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Abstract. We generalize Grünbaum’s classical inequality in convex
geometry to curved spaces with nonnegative Ricci curvature, precisely,
to RCD(0, N)-spaces with N ∈ (1,∞) as well as weighted Riemannian
manifolds of RicN ≥ 0 for N ∈ (−∞,−1) ∪ {∞}. Our formulation
makes use of the isometric splitting theorem; given a convex set Ω and
the Busemann function associated with any straight line, the volume of
the intersection of Ω and any sublevel set of the Busemann function that
contains a barycenter of Ω is bounded from below in terms of N . We
also extend this inequality beyond uniform distributions on convex sets.
Moreover, we establish some rigidity results by using the localization
method, and the stability problem is also studied.

1. INTRODUCTION

1.1 Background

In the Euclidean space Rn, it is a well known fact that, given any probability
measure, there exists a point such that any closed halfspace including this point
has mass at least 1/(n + 1) [26, Theorem 1], [18, Lemma 6.3]. This bound is
tight since there are probability measures (e.g., the uniform distribution on the
vertex set of a simplex) such that every point is in a closed halfspace with mass
at most 1/(n + 1). Hence, this result becomes very little informative when the
dimension n is very large because it does not allow to discriminate between points
in general. Nonetheless, the bound can be improved, provided that the measure
satisfies some geometric properties. For instance, for the uniform distribution on
a bounded convex set Ω ⊂ Rn, Grünbaum’s inequality [26, Theorem 2] states that
any closed halfspace including the barycenter (centroid) of Ω must have volume at
least (n/(n+1))n. Grünbaum’s inequality remains informative in any dimension
since (n/(n + 1))n ≥ e−1, and it has been extended to log-concave distributions
(among which uniform distributions on convex sets) [32, Lemma 5.12]. Namely,
for any log-concave probability measure on Rn, any closed halfspace containing
the barycenter must have mass at least e−1, independently of the dimension n.
By virtue of the Prékopa–Leindler inequality, it is in fact sufficient to consider the
one-dimensional case in order to prove the inequality for log-concave measures
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[32]. Furthermore, as we will see in this work, a family of functional inequalities
that generalize the Prékopa–Leindler inequality, namely the Borell–Brascamp–
Lieb inequalities, allow to generalize the bound even further, to broader classes
of distributions.

The problem described here is directly related to a notion that is central in de-
scriptive statistics, called Tukey’s depth. Given a probability distribution µ on Rn,
Tukey’s depth of a point x ∈ Rn relative to µ is defined as Dµ(x) := infH µ(H),
where the infimum is taken over all closed halfspaces H ⊂ Rn containing x. Then,
the inequalities discussed above can be summarized as follows:

• For any distribution µ on Rn, there exists a point x ∈ Rn with Dµ(x) ≥
1/(n+ 1); moreover, there exists µ for which supx∈Rn Dµ(x) = 1/(n+ 1).

• If µ is the uniform distribution on a convex set Ω in Rn, then there exists
x ∈ Rn with Dµ(x) ≥ (n/(n+1))n and x can be chosen to be the barycenter
of Ω.

• If µ is a log-concave distribution on Rn, then there exists x ∈ Rn with
Dµ(x) ≥ e−1 and one can choose x to be the barycenter of µ.

The function Dµ is called a depth function [52] because it provides a measure
of centrality relative to µ. Roughly speaking, Dµ(x) is the amount of mass that
can be separated from x by a hyperplane. Therefore, the aforementioned results
indicate that under a shape constraint on the measure µ, even in large dimen-
sions, there exist deep points. Deep points are relevant in various applications: In
statistics, a deepest point (called Tukey median) provides a notion of center of a
distribution that is robust to perturbations of that distribution [37, Section 3.2.7],
which is important when dealing with data from that distribution, that may have
been corrupted. In numerical optimization, existence of deep points is essential
for cutting plane methods [8] while Grünbaum’s inequality has also found appli-
cations in further convex optimization methods [5]. On the computational side,
finding deep points is relevant in algorithmic geometry [15].

In a non-Euclidean setup, a negative result was proved in [45], showing that the
above inequalities cannot be extended to nonpositively curved spaces in general.
Precisely, [45, Theorem 2] states that given any Hadamard manifold M , for any
probability measure µ on M that is absolutely continuous with respect to the
Riemannian volume measure (note that this additional restriction is only techni-
cal), there exists x∗ ∈ M such that any closed halfspace H containing x∗ must
satisfy µ(H) ≥ 1/(n+1), where n = dimM . Moreover, there are cases where µ is
the uniform distribution on a convex set and the bound is tight. In this context, a
closed halfspace is a subset of M of the form {y ∈M | ⟨v, γ̇xy(0)⟩ ≥ 0}, for some
x ∈ M and v ∈ TxM \ {0}, where γxy denotes the (unique) minimal geodesic
from x to y.

In this article, we show that under a right framework, the above inequalities can
be extended to non-Euclidean setups. We work on metric measure spaces whose
generalized Ricci curvature, in a synthetic sense, is nonnegative. We appeal to
Cheeger–Gromoll-type splitting theorems, which allow, as in the Euclidean case,
to reduce the computations to a one-dimensional analysis.

1.2 Notations and definitions

We briefly recall some concepts necessary to explain our results.
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1.2.1 Metric geometry. Let (X,dX) be a metric space. Given x, y ∈ X, a
(minimal) geodesic from x to y means a path γ : [0, 1] −→ X such that γ(0) = x,
γ(1) = y, and dX(γ(s), γ(t)) = |s− t|dX(x, y) for all s, t ∈ [0, 1]. We call (X,dX)
a geodesic space if any pair x, y ∈ X can be connected by a geodesic. A subset
Ω ⊂ X is said to be (geodesically) convex if, for any x, y ∈ Ω, any geodesic
between them is included in Ω. We say that a function f : X −→ R ∪ {∞} is
convex if it is convex along all geodesics, i.e., f(γ(t)) ≤ (1− t)f(x)+ tf(y) for all
x, y ∈ X, all geodesics γ : [0, 1] −→ X from x to y and all t ∈ [0, 1]. In particular,
supp(f) := f−1(R) is a convex set. We say that f is concave if −f is convex.

A straight line is a map γ : R −→ X that satisfies dX(γ(s), γ(t)) = |s − t| for
all s, t ∈ R. Then, the Busemann function associated with γ is defined as

(1.1) bγ(x) := lim
t→∞

{
t− dX

(
x, γ(t)

)}
, x ∈ X.

The function bγ is 1-Lipschitz and can be interpreted as a projection onto γ. For
instance, in the Euclidean case, we have bγ(x) = ⟨v, x−x0⟩, where γ(t) = x0+ tv
for some point x0 and unit vector v.

We denote by P(X) the set of Borel probability measures on X and, for p ∈
[1,∞), by Pp(X) the subset consisting of probability measures with finite p-th
moment, i.e., those for which the function dpX(·, x0) is integrable for some (and
hence, all) x0 ∈ X. For µ ∈ P2(X), a point x0 ∈ X attaining

inf
z∈X

∫
X
d2X(z, x)µ(dx)

is called a barycenter of µ. More generally, even when µ only has finite first
moment, we can define its barycenter as a point achieving

inf
z∈X

∫
X

{
d2X(z, x)− d2X(z0, x)

}
µ(dx),

where z0 ∈ X is an arbitrarily fixed point. In Euclidean spaces, we have the
unique barycenter

∫
Rn xµ(dx).

1.2.2 Curvature-dimension conditions. The curvature-dimension condition for
metric measure spaces is a synthetic geometric notion of lower Ricci curvature
bound described with the help of optimal transport theory. For brevity, we con-
sider only the case of nonnegative curvature.

A metric measure space (X,dX ,m) will mean a complete separable metric
space (X,dX) equipped with a Borel measure m with m(U) ∈ (0,∞) for each
nonempty bounded open set U ⊂ X.

Given ν0, ν1 ∈ P2(X), the L2-Kantorovich–Wasserstein distance is defined by

W2(ν0, ν1) := inf
π

(∫
X×X

d2X(x, y)π(dx dy)

)1/2

,

where π runs over all couplings of ν0 and ν1 (i.e., π ∈ P(X ×X) with marginals
ν0 and ν1). A geodesic (νλ)λ∈[0,1] with respect to W2 is regarded as an optimal
transport from ν0 to ν1.

For ν = ζm ∈ P(X) absolutely continuous with respect to m, we define the
relative entropy

S∞(ν) :=

∫
X
ζ log ζ dm
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(S∞(ν) := ∞ if
∫
{ζ>1} ζ log ζ dm = ∞), and the Rényi entropy

SN (ν) :=

{
−
∫
X ζ

(N−1)/N dm N ∈ (1,∞),∫
X ζ

(N−1)/N dm N ∈ (−∞, 0).

We say that a metric measure space (X,dX ,m) satisfies the curvature-dimension
condition CD(0, N) (or (X,dX ,m) is a CD(0, N)-space) if the corresponding en-
tropy SN is convex with respect to W2 in the sense that, for any absolutely
continuous measures ν0, ν1 ∈ P2(X), there exists a geodesic (νλ)λ∈[0,1] between
them with respect to W2 such that

(1.2) SN (νλ) ≤ (1− λ)SN (ν0) + λSN (ν1)

holds for all λ ∈ [0, 1]. More generally, one can define CD(K,N)-spaces for any
K ∈ R, where the coefficients 1 − λ and λ in (1.2) are replaced with distorsion
coefficients that depend on λ, K and N [47].

Consider an n-dimensional Riemannian manifold (M, g) endowed with a mea-
sure m = e−ψ volg for a smooth function ψ ∈ C∞(M), where volg is the volume
measure induced from g. The weighted Ricci curvature (a.k.a. Bakry–Émery–Ricci
curvature) of the weighted Riemannian manifold (M, g,m) is defined by

(1.3) RicN (v) := Ricg(v) + Hessψ(v, v)− ⟨∇ψ, v⟩2

N − n

for v ∈ TM and N ∈ (−∞, 0]∪(n,∞) (Ricg is the usual Ricci curvature of g). We
also define Ric∞ and Ricn as the limits. By definition, we have the monotonicity

(1.4) Ricn ≤ RicN ≤ Ric∞ ≤ RicN ′ ≤ Ric0

for n < N <∞ and −∞ < N ′ < 0 (Ric∞ can be also regarded as Ric−∞). Thus,
for example, RicN ′ ≥ 0 is a weaker condition than RicN ≥ 0. Note also that
Ricn = limN↓nRicN ≥ 0 can make sense only when ψ is constant.

A weighted Riemannian manifold (M, g,m) is a CD(0, N)-space if and only if
the weighted Ricci curvature RicN is nonnegative [13,14,31,40,41,44,46,47].

