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Abstract

We generalize the Alexandrov-Toponogov comparison theorems to Finsler mani-
folds. Under suitable upper (lower, resp.) bounds on the flag and tangent curvatures
together with the 2-uniform convexity (smoothness, resp.) of tangent spaces, we
show the 2-uniform convexity (smoothness, resp.) of Finsler manifolds. As applica-
tions, we prove the almost everywhere existence of the second order differentials of
semi-convex functions and of c-concave functions with the quadratic cost function.

1 Introduction

The aim of this article is to present an intersection of comparison Finsler geometry and
the geometry of Banach spaces. We refer to [BCS], [Eg], [Sh1], [Sh2], [Sh3] and [WX]
for known results in comparison Finsler geometry. One of the milestones in comparison
Riemannian geometry is the Alexandrov-Toponogov comparison theorems which have
generated, beyond pure Riemannian geometry, the deep theories of CAT(κ)-spaces and
Alexandrov spaces (see [BH] and [BBI]). However, it is well-known that a Finsler manifold
can be a CAT(κ)-space or an Alexandrov space only if it is Riemannian. Similarly, a
Banach space is a CAT(0)-space or an Alexandrov space of nonnegative curvature if and
only if it happens to be a Hilbert space. Therefore these conditions are too restrictive in
Finsler geometry, and we propose a generalization of them from the viewpoint of Banach
space theory.

In a fascinating paper [BCL], Ball, Carlen and Lieb have introduced two important
notions in Banach space theory, called the p-uniform convexity and the q-uniform smooth-
ness. A Banach space (X, | · |) is said to be p-uniformly convex for 2 ≤ p < ∞ if there is
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holds for any v, w ∈ X. Similarly, the q-uniform smoothness for 1 < q ≤ 2 is defined by∣∣∣∣v + w
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Since then, these simple inequalities turned out to be useful instruments in Banach space
theory and the geometry of Banach spaces. For instance, Lp-spaces are 2-uniformly convex
with C = 1/

√
p − 1 if 1 < p ≤ 2 ([BCL, Proposition 3]), and p-uniformly convex with

C = 1 if 2 ≤ p < ∞ (Clarkson’s inequality). By duality, Lq-spaces are 2-uniformly smooth
with S =

√
q − 1 if 2 ≤ q < ∞, and q-uniformy smooth with S = 1 if 1 < q ≤ 2. The

quadratic cases p = q = 2 are of particular interest.
One natural generalization of the 2-uniform convexity (1.1) to a nonlinear metric space

(X, d) is the following: For any point x ∈ X and any minimal geodesic η : [0, 1] −→ X,
we have
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In other words, d2/dt2[d(x, η(t))2] ≥ 2C−2d(η(0), η(1))2 in a weak sense. If C = 1, then
the inequality (1.3) corresponds to the CAT(0)-property. Therefore the inequality (1.3)
involves two different interpretations: a nonlinearized 2-uniform convexity as well as a
weakened CAT(0)-property. (Although there is another possibility
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we do not treat it in this article.) Similarly, the 2-uniform smoothness (1.2) is nonlin-
earized as
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, (1.4)

and it contains Alexandrov spaces of nonnegative curvature as the special case of S = 1.
The inequalities (1.3) and (1.4) play interesting roles and have various applications in

metric geometry, the nonlinearization of the geometry of Banach spaces and their related
fields (see [Oh1], [Oh2], [Oh3], [Oh4] and [Oh5]). For instance, the 2-uniform smoothness
finds its usefulness in Wasserstein geometry, as the L2-Wasserstein space over a compact
geodesic space X is 2-uniformly smooth if and only if so is X ([Oh4], [Sa]).

We will show that a Finsler manifold is 2-uniformly convex (smooth, resp.) if the flag
curvature and Shen’s tangent curvature are bounded above (below, resp.) and if tangent
spaces are 2-uniformly convex (smooth, resp.) with a uniform bound on the constant C
in (1.1) (S in (1.2), resp.). See Theorems 4.2, 5.1, Corollaries 4.4 and 5.2 for precise
statements. These naturally extend the Alexandrov-Toponogov comparison theorems.
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We remark that Theorem 5.1 (the local 2-uniform convexity) has already been observed
by Shen [Sh3].

We provide two analytic applications. The first one (Theorem 6.6) is the Finsler
analogue of the famous Alexandrov-Bangert theorem ([Al], [Ba]) on the almost everywhere
existence of the second order differentials of (semi-)convex functions. The 2-uniform
convexity appears to extend the theorem from convex functions to semi-convex functions.
In the middle of the proof, we generalize Greene and Wu’s approximation technique
(Proposition 6.7), and it seems to be of independent interest.

The second application (Theorem 7.4) is the almost everywhere second order differ-
entiability of c-concave functions with the quadratic cost function c(x, y) = d(x, y)2/2.
It follows from the above first application and the 2-uniform smoothness. The class of
c-concave functions is known to play quite an important role in mass transport theory
(see [Br], [CMS], [Mc], [RR], [Vi1] and [Vi2]). In fact, in a recent work of the author
[Oh6], Theorem 7.4 acts as one of key ingredients of extending Lott, Sturm and Villani’s
remarkable theory ([LV1], [LV2], [St1], [St2]) to Finsler manifolds. To be precise, just like
the Riemannian case, a kind of lower Ricci curvature bound turns out equivalent to the
curvature-dimension condition. Then there are many applications in functional inequali-
ties, interpolation inequalities and the concentration of measure phenomenon, and most
of them are new in the Finsler setting.

The article is organized as follows: In Sections 2 and 3, we review the basics of Finsler
geometry. Sections 4 and 5 are devoted to the 2-uniform smoothness and convexity of
Finsler manifolds, respectively. Then we apply them to establishing the almost everywhere
second order differentiability of semi-convex and c-concave functions in Sections 6 and 7,
respectively.

Throughout the article, without otherwise indicated, Finsler manifolds are only pos-
itively homogeneous of degree one, and every geodesic has a constant speed (i.e., it is
parametrized proportionally to the arclength).

Acknowledgements. I would like to thank Karl-Theodor Sturm for discussions from which
this work started. This work was done while I was visiting Institut für Angewandte
Mathematik, Universität Bonn. I am also grateful to the institute for its hospitality.

2 Preliminaries for Finsler geometry

In this and the next sections, we review a fundamental knowledge of Finsler geometry.
We refer to [BCS] and [Sh3] as comprehensive references.

2.1 Fundamental and Cartan tensors

Let M be a connected C∞-manifold. For x ∈ M , we denote by TxM the tangent space
at x, put TM :=

∪
x∈M TxM and let π : TM −→ M be the natural projection. Given a

local coordinate system (xi)n
i=1 : U −→ Rn on an open set U ⊂ M , we will always denote
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by (xi, yi)n
i=1 a local coordinate system on π−1(U) ⊂ TM given by, for v ∈ π−1(U),

v =
∑

i

vi ∂

∂xi

∣∣∣
π(v)

=
∑

i

yi(v)
∂

∂xi

∣∣∣
π(v)

.

Definition 2.1 (Finsler structure) A C∞-Finsler structure of a C∞-manifold M is a
function F : TM −→ [0,∞) satisfying the following conditions:

(1) The function F is C∞ on TM \ 0, where 0 stands for the zero section.

(2) (Positive homogeneity of degree 1) For any v ∈ TM and positive number λ > 0, we
have F (λv) = λF (v).

(3) (Strong convexity) Given a local coordinate system (xi)n
i=1 : U −→ Rn on U ⊂ M ,

the n × n matrix

gij(v) :=
1

2

∂2(F 2)

∂yi∂yj
(v)

is positive-definite at every v ∈ π−1(U) \ 0.

