we shall
generalize it to Gromov hyperbolic spaces for the squared distance function f = d2(z, ·).

Lemma 5.1 (Key estimate). For any τ > 0, w, x, z ∈ X and y = γ((2τ + 1)−1) on a
minimal geodesic γ : [0, 1] −→ X from z to x, we have

d2(w, y) ≤ d2(w, x)− 2τ
{
d2(z, y)− d2(z, w)

}
+Θτδ, (5.2)

where

Θ :=
{
8d(z, w) + 8δ

}
∨
[{

4d(w, y) + 8τd(z, y)
}(1

τ
∧ 2d(z, y)

δ

)]
.
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Proof. First of all, it follows from y ∈ Jfτ (x) with f = d2(z, ·) that

d2(x, y) ≤ d2(x,w)− 2τ
{
d2(z, y)− d2(z, w)

}
.

Hence, if d(w, y) ≤ d(x, y), then (5.2) holds (without the additional term Θτδ).
We assume d(w, y) > d(x, y) in the sequel. Note that the δ-hyperbolicity implies

0 = (x|z)y ≥ (x|w)y ∧ (z|w)y − δ.

If (z|w)y ≤ δ, then we find{
d(z, w) + 2δ

}2 ≥ {d(z, y) + d(w, y)
}2 ≥ d2(z, y) + 2d(z, y)d(w, y).

Combining this with the triangle inequality |d(w, y) − d(x, y)| ≤ d(w, x) and d(x, y) =
2τd(z, y), we obtain

d2(w, y) ≤ d2(w, x) + 2d(x, y)d(w, y)− d2(x, y)

≤ d2(w, x) + 4τd(z, y)d(w, y)

≤ d2(w, x) + 2τ
{
d2(z, w)− d2(z, y)

}
+ 2τ

{
4δd(z, w) + 4δ2

}
.

In the other case of (x|w)y ≤ δ, together with the triangle inequality, we have

d(x, y) + d(w, y)− d(w, x) ≤ (2δ) ∧
(
2d(x, y)

)
.

Thus we obtain
d(w, x) ≥ d(w, y) + d(x, y)− 2

(
δ ∧ d(x, y)

)
,

and observe that the right-hand side is positive by the hypothesis d(w, y) > d(x, y). There-
fore, we deduce that

d2(w, x) ≥ d2(w, y) + d2(x, y) + 2d(w, y)d(x, y)− 4
{
d(w, y) + d(x, y)

}(
δ ∧ d(x, y)

)
.

Substituting d(x, y) = 2τd(z, y) and d(w, y) ≥ d(z, y)− d(z, w) yields

d2(w, x) ≥ d2(w, y) + 4τ(τ + 1)d2(z, y)− 4τd(z, w)d(z, y)

− 4
{
d(w, y) + d(x, y)

}(
δ ∧ 2τd(z, y)

)
.

Then we apply the elementary inequality 2(τ + 1)a2 − 2ab ≥ a2 − b2 with a = d(z, y) and
b = d(z, w) to see

d2(w, x) ≥ d2(w, y) + 2τ
{
d2(z, y)− d2(z, w)

}
− 4
{
d(w, y) + d(x, y)

}(
δ ∧ 2τd(z, y)

)
.

This completes the proof.

In the CAT(0)-case (see [3, 28]), we have

d2(w, y) ≤ d2(w, x)− 2τ
{
d2(z, y)− d2(z, w)

}
without the additional term Θτδ. Note that Θτδ in (5.2) tends to 0 not only as δ → 0 but
also as τ → 0. This is the natural behavior since y tends to x as τ → 0.
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We also remark that, in the proof of [28, (4.5)], the Riemannian nature of CAT(0)-spaces
plays an essential role. Precisely, the inequality [28, (4,2)] is a consequence of a Riemannian
property called the commutativity as in [29, (1.2), (3.1)].