Moreover, the equivalence between RicN ≥ 0 and CD(0, N) also holds true
for Finsler manifolds [38]. Then, to develop a genuinely Riemannian theory, the
Riemannian curvature-dimension condition RCD(0, N) was introduced as the
combination of CD(0, N) and the so-called infinitesimal Hilbertianity (or, equiv-
alently, the linearity of heat flow) [1,19,22]. In RCD(0, N)-spaces, we can obtain
much finer properties including a splitting theorem discussed below. We refer
to [48] for a recent survey.

1.2.3 Splitting theorems. For a Riemannian manifold (M, g) of nonnegative
Ricci curvature, Cheeger–Gromoll’s celebrated splitting theorem [12] asserts that,
if there is a straight line γ : R −→ M , then M is isometric to a product space
R × Σ, where Σ is a Riemannian manifold of nonnegative Ricci curvature, and
the Busemann function bγ as in (1.1) coincides with the projection to R. The
splitting theorem was generalized to RCD(0, N)-spaces by Gigli [22, Theorem
1.4], [23]. In short, it states that if (X,dX ,m) is an RCD(0, N)-space for some
N ∈ (1,∞) including a straight line γ : R −→ X, then X is isometric to a product
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space R × Y where (Y, dY , n) is an RCD(0, N − 1)-space when N ≥ 2, and Y is
a singleton when N ∈ (1, 2). (We will not consider the case of N = 1, since
RCD(0, N) with N > 1 is weaker than RCD(0, 1).)

In general, such an isometric splitting is false for CD(0, N)-spaces, unless the
infinitesimal Hilbertianity is assumed (see (B) in Section 7). This is why, in our
main results, we consider only RCD-spaces, although some intermediate results
may be stated in more generality for CD-spaces.

1.3 Main results

Theorem 1.1 (Main theorem; N > 1). Let (X,dX ,m) be an RCD(0, N)-
space with N ∈ (1,∞), µ = ρm ∈ P1(X) with a measurable function ρ : X −→
[0,∞), and x0 ∈ X be any barycenter of µ. Suppose that there is a straight line
γ : R −→ X.

(i) If ρ1/(β−N) is concave on ρ−1((0,∞)) for some β > N , then the Busemann
function bγ : X −→ R satisfies

µ
(
{x ∈ X | bγ(x) ≤ bγ(x0)}

)
≥
(

β

β + 1

)β
,(1.5)

µ
(
{x ∈ X | bγ(x) ≥ bγ(x0)}

)
≥
(

β

β + 1

)β
.

(ii) If log ρ : X −→ R ∪ {−∞} is concave, then bγ satisfies

µ
(
{x ∈ X | bγ(x) ≤ bγ(x0)}

)
≥ e−1,

µ
(
{x ∈ X | bγ(x) ≥ bγ(x0)}

)
≥ e−1.

(iii) If ρ1/(β−N) : X −→ R ∪ {∞} is convex for some β < −1, then we have

µ
(
{x ∈ X | bγ(x) ≤ bγ(x0)}

)
≥
(

β

β + 1

)β
,

µ
(
{x ∈ X | bγ(x) ≥ bγ(x0)}

)
≥
(

β

β + 1

)β
.

Remark 1.2. Under the hypothesis in (i), it follows from Lemma 2.2 that
(X,dX , µ) is an RCD(0, β)-space. Then, by virtue of Lemma 2.1, the support of
µ is necessarily bounded. In particular, µ is of finite second moment.

The condition on ρ in (i) is equivalent to the concavity of ρ̃ by setting ρ̃(x) :=
ρ(x)1/(β−N) if ρ(x) > 0 and ρ̃(x) := −∞ if ρ(x) = 0. Note that, on the one hand,
supp(µ) is convex in all the cases (i)–(iii). On the other hand, given a convex set
Ω ⊂ X with m(Ω) ∈ (0,∞), the uniform distribution µΩ := m(Ω)−1χΩm on Ω
satisfies the hypothesis of (i) for any β > N , where χΩ is the indicator function
of Ω (with value 1 on Ω and 0 on X \ Ω). Hence, taking the limit as β ↓ N
yields the following corollary, as a direct extension of Grünbaum’s inequality. By
a barycenter of Ω, we will mean a barycenter of µΩ.

Corollary 1.3. Let Ω be a convex set in an RCD(0, N)-space (X,dX ,m)
with N ∈ (1,∞) such that m(Ω) ∈ (0,∞), and let x0 ∈ X be a barycenter of
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Ω. Then, for any straight line γ : R −→ X, the associated Busemann function
bγ : X −→ R satisfies

m
(
{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)
≥
(

N

N + 1

)N
·m(Ω),

m
(
{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)
≥
(

N

N + 1

)N
·m(Ω).

We remark that a barycenter of Ω may not be unique in this generality. For
instance, consider the cylinder X = R × S1 endowed with the 2-dimensional
Hausdorff measure, which is an RCD(0, 2)-space. Then, for Ω = [−1, 1]× S1, we
find that any point on the circle {0} × S1 is a barycenter of Ω. It seems unclear
(to the authors) if every barycenter of Ω lives in Ω.

Remark 1.4. A subset of the form b−1
γ ((−∞, r]), for some straight line γ and

r ∈ R, is called a (closed) horoball. Thus, Corollary 1.3 can be rephrased by saying
that every horoball (or the closure of the complement of a horoball) including x0
has mass at least (N/(N +1))N ·m(Ω). In Euclidean spaces, horoballs are simply
closed halfspaces. In general, horoballs are not geodesically convex, unless X is
nonpositively curved. See, for example, [29] concerning convex optimization on
Hadamard spaces by means of horoballs.

We also study when equality holds in (1.5). Roughly speaking, equality holds
only when µ has a cone structure (see Theorem 4.3 for the precise statement).
This kind of rigidity for geometric and analytic inequalities is one of the ma-
jor problems in comparison geometry and geometric analysis (see, e.g., [24, 43]).
Cavalletti–Mondino’s localization (also called needle decomposition) [10], together
with a detailed one-dimensional analysis, plays a crucial role in our rigidity re-
sult. We can even consider the stability problem in a similar way (see Section 6).
We refer to [25] for a stability result concerning Grünbaum’s inequality in the
Euclidean setting, in terms of the volume of the symmetric difference from a cone.

The main ingredients of the proofs of our results are Gigli’s splitting theorem
for RCD(0, N)-spaces and Cavalletti–Mondino’s localization for essentially non-
branching CD(K,N)-spaces as we mentioned above. In fact, the formulation of
our results using a straight line is strongly inspired by the splitting theorem. Both
these ingredients are valid only for N ∈ (1,∞) in this generality.

Nonetheless, in the smooth setting of weighted Riemannian manifolds, the
isometric splitting is known by Lichnerowicz, Fang–Li–Zhang [20, 30] (N = ∞)
and Wylie [50] (N ∈ (−∞, 1)), and the localization is also available by Klartag
[27]. Thus, we have the following counterparts to Theorem 1.1 and Corollary 1.3.

Theorem 1.5 (Main theorem; N = ∞, N < −1). Let (M, g,m), m =
e−ψ volg, be a complete weighted Riemannian manifold of RicN ≥ 0 for N = ∞ or
N ∈ (−∞,−1), where ψ ∈ C2(M) is bounded from above, and µ = ρm ∈ P1(M)
with ρ : M −→ [0,∞).

(i) Suppose that N = ∞ and log ρ : M −→ R∪{−∞} is concave. Then, for any
barycenter x0 ∈ M of µ and any straight line γ : R −→ M , the associated
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Busemann function bγ : M −→ R satisfies

µ
(
{x ∈M | bγ(x) ≤ bγ(x0)}

)
≥ e−1,(1.6)

µ
(
{x ∈M | bγ(x) ≥ bγ(x0)}

)
≥ e−1.

(ii) Suppose that N ∈ (−∞,−1) and ρ1/(β−N) is concave on ρ−1((0,∞)) for
some β ∈ (N,−1). Then, for x0 ∈M and bγ as above, we have

µ
(
{x ∈M | bγ(x) ≤ bγ(x0)}

)
≥
(

β

β + 1

)β
,(1.7)

µ
(
{x ∈M | bγ(x) ≥ bγ(x0)}

)
≥
(

β

β + 1

)β
.

We remark that the upper boundedness of ψ is assumed for applying the split-
ting theorem (see Remark 5.2).

Corollary 1.6. Let (M, g,m) be as in Theorem 1.5, and Ω ⊂M be a convex
set such that m(Ω) ∈ (0,∞) and m(Ω)−1χΩm ∈ P1(M). Then, for any barycenter
x0 ∈ X of Ω and any straight line γ : R −→ X, the associated Busemann function
bγ : X −→ R satisfies

m
(
{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)
≥ e−1 ·m(Ω),

m
(
{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)
≥ e−1 ·m(Ω)

when N = ∞, and

m
(
{x ∈ Ω | bγ(x) ≤ bγ(x0)}

)
≥
(

N

N + 1

)N
·m(Ω),

m
(
{x ∈ Ω | bγ(x) ≥ bγ(x0)}

)
≥
(

N

N + 1

)N
·m(Ω)

for N ∈ (−∞,−1).

The rest of the article is organized as follows. In Section 2, we review some
necessary properties of RCD(0, N)-spaces. We also illustrate our results in Eu-
clidean spaces, recovering known results and obtaining new ones. Section 3 is
devoted to the one-dimensional analysis, which plays a central role in the follow-
ing discussions. In Section 4, we prove Theorem 1.1 and also study the rigidity
problem. By a similar analysis, in Section 5, we prove Theorem 1.5 as well as
the corresponding rigidity result. We give some stability results in Section 6, and
close the article with several further problems in Section 7.

2. PRELIMINARIES

2.1 Properties of RCD(0, N)-spaces

The next lemma may be a well known fact (cf. [51, Theorem 7]), but we could
not find in the literature.

Lemma 2.1. Let (X,dX ,m) be a CD(0, N)-space with N ∈ (1,∞). If m(X) <
∞, then the diameter of X is finite.
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Proof. The proof is based on the following Bishop–Gromov volume compar-
ison theorem [47, Theorem 2.3]:

(2.1)
m(B(x,R))

m(B(x, r))
≤
(
R

r

)N
for all x ∈ X, 0 < r < R,

where B(x, r) denotes the open ball with center x and radius r. Fix x0 ∈ X
and assume on the contrary that there is a sequence (xk)k≥1 in X such that
dX(x0, xk) ≥ k for all k ≥ 1. Then we infer from (2.1) that, for k ≥ 2,

m
(
B
(
xk, dX(x0, xk) + 1

))
≤
(
dX(x0, xk) + 1

dX(x0, xk)− 1

)N
m
(
B
(
xk,dX(x0, xk)− 1

))
.