In other words, the function F provides a Minkowski norm on each tangent space,
and is C∞ in the horizontal direction. As a consequence, F is zero on the zero section
0 and positive on TM \ 0. Thanks to the positive homogeneity, gij(λv) = gij(v) holds
for any v ∈ TM \ 0 and λ > 0. We emphasis that F is not necessarily absolutely
homogeneous, that is, F (v) 6= F (−v) may happen. This unreversibility of F causes the
possible nonsymmetricity of the associated distance function.

The strong convexity certainly guarantees that F is strictly convex on each tangent
space TxM in the sense that F (v + w) < F (v) + F (w) holds unless v and w are colinear.
Moreover, the matrix (gij(v))n

i,j=1 defines a Hilbertian (Riemannian) structure of Tπ(v)M
and we denote it by gv, i.e.,

gv

( ∑
i

wi
1

∂

∂xi

∣∣∣
π(v)

,
∑

j

wj
2

∂

∂xj

∣∣∣
π(v)

)
:=

∑
i,j

gij(v)wi
1w

j
2.

Note that gv(v, v) = F (v)2 follows from Euler’s theorem (cf. [BCS, Theorem 1.2.1]). We
call gij(v) the fundamental tensor and further define the Cartan tensor by, for v ∈ TM \0,

Aijk(v) :=
F (v)

2

∂gij

∂yk
(v) =

F (v)

4

∂3(F 2)

∂yi∂yj∂yk
(v).

Observe that Aijk(λv) = Aijk(v) holds for any λ > 0. If F is coming from a Riemannian
structure, then gv coincides with the original Riemannian structure for all v ∈ TM \ 0,
therefore the Cartan tensors vanish everywhere. In fact, the converse is also true, namely
F is Riemannian if and only if the Cartan tensors vanish everywhere on TM \ 0.
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2.2 Chern connection and covariant derivatives

We define the formal Christoffel symbol by

γi
jk(v) :=

1

2

∑
l

gil(v)

{
∂glj

∂xk
(v) − ∂gjk

∂xl
(v) +

∂gkl

∂xj
(v)

}
for v ∈ TM \ 0, and also define

N i
j(v) :=

∑
k

γi
jk(v)vk − 1

F (v)

∑
k,l,m

Ai
jk(v)γk

lm(v)vlvm,

where (gij) stands for the inverse matrix of (gij) and Ai
jk :=

∑
l g

ilAljk.
Given a connection ∇ on the pulled-back tangent bundle π∗TM , we denote its con-

nection one-forms by ωj
i, that is,

∇v
∂

∂xj
=

∑
i

ωj
i(v)

∂

∂xi
, ∇vdxi = −

∑
j

ωj
i(v) dxj.

Different from the Riemannian situation, there are several connections (due to Cartan,
Chern, Berwald etc.) each of which is canonical in its own way. We use only one of them
in this article.

Definition 2.2 (Chern connection) Let (M,F ) be a C∞-Finsler manifold. Then there
is a unique connection ∇ on the pulled-back tangent bundle π∗TM , called the Chern
connection, whose connection one-forms ωj

i satisfy the following conditions: Fix a local
coordinate system (xi)n

i=1 : U −→ Rn on U ⊂ M .

(1) (Torsion-freeness) For any i = 1, 2, . . . , n, we have∑
j

dxj ∧ ωj
i = 0.

(2) (Almost g-compatibility) For any i, j = 1, 2, . . . , n, we have

dgij −
∑

k

(gkjωi
k + gikωj

k) =
2

F

∑
k

Aijk δyk,

where we set δyk := dyk +
∑

l N
k
l dxl.

Henceforce, ∇ always stands for the Chern connection on π∗TM . The torsion-freeness
says that the connection one-form ωj

i does not have any dyk-term, so that we can write
ωj

i =
∑

k Γi
jk dxk. The torsion-freeness also implies Γi

jk = Γi
kj and, together with the

almost g-compatibility, we find the explicit formula

Γi
jk = γi

jk −
1

F

∑
l,m

gil(AljmNm
k − AjkmNm

l + AklmNm
j).
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If (M,F ) is Riemannian, then the Cartan tensors vanish everywhere, and hence the
almost g-compatibility reduces to the g-compatibility dgij =

∑
k(gkjωi

k+gikωj
k), therefore

the Chern connection is nothing but the Levi-Civita connection. We say that a Finsler
manifold (M,F ) is of Berwald type if Γi

jk(v) depends only on x = π(v) (i.e., Γi
jk is

fiber-wise constant). For instance, Riemannian manifolds and Minkowski spaces are of
Berwald type. Roughly speaking, a Finsler manifold of Berwald type is modeled on a
single Minkowski space. Finsler manifolds of Berwald type have already provided a rich
family of non-Riemannian spaces.

For a C∞-vector field X on M and two nonzero vectors v, w ∈ TxM \ 0, we define the
covariant derivative Dw

v X with reference vector w as

(Dw
v X)(x) :=

∑
i,j

{
vj ∂X i

∂xj
(x) +

∑
k

Γi
jk(w)vjXk(x)

}
∂

∂xi

∣∣∣
x
, (2.1)

where X(x) =
∑

i X
i(x)(∂/∂xi)|x. We usually choose w = v or X(x).

2.3 Flag and tangent curvatures

The Chern connection ∇ leads the corresponding curvature two-form

Ωj
i(v) := dωj

i −
∑

k

ωj
k ∧ ωk

i,

where we put ω ∧ τ := ω ⊗ τ − τ ⊗ ω. It can be rewritten as

Ωj
i(v) =

1

2

∑
k,l

Rj
i
kl(v) dxk ∧ dxl +

1

F (v)

∑
k,l

Pj
i
kl(v) dxk ∧ δyl,

where we impose Rj
i
kl = −Rj

i
lk. Recall that δyl = dyl +

∑
m N l

m dxm. Here the (δyk ∧
δyl)-terms do not appear by virtue of the torsion-freeness of the Chern connection.

Given two linearly independent vectors v, w ∈ TxM \ 0, we define the flag curvature
by

K(v, w) :=
gv(R

v(w, v)v, w)

gv(v, v)gv(w,w) − gv(v, w)2
,

where we set, for v =
∑

i v
i(∂/∂xi)|x and w =

∑
i w

i(∂/∂xi)|x,

Rv(w, v)v :=
∑
i,j,k,l

vjRj
i
kl(v)wkvl ∂

∂xi

∣∣∣
x
. (2.2)

Observe that K(λv, µw) = K(v, w) holds for any λ > 0 and µ 6= 0. Unlike the Riemannian
case, the flag curvature K(v, w) depends not only on the flag {λv + µw |λ, µ ∈ R}, but
also on the flag pole {λv |λ > 0}. One merit of the flag curvature is its independence of
a choice of connections.
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We next recall another kind of curvature introduced by Shen (see [Sh2] and [Sh3]).
For two nonzero vectors v, w ∈ TxM \ 0, we define the tangent curvature by

Tv(w) :=
∑
i,j,k,l

vlgli(v)
{
Γi

jk(w) − Γi
jk(v)

}
wjwk.