By using Lemma 5.1, we establish the following deterministic approximation of barycen-
ters by the iterative application of the proximal operator in the spirit of [17, 23] (so-called the
no dice theorem). We also refer to [3, Theorem 3.4] and [28, Theorem 5.5] for generalizations
to the sum of convex functions.

Theorem 5.2 (Deterministic approximation). Fix a finite sequence (zi)
n
i=1 in X, put fi :=

d2(zi, ·), and let p ∈ X be a minimizer of the function f :=
∑n

i=1 fi. Given τ > 0 and an
arbitrary initial point y0 ∈ X, we recursively choose

ykn+i ∈ Jfiτ (ykn+i−1) for k ≥ 0, 1 ≤ i ≤ n,

and assume that p, (zi) and (ykn+i) are all included in a bounded set Ω ⊂ X. Then, for any
ε > 0, there exists some k0 < d2(p, y0)/(2τε) such that

f(yk0n) ≤ f(p) +
nΘΩδ

2
+ 2n(n+ 1)D2

Ωτ + ε, (5.3)

where we set DΩ := diam(Ω) and

ΘΩ := (8DΩ + 8δ) ∨
[
(4 + 8τ)DΩ

(
1

τ
∧ 2DΩ

δ

)]
.

Moreover, we have

d(p, yk0n) ≤
√

(16DΩ +ΘΩ)δ + 16δ2 + 4(n+ 1)D2
Ωτ +

2ε

n
. (5.4)

We remark that, in a CAT(0)-space, we can employ as Ω a ball including (zi)
n
i=1 and y0.

This is because balls are convex by the CAT(0)-inequality (or the Busemann NPC). In a
δ-hyperbolic space, however, balls are not necessarily convex and it is unclear to the author
how to control (the sum of) the additional terms in (3.4) (or (4.1)) during the recursive
scheme ykn+i ∈ Jfiτ (ykn+i−1).

Proof. It follows from Lemma 5.1 that

d2(p, ykn+i) ≤ d2(p, ykn+i−1)− 2τ
{
d2(zi, ykn+i)− d2(zi, p)

}
+ΘΩτδ.

Summing up for 1 ≤ i ≤ n, we have

d2(p, y(k+1)n)

≤ d2(p, ykn)− 2τ
{
f(ykn)− f(p)

}
+ 2τ

{
f(ykn)−

n∑
i=1

d2(zi, ykn+i)

}
+ nΘΩτδ. (5.5)

Concerning the third term in the right-hand side, we infer from the triangle inequality that

n∑
i=1

{
d2(zi, ykn)− d2(zi, ykn+i)

}
=

n∑
i=1

i∑
l=1

{
d2(zi, ykn+l−1)− d2(zi, ykn+l)

}
≤ 2DΩ

n∑
i=1

i∑
l=1

d(ykn+l−1, ykn+l).
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Then, by the choice of ykn+l ∈ Jflτ (ykn+l−1) with fl = d2(zl, ·), we find

d(ykn+l−1, ykn+l) =
2τ

2τ + 1
d(zl, ykn+l−1) ≤ 2DΩτ. (5.6)

Hence, we obtain

n∑
i=1

{
d2(zi, ykn)− d2(zi, ykn+i)

}
≤ 4D2

Ωτ

n∑
i=1

i = 2n(n+ 1)D2
Ωτ.

Plugging this into (5.5) yields

d2(p, y(k+1)n) ≤ d2(p, ykn)− 2τ

{
f(ykn)− f(p)− nΘΩδ

2
− 2n(n+ 1)D2

Ωτ

}
. (5.7)

It immediately follows from (5.7) that

f(yk0n)− f(p)− nΘΩδ

2
− 2n(n+ 1)D2

Ωτ ≤ ε

necessarily holds for some k0 < d2(p, y0)/(2τε). Indeed, otherwise we have

d2(p, yk̄n) < d2(p, y0)− 2τ k̄ε ≤ 0

with k̄ the minimum integer not smaller than d2(p, y0)/(2τε), a contradiction.
Finally, the second assertion (5.4) is a consequence of Proposition 3.3. Putting µ =

n−1
∑n

i=1 δzi , we deduce from (5.3) that

W 2
2 (δyk0n , µ) ≤ W 2

2 (δp, µ) +
ΘΩδ

2
+ 2(n+ 1)D2

Ωτ +
ε

n
.