Thus, we deduce that

m
(
B(x0, 1)

)
≤ m

(
B
(
xk, dX(x0, xk) + 1

))
−m

(
B
(
xk, dX(x0, xk)− 1

))
≤
{(

dX(x0, xk) + 1

dX(x0, xk)− 1

)N
− 1

}
·m
(
B
(
xk, dX(x0, xk)− 1

))
≤
{(

dX(x0, xk) + 1

dX(x0, xk)− 1

)N
− 1

}
·m(X)

→ 0

as k → ∞. This implies m(B(x0, 1)) = 0, a contradiction.

In particular, every convex set Ω ⊂ X with m(Ω) ∈ (0,∞) (as in Corollary 1.3)
is bounded, since (Ω,dX |Ω,m|Ω) is again a CD(0, N)-space. The above lemma can
be applied to the space (X,dX , µ) in Theorem 1.1(i) thanks to the following fact.

Lemma 2.2. Let (X,dX ,m) be an RCD(0, N)-space with N ∈ (1,∞), and
µ = ρm be a measure with ρ : X −→ [0,∞) such that µ(X) > 0 and ρ1/(β−N)

is concave on ρ−1((0,∞)) for some β > N . Then, (supp(µ), dX |supp(µ), µ) is an
RCD(0, β)-space.

Proof. We give an outline of the proof for completeness (we refer to [47,
Theorem 1.7(ii)] for the smooth case). Note that it is sufficient to show that
(supp(µ), dX |supp(µ), µ) satisfies CD(0, β). Since (X,dX) is non-branching by [17,
Theorem 1.3], in view of [47, Proposition 4.2], (X,dX ,m) being a CD(0, N)-space
is equivalent to the concavity of λ 7−→ ζλ(η(λ))

−1/N for almost every geodesic
η : [0, 1] −→ X along which an L2-optimal transport (νλ)λ∈[0,1] is done, where
νλ = ζλm.

When we consider µ = ρm instead of m, the corresponding density function of
νλ becomes ζλρ

−1, provided supp(νλ) ⊂ supp(µ). Indeed, if supp(ν0)∪supp(ν1) ⊂
supp(µ), then supp(νλ) ⊂ supp(µ) by the convexity of supp(µ). We deduce from
the concavity of ρ1/(β−N) and the Hölder inequality that

[ζλρ
−1]
(
η(λ)

)−1/β
=
(
ζλ
(
η(λ)

)−1/N
)N/β(

ρ
(
η(λ)

)1/(β−N)
)(β−N)/β

≥
(
(1− λ)ζ0

(
η(0)

)−1/N
+ λζ1

(
η(1)

)−1/N
)N/β

×
(
(1− λ)ρ

(
η(0)

)1/(β−N)
+ λρ

(
η(1)

)1/(β−N)
)(β−N)/β

≥ (1− λ)[ζ0ρ
−1]
(
η(0)

)−1/β
+ λ[ζ1ρ

−1]
(
η(1)

)−1/β
.
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Therefore, λ 7−→ [ζλρ
−1](η(λ))−1/β is concave, and (supp(µ), dX |supp(µ), µ) is an

RCD(0, β)-space.

Next we summarize some key ingredients for the proof of Theorem 1.1, based
on Gigli’s splitting theorem and an observation related to the lemma above. We
remark that, though Lemma 2.2 could be also extended to include the cases of
β = ∞ and β < −1 as in the next proposition, we restricted ourselves to β > N
for simplicity.

Proposition 2.3. Let (X,dX ,m) be an RCD(0, N)-space for some N ∈
(1,∞) and γ : R −→ X be a straight line. Then, there exists an RCD(0, N − 1)-
space (Y, dY , n) and an isometry T : (X,dX) −→ (R× Y, d) such that

• d((s, y), (t, z)) =
(
|s− t|2 + dY (y, z)

2
)1/2

for all s, t ∈ R and y, z ∈ Y ;
• ΠR(T (x)) = bγ(x) for all x ∈ X, where ΠR : R×Y −→ R is the projection;
• T#m = dx⊗ n, where T#m denotes the push-forward of m by T and dx is
the Lebesgue measure on R.

Moreover, let µ = ρm be a probability measure on X for some measurable function
ρ : X −→ [0,∞) and put bγ#µ = w dx.

(i) If ρ1/(β−N) is concave on ρ−1((0,∞)) for some β > N , then w1/(β−1) is
concave on w−1((0,∞)).

(ii) If log ρ : X −→ R ∪ {−∞} is concave, then logw is concave.
(iii) If ρ1/(β−N) : X −→ R ∪ {∞} is convex for some β < 1, then w1/(β−1) is

convex.

Proof. The first part of the proposition comes from [22, Theorem 1.4]. Then,
using the product structure X = R× Y , w is explicitly given by

w(t) =

∫
Y
ρ(t, y) n(dy).

(i) Though we give a direct proof, one can also reduce the concavity of w1/(β−1)

to Lemma 2.2, for it is equivalent to CD(0, β) of the interval (supp(w), | · |, w dx)
(see the beginning of Section 3). Take a < b and λ ∈ (0, 1), and define functions
f, g, h : Y −→ R by

h(y) := ρ
(
(1− λ)a+ λb, y

)
, f(y) := ρ(a, y), g(y) := ρ(b, y).

For any minimal geodesic η : [0, 1] −→ Y in (Y,dY ), observe that the curve

λ 7−→
(
(1− λ)a+ λb, η(λ)

)
∈ R× Y = X

is also a minimal geodesic. Thus, the assumed concavity of ρ1/(β−N) implies

h
(
η(λ)

)1/(β−N) ≥ (1− λ)f
(
η(0)

)1/(β−N)
+ λg

(
η(1)

)1/(β−N)
.

Now, in order to apply the Borell–Brascamp–Lieb inequality on (Y,dY , n) in [2,
Theorem 3.1], one needs to check that (Y,dY , n) is non-branching, which is the
case thanks to [17]. Hence, we obtain from the Borell–Brascamp–Lieb inequality
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BBL(0, N − 1) with parameter p = 1/(β−N) > 0 (as in [2, Definition 1.1]) that,
since p/(1 + (N − 1)p) = 1/(β − 1),

∫
Y
hdn ≥

(
(1− λ)

(∫
Y
f dn

)1/(β−1)

+ λ

(∫
Y
g dn

)1/(β−1)
)β−1

.

This yields the concavity of w1/(β−1).
(ii) We similarly find

log h
(
η(λ)

)
≥ (1− λ) log f

(
η(0)

)
+ λ log g

(
η(1)

)
.

Then, BBL(0, N−1) with p = 0 (in other words, the Prékopa–Leindler inequality)
shows the claim ∫

Y
hdn ≥

(∫
Y
f dn

)1−λ(∫
Y
g dn

)λ
.

(iii) In this case, we have

h
(
η(λ)

)
≥
(
(1− λ)f

(
η(0)

)1/(β−N)
+ λg

(
η(1)

)1/(β−N)
)β−N

,

then the claim follows from BBL(0, N−1) with p = 1/(β−N) > −1/(N−1).

2.2 Euclidean case

In this subsection, we describe our results in the Euclidean setting. We first
remark that the curvature-dimension condition is intimately related to Borell’s
s-concavity [6]. For s ∈ R ∪ {±∞}, λ ∈ (0, 1) and a, b ≥ 0, the s-mean is defined
by

Ms(a, b;λ) :=



(
(1− λ)as + λbs

)1/s
if s > 0, or if s < 0 and ab > 0,

0 if s < 0 and ab = 0,

a1−λbλ if s = 0,

min{a, b} if s = −∞,

max{a, b} if s = ∞.

We say that a positive Radon measure µ on Rn is s-concave if, for any Borel
measurable sets A,B ⊂ Rn and λ ∈ (0, 1),

µ
(
(1− λ)A+ λB

)
≥ Ms

(
µ(A), µ(B);λ

)
,

where (1 − λ)A + λB := {(1 − λ)x + λy | x ∈ A, y ∈ B} is the Minkowski sum.
Then, Borell’s classical result [6, Theorem 3.2] shows the following.

Theorem 2.4 (Borell’s theorem). • If s > 1/n, then there does not exist
any s-concave measure on Rn.

• If s = 1/n, then the only s-concave measures on Rn are constant multipli-
cations of the n-dimensional Lebesgue measure Ln.

• For s ∈ (0, 1/n), a measure µ on Rn is s-concave if and only if it has a
density function ρ with respect to Ln and ρp is concave with p = s/(1−sn).
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• For s ∈ [−∞, 0], a measure µ on Rn is s-concave if and only if it has
a density function w with respect to the Lebesgue measure on an affine
subspace V and w satisfies

(2.2) w
(
(1− λ)x+ λy

)
≥ Mq

(
w(x), w(y);λ

)
for all x, y ∈ V and λ ∈ (0, 1), where q := s/(1− sdimV ) (which should be
understood as −1/ dimV if s = −∞).

We remark that supp(µ) = Rn when s ∈ (0, 1/n], while supp(µ) is a convex
set in V for s ∈ [−∞, 0].

Corollary 2.5. Let s ∈ [−∞, 1/n] and µ be an s-concave measure on Rn
with supp(µ) = Rn. Then, for any affine subspace V ⊂ Rn and the orthogo-
nal projection Π: Rn −→ V , Π#µ has a density function w with respect to the
Lebesgue measure on V , which satisfies (2.2).

Proof. It is readily seen that Π#µ is s-concave, then we apply Theorem 2.4.

In particular, if dimV = 1, then w satisfies (2.2) with q = s/(1 − s), which
corresponds to Proposition 2.3 in the Euclidean case (with s = 1/β).

In view of Theorem 2.4, as a particular case of Theorem 1.1, we obtain the
following result. Note that s > −1 since β < −1.

Theorem 2.6. Let s ∈ (−1, 1/n] and µ ∈ P1(Rn) be s-concave in its support.
Then, every closed halfspace H containing the barycenter of µ satisfies µ(H) ≥
(1/(1 + s))1/s, understood as µ(H) ≥ e−1 if s = 0.

Classical Grünbaum’s inequality is recovered by Theorem 2.6 with s = 1/n.
Moreover, as mentioned in the introduction, the case of log-concave distributions
(s = 0) was also known.

Remark 2.7. The s-concavity is generalized to the Brunn–Minkowski in-
equality BM(0, N), with N = 1/s. Precisely, the curvature-dimension condition
CD(0, N) implies BM(0, N) (see [47, Proposition 2.1] for N ∈ (1,∞), [49, The-
orem 30.7] for N = ∞, [40, Theorem 4.8] for N < 0, and [41, (3.9)] for N = 0).
Moreover, for weighted Riemannian manifolds and N ∈ (1,∞), the converse im-
plication can be also found in [34, Theorem 1.1].