If V and W are C∞-vector fields on M , then TV (W ) is rewritten as, by using the covariant
derivative (2.1),

TV (W ) = gV (DW
W W − DV

W W,V ). (2.3)

Observe that Tv(v) = 0 and Tλv(µw) = λµ2Tv(w) for any λ, µ > 0. Hence we say that
T ≥ −δ or T ≤ δ for a nonnegative constant δ ≥ 0 if we have

Tv(w) ≥ −δF (v)F (w)2 or Tv(w) ≤ δF (v)F (w)2 (2.4)

for all v, w ∈ TxM \ 0 and x ∈ M , respectively. Although somewhat stronger bounds

Tv(w) ≥ −δF (v)
{
gv(w,w) − gv

(
w, v/F (v)

)2} [
≥ −δS(x)2F (v)F (w)2

]
,

Tv(w) ≤ δF (v)
{
gv(w,w) − gv

(
w, v/F (v)

)2} [
≤ δS(x)2F (v)F (w)2

]
as in [Sh2] and [Sh3] might be more natural in some situations, we prefer (2.4) because
they are suitable to describe our results. (See (4.1) for the definition of S(x).) It is known
that the tangent curvature T vanishes everywhere if and only if (M,F ) is of Berwald type
(see [Sh2, Proposition 3.1], [Sh3, Proposition 10.1.1] and also [BCS, Proposition 10.2.1]),
so that the tangent curvature T measures the variation of tangent Minkowski spaces in a
sense.

3 Variational formulas and Jacobi fields

3.1 Geodesics and exponential map

For a C∞-curve η : [0, r] −→ M , we define its arclength in a natural way by

L(η) :=

∫ r

0

F
(
η̇(t)

)
dt, η̇(t) :=

dη

dt
(t).

Then the corresponding distance function d : M × M −→ [0,∞) is given by d(x1, x2) :=
infη L(η), where the infimum is taken over all C∞-curves η from x1 to x2. We emphasis
that d is not necessarily symmetric (i.e., d(x1, x2) 6= d(x2, x1) may happen) because F is
merely positively homogeneous. Nonetheless, d is positive away from the diagonal set and
satisfies the triangle inequality d(x1, x3) ≤ d(x1, x2) + d(x2, x3). We define the forward
and backward open balls of center x ∈ M and radius r > 0 by

B+(x, r) := {z ∈ M | d(x, z) < r}, B−(x, r) := {z ∈ M | d(z, x) < r}.

Similarly, forward and backward closed balls are denoted by B̄+(x, r) and B̄−(x, r), re-
spectively.
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A C∞-curve η : [0, r] −→ M is called a geodesic if it satisfies Dη̇
η̇ [η̇/F (η̇)] = 0 on [0, r]

(compare this with the first variation formula (3.3) below). We remark that the reverse
curve η̄(t) := η(r − t) may not be a geodesic. Let V and W be C∞-vector fields along a
geodesic η : [0, r] −→ M . Then it holds that (cf. [BCS, Exercise 5.2.3])

d

dt

[
gη̇(t)

(
V (t),W (t)

)]
= gη̇(t)

(
Dη̇

η̇V (t),W (t)
)

+ gη̇(t)

(
V (t), Dη̇

η̇W (t)
)
. (3.1)

Note that a C∞-curve η : [0, r] −→ M is a geodesic of constant speed (i.e., F (η̇) is
constant) if and only if we have Dη̇

η̇ η̇ ≡ 0. As was indicated at the end of the introduction,
every geodesic in this article will have constant speed.

We define the exponential map by exp v = expπ(v) v := η(1) for v ∈ TM if there is
a geodesic η : [0, 1] −→ M with η̇(0) = v. The exponential map is only C1 at the zero
section, and is C2 at the zero section if and only if (M,F ) is of Berwald type. Moreover,
the squared distance function d(x, ·)2 from a point x ∈ M is C2 at x for all x ∈ M if
and only if (M,F ) is Riemannian ([Sh1, Proposition 2.2]). The lack of C2-smoothness
is troublesome from the analytic viewpoint, and we indeed need some tricks in Section 6
which are unnecessary in the Riemannian case. Nevertheless, the following useful lemma
holds true. We remark that ξv(t) = exp tv holds only for t ≥ 0 in the lemma.

Lemma 3.1 (cf. [BCS, page 125]) Let (M,F ) be a C∞-Finsler manifold and take an open
set U ⊂ M whose closure U is compact. Then there exists a positive constant ε > 0 such
that the map

{v ∈ π−1(U) | 0 < F (v) < ε} × (−1, 1) 3 (v, t) 7−→ ξv(t) ∈ M

is well-defined and C∞, where ξv : (−1, 1) −→ M is the geodesic with ξ̇v(0) = v.

A C∞-Finsler manifold (M,F ) is said to be forward geodesically complete if the
exponential map is defined on the entire TM , in other words, if there is a geodesic
η : [0,∞) −→ M with η̇(0) = v for any given v ∈ TM . Then any two points in M can
be connected by a minimal geodesic, i.e., a geodesic whose arclength coincides with the
distance from the initial point to the terminal point.

Given a point x ∈ M , the injectivity radius inj(x) at x is the supremum of r > 0
such that the geodesic η(t) := expx tv exists and is minimal on [0, 1] for all v ∈ TxM
with F (v) ≤ r. Then inj(x) is positive and possibly infinite, and the function x 7−→
inj(x) is continuous (cf. [BCS, Proposition 8.4.1(2)]). The exponential map at x is a C1-
diffeomorphism from B+(0, inj(x)) = {v ∈ TxM |F (v) < inj(x)} to B+(x, inj(x)), and is
C∞ on B+(0, inj(x)) \ 0.

3.2 Gradient vectors and Hessians

We denote by (T ∗
xM,F ∗) the dual space of (TxM,F ). For a C1-function f : M −→ R,

we define the gradient vector of f at x ∈ M as the Legendre transform of its differential
dfx ∈ T ∗

xM . That is to say, grad f(x) := Lx(dfx) ∈ TxM is the unique vector satisfying
F (grad f(x)) = F ∗(dfx) and dfx(grad f(x)) = F ∗(dfx)

2. Note that grad f(x) faces toward
the steepest direction of f .
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In the Riemannian situation, the Hessian of a C2-function f : M −→ R at x ∈ M is a
bilinear function Hess f : TxM ×TxM −→ R defined by Hess f(v, w) := g(∇v(grad f), w).
In particular, for a geodesic η(t) := expx tv, we observe

Hess f(v, v) =
d

dt

∣∣∣
t=0

[
g
(
grad f ◦ η(t), η̇(t)

)]
=

d2

dt2

∣∣∣
t=0

[
f ◦ η(t)

]
.

In the Finsler case, the Hessian can have only the second, restricted meaning. We define
the Hessian of a C2-function f : M −→ R on a Finsler manifold (M,F ) by

Hess f(v) :=
d2

dt2

∣∣∣
t=0

[
f(expx tv)

]
, (3.2)

where v ∈ TxM .

3.3 Variational formulas for arclength

We consider a C∞-variation σ : [0, r] × (−ε, ε) −→ M and define

T (t, s) :=
∂σ

∂t
(t, s), U(t, s) :=

∂σ

∂s
(t, s).

Then the first variation of arclength is written as (cf. [BCS, Exercise 5.2.4])

∂

∂s
L
(
σ(·, s)

)
=

gT (r)(U, T )

F (T (r))
−

gT (0)(U, T )

F (T (0))
−

∫ r

0

gT (t)

(
U,DT

T

[
T

F (T )

])
dt. (3.3)

We abbreviated as T (t) := T (t, s), gT (r)(U, T ) := gT (r,s)(U(r, s), T (r, s)) and so on in the
right-hand side for brevity.