Hence, (3.6) (with ε1 = 0) yields

d(p, yk0n) ≤
√
8δ
{
W1(δp, µ) +W1(δyk0n , µ)

}
+ 16δ2 +ΘΩδ + 4(n+ 1)D2

Ωτ +
2ε

n

≤
√

16DΩδ + 16δ2 +ΘΩδ + 4(n+ 1)D2
Ωτ +

2ε

n
.

Thanks to (5.3), up to d2(p, y0)/(2τε) iterations, f(ykn) nearly achieves minX f and
ykn passes close to p as in (5.4). We remark that the sublinear rate ε < d2(p, y0)/(2τk0)
(following from k0 < d2(p, y0)/(2τε)) could be compared with [28, Proposition 5.7].

Note also that we have an effective estimate on the resolvent operator only when τ is
larger than δ (so-called “giant steps”; see [27] for a further discussion), thereby we did
not consider (τk)k≥0 converging to 0 (compare this with [28, Theorem 5.5]). If we assume
δ ≤ DΩ/2 and take τ =

√
δ/DΩ, then we have ΘΩ = (4

√
DΩ/δ + 8)DΩ and (5.4) shows

d(p, yk0n) ≤
√

2ε

n
+O(δ1/4).
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6 A law of large numbers

We next consider a law of large numbers in our setting. Our formulation follows Sturm’s
[32, Theorem 4.7] for CAT(0)-spaces. We refer to [28, Theorem 6.7] and [38, Theorem 3]
for some generalizations to other (upper and lower) curvature bounds.

Theorem 6.1 (Law of large numbers). Let (Zi)i≥1 be a sequence of independent, identically
distributed random variables on a probability space taking values in X with distribution
µ ∈ P(X), and take p ∈ B(µ, 0). Given τ > 0 and an arbitrary initial point S0 ∈ X, we
define a sequence (Sk)k≥0 in X recursively by

Sk+1 ∈ Jfkτ (Sk), fk := d2(Zk+1, ·).

Assume that p, suppµ and (Sk)k≥0 are all included in a bounded set Ω ⊂ X. Then, for any
ε > 0, we have

E
[
d2(p, Sk0)

]
≤ 8D2

Ωτ + (ΘΩ + 16DΩ + 16δ)δ + ε (6.1)

for some k0 < d2(p, S0)/(τε), where DΩ := diam(Ω) and ΘΩ is defined as in Theorem 5.2.

Proof. We can apply a calculation similar to the proof of Theorem 5.2. It follows from
Lemma 5.1 that

d2(p, Sk+1) ≤ d2(p, Sk)− 2τ
{
d2(Zk+1, Sk+1)− d2(Zk+1, p)

}
+ΘΩτδ

= d2(p, Sk)− 2τ
{
d2(Zk+1, Sk)− d2(Zk+1, p)

}
+ 2τ

{
d2(Zk+1, Sk)− d2(Zk+1, Sk+1)

}
+ΘΩτδ

≤ d2(p, Sk)− 2τ
{
d2(Zk+1, Sk)− d2(Zk+1, p)

}
+ 8D2

Ωτ
2 +ΘΩτδ,

where we used

d2(Zk+1, Sk)− d2(Zk+1, Sk+1) ≤ 2DΩd(Sk, Sk+1) ≤ 4D2
Ωτ

in the latter inequality (recall also (5.6)). Taking the expectations in Zk+1 conditioned on
Fk := {Z1, . . . , Zk} and applying the variance inequality (3.6) (with x = p, y = Sk, ε1 = 0),
we obtain

E
[
d2(p, Sk+1)

∣∣Fk

]
≤ d2(p, Sk)− 2τE

[
d2(Zk+1, Sk)− d2(Zk+1, p)

]
+ 8D2

Ωτ
2 +ΘΩδτ

≤ d2(p, Sk)− τ
{
d2(p, Sk)− 16DΩδ − 16δ2

}
+ 8D2

Ωτ
2 +ΘΩδτ

= (1− τ)d2(p, Sk) + 8D2
Ωτ

2 + (ΘΩ + 16DΩ + 16δ)δτ.