3. ONE-DIMENSIONAL ANALYSIS

In this section, as a key step for the proof of Theorem 1.1, we first state
Grünbaum’s inequality in the case of one-dimensional CD(0, N)-spaces.

3.1 One-dimensional CD(0, N)-spaces

We consider a one-dimensional space ((a, b), | · |, e−ψ dx), where −∞ ≤ a < b ≤
∞, | · | denotes the absolute value giving rise to the canonical distance on R, dx
is the Lebesgue measure on R, and ψ : (a, b) −→ R is a continuous function. In
this case, being a CD(0, N)-space is equivalent to

(3.1) ψ′′ − (ψ′)2

N − 1
≥ 0
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in the weak sense (recall the definition of RicN from (1.3)). By setting w = e−ψ,
this is equivalent to the concavity of w1/(N−1) if N ∈ (1,∞), the concavity of
logw if N = ∞, and to the convexity of w1/(N−1) if N ∈ (−∞, 1).

When we assume that µ = w dx is a probability measure, on the one hand, for
N ∈ (1,∞), observe from the concavity of w1/(N−1) that µ can only be supported
on some bounded interval, thereby a > −∞ and b < ∞. On the other hand, for
N = ∞ (resp. N ∈ (−∞, 1)), the concavity of logw (resp. convexity of w1/(N−1))
does not imply such boundedness, by letting logw = −∞ (resp. w1/(N−1) = ∞)
outside the support of µ.

For N ∈ (1,∞), the space ([0,∞), | · |, NxN−1 dx) is a model CD(0, N)-space,
that is, it enjoys equality in (3.1). Moreover, normalized as a probability space,

(3.2) ([0, 1], | · |, NxN−1 dx)

is a model space that also reaches the equality case in Grünbaum’s inequality.
Indeed, its barycenter is given by∫ 1

0
x ·NxN−1 dx =

N

N + 1
,

and we have ∫ N/(N+1)

0
NxN−1 dx =

(
N

N + 1

)N
.

In the original Grünbaum’s inequality, this model corresponds to the projection
of the uniform distribution over a finite cone along its axis.

3.2 Case of N ∈ (1,∞)

We first consider the case of N ∈ (1,∞).

Lemma 3.1 (Grünbaum’s inequality on intervals; N > 1). Let a, b ∈ R with
a < 0 < b and w : (a, b) −→ [0,∞) be a nonnegative function such that w1/(N−1)

is concave for some N > 1 and∫ b

a
w(x) dx = 1,

∫ b

a
xw(x) dx = 0.

Then, we have

(3.3)

∫ 0

a
w(x) dx ≥

(
N

N + 1

)N
,

∫ b

0
w(x) dx ≥

(
N

N + 1

)N
.

Proof. Let R(x) :=
∫ x
a w(s) ds be the cumulative distribution function, which

satisfies 0 ≤ R ≤ 1, R(a) = 0 and R(b) = 1 by definition. Note also that

(3.4)

∫ b

a
R(x) dx =

[
xR(x)

]b
a
−
∫ b

a
xw(x) dx = b.

Since w1/(N−1) is concave, the Borell–Brascamp–Lieb inequality [6, 7] with
parameter 1/(N − 1) implies that R1/N is concave. Here we also give a detailed
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proof for later use in the rigidity problem. Fix x, y ∈ (a, b) and λ ∈ (0, 1). For
t ∈ (0, 1), we take σ(t) ∈ (a, x) and τ(t) ∈ (a, y) satisfying

1

R(x)

∫ σ(t)

a
w(s) ds =

1

R(y)

∫ τ(t)

a
w(s) ds = t.

By differentiating in t, we have

(3.5)
w(σ(t))σ′(t)

R(x)
=
w(τ(t))τ ′(t)

R(y)
= 1.

We put θ(t) := (1− λ)σ(t) + λτ(t) and observe

R
(
(1− λ)x+ λy

)
=

∫ (1−λ)x+λy

a
w(s) ds =

∫ 1

0
w
(
θ(t)

)
θ′(t) dt.

It follows from the concavity of w1/(N−1), (3.5) and the Hölder inequality that∫ 1

0
w
(
θ(t)

)
θ′(t) dt ≥

∫ 1

0

(
(1− λ)w

(
σ(t)

)1/(N−1)
+ λw

(
τ(t)

)1/(N−1)
)N−1

×
(
(1− λ)

R(x)

w(σ(t))
+ λ

R(y)

w(τ(t))

)
dt

≥
∫ 1

0

(
(1− λ)R(x)1/N + λR(y)1/N

)N
dt

=
(
(1− λ)R(x)1/N + λR(y)1/N

)N
.

(3.6)

Hence, R1/N is concave as we claimed.
The concavity of R1/N implies

R(x)1/N ≤ R(0)1/N + (R1/N )′(0)x for all x ∈ (a, b),

which can be rewritten as

(3.7) R(x) ≤ R(0)

(
1 +

c

N
x

)N
, c :=

R′(0)

R(0)
=
w(0)

R(0)
> 0.

In particular, since R(a) = 0, a ≥ −N/c holds.
Now, if b ≥ 1/c, then we obtain from (3.4) that

b =

∫ 1/c

a
R(x) dx+

∫ b

1/c
R(x) dx

≤
∫ 1/c

−N/c
R(0)

(
1 +

c

N
x

)N
dx+ b− 1

c

= R(0)

[
N

c(N + 1)

(
1 +

c

N
x

)N+1
]1/c
−N/c

+ b− 1

c

=
R(0)

c

(
N + 1

N

)N
+ b− 1

c
,
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where in the inequality we used (3.7), a ≥ −N/c, and R ≤ 1. This exactly gives
R(0) ≥ (N/(N + 1))N which concludes the proof. In the other case of b < 1/c,
we deduce from (3.7) that

1 ≤ R(0)

(
1 +

c

N
b

)N
< R(0)

(
1 +

c

N
x

)N
for x ∈ (b, 1/c). Therefore, we similarly observe

b =

∫ b

a
R(x) dx ≤

∫ 1/c

−N/c
R(0)

(
1 +

c

N
x

)N
dx−

(
1

c
− b

)
=
R(0)

c

(
N + 1

N

)N
+ b− 1

c
.

This completes the proof of the first inequality in (3.3). The second one is obtained
in the same way or by reversing the interval (a, b).

We can show that only the cone-like model space (3.2) achieves equality in
(3.3) (up to translation and dilation).

Lemma 3.2 (Rigidity on intervals; N > 1). If equality holds in the former
inequality in (3.3), then, for some c > 0, we have a = −N/c, b = 1/c, and

(3.8) w(x) = c

(
N

N + 1

)N(
1 +

c

N
x

)N−1

.

Similarly, if equality holds in the latter inequality in (3.3), then, for some c > 0,
we have a = −1/c, b = N/c, and

w(x) = c

(
N

N + 1

)N(
1− c

N
x

)N−1

.

Proof. We deduce from the proof of Lemma 3.1 that a = −N/c and b = 1/c
necessarily hold. Moreover, we have equality in (3.7) for all x ∈ (a, b). Together
with R(1/c) = 1, we obtain

R(x) =

(
N

N + 1

)N(
1 +

c

N
x

)N
,

as well as

w(x) = R′(x) = c

(
N

N + 1

)N(
1 +

c

N
x

)N−1

.

The case of the latter inequality in (3.3) is seen by reversing the interval (a, b).

One can regard (3.8) that w has the cone structure with the apex a = −N/c.

Remark 3.3. (a) Note that, in the proof of Lemma 3.1, the concavity of
R1/N (more precisely, the inequality (3.7)) is the essential ingredient. This
leads to a slight generalization of one-dimensional Grünbaum’s inequality
assuming only (3.7). In higher dimensions, however, we do not know a suitable
condition guaranteeing (3.7) on almost every needle.

(b) In the proof of Lemma 3.2, testing equality in (3.7) was sufficient to obtain
(3.8). In particular, we did not need a characterization of equality in the
Borell–Brascamp–Lieb inequality.
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3.3 Case of N ∈ (−∞,−1) ∪ {∞}

Next, we consider N = ∞ and N < −1, in a similar way to N > 1.

Lemma 3.4 (Grünbaum’s inequality on intervals; N < −1, N = ∞). Let
−∞ ≤ a < 0 < b ≤ ∞ and w : (a, b) −→ [0,∞) be a nonnegative integrable

function satisfying
∫ b
a w(x) dx = 1 and

∫ b
a xw(x) dx = 0.

(i) If w1/(N−1) is convex for some N < −1, then we have

(3.9)

∫ 0

a
w(x) dx ≥

(
N

N + 1

)N
,

∫ b

0
w(x) dx ≥

(
N

N + 1

)N
.

(ii) If logw is concave, then we have

(3.10)

∫ 0

a
w(x) dx ≥ e−1,

∫ b

0
w(x) dx ≥ e−1.

Without loss of generality, we will assume that w > 0 on (a, b). Recall that,
as we mentioned at the beginning of this section, the interval (a, b) can be un-
bounded.

Proof. First of all, if b = ∞, then we cut off and normalize w as

wk :=

(∫ k

ak

w(s) ds

)−1

· w|(ak,k)

for (large) k ∈ N, where ak ∈ (a, 0) is chosen so as to satisfy that the barycenter
of wk dx is 0. Then, Xk := ((ak, k), | · |, wk dx) again satisfies the assumptions,
and (3.9) or (3.10) for the original space can be obtained as the limit of those for
Xk as k → ∞. Hence, without loss of generality, we will assume b < ∞ and, by
the same reasoning, a > −∞.

As in the proof of Lemma 3.1, we set R(x) :=
∫ x
a w(s) ds, fix x, y ∈ (a, b) and

λ ∈ (0, 1), and define the functions σ, τ, θ.
(i) In place of (3.6), we deduce from the convexity of w1/(N−1) and the Hölder

inequality of the form

(1− λ)α1α2 + λβ1β2 ≤
(
(1− λ)α

(N−1)/N
1 + λβ

(N−1)/N
1

)N/(N−1)

×
(
(1− λ)α1−N

2 + λβ1−N2

)1/(1−N)
(3.11)

for α1, α2, β1, β2 ≥ 0 (valid for N < 0) that

R
(
(1− λ)x+ λy

)
=

∫ 1

0
w
(
θ(t)

)
θ′(t) dt

≥
∫ 1

0

(
(1− λ)w

(
σ(t)

)1/(N−1)
+ λw

(
τ(t)

)1/(N−1)
)N−1

×
(
(1− λ)

R(x)

w(σ(t))
+ λ

R(y)

w(τ(t))

)
dt

≥
∫ 1

0

(
(1− λ)R(x)1/N + λR(y)1/N

)N
dt

=
(
(1− λ)R(x)1/N + λR(y)1/N

)N
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by taking α1 = R(x)1/(N−1), α2 = (R(x)/w(σ(t)))1/(1−N) in (3.11). Thus, R1/N

is convex, which yields

(3.12) R(x)1/N ≥ R(0)1/N
(
1 +

c

N
x

)
, c :=

w(0)

R(0)
> 0.