For a C∞-variation σ : [0, r]× (−ε, ε) −→ M such that σ(·, 0) is a geodesic, its second
variation of arclength is calculated that (cf. [BCS, Exercise 5.2.7])

∂2

∂s2
L
(
σ(·, 0)

)
=

∫ r

0

1

F (T (t))

{
gT (t)(D

T
T U,DT

T U) − gT (t)(R
T (U, T )T, U)

}
dt

+
gT (r)(D

T
UU, T )

F (T (r))
−

gT (0)(D
T
UU, T )

F (T (0))
−

∫ r

0

1

F (T (t))

{
∂F (T )

∂s
(t, 0)

}2

dt. (3.4)

We again abbreviated as T (t) := T (t, 0) etc. Recall (2.2) for the definition of RT (U, T )T .

3.4 Jacobi fields and Rauch’s comparison theorem

A C∞-vector field J along a geodesic η : [0, r] −→ M is called a Jacobi field if it satisfies

Dη̇
η̇D

η̇
η̇J + Rη̇(J, η̇)η̇ = 0

on [0, r]. Any Jacobi field is represented as the variational vector field of a geodesic
variation and vice versa (cf. [BCS, Section 5.4, Exercise 7.1.1]). The Finsler version of
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Rauch’s comparison theorem plays an essential role in Section 5. Here we prove it for
thoroughness. For k ∈ R, we define the function sk by

sk(t) :=

 (1/
√

k) sin(
√

kt) for t ∈ [0, π/
√

k] if k > 0,
t for t ∈ [0,∞) if k = 0,

(1/
√
−k) sinh(

√
−kt) for t ∈ [0,∞) if k < 0.

In other words, sk is the solution of the differential equation f ′′ + kf = 0 with the initial
conditions f(0) = 0 and f ′(0) = 1.

Theorem 3.2 (Rauch’s comparison theorem, cf. [BCS, Corollary 9.8.1]) Let (M,F ) be a
C∞-Finsler manifold and J be a Jacobi field along a unit speed geodesic η : [0, r] −→ M
with J(0) = 0. Assume K ≤ k for some k ≥ 0 and r < π/

√
k if k > 0. Then we have

1

2

d

dt

∣∣∣
t=r

[
gη̇(t)(J, J)

]
≥ s′k(r)

sk(r)
gη̇(r)(J, J).

Proof. Throughout the proof, we put gt := gη̇(t) and J ′ := Dη̇
η̇J for simplicity. If J(r) = 0,

then the assertion is clear, so that we suppose J(r) 6= 0. We may also assume J 6= 0 on
(0, r). Otherwise we replace J with J |[τ,r] such that J(τ) = 0 and J 6= 0 on (τ, r], and
observe that s′k(r − τ)/sk(r − τ) ≥ s′k(r)/sk(r).

It follows from (3.1) and the assumption K ≤ k that, at each t ∈ (0, r),

d2

dt2
[
gt(J, J)1/2

]
=

d

dt

[
gt(J, J ′)

gt(J, J)1/2

]
=

gt(J, J ′′) + gt(J
′, J ′)

gt(J, J)1/2
− gt(J, J ′)2

gt(J, J)3/2

= −gt(R
η̇(J, η̇)η̇, J)

gt(J, J)1/2
+

gt(J
′, J ′)gt(J, J) − gt(J, J ′)2

gt(J, J)3/2

≥ −kgt(J, J)−1/2{gt(J, J)gt(η̇, η̇) − gt(J, η̇)2}
≥ −kgt(J, J)1/2.

It implies

d

dt

[
d

dt

[
gt(J, J)1/2

]
sk(t) − gt(J, J)1/2s′k(t)

]
≥ 0.

This together with sk(0) = 0 and J(0) = 0 shows the required inequality. 2

We remark that Rauch’s comparison theorem is usually stated for all k ∈ R provided
that J is gη̇-orthogonal to η̇. However, the above statement (valid only for nonnegative
k) is more convenient in our usage.

4 Uniform smoothness

In this section, we show the 2-uniform smoothness of Finsler manifolds.
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4.1 Uniform smoothness and convexity constants

We introduce two quantities which estimate how far F is from Riemannian structures.
For x ∈ M , we define

S(x) := sup
v,w∈TxM\0

gw(v, v)1/2

gv(v, v)1/2
= sup

v,w∈TxM\0

gw(v, v)1/2

F (v)
, (4.1)

C(x) := sup
v,w∈TxM\0

gv(v, v)1/2

gw(v, v)1/2
= sup

v,w∈TxM\0

F (v)

gw(v, v)1/2
. (4.2)

Clearly we see S(x), C(x) ≥ 1, and it will turn out that S(x) and C(x) measure the
smoothness and convexity of F on TxM , respectively (see Propositions 4.1 and 4.6 below).
The uniformity constant in [Eg] amounts to supx∈M max{S(x), C(x)} in this context.

Proposition 4.1 Let (M,F ) be a C∞-Finsler manifold. Then the following three condi-
tions are equivalent:

(i) We have S(x) = 1 for all x ∈ M .

(ii) We have C(x) = 1 for all x ∈ M .

(iii) (M,F ) is a Riemannian manifold.

Proof. If (M,F ) is Riemannian, then clearly S(x) = C(x) = 1 holds for any x ∈ M . If
we have S(x) = 1 for any x ∈ M , then we find

F

(
v + w

2

)2

≥ 1

2
F (v)2 +

1

2
F (w)2 − 1

4
F (w − v)2

for all v, w ∈ TxM \ 0 by Proposition 4.6 below. We also find the reverse inequality by
exchanging (v, w) for ((v + w)/2, (w − v)/2), so that equality holds. It implies S(x) =
C(x) = 1, and hence gw(v, v) = F (v)2 for all v, w ∈ TxM \ 0. Therefore gw depends only
on x = π(w), and thus (M,F ) is Riemannian. The case of C ≡ 1 is similar. 2

4.2 Uniform smoothness of Finsler manifolds

Theorem 4.2 (Uniform smoothness) Let (M,F ) be a connected, forward geodesically
complete C∞-Finsler manifold. Assume that there are constants k, δ ≥ 0 and S ≥ 1 for
which

K ≥ −k, T ≥ −δ, S ≤ S.

Then we have, for any x, z ∈ M and v ∈ TzM with F (v) = 1,

lim sup
s→0

1

2s2

{
d
(
x, ξv(−s)

)2
+ d

(
x, ξv(s)

)2 − 2d(x, z)2
}

≤

 S2

√
kr cosh(

√
kr)

sinh(
√

kr)
+ rδ if k > 0,

S2 + rδ if k = 0,

where ξv : (−ε, ε) −→ M is the geodesic with ξ̇v(0) = v and r := d(x, z).
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Proof. If z = x, then we immediately obtain

lim
s→0

1

2s2

{
d
(
z, ξv(−s)

)2
+ d

(
z, ξv(s)

)2}
=

1

2

{
F (−v)2 + F (v)2

}
=

1

2

{
g−v(−v,−v) + 1

}
=

1

2

{
g−v(v, v) + 1

}
≤ S2,

so that we assume z 6= x. Let us also assume k > 0. Then the case of k = 0 follows from
taking the limit as k tends to zero. Fix a unit speed, minimal geodesic η : [0, r] −→ M
from x to z, and take a parallel vector field V along η (i.e., Dη̇

η̇V ≡ 0) such that V (r) = v.

We also define the function f(t) := sinh(
√

kt)/ sinh(
√

kr). For sufficiently small ε > 0,
we consider the variation σ : [0, r] × (−ε, ε) −→ M given by σ(t, s) := ξV (t)(sf(t)). Note
that σ is C∞ by Lemma 3.1. As in Section 3, we put

T (t, s) :=
∂σ

∂t
(t, s), U(t, s) :=

∂σ

∂s
(t, s),

T (t) := T (t, 0) = η̇(t), U(t) := U(t, 0) = f(t)V (t).