Taking the expectations once again, we arrive at

E
[
d2(p, Sk+1)

]
≤ (1− τ)E

[
d2(p, Sk)

]
+ 8D2

Ωτ
2 + (ΘΩ + 16DΩ + 16δ)δτ. (6.2)

In the same way as in the proof of Theorem 5.2, we infer from (6.2) that

E
[
d2(p, Sk0)

]
≤ 8D2

Ωτ + (ΘΩ + 16DΩ + 16δ)δ + ε

necessarily holds for some k0 < d2(p, S0)/(τε). This completes the proof.
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When we assume δ ≤ DΩ/2 and choose τ =
√

δ/DΩ as in the discussion after Theo-
rem 5.2, (6.1) yields

E
[
d2(p, Sk0)

]
≤ ε+O(

√
δ).

An advantage of the above recursive choice of (Sk)k≥0 is that Sk+1 is concretely given as
a point on a geodesic between Sk and Zk+1 without any knowledge about the construction
of barycenters of probability measures (though minimal geodesics are not unique in Gromov
hyperbolic spaces).

Employing “empirical means” instead of (Sk)k≥0, one can also show the following version
of law of large numbers (see [32, Proposition 6.6]).

Proposition 6.2 (Empirical law of large numbers). Let (X, d) be complete and separable,
(Zi)i≥1 be a sequence of independent, identically distributed random variables on a probability
space taking values in X with distribution µ ∈ P(X) of bounded support, and take p ∈
B(µ, 0). Then,

σk ∈ B

(
1

k

k∑
i=1

δZi
, 0

)
satisfies

lim sup
k→∞

d(p, σk) ≤ 8δ ∨
√

54D
√
D + δ

√
δ

almost surely, where we set D := 3 diam(suppµ).

Proof. It follows from Varadarajan’s theorem (see [14, Theorem 11.4.1]) that

νk :=
1

k

k∑
i=1

δZi

weakly converges to µ almost surely, which implies W1(µ, νk) → 0 (see [35, Theorem 7.12]).
Observe that d(p, suppµ) ≤ diam(suppµ) necessarily holds and similarly

d(σk, suppµ) ≤ d(σk, supp νk) ≤ diam(supp νk) ≤ diam(suppµ).

Hence, we have diam(({p, σk} ∪ suppµ, d)) ≤ D and Theorem 4.5 (with ε1 = ε2 = 0) yields

lim sup
k→∞

d(p, σk) ≤ 8δ ∨
√

54D
√
D + δ

√
δ

by the choices of p and σk.

We finally discuss two possible directions of further research.

Remark 6.3 (Further problems). (a) We have studied in [27] discrete-time gradient flows
for geodesically convex functions (namely, they are convex along geodesics). However,
despite the negative curvature nature, distance functions on Gromov hyperbolic spaces
are not geodesically convex due to the local flexibility. Therefore, it is an intriguing
problem to introduce an appropriate notion of “roughly convex functions” on Gromov
hyperbolic spaces, including the distance function d(z, ·) or its square.
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(b) Compared with the contraction estimates in [27] directly akin to trees, the results in the
present article are generalizations from CAT(0)-spaces to δ-hyperbolic spaces. There-
fore, on the one hand, it may be possible to improve our estimates (for example, the
order of δ) via an analysis closer to the case of trees. Specifically, it is desirable that
we can reduce the dependence on D2, DΩ in Theorems 4.5, 5.2, 6.1. On the other
hand, there seems a room for further generalizations to metric spaces satisfying the
CAT(0)-inequality with small perturbations in some way (cf. Lemma 3.2).
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