When b ≥ 1/c, we obtain from (3.4) that

b =

∫ b

a
R(x) dx ≤

∫ 1/c

a
R(0)

(
1 +

c

N
x

)N
dx+ b− 1

c
(3.13)

= R(0)

[
N

c(N + 1)

(
1 +

c

N
x

)N+1
]1/c
a

+ b− 1

c

≤ R(0)

c

(
N + 1

N

)N
+ b− 1

c
,

which yields the former inequality in (3.9). If b < 1/c, then we infer from

1 ≤ R(0)

(
1 +

c

N
b

)N
< R(0)

(
1 +

c

N
x

)N
for x ∈ (b, 1/c) that

b =

∫ b

a
R(x) dx ≤

∫ 1/c

a
R(0)

(
1 +

c

N
x

)N
dx−

(
1

c
− b

)
≤ R(0)

c

(
N + 1

N

)N
+ b− 1

c
.

This completes the proof of the former inequality of (3.9). The latter inequality
is seen by reversing the interval (a, b).

(ii) Since the concavity of logw implies the convexity of w1/(N−1) for all N ∈
(−∞,−1), we can derive (3.10) from (3.9) by letting N → −∞.

We proceed to the equality case, which is more involved than Lemma 3.2 due
to the unboundedness of the interval.

Lemma 3.5 (Rigidity on intervals; N < −1, N = ∞). (i) If equality holds
in the former inequality in (3.9), then, for some c > 0, we have a = −∞,
b = 1/c, and

(3.14) w(x) = c

(
N

N + 1

)N(
1 +

c

N
x

)N−1

.

Similarly, if equality holds in the latter inequality in (3.9), then, for some
c > 0, we have a = −1/c, b = ∞, and

w(x) = c

(
N

N + 1

)N(
1− c

N
x

)N−1

.

(ii) If equality holds in the former inequality in (3.10), then we have a = −∞,
b = 1/c, and w(x) = cecx−1 for some c > 0. Similarly, if equality holds
in the latter inequality in (3.10), then we have a = −1/c, b = ∞, and
w(x) = ce−cx−1 for some c > 0.
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Proof. We will consider only the former inequalities in (3.9) and (3.10), since
the latter inequalities can be handled by reversing the interval.

(i) We first assume b <∞. In this case, we deduce from the proof of Lemma 3.4
that a = −∞, b = 1/c, and that equality holds in (3.12). Combining these with
R(1/c) = 1 implies

R(x) =

(
N

N + 1

)N(
1 +

c

N
x

)N
,

and hence

w(x) = R′(x) = c

(
N

N + 1

)N(
1 +

c

N
x

)N−1

.

Next, we show that equality never holds when b = ∞. Assume in contrary
that equality holds in the former inequality in (3.9). For (large) k ∈ N, we take
ak ∈ (a, 0) and wk as in the proof of Lemma 3.4, and put

Rk(x) :=

∫ x

ak

wk(s) ds, ck :=
R′
k(0)

Rk(0)
=

wk(0)∫ 0
ak
wk(s) ds

.

Observe from

lim
k→∞

ck =
w(0)∫ 0

a w(s) ds
=: c

that k ≥ 1/ck for large k. Then, in the estimate (3.13) in the proof of Lemma 3.4,

k − 1

ck
−
∫ k

1/ck

Rk(x) dx =

∫ k

1/ck

(
1−Rk(x)

)
dx

necessarily tends to 0 as k → ∞. This implies that
∫ 1/c
a w(s) ds = 1, which is a

contradiction since we assumed w > 0 on (a, b).
(ii) Let us begin with a direct proof of (3.10) under b < ∞. We use the same

notations as Lemma 3.4. It follows from the concavity of logw that

R
(
(1− λ)x+ λy

)
=

∫ 1

0
w
(
θ(t)

)
θ′(t) dt

≥
∫ 1

0
w
(
σ(t)

)1−λ
w
(
τ(t)

)λ(
(1− λ)

R(x)

w(σ(t))
+ λ

R(y)

w(τ(t))

)
dt

=

∫ 1

0

{
(1− λ)R(x)

(
w(τ(t))

w(σ(t))

)λ
+ λR(y)

(
w(σ(t))

w(τ(t))

)1−λ}
dt.

Together with the concavity of log and Jensen’s inequality, we obtain the con-
cavity of logR:

logR
(
(1− λ)x+ λy

)
≥ (1− λ) log

[
R(x)

∫ 1

0

(
w(τ(t))

w(σ(t))

)λ
dt

]
+ λ log

[
R(y)

∫ 1

0

(
w(σ(t))

w(τ(t))

)1−λ
dt

]
≥ (1− λ)

(
logR(x) +

∫ 1

0
λ log

[
w(τ(t))

w(σ(t))

]
dt

)
+ λ

(
logR(y) +

∫ 1

0
(1− λ) log

[
w(σ(t))

w(τ(t))

]
dt

)
= (1− λ) logR(x) + λ logR(y).
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Therefore,

logR(x) ≤ logR(0) + cx, c :=
w(0)

R(0)
> 0.

When b ≥ 1/c, we have

b ≤
∫ 1/c

a
R(0)ecx dx+ b− 1

c
≤ R(0)

c
e + b− 1

c
,

which yields (3.10). In the case of b < 1/c, since 1 ≤ R(0)ecb ≤ R(0)ecx for x ≥ b,
we similarly find

b ≤
∫ 1/c

a
R(0)ecx dx−

(
1

c
− b

)
≤ R(0)

c
e + b− 1

c
.

If equality holds, then we have a = −∞, b = 1/c, and logw is an affine function.
Put w(x) = αeδx (α, δ > 0) and observe that

R(b) =
α

δ
eδ/c = 1, c =

w(0)

R(0)
= δ.

Therefore, we obtain δ = c, α = ce−1, and w(x) = cecx−1. One can also show
that equality never holds when b = ∞ in a similar way to (i).

Remark 3.6. Note that w in (3.14) satisfies w(x) dx ∈ P2((−∞, 1/c)) for
N < −2, but w(x) dx ∈ P1((−∞, 1/c)) \ P2((−∞, 1/c)) for N ∈ [−2,−1).

4. GRÜNBAUM’S INEQUALITY FOR N ∈ (1,∞)

We give two proofs of Theorem 1.1, one via localization and one without. We
will need both for our rigidity result (Theorem 4.3).

Let (X,dX ,m), µ = ρm, x0 ∈ X and γ : R −→ X be as in Theorem 1.1. Recall
from Proposition 2.3 that T (x) = (bγ(x),ΠY (x)), where ΠY : X −→ Y is the
projection to Y , is an isometry from X to R× Y , namely

(4.1) d2X(x1, x2) =
(
bγ(x1)− bγ(x2)

)2
+ d2Y

(
ΠY (x1),ΠY (x2)

)
for all x1, x2 ∈ X. In what follows, via the isometry T , we identify (X,dX ,m)
with the product of (R, | · |, dx) and (Y,dY , n) (m is identified with dx⊗ n).

By translating γ, we can assume that bγ(x0) = 0 without loss of generality.
Then, we have the following key observation.

Lemma 4.1. We have ∫
X
bγ dµ = 0.

Proof. Let η : R −→ X be the geodesic given by η(t) := (t,ΠY (x0)). Note
that η(0) = x0 (= (bγ(x0),ΠY (x0))) by our choice bγ(x0) = 0. Then we deduce
from (4.1) that, provided that µ ∈ P2(X),

d

dt

[∫
X
d2X
(
η(t), x

)
µ(dx)

]
t=0

=
d

dt

[∫
X

{(
t− bγ(x)

)2
+ d2Y

(
ΠY (x0),ΠY (x)

)}
µ(dx)

]
t=0

= −2

∫
X
bγ(x)µ(dx).
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Since x0 is a barycenter of µ, the left hand side coincides with 0. If µ is only of
finite first moment, then we differentiate∫

X

{
d2X
(
η(t), x

)
− d2X(z0, x)

}
µ(dx)

with an arbitrarily fixed point z0 ∈ X, and obtain the same conclusion. This
completes the proof.

4.1 First proof without localization

The first proof of Theorem 1.1 is based on Proposition 2.3, which ensures that
bγ#µ has a density w with respect to the Lebesgue measure on R, and w1/(β−1)

(β > N), logw (β = ∞), or −w1/(β−1) (β < −1) is concave. Moreover, by
Lemma 4.1 above, 0 is its barycenter. Hence, our one-dimensional analysis in the
previous section (Lemmas 3.1, 3.4 with N = β) yields the result.

4.2 Second proof via localization

The second proof makes use of the localization (a.k.a. needle decomposition),
and we additionally assume µ ∈ P2(X) (unless β > N). The localization tech-
nique provides a decomposition of a space into a family of geodesics (called nee-
dles) in such a way that those geodesics inherit some geometric information of
the original space. Through this decomposition, one can reduce a problem into
its one-dimensional counterpart. We refer to [10, Theorem 5.1] and [27] for the
precise statement and more information.

Put Ω := supp(µ) = X \ ρ−1(0), which is convex (and bounded when β >
N ; recall Remark 1.2). Thanks to Lemma 4.1, we can employ f := bγρ as a
conditional function (as f in [10, Theorem 5.1]). We remark that fdX(x0, ·) ∈
L1(m) (equivalently, bγdX(x0, ·) ∈ L1(µ)) since µ ∈ P2(X) and bγ is 1-Lipschitz.

We denote the resulting decomposition by {(Xq,mq)}q∈Q, where mq is a prob-
ability measure on Xq ⊂ X. The set Xq is the image of a minimal geodesic
(so-called a needle) and carries the natural distance structure as the restriction
of dX . We also have a measure q on Q and q-almost every needle (Xq,mq) satisfies
CD(0, N) as well as

(4.2)

∫
Xq

bγρ dmq = 0.

To be precise, the decomposition is done except a set Z ⊂ X such that f = 0 m-
almost everywhere in Z. In the current setting, Z is µ-negligible sincem(b−1

γ (0)) =
0. Then, for every ϕ ∈ L1(m) with supp(ϕ) ⊂ Ω, we have∫

Ω
ϕ dm =

∫
Q

∫
Xq

ϕ dmq q(dq).