As V is parallel along η, it holds that (DT
T U)(t) = f ′(t)V (t). Thus the second variation

formula (3.4) yields that

∂2

∂s2
L
(
σ(·, 0)

)
=

∫ r

0

[
f ′(t)2gT (t)(V, V )

−K
(
T (t), U(t)

){
f(t)2gT (t)(V, V ) − f(t)2gT (t)(T, V )2

}]
dt

+ gT (r)(D
T
UU, T ) −

∫ r

0

{
∂(F (T ))

∂s
(t, 0)

}2

dt.

We deduce from (3.1), (4.1), (2.3) and (2.4) that

gT (t)(V, V ) = gT (r)(v, v) ≤ S(z)2F (v)2 ≤ S2,

gT (r)(D
T
UU, T ) = gT (r)(D

U
U U, T ) − TT (r)(v) ≤ δF (v)2 = δ,∫ r

0

{
∂(F (T ))

∂s
(t, 0)

}2

dt ≥ 1

r

{ ∫ r

0

∂(F (T ))

∂s
(t, 0) dt

}2

=
1

r

{
∂

∂s
L

(
σ(·, 0)

)}2

.

These together imply

∂2

∂s2

[
L

(
σ(·, 0)

)2]
= 2r

∂2

∂s2
L
(
σ(·, 0)

)
+ 2

{
∂

∂s
L

(
σ(·, 0)

)}2

≤ 2r

∫ r

0

[
f ′(t)2S2 + kf(t)2

{
gT (t)(V, V ) − gT (t)(T, V )2

}]
dt + 2rδ

≤ 2r

∫ r

0

{
f ′(t)2 + kf(t)2

}
S2 dt + 2rδ

= 2r

{
S2k

sinh2(
√

kr)

∫ r

0

cosh(2
√

kt) dt + δ

}
= 2r

{
S2

√
k cosh(

√
kr)

sinh(
√

kr)
+ δ

}
.
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This completes the proof since

lim sup
s→0

1

s2

{
d
(
x, ξv(−s)

)2
+ d

(
x, ξv(s)

)2 − 2d(x, z)2
}
≤ ∂2

∂s2

[
L
(
σ(·, 0)

)2]
.

2

Note that the analogue of the above theorem for K ≥ k > 0 (by replacing the right-
hand side with S2

√
kr cos(

√
kr)/ sin(

√
kr) + rδ) does not hold true. It is observed by

considering x = η(0) and v = η̇(l) for a geodesic η in a standard unit sphere (where
K ≡ 1, T ≡ 0 and S ≡ 1).

Remark 4.3 The three kinds of ‘curvature bounds’ in Theorem 4.2 appear for natural
reasons. On one hand, the flag curvature measures how the space is curved like the sec-
tional curvature in Riemannian geometry. On the other hand, the 2-uniform smoothness
constant S controls the smoothness (concavity) of F on each tangent space (see Proposi-
tion 4.6 below), and the tangent curvature governs the variance of tangent spaces.

We put

hs
0(δ, S, r) := S2 + rδ, hs

k(δ, S, r) := S2

√
kr cosh(

√
kr)

sinh(
√

kr)
+ rδ for k > 0. (4.3)

Corollary 4.4 Let (M,F ), k, δ and S be as in Theorem 4.2 and take r > 0. Then, for
any x ∈ M , z, z′ ∈ B+(x, r) ∩ B−(x, r), minimal geodesic η : [0, 1] −→ M from z to z′

and for any τ ∈ [0, 1], we have

d
(
x, η(τ)

)2 ≥ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τhs
k(δ, S, 3r)d(z, z′)2.

Proof. As z, z′ ∈ B+(x, r) ∩ B−(x, r), we see

L(η) = d(z, z′) ≤ d(z, x) + d(x, z′) < 2r.

It implies η ⊂ B+(x, 3r). Thus we deduce from Theorem 4.2 that, for any τ ∈ (0, 1),

lim sup
ε→0

1

2ε2

{
d
(
x, η(τ − ε)

)2
+ d

(
x, η(τ + ε)

)2 − 2d
(
x, η(τ)

)2} ≤ hs
k(δ, S, 3r)d(z, z′)2.

Therefore the function τ 7−→ d(x, η(τ))2 − τ 2hs
k(δ, S, 3r)d(z, z′)2 is concave on [0,1], and

hence we have

d
(
x, η(τ)

)2 − τ 2hs
k(δ, S, 3r)d(z, z′)2

≥ (1 − τ)d(x, z)2 + τ
{
d(x, z′)2 − hs

k(δ, S, 3r)d(z, z′)2
}
.

We obtain the required inequality by rearrangement. 2

Remark 4.5 The local version of Theorem 4.2 has been observed in [Sh3, Remark 15.1.4]
(see also [Sh2, Theorem 5.1]). More precisely, he proves

Hess
[
d(x, ·)

]
(v) ≤

s′−k(r)

s−k(r)

{
gT (r)(v, v) − gT (r)(v, T )2

}
− TT (r)(v)
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for z ∈ B+(x, inj(x)). Then it follows from (3.3) that

Hess
[
d(x, ·)2

]
(v) = 2r Hess

[
d(x, ·)

]
(v) + 2gT (r)(v, T )2

≤ 2r
s′−k(r)

s−k(r)
gT (r)(v, v) + 2

(
1 − r

s′−k(r)

s−k(r)

)
gT (r)(v, T )2 + 2δr

≤ 2S2r
s′−k(r)

s−k(r)
+ 2δr.

4.3 Minkowski spaces

Let us briefly comment on the case of Minkowski spaces. By a slight abuse of the notation,
we denote a Minkowski space by (Rn, F ), that is to say, F : Rn −→ [0,∞) is a function
satisfying the conditions (1–3) in Definition 2.1. By identifying each tangent space TvRn

with the underlying space Rn in the canonical way, the function F also provides a Finsler
structure of Rn. Then S and C are constant because of the homogeneity of the space, and
we denote these constants simply by S and C, respectively.

Proposition 4.6 Let (Rn, F ) be a Minkowski space. Then the constant S coincides with
the infimum of S ≥ 1 satisfying

F

(
v + w

2

)2

≥ 1

2
F (v)2 +

1

2
F (w)2 − S2

4
F (w − v)2

for all v, w ∈ Rn. Similarly, the constant C coincides with the infimum of C ≥ 1 satisfying

F

(
v + w

2

)2

≤ 1

2
F (v)2 +

1

2
F (w)2 − 1

4C2
F (w − v)2

for all v, w ∈ Rn.

Proof. First of all, we remark that both the flag curvature K and the tangent curvature
T are identically zero. Given v ∈ Rn with F (v) = 1 and w ∈ Rn \ 0, we observe

lim
ε→0

1

2ε2

{
F (w − εv)2 + F (w + εv)2 − 2F (w)2

}
= gw(v, v)

by the definition of gw. Hence we obtain

sup
v∈Rn,F (v)=1

sup
w∈Rn\0

[
lim
ε→0

1

2ε2

{
F (w − εv)2 + F (w + εv)2 − 2F (w)2

}]
= sup

v∈Rn,F (v)=1

sup
w∈Rn\0

gw(v, v) = S2.

We also find

inf
v∈Rn,F (v)=1

inf
w∈Rn\0

[
lim
ε→0

1

2ε2

{
F (w − εv)2 + F (w + εv)2 − 2F (w)2

}]
=

[
sup

v∈Rn,F (v)=1

sup
w∈Rn\0

gw(v, v)−1

]−1

= C−2.

These complete the proof through the discussion as in Corollary 4.4. 2
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Therefore S and C coincide with the 2-uniform smoothness and convexity constants,
respectively (see (1.1) and (1.2) in the introduction).

5 Uniform convexity

This section is devoted to the 2-uniform convexity as well as some observations related to
Busemann’s NPC-spaces.

5.1 Local uniform convexity

The following theorem is a counterpoint to Theorem 4.2. Although it has already been
shown in [Sh3, Remark 15.1.4] (see also Remark 4.5), here we give a proof for completeness.

Theorem 5.1 (Uniform convexity) Let (M,F ) be a connected, forward geodesically com-
plete C∞-Finsler manifold. Assume that there are constants k, δ ≥ 0 and C ≥ 1 such
that

K ≤ k, T ≤ δ, C ≤ C.

Take a point x ∈ M and set R := inj(x) or R := min{inj(x), π/
√

k} if k > 0. Then we
have, for any z ∈ B+(x,R) and v ∈ TzM with F (v) = 1,

lim inf
s→0

1

2s2

{
d
(
x, ξv(−s)

)2
+ d

(
x, ξv(s)

)2 − 2d(x, z)2
}

≥

 C−2

√
kr cos(

√
kr)

sin(
√

kr)
− rδ if k > 0,

C−2 − rδ if k = 0,

where ξv : (−ε, ε) −→ M is the geodesic with ξ̇v(0) = v and r := d(x, z).

Proof. We will omit some calculations common to the proof of Theorem 4.2. We can
assume z 6= x and k > 0. For small ε > 0, consider the variation σ : [0, r]× (−ε, ε) −→ M
such that, for each s ∈ (−ε, ε), the curve t 7−→ σ(t, s) is the unique minimal geodesic
from x to ξv(s). As z ∈ B+(x, inj(x)) \ {x}, the variation σ is C∞ by Lemma 3.1. We put

η(t) := σ(t, 0), T (t, s) :=
∂σ

∂t
(t, s), U(t, s) :=

∂σ

∂s
(t, s),

T (t) := T (t, 0) = η̇(t), U(t) := U(t, 0).

Then U(·) is a Jacobi field along η, namely Dη̇
η̇D

η̇
η̇U +Rη̇(U, η̇)η̇ ≡ 0. Thus it follows from
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the second variation formula (3.4) that

∂2

∂s2
L
(
σ(·, 0)

)
=

∫ r

0

{
gT (t)(D

T
T U,DT

T U) + gT (t)(D
T
T DT

T U,U)
}

dt

+ gT (r)(D
T
UU, T ) −

∫ r

0

{
∂(F (T ))

∂s
(t, 0)

}2

dt

= gT (r)(D
T
T U,U) − TT (r)(v) −

∫ r

0

{
1

r

∂

∂s
L

(
σ(·, 0)

)}2

dt

≥ gT (r)(D
T
T U,U) − δ − 1

r

{
∂

∂s
L
(
σ(·, 0)

)}2

.

Moreover, Theorem 3.2 shows that

gT (r)(D
T
T U,U) ≥ gT (r)(v, v)

√
k cos(

√
kr)

sin(
√

kr)
≥ C−2

√
k cos(

√
kr)

sin(
√

kr)
.

We consequently obtain

∂2

∂s2

[
L
(
σ(·, 0)

)2]
= 2r

∂2

∂s2
L
(
σ(·, 0)

)
+ 2

{
∂

∂s
L
(
σ(·, 0)

)}2

≥ 2r

{
C−2

√
k cos(

√
kr)

sin(
√

kr)
− δ

}
.

This completes the proof since L(σ(·, s)) = d(x, ξv(s)). 2

We again remark that the analogue of the above theorem is false for K ≤ −k < 0 (see
the paragraph following Theorem 4.2). If we put

hc
0(δ, C, r) := C−2 − rδ, hc

k(δ, C, r) := C−2

√
kr cos(

√
kr)

sin(
√

kr)
− rδ for k > 0, (5.1)

then the discussion as in Corollary 4.4 yields the following.

Corollary 5.2 Let (M,F ), k, δ, C, x and R be as in Theorem 5.1 and take r ∈ (0, R/3).
Then, for any z, z′ ∈ B+(x, r) ∩ B−(x, r), minimal geodesic η : [0, 1] −→ M from z to z′

and for any τ ∈ [0, 1], we have

d
(
x, η(τ)

)2 ≤ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τhc
k(δ, C, 3r)d(z, z′)2.

We can take R = ∞ in Theorem 5.1 and Corollary 5.2 if (M,F ) is simply connected
and k = 0. It is a consequence of the Finsler version of the Cartan-Hadamard theorem
(cf. [BCS, Theorem 9.4.1]). Thus we further obtain the following.

Corollary 5.3 Let (M,F ) be a connected, simply connected, forward geodesically com-
plete C∞-Finsler manifold of Berwald type. Assume that K ≤ 0 and C ≤ C for some
constant C ≥ 1. Then, for any x, z, z′ ∈ M , minimal geodesic η : [0, 1] −→ M from z to
z′ and for any τ ∈ [0, 1], we have

d
(
x, η(τ)

)2 ≤ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τC−2d(z, z′)2.
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5.2 Local-to-global property in Busemann’s NPC-spaces

We recall the definition of nonpositively curved spaces in the sense of Busemann (NPC-
spaces for short, see [Bu] and [BH]). A (symmetric) metric space (X, d) is said to be
geodesic if any two points x, z ∈ X can be joined by a rectifiable curve η : [0, 1] −→ X
whose arclength coincides with d(x, z). A rectifiable curve η : [0, 1] −→ X is called a
geodesic if it is locally minimizing and of constant speed. A geodesic η is said to be
minimal if it is globally minimizing. Now, a geodesic space is said to be NPC (in the
sense of Busemann) if, for any two minimal geodesics η, ξ : [0, 1] −→ X with η(0) = ξ(0)
and τ ∈ [0, 1], we have

d
(
η(τ), ξ(τ)

)
≤ τd

(
η(1), ξ(1)

)
.

It is immediate by definition that any two points x, z ∈ X in an NPC-space (X, d)
admit a unique minimal geodesic between them and that (X, d) is contractible. A con-
nected, simply connected, geodesically complete Riemannian manifold is NPC if and only
if its sectional curvature is nonpositive everywhere. More generally, CAT(0)-spaces as
well as strictly convex Banach spaces are NPC. However, the author does not know any
reasonable condition for (positively or absolutely homogeneous) Finsler manifolds to be
NPC.

Proposition 5.4 Let (X, d) be an NPC-space in the sense of Busemann. Assume that
there is a constant C ≥ 1 such that, for any x0 ∈ X, we find a positive number r > 0 for
which we have

d
(
x, η(τ)

)2 ≤ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τC−2d(z, z′)2 (5.2)

for any x, z, z′ ∈ B(x0, r), minimal geodesic η : [0, 1] −→ X from z to z′ and for any
τ ∈ [0, 1]. Then we have (5.2) globally, that is to say, (5.2) holds for any x, z, z′ ∈ X,
minimal geodesic η : [0, 1] −→ X from z to z′ and for any τ ∈ [0, 1].