We deduce from (4.2) that, for q-almost every q ∈ Q, one of the following
holds:

(1) mq(Xq ∩ Ω) = 0;
(2) mq(Xq ∩ Ω) > 0 and Xq ⊂ b−1

γ (0);
(3) mq(Xq ∩ Ω) > 0, Xq ̸⊂ b−1

γ (0), and Xq ∩ b−1
γ (0) is a singleton which is the

unique barycenter of µq := ρmq.
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We remark that µq is not necessarily a probability measure and that the support
of µq is included in Ω. We infer from∫

Q
mq

(
b−1
γ (0) ∩ Ω

)
q(dq) = m

(
b−1
γ (0) ∩ Ω

)
= 0

that the case (2) is q-negligible. In the case (3), we can identify Xq and bγ(Xq) ⊂
R via bγ . Then, if we write µq = wq dx through this identification, it follows from
Proposition 2.3 (or, more directly, from the Hölder inequality as in Lemma 2.2;

see also the proof of Theorem 4.3 below) that w
1/(β−1)
q |w−1

q ((0,∞)) (β > N), logwq

(β = ∞), or −w1/(β−1)
q (β < −1) is concave.

Therefore, applying Lemmas 3.1, 3.4 (with N = β) to each normalized needle
(Xq, µq(Xq)

−1µq) satisfying (3), we obtain

µq
(
{x ∈ Xq | bγ(x) ≤ 0}

)
≥
(

β

β + 1

)β
· µq(Xq),(4.3)

µq
(
{x ∈ Xq | bγ(x) ≥ 0}

)
≥
(

β

β + 1

)β
· µq(Xq)

when β > N or β < −1, and

µq
(
{x ∈ Xq | bγ(x) ≤ 0}

)
≥ e−1 · µq(Xq),

µq
(
{x ∈ Xq | bγ(x) ≥ 0}

)
≥ e−1 · µq(Xq)

when β = ∞. Integrating these inequalities in q with respect to q completes the
proof of Theorem 1.1, since

∫
Q µq(A) q(dq) = µ(A) for measurable sets A ⊂ X.

Remark 4.2. On the one hand, the second proof provides a more detailed
control at the level of needles (under µ ∈ P2(X)). On the other hand, in the
first proof, we have a direct connection between X and R via bγ . To consider
the rigidity problem, we need both viewpoints to integrate the one-dimensional
information on needles into a global picture of X.

4.3 Rigidity

Now, with the help of Lemma 3.2, we study when equality holds in the gen-
eralized Grünbaum’s inequality (1.5) with β > N . Put Ω := supp(µ) as in the
previous subsection, and recall that bγ(x0) = 0.

Theorem 4.3 (Rigidity; N > 1). In the situation of Theorem 1.1, let (Q, q),
(Xq,mq), and µq = ρmq = wq dx be the elements of the localization as in Subsec-
tion 4.2. Suppose β > N and that equality holds in (1.5). Then, there exists c > 0
such that, for q-almost every needle q ∈ Q, we have bγ(Xq ∩ Ω) = [−β/c, 1/c]
and

(4.4)
1

µq(Xq)
wq(x) = c

(
β

β + 1

)β(
1 +

c

β
bγ(x)

)β−1

for all x ∈ Xq ∩ Ω. Moreover, regarding At := b−1
γ (t) ∩ Ω as a set in Y , we have

(4.5) n(At) =

(
β + ct

β + 1

)N−1

n(A1/c), [ρn](At) =
cβ

β + 1

(
β + ct

β + 1

)β−1

for all t ∈ [−β/c, 1/c].
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Proof. We shall analyze by combining both of the two proofs above. On the
one hand, by the first proof in Subsection 4.1 and Lemma 3.2 (with N = β), we
deduce that bγ#µ = w dx satisfies supp(w) = [−β/c, 1/c] and

w(x) = c

(
β

β + 1

)β(
1 +

c

β
x

)β−1

for some c > 0. On the other hand, in the second proof, q-almost every needle nec-
essarily satisfies equality in (4.3), thereby, we obtain bγ(Xq ∩Ω) = [−β/cq, 1/cq]
and

1

µq(Xq)
wq(x) = cq

(
β

β + 1

)β(
1 +

cq
β
x

)β−1

for some cq > 0 and all x ∈ Xq ∩ Ω, where we identified Xq and bγ(Xq) via bγ
as in the previous subsection. For q-almost every q ∈ Q, since [−β/cq, 1/cq] ⊂
[−β/c, 1/c], we have cq ≥ c. Moreover, by comparing the density at 0 and 1/c,
we infer that cq = c necessarily holds. Therefore, for q-almost every q ∈ Q, we
obtain bγ(Xq ∩ Ω) = [−β/c, 1/c] and (4.4). The latter equation in (4.5) is now
straightforward by integrating (4.4) in q ∈ Q:

[ρn](At) =

∫
Q
wq(t) q(dq) = c

(
β

β + 1

)β(
1 +

c

β
t

)β−1 ∫
Q
µq(Xq) q(dq)

= c

(
β

β + 1

)β(
1 +

c

β
t

)β−1

.

Next, we have a closer look on the concavity of w
1/(β−1)
q . Letting mq = ζq dx,

since (Xq,mq) is a CD(0, N)-space, we know that ζ
1/(N−1)
q is concave. Combining

this with the concavity of ρ1/(β−N) along Xq and noting wq = ρζq, by a similar
calculation to Lemma 2.2, we obtain

wq
(
(1− λ)x+ λy

)1/(β−1) ≥
(
(1− λ)ρ(x)1/(β−N) + λρ(y)1/(β−N)

)(β−N)/(β−1)

×
(
(1− λ)ζq(x)

1/(N−1) + λζq(y)
1/(N−1)

)(N−1)/(β−1)

≥ (1− λ)[ρζq](x)
1/(β−1) + λ[ρζq](y)

1/(β−1)

= (1− λ)wq(x)
1/(β−1) + λwq(y)

1/(β−1)

for all x, y ∈ Xq ∩ Ω and λ ∈ (0, 1). Comparing this with (4.4), we find that

ρ1/(β−N) and ζ
1/(N−1)
q are both affine along Xq ∩ Ω and vanish (only) at −β/c

(precisely, ρ1/(β−N) and ζ
1/(N−1)
q on [−β/c, 1/c] are the restrictions of such affine

functions). Therefore, At satisfies

n(At) =

∫
Q
ζq(t) q(dq) =

(
t+ (β/c)

(1/c) + (β/c)

)N−1 ∫
Q
ζq(1/c) q(dq)

=

(
ct+ β

1 + β

)N−1

n(A1/c),

which is the former equation in (4.5).
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Remark 4.4. It seems plausible that, under the hypothesis in Theorem 4.3,
N = n holds and Ω is isometric to a convex cone in Rn with A−β/c as the
apex and A1/c as the base. Indeed, in the Euclidean case with the Lebesgue
measure, it is known that equality in Grünbaum’s inequality is achieved only
by cones [25]. Then, a key step is to show that A−β/c is a singleton. A rigidity
result [3, Theorem 4.2] for the Brunn–Minkowski inequality seems to play a role,
however, it is concerned with L2-optimal transports while the transport along
needles is L1-optimal.

5. GRÜNBAUM’S INEQUALITY FOR N ∈ (−∞,−1) ∪ {∞}

In this section, we prove Theorem 1.5 and the associated rigidity result (The-
orem 5.4) concerning the cases of N = ∞ and N < −1, in a similar manner
to the case of N > 1 above. Since the splitting theorem and localization for
RCD(0,∞)-spaces are yet to be known, we restrict ourselves to weighted Rie-
mannian manifolds.

Let (M, g,m) be an n-dimensional, complete, weighted Riemannian manifold
with Ric∞ ≥ 0 or RicN ≥ 0 for N < −1, where m = e−ψ volg for some ψ ∈
C∞(M). By the monotonicity (1.4), Ric∞ ≥ 0 is a weaker condition than RicN ′ ≥
0 with N ′ ≥ n, and RicN ≥ 0 is even weaker. In fact, under Ric∞ ≥ 0, the
boundedness of the diameter as in Lemma 2.1 does not hold true. An archetypal
example is the Gaussian space (R, | · |, e−x2/2 dx), which satisfies Ric∞ ≥ 1.

We begin with a generalization of Proposition 2.3.

Proposition 5.1. Let (M, g,m) be an n-dimensional complete weighted Rie-
mannian manifold of RicN ≥ 0 for N = ∞ or N < −1. Assume that ψ is
bounded above and there is a straight line γ : R −→ M . Then, there exists an
(n − 1)-dimensional weighted Riemannian manifold (Σ, gΣ, n) with RicN−1 ≥ 0
(Ric∞ ≥ 0 if N = ∞) and an isometry T : (M, g) −→ (R× Σ, g̃) such that

• g̃ is the product of the Euclidean metric on R and g;
• ΠR(T (x)) = bγ(x) for all x ∈M ;
• T#m = dx⊗ n.

Moreover, let µ = ρm be a probability measure onM for some measurable function
ρ : M −→ [0,∞) and put bγ#µ = w dx.

(i) If N < −1 and ρ1/(β−N) is concave on ρ−1((0,∞)) for some β ∈ (N,−1),
then w1/(β−1) is convex.

(ii) If N = ∞ and log ρ is concave, then logw is concave.

Proof. The first part follows from [20, Theorem 1.1] for N = ∞ and [50,
Corollary 1.3] for N < −1 (in fact, it is available for N < 1). We identify M with
R× Σ, and then w is given by

w(t) =

∫
Σ
ρ(t, y) n(dy).

As in the proof of Proposition 2.3, we fix a < b and λ ∈ (0, 1), and define

h(y) := ρ
(
(1− λ)a+ λb, y

)
, f(y) := ρ(a, y), g(y) := ρ(b, y)
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for y ∈ Σ. Recall also that, for any minimal geodesic η : [0, 1] −→ Σ,

λ 7−→
(
(1− λ)a+ λb, η(λ)

)
∈ R× Σ =M

is a minimal geodesic.
(i) In this case, we make use of a generalization of the Borell–Brascamp–Lieb

inequality in [2, 13] to N < −1 (the estimate below also works for N < β < 1).
We give an outline for thoroughness. Set

ν0 :=
f∫

Σ f dn
n, ν1 :=

g∫
Σ g dn

n.

Then, there is a unique L2-Wasserstein geodesic (νλ)λ∈[0,1] from ν0 to ν1, and we
can write νλ = ζλn. On the one hand, it follows from RicN−1 ≥ 0 of (Σ, gΣ, n)
that

ζλ
(
Tλ(y)

)1/(1−N) ≤ (1− λ)

(
f(y)∫
Σ f dn

)1/(1−N)

+ λ

(
g(T1(y))∫

Σ g dn

)1/(1−N)

for ν0-almost every y ∈ Σ (by [40, (4.7), (4.9)]), where Tλ denotes the (unique)
optimal transport map from ν0 to νλ (thereby Tλ#ν0 = νλ). On the other hand,
the assumed concavity of ρ1/(β−N) yields

h
(
Tλ(y)

)1/(β−N) ≥ (1− λ)f(y)1/(β−N) + λg
(
T1(y)

)1/(β−N)
.