Proof. Take arbitrary points x, z, z′ ∈ X and minimal geodesic η : [0, 1] −→ X from z to
z′. Given τ ∈ (0, 1), as (X, d) is NPC, we find a unique minimal geodesic ξ : [0, 1] −→ X
from η(τ) to x. By assumption, for small ε > 0, it holds that

d
(
ξ(ε), η(τ)

)2 ≤ (1 − τ)d
(
ξ(ε), η(τ − ετ)

)2
+ τd

(
ξ(ε), η

(
τ + ε(1 − τ)

))2

− (1 − τ)τC−2d
(
η(τ − ετ), η

(
τ + ε(1 − τ)

))2

.

Combining this with the NPC-property, we observe

d
(
x, η(τ)

)2
= ε−2d

(
ξ(ε), η(τ)

)2

≤ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τC−2d(z, z′)2.

2

We remark that the local-to-global theorem for the NPC-property is also known ([BH,
Theorem II.4.1]).
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Corollary 5.5 Let (M,F ) be a connected, absolutely homogeneous, geodesically complete
C∞-Finsler manifold. Assume that (M,F ) is NPC in the sense of Busemann, and that
there is a constant C ≥ 1 such that C ≤ C. Then, for any x, z, z′ ∈ M , minimal geodesic
η : [0, 1] −→ M from z to z′ and for any τ ∈ [0, 1], we have

d
(
x, η(τ)

)2 ≤ (1 − τ)d(x, z)2 + τd(x, z′)2 − (1 − τ)τC−2d(z, z′)2.

Proof. Apply Corollary 5.2 locally and observe that limr→0 hc
k(δ, C, r) = C−2 for any

k ≥ 0. Then Proposition 5.4 completes the proof. 2

5.3 L-convexity

We close the section with a remark on another type of convexity studied in [Oh2] (see
also [Eg]). A geodesic space (X, d) is said to be L-convex for L1 ∈ [0,∞) and L2 ∈ [0,∞]
if we have, for any x ∈ X, two minimal geodesics η, ξ : [0, 1] −→ X emanating from x
and for any τ ∈ [0, 1],

d
(
η(τ), ξ(τ)

)
≤

(
1 + L1 min

{
d(x, η(1)) + d(x, ξ(1))

2
, L2

})
τd

(
η(1), ξ(1)

)
.

What is the most important here is

lim
η(1),ξ(1)→x

(
1 + L1 min

{
d(x, η(1)) + d(x, ξ(1))

2
, L2

})
= 1

(compare this with the properties (A) and (U) in [Ly]). NPC-spaces are obviously L-
convex with L1 = 0. Furthermore, a CAT(1)-space is L-convex if its diameter is less than
π and if it does not contain any geodesic triangle of perimeter greater than 2π ([Oh2,
Proposition 3.1(ii)]).

Let us take a connected, simply connected, forward geodesically complete C∞-Finsler
manifold (M,F ) of nonpositive flag curvature. Then the Cartan-Hadamard theorem says
that the exponential map expx : TxM −→ M is a C1-diffeomorphism for any x ∈ M .
Given a point x ∈ M , a geodesic η : [0, 1] −→ M and s ∈ [0, 1], we denote by ξs :
[0, 1] −→ M the unique geodesic from x to η(s). If we put

T (t, s) :=
∂ξs

∂t
(t), U(t, s) :=

∂ξs

∂s
(t),

then each U(·, s) is a Jacobi field along ξs. We saw in the proof of Theorem 3.2 that

d2

dt2

[
gT (t,s)

(
U(t, s), U(t, s)

)1/2
]
≥ 0. (5.3)

However, this inequality does not imply the convexity of d(ξ0(·), ξ1(·)), for

gT (t,s)

(
U(t, s), U(t, s)

)
6= F

(
U(t, s)

)2
.
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What we can derive from (5.3) is, if we set S := supM S and C := supM C,

d
(
ξ0(τ), ξ1(τ)

)
≤ C

∫ 1

0

gT (τ,s)

(
U(τ, s), U(τ, s)

)1/2
ds

≤ Cτ

∫ 1

0

gT (1,s)

(
U(1, s), U(1, s)

)1/2
ds ≤ CSτd

(
ξ0(1), ξ1(1)

)
.

This ‘quasi-convexity’ has some applications in global theory (see [Eg]). However, from
the viewpoints of metric geometry and of analysis on singular spaces, a somewhat stronger
convexity (or concavity) is expected to hold in order to develop local theory (see, e.g.,
[Oh2] and [Ly]). It is desirable if we can establish the L-convexity of (M,F ) with appro-
priate bounds on L1 (and L2) in terms of the curvatures and of the 2-uniform convexity
and smoothness constants.

6 Almost everywhere second order differentiability

of semi-convex functions

This section is devoted to the almost everywhere existence of the second order differentials
of semi-convex functions on Finsler manifolds. Such a differentiability has been established
by Alexandrov [Al] and Bangert [Ba] in the Euclidean and Riemannian cases, respectively.
Bangert in fact treats a more general situation, and we will see that his theorem also covers
our Finsler setting.

6.1 Bangert’s theorem

Let us take an n-dimensional C∞-manifold M and define a class F(M) of functions on M
as follows. A function f : M −→ R is an element of F(M) if, for any point x ∈ M , there
are a local coordinate system Φ : U −→ Rn and a C∞-function h : U −→ R on an open
set U ⊂ M containing x such that the function (f + h) ◦ Φ−1 : Φ(U) −→ R is convex
in the usual Euclidean sense. Before stating Bangert’s theorem, we recall two notions on
the differentials of functions.

Definition 6.1 (Subdifferentials) Let f ∈ F(M), x ∈ M and let Φ : U −→ Rn be a local
coordinate system on an open set U ⊂ M with x ∈ U and Φ(x) = 0. Then a co-vector
α ∈ T ∗

xM is called a subgradient of f at x if we have

f
(
Φ−1(u)

)
≥ f(x) + α

(
[d(Φ−1)0](u)

)
+ o(‖u‖)

for u ∈ Rn. Here we regard u as an element of T0Rn in the second term in the right-hand
side, and denote by ‖ · ‖ the Euclidean norm of Rn. The set of all subgradients at x is
called the subdifferential of f at x and denoted by ∂∗f(x) ⊂ T ∗

xM .

Note that the definition of the subgradient does not depend on the choice of a local
coordinate system Φ. It is known that a function f ∈ F(M) admits a (not necessarily
unique) subgradient everywhere. In Euclidean spaces and Riemannian manifolds, the
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dual of α in Definition 6.1 is usually called the subgradient, and the corresponding subd-
ifferential ∂f(x) is a subset of TxM . Also in Finsler manifolds, it is possible to define the
subgradient as an element of TxM through the Legendre transform Lx : T ∗

xM −→ TxM .
It actually coincides with the gradient vector of f if f is differentiable at x, namely we
have ∂f(x) = {grad f(x)}.

Definition 6.2 (Second order differentials) Let f ∈ F(M), x ∈ M and let Φ : U −→ Rn

be a local coordinate system on an open set U ⊂ M with x ∈ U and Φ(x) = 0. Then f
is said to be second order differentiable at x if there is a linear map H : Rn −→ Rn such
that

sup
α(x)∈∂∗f(x),α(z)∈∂∗f(z)

∥∥∥[
d(Φ−1)u

]∗(
α(z)

)
−

[
d(Φ−1)0

]∗(
α(x)

)
− Hu

∥∥∥ = o(‖u‖)

for u = Φ(z) ∈ Rn, where we identify T ∗
uRn, T ∗

0 Rn and Rn in the left-hand side.

Observe that the above definition implies that the subdifferential ∂∗f(x) at x consists
of a single element, and hence f is differentiable at x.

Theorem 6.3 ([Ba, Satz (4.4)]) Let M be a C∞-manifold. Then every function f ∈
F(M) is second order differentiable almost everywhere.