Thus, we have∫
Σ
hdn ≥

∫
Σ

h

ζλ
dνλ =

∫
Σ

h(Tλ)

ζλ(Tλ)
dν0

≥
∫
Σ

(
(1− λ)f1/(β−N) + λg(T1)

1/(β−N)
)β−N

×
{
(1− λ)

(
f∫

Σ f dn

)1/(1−N)

+ λ

(
g(T1)∫
Σ g dn

)1/(1−N)}N−1

dν0

≥
{
(1− λ)

(∫
Σ
f dn

)1/(β−1)

+ λ

(∫
Σ
g dn

)1/(β−1)}β−1

by integrating the Hölder inequality{
(1− λ)

(
f∫

Σ f dn

)1/(1−N)

+ λ

(
g(T1)∫
Σ g dn

)1/(1−N)}1−N

≤
(
(1− λ)f1/(β−N) + λg(T1)

1/(β−N)
)β−N

×
{
(1− λ)

(∫
Σ
f dn

)1/(β−1)

+ λ

(∫
Σ
g dn

)1/(β−1)}1−β
.

Since β − 1 < 0, this yields the convexity of w1/(β−1).
(ii) In this case, we can apply the Prékopa–Leindler inequality from [14, The-

orem 1.4] (with λ = 0). From the concavity of log ρ, for any minimal geodesic
η : [0, 1] −→ Σ, we obtain

h
(
η(λ)

)
≥ f

(
η(0)

)1−λ
g
(
η(1)

)λ
.
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Hence, the Prékopa–Leindler inequality on (Σ, gΣ, n) (under Ric∞ ≥ 0) implies∫
Σ
hdn ≥

(∫
Σ
f dn

)1−λ(∫
Σ
g dn

)λ
,

which shows the concavity of logw.

Remark 5.2. The assumption supM ψ <∞ is indeed necessary for the split-
ting. One can easily find a counter-example by considering the squared distance
function ψ = cd2(x0, ·) for some large c in hyperbolic spaces. It is also possible
to slightly weaken the boundedness into the so-called ψ-completeness condition
thanks to [50, Corollary 6.7].

Thus, the one-dimensional analysis in Section 3 leads us to generalizations of
Grünbaum’s inequality, as stated in Theorem 1.5. Again, we give two proofs of
Theorem 1.5, one via localization and one without.

5.1 Proof without localization

It follows from Proposition 5.1(ii) that, in the situation of Theorem 1.5(i),
(supp(w), w dx) is a CD(0,∞)-space. Then Lemma 3.4(ii) yields the claim. Sim-
ilarly, Theorem 1.5(ii) follows from Proposition 5.1(i) and Lemma 3.4(i).

5.2 Proof via localization

The localization as described in Subsection 4.2 has been known by Klartag
[27, Theorem 1.2] in this smooth setting. Then, with Lemma 3.4, we can prove
Theorem 1.5 in the same way as Subsection 4.2, under the additional assumption
µ ∈ P2(M).

Remark 5.3. As is natural from the monotonicity (1.4) of the weighted Ricci
curvature, we have (

N

N + 1

)N
≤ e−1 ≤

(
N ′

N ′ + 1

)N ′

for N ∈ (−∞,−1) and N ′ ∈ (1,∞). Note also that limN↑−1(N/(N + 1))N = 0,
thereby, our generalized Grünbaum’s inequality may not have a version for, say
N ∈ [−1, 0].

5.3 Rigidity

The rigidity result (Theorem 4.3) can also be generalized to the current setting.
Recall that Ω = supp(µ) and bγ(x0) = 0.

Theorem 5.4 (Rigidity; N < −2, N = ∞). In the situation of Theorem 1.5,
assume µ ∈ P2(M) and let (Q, q), (Mq,mq), and µq = ρmq = wq dx be the
elements of the localization as in Subsection 4.2.

(i) Suppose N = ∞ and that equality holds in (1.6). Then there exists c > 0
such that, for q-almost every needle q ∈ Q, we have bγ(Mq∩Ω) = (−∞, 1/c]
and

1

µq(Mq)
wq(x) = c exp

(
cbγ(x)− 1

)
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for all x ∈Mq ∩Ω. Moreover, regarding At := b−1
γ (t) ∩Ω as a set in Σ, we

have
[ρn](At) = cect−1

for all t ∈ (−∞, 1/c].
(ii) Suppose N < β < −2 and that equality holds in (1.7). Then there exists

c > 0 such that, for q-almost every needle q ∈ Q, we have bγ(Mq ∩ Ω) =
(−∞, 1/c] and

1

µq(Mq)
wq(x) = c

(
β

β + 1

)β(
1 +

c

β
bγ(x)

)β−1

for all x ∈Mq ∩ Ω. Moreover, we have

[ρn](At) =
cβ

β + 1

(
β + ct

β + 1

)β−1

for all t ∈ (−∞, 1/c].

Proof. In both cases, by using Lemma 3.5, we can follow the lines of the
proof of Theorem 4.3 to show the first assertion on wq(x), and integrating it in
q ∈ Q implies the second assertion. We remark that, in (ii), β < −2 is assumed
to ensure that wq(x) dx has finite second moment; recall Remark 3.6.

6. STABILITY ESTIMATES

This section is devoted to the stability problem for our Grünbaum’s inequality.
As a generalization of the rigidity, the stability is concerned with what happens
when equality nearly holds. Similarly to the previous sections, we first analyze
the one-dimensional case, and use it to study the general case via the localization.
The localization has played a vital role in some stability results, e.g., [9, 35, 36]
on isoperimetric inequalities, [4, 11] on the spectral gap (Poincaré inequality). A
stability result in the Euclidean setting can be found in [25].

6.1 Case of N ∈ (1,∞)

We first consider (3.3) with N > 1. Let us begin with the following observation.
For ((a, b), | · |, w(x) dx) as in Lemma 3.1, an immediate application of [21, The-
orem 6], with ϕ(x) = x2 and n = N , implies

2w(0)

∫ 1/(2w(0))

0
x2 dx ≤

∫ b

a
x2w(x) dx ≤ N2

2(N + 1)(N + 2)

1

w(0)2
,

which can be rewritten as

(6.1)
2(N + 1)(N + 2)

N2

∫ b

a
x2w(x) dx ≤ 1

w(0)2
≤ 12

∫ b

a
x2w(x) dx.

Observe that, in the rigidity case (3.8), we have

1

w(0)2
=

1

c2

(
N + 1

N

)2N

,

∫ 1/c

−N/c
x2w(x) dx =

1

c2
N

N + 2
.
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Remark 6.1. The right inequality in (6.1) is sharp for N = ∞. Indeed, for

the uniform distribution w ≡ 1/(2
√
3) on [−

√
3,
√
3], we have

∫ √
3

−
√
3
x2w(x) dx = 1

and equality holds in the right inequality.

Lemma 6.2. Let ((a, b), | · |, w(x) dx) be as in Lemma 3.1, and put c :=
w(0)/R(0). If

(6.2) R(0) ≤ (1 + ε)

(
N

N + 1

)N
holds for some ε > 0, then we have

(6.3)

∫
R
|R− F | dx ≤ 4

√
3NN+1

(N + 1)N
(1 + ε)

(
1− (1 + ε)−1/N

)(∫ b

a
x2w(x) dx

)1/2

,

where

F (x) :=

(
N

N + 1

)N(
1 +

c

N
x

)N
on [−N/c, 1/c], F (x) := 0 on (−∞,−N/c) and F (x) := 1 on (1/c,∞).

Note that F is the cumulative distribution function for the rigidity case (3.8).

Proof. Consider a probability density

u(x) = cR(0)

(
1 +

c

N
x

)N−1

on (−N/c, b̄), whose cumulative distribution function is given by

U(x) = R(0)

(
1 +

c

N
x

)N
.

Note that R(x) ≤ U(x) by (3.7), which implies b̄ ≤ b. Moreover, we find from
U(b̄) = 1 that

b̄ =
N

c

(
R(0)−1/N − 1

)
,

and then (3.3) yields b̄ ≤ 1/c. One can also compute that the barycenter ξ ∈
(−N/c, b̄) of u(x) dx is given by

ξ = R(0)

(
1 +

c

N
b̄

)N(
b̄− 1

c

N

N + 1

(
1 +

c

N
b̄

))
=

N

N + 1

(
b̄− 1

c

)
≤ 0.

Similarly to
∫ b
a R(x) dx = b in (3.4), we can calculate

ξ =

∫ b̄

−N/c
xU ′(x) dx = b̄−

∫ b̄

−N/c
U(x) dx.

Then, recalling a ≥ −N/c from the proof of Lemma 3.1 and b̄ ≤ b, we obtain∫
R
|R− U |dx =

∫ a

−N/c
U dx+

∫ b̄

a
(U −R) dx+

∫ b

b̄
(1−R) dx

=

∫ b̄

−N/c
U dx−

∫ b

a
R dx+ b− b̄ = −ξ.
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Next, observe from (3.3) that U(x) ≥ F (x), and
∫ 1/c
−N/c F (x) dx = 1/c holds

similarly to (3.4). Combining these, we obtain∫
R
|U − F |dx =

∫ b̄

−N/c
(U − F ) dx+

∫ 1/c

b̄
(1− F ) dx

=

∫ b̄

−N/c
U dx−

∫ 1/c

−N/c
F dx+

1

c
− b̄ = −ξ.

Now, if w almost attains the Grünbaum bound in the sense of the hypothesis
(6.2), then we have

b̄ ≥ 1

c

(
(N + 1)(1 + ε)−1/N −N

)
,

and hence

ξ ≥ N

c

(
(1 + ε)−1/N − 1

)
.

Thus, we deduce from the right inequality in (6.1) and the hypothesis (6.2) that∫
R
|R− F |dx ≤ −2ξ ≤ 2NR(0)

w(0)

(
1− (1 + ε)−1/N

)
≤ 4

√
3(1 + ε)

NN+1

(N + 1)N
(
1− (1 + ε)−1/N

)(∫ b

a
x2w(x) dx

)1/2

.

This completes the proof.

In view of Subsection 4.1, we obtain the following corollary.

Corollary 6.3. In the situation of Theorem 1.1(i) with bγ(x0) = 0, suppose
that

µ
(
{x ∈ X | bγ(x) ≤ 0}

)
≤ (1 + ε)

(
β

β + 1

)β
holds for some ε > 0. Then w(x) dx = bγ#µ satisfies (6.3) with β in place of N .

We next consider another immediate consequence of Lemma 6.2 via the lo-
calization. We use the same notations as Subsection 4.2: (Q, q), (Xq,mq), and
µq = ρmq = wq dx induced from the localization built from bγρ.

Proposition 6.4. In the situation of Theorem 1.1(i) with bγ(x0) = 0, sup-
pose that

µ
(
{x ∈ X | bγ(x) ≤ 0}

)
≤ (1 + ε)

(
β

β + 1

)β
holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that

(6.4) µ

( ⋃
q∈Q′

Xq

)
≥ δ

1 + δ

holds and every q ∈ Q′ satisfies∫
R
|Rq − Fq|dx

≤ 4
√
3ββ+1

(β + 1)β
(1 + ε′)

(
1− (1 + ε′)−1/β

)( 1

µq(Xq)

∫
Xq

b2
γ dµq

)1/2

,

(6.5)
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where we set

(6.6) ε′ := ε+ δ + εδ, cq :=
wq(0)∫ 0

−∞wq(x) dx
,

and Rq and Fq are the cumulative distribution functions for µq(Xq)
−1 · µq and

cq

(
β

β + 1

)β(
1 +

cq
β
x

)β−1

on

[
− β

cq
,
1

cq

]
,

respectively.

Recall that letting bγ(x0) = 0 loses no generality, and that Xq is identified
with bγ(Xq) ⊂ R via bγ .

Proof. In the second proof of Theorem 1.1 in Subsection 4.2, we obtained
(1.5) by integrating (4.3). Then the set Q′ ⊂ Q, consisting of q with

µq
(
{x ∈ Xq | bγ(x) ≤ 0}

)
≤ (1 + δ)(1 + ε)

(
β

β + 1

)β
µq(Xq),

satisfies (6.4). Indeed, if not, then integrating

µq
(
{x ∈ Xq | bγ(x) ≤ 0}

)
> (1 + δ)(1 + ε)

(
β

β + 1

)β
µq(Xq)

for q ∈ Q \Q′ yields

µ
(
{x ∈ X | bγ(x) ≤ 0}

)
> (1 + δ)(1 + ε)

(
β

β + 1

)β ∫
Q\Q′

µq(Xq) q(dq)

> (1 + δ)(1 + ε)

(
β

β + 1

)β(
1− δ

1 + δ

)
= (1 + ε)

(
β

β + 1

)β
,

which contradicts the hypothesis. Then (6.5) follows from Lemma 6.2 with N = β
and w = wq/µq(Xq).

6.2 Case of N ∈ (−∞,−1) ∪ {∞}

We saw in Subsection 6.1 that a key ingredient to derive a stability estimate
is the right inequality in (6.1), which gives a lower bound of w(0) in term of
the second moment for centered distributions. For N = ∞, log-concave prob-
ability densities have finite moment of any order (by the fact that they have
sub-exponential tails; see, e.g., [28, Section 2.2]) and (6.1) is still available. For
N < −1, however, one-dimensional CD(0, N)-probability densities may not have
finite second moment (recall Remark 3.6). Moreover, even if the second moment
is finite, (6.1) for negative N seems not known. Thus, in the following counterpart
of Lemma 6.2, we can use (6.1) only when N = ∞.

Lemma 6.5. Let ((a, b), | · |, w(x) dx) be as in Lemma 3.4, and put c :=
w(0)/R(0).
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(i) Suppose that w1/(N−1) is convex for some N < −1. If

(6.7) R(0) ≤ (1 + ε)

(
N

N + 1

)N
holds for some ε > 0, then we have

(6.8)

∫
R
|R− F |dx ≤ 2N

w(0)

(
N

N + 1

)N
(1 + ε)

(
1− (1 + ε)−1/N

)
,

where

F (x) :=

(
N

N + 1

)N(
1 +

c

N
x

)N
on (−∞, 1/c] and F (x) := 1 on (1/c,∞), which is the cumulative distribu-
tion function for the rigidity case of Lemma 3.5(i).

(ii) Suppose that logw is concave. If

R(0) ≤ (1 + ε)e−1

holds for some ε > 0, then we have

(6.9)

∫
R
|R− F |dx ≤ 4

√
3

e
(1 + ε) log(1 + ε)

(∫ b

a
x2w(x) dx

)1/2

,

where F (x) := ecx−1 on (−∞, 1/c] and F (x) := 1 on (1/c,∞), which is the
cumulative distribution function for the rigidity case of Lemma 3.5(ii).

Proof. (i) The proof goes as in Lemma 6.2. Consider a probability density

u(x) = cR(0)

(
1 +

c

N
x

)N−1

on (−∞, b̄), whose cumulative distribution function is given by

U(x) = R(0)

(
1 +

c

N
x

)N
.

We infer from (3.12) that R(x) ≤ U(x), and hence b̄ ≤ b. We also find

b̄ =
N

c

(
R(0)−1/N − 1

)
from U(b̄) = 1, and (3.9) ensures b̄ ≤ 1/c. The barycenter ξ ∈ (−∞, b̄) of u(x) dx
is given in the same way as Lemma 6.2 by

ξ =
N

N + 1

(
b̄− 1

c

)
≤ 0, ξ =

∫ b̄

−∞
xU ′(x) dx = b̄−

∫ b̄

−∞
U(x) dx.

Combining the latter with
∫ b
a R(x) dx = b, we deduce that∫

R
|R− U | dx =

∫ a

−∞
U dx+

∫ b̄

a
(U −R) dx+

∫ b

b̄
(1−R) dx = −ξ.
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Next, we observe from (3.9) that U(x) ≥ F (x), and
∫ 1/c
−∞ F (x) dx = 1/c similarly

to (3.4). Hence, we find∫
R
|U − F |dx =

∫ b̄

−∞
(U − F ) dx+

∫ 1/c

b̄
(1− F ) dx = −ξ.

If w satisfies (6.7), then we have

b̄ ≥ 1

c

(
(N + 1)(1 + ε)−1/N −N

)
, ξ ≥ N

c

(
(1 + ε)−1/N − 1

)
.

Therefore, we conclude that∫
R
|R− F | dx ≤ −2ξ ≤ 2N

w(0)

(
N

N + 1

)N
(1 + ε)

(
1− (1 + ε)−1/N

)
.

(ii) By the monotonicity on the dimensional parameter N (cf. (1.4)), w1/(N−1)

is convex for all N < −1. Therefore, by letting N → −∞ in (6.8), we obtain∫
R
|R− F | dx ≤ 2(1 + ε)

w(0)e
log(1 + ε),

from which (6.9) immediately follows with the help of (6.1).

Besides a corollary analogous to Corollary 6.3, one can show the following in
the same way as Proposition 6.4.

Proposition 6.6. (i) In the situation of Theorem 1.5(ii) with bγ(x0) = 0,
suppose that

µ
(
{x ∈M | bγ(x) ≤ 0}

)
≤ (1 + ε)

(
β

β + 1

)β
holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that
(6.4) holds (with Mq in place of Xq) and every q ∈ Q′ satisfies∫

R
|Rq − Fq|dx ≤ 2ββ+1

(β + 1)β
(1 + ε′)

(
1− (1 + ε′)−1/β

)µq(Mq)

wq(0)
,

where we set ε′ and cq as in (6.6), and Rq and Fq are the cumulative dis-
tribution functions for µq(Mq)

−1 · µq and

cq

(
β

β + 1

)β(
1 +

cq
β
x

)β−1

on

(
−∞,

1

cq

]
,

respectively.
(ii) In the situation of Theorem 1.5(i) with bγ(x0) = 0, suppose that

µ
(
{x ∈M | bγ(x) ≤ 0}

)
≤ (1 + ε)e−1

holds for some ε > 0. Then, for each δ > 0, there exists Q′ ⊂ Q such that
(6.4) holds (with Mq in place of Xq) and every q ∈ Q′ satisfies∫

R
|Rq − Fq| dx ≤ 4

√
3

e
(1 + ε′) log(1 + ε′)

(
1

µq(Mq)

∫
Mq

b2
γ dµq

)1/2

,

where we set ε′ and cq as in (6.6), and Rq and Fq are the cumulative distri-
bution functions for µq(Mq)

−1 ·µq and cqecqx−1 on (−∞, 1/cq], respectively.
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7. FURTHER PROBLEMS

We close the article with some further comments and problems.

(A) The results in Section 5 could be generalized to RCD(0, N)-spaces with N =
∞ or N ∈ (−∞,−1). We remark that the curvature-dimension condition for
N < 0 was defined in [40] (see also [41] for the case of N = 0). However,
both the splitting theorem and localization are not known even for N = ∞,
thereby we need to generalize them or consider a different method.

(B) For CD(0, N)-spaces with N ∈ (1,∞), though the localization is known
by [10] under the essential non-branching condition, the isometric splitting
does not hold in general. Indeed, n-dimensional normed spaces endowed with
the Lebesgue measure satisfy CD(0, n) but do not isometrically split off the
real line. Furthermore, without the essential non-branching condition, even
the topological splitting may fail; we refer to [33] for a counter-example.

(C) Finsler manifolds provide examples of CD-spaces with possibly asymmetric
distance structures (see [38, 42]). In this setting, the localization is known
by [10, 41]. Moreover, a weak splitting theorem can be found in [39]; for
example, there is a one-parameter family of isometric translations (generated
by ∇bγ) in the Berwald case. Since this splitting is not isometric, we do not
have an exact formula as in (4.1) (consider the case of normed spaces), and
it is unclear if Lemma 4.1 can be generalized.

(D) Our rigidity results (Theorems 4.3, 5.4) show that equality in generalized
Grünbaum’s inequalities is attained only when the measure µ possesses a
cone structure. As we discussed in Remark 4.4, we also expect that the set
supp(µ) is also a cone, as in the Euclidean setting. To achieve this goal, we
would need a more geometric argument, possibly with the help of [3, 16].

(E) Once the rigidity as above is established, it is natural to expect a correspond-
ing stability estimate (in a more geometric way than Section 6), bounding
the volume of the symmetric difference from a cone in a certain sense, akin
to [25].
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tion. Beiträge Algebra Geom, 40(1):163–183, 1999.

[22] Nicola Gigli. The splitting theorem in non-smooth context. arXiv:1302.5555,
2013.

[23] Nicola Gigli. An overview of the proof of the splitting theorem in spaces
with non-negative Ricci curvature. Anal. Geom. Metr. Spaces, 2(1):169–213,
2014.



33

[24] Nicola Gigli, Kazumasa Kuwada, Christian Ketterer, and Shin-ichi Ohta.
Rigidity for the spectral gap on RCD(K,∞)-spaces. Amer. J. Math.,
142(5):1559–1594, 2020.

[25] Helmut Groemer. Stability theorems for two measures of symmetry. Discrete
Comput. Geom., 24(2-3):301–311, 2000.
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