Here ‘almost everywhere’ means that the set of second order differentiable points has
a full n-dimensional Lebesgue measure in Φ(U) for any local coordinate system Φ : U −→
Rn on U ⊂ M .

Remark 6.4 If M is equipped with a C∞-Riemannian metric g, then we can write the
second order Taylor expansion by using the exponential map as

f(expx v) = f(x) + g
(
grad f(x), v

)
+

1

2
Hess f(v, v) + o(‖v‖2

g),

where v ∈ TxM and ‖v‖2
g := g(v, v). However, it is not the case of Finsler structures

because the exponential map is only C1 at the zero section for general Finsler manifolds.

A function f : M −→ R on a Finsler (or Riemannian) manifold (M,F ) is said to be
convex if it is convex along any geodesic on M , namely

f
(
η(t)

)
≤ (1 − t)f

(
η(0)

)
+ tf

(
η(1)

)
holds for any geodesic η : [0, 1] −→ M and t ∈ [0, 1]. Similarly, a function f : M −→ R is
said to be λ-convex for λ ∈ R if we have

f
(
η(t)

)
≤ (1 − t)f

(
η(0)

)
+ tf

(
η(1)

)
− λ

2
(1 − t)td

(
η(0), η(1)

)2

for any geodesic η : [0, 1] −→ M and t ∈ [0, 1]. We say that f is semi-convex if, for any
x ∈ M , there are an open neighborhood U of x and a constant λ = λ(x) ∈ R for which
f |U is λ-convex.
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Theorem 6.5 ([Ba, Satz (2.3)]) Let (M,F ) be a C∞-Riemannian manifold. Then every
function f : M −→ R which is convex with respect to g is an element of F(M).

Bangert’s proof effectively uses Greene and Wu’s approximation theory ([GW1] and
[GW2]), and we will manage to extend it to the Finsler case. Theorem 6.5 immediately
implies that semi-convex functions on a Riemannian manifold M are also in F(M), for the
squared distance function d(x, ·)2 from a point x is C∞ and 1-convex on a neighborhood
of x (consider f − min{0, λ(x)}d(x, ·)2). In the remainder of the section, we prove the
following:

Theorem 6.6 Let (M,F ) be a C∞-Finsler manifold. Then every function f : M −→ R
which is semi-convex with respect to F is an element of F(M). In particular, f is second
order differentiable almost everywhere.

6.2 Approximations of convex functions

Let f : M −→ R be a convex function on a C∞-Finsler manifold (M,F ). According to
Greene and Wu’s technique, we will construct a family of nearly convex C∞-functions
which approximates f .

Fix a point x ∈ M and r > 0 such that the forward closed ball B̄+(x, r) is compact.
Denote by L the Lipschitz constant of f |B+(x,r) in the sense that

f(y) − Ld(z, y) ≤ f(z) ≤ f(y) + Ld(y, z)

for all y, z ∈ B+(x, r). We choose a C∞-Riemannian metric g on B+(x, r) which is bi-
Lipschitz equivalent to F . One way to construct such a metric is putting g := gV for some
non-vanishing C∞-vector field V on B+(x, r). Then we have C(z)−2 ≤ gV (v, v)/F (v)2 ≤
S(z)2 for all v ∈ TzM\0 with z ∈ B+(x, r) (recall (4.1) and (4.2)). It might be also possible
to find g with a universal bound on supv∈π−1(B+(x,r))\0{g(v, v)/F (v)2, F (v)2/g(v, v)} in
terms only of the dimension of M like John’s theorem ([Jo]).

Fix a nonnegative C∞-function φ : R −→ [0,∞) satisfying supp φ ⊂ [1/2, 1] and∫
Rn φ(‖v‖) dv = 1, where dv stands for the n-dimensional Lebesgue measure and ‖v‖

denotes the Euclidean norm of v. For large i ∈ N and z ∈ B+(x, r), we define

fi(z) := in
∫

TzM

f(expg
z v)φ

(
i‖v‖g

)
dLg(v),

where expg is the exponential map with respect to g and Lg is the Lebesgue measure on
TzM induced from g. It is immediate that fi is C∞ and converges to f uniformly on
B+(x, r) as i goes to infinity.

Given an F -unit vector v ∈ π−1(B+(x, r)) (i.e., F (v) = 1), let η : [−τ, τ ] −→ M be
the geodesic with respect to F with η̇(0) = v, where τ > 0 is chosen small relative to r
and to the infimum on B+(x, r) of the injectivity radius with respect to F (it is possible
because the function z 7−→ inj(z) is continuous). Put B(δ) := {w ∈ Tη(−τ)M | ‖w‖g ≤ δ}
for small δ > 0, and define the map Q1 : B(δ) −→ C∞([−τ, τ ],M) as

Q1(w)(t) := expg
η(t)

(
Ξg
−τ,t(w)

)
,
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where Ξg
−τ,t : Tη(−τ)M −→ Tη(t)M is the parallel translation along η with respect to g.

Note that

fi

(
η(t)

)
= in

∫
Tη(−τ)M

f
(
Q1(w)(t)

)
φ
(
i‖w‖g

)
dLg(w).

We consider the C∞-topology on C∞([−τ, τ ],M) metrized by using g, and observe that
Q1 is continuous and Q1(0) = η. (Here is a reason why we used g in the definition of
fi instead of F . Recall that expF is only C1 at the zero section.) Hence the Lipschitz
constant of fi with respect to F converges to L as i diverges to infinity (see [GW2, Lemma
8]).

Since F (η̇(−τ)) = 1, by taking δ small enough, it holds that F ([∂Q1(w)/∂t](−τ)) ∈
[1/2, 3/2] for all w ∈ B(δ). Therefore the map Q2 : B(δ) −→ C−∞([−τ, τ ],M) defined by

Q2(w)(t) = expF
Q1(w)(−τ)

(
(t + τ)

∂Q1(w)

∂t
(−τ)

)
is continuous (see Lemma 3.1). Since Q1(0) = Q2(0) = η as well as [∂Q1(w)/∂t](−τ) =
[∂Q2(w)/∂t](−τ), given ε > 0, there is δ > 0 such that dF (Q1(w)(t), Q2(w)(t)) ≤ ετ 2

holds for all w ∈ B(δ) and t ∈ [−τ, τ ]. Moreover, δ can be chosen uniformly in F -unit
vectors v ∈ π−1(B+(x, r)) since B̄+(x, r) is compact. Let

m : expg
η(−τ)

(
B(δ)

)
× expg

η(τ)

(
Ξg
−τ,τ

(
B(δ)

))
−→ M

be the map such that m(z, z′) = ξ(1/2), where ξ : [0, 1] −→ M is the unique minimal
geodesic from z to z′ with respect to F . Then m is C∞ (by the same reason as the
continuity of Q2) and m(Q2(w)(−τ), Q2(w)(τ)) = Q2(w)(0), and hence we have, by taking
smaller δ if necessary,

dF

(
m

(
Q1(w)(−τ), Q1(w)(τ)

)
, Q2(w)(0)

)
≤ ετ 2

for all F -unit vectors v ∈ π−1(B+(x, r)) and all w ∈ B(δ) (see [GW1, Proposition]).
Thus we obtain, for any F -unit vector v ∈ π−1(B+(x, r)) and i ≥ δ−1,

fi

(
η(−τ)

)
+ fi

(
η(τ)

)
− 2fi

(
η(0)

)
= in

∫
Tη(−τ)M

{
f
(
Q1(w)(−τ)

)
+ f

(
Q1(w)(τ)

)
− 2f

(
Q1(w)(0)

)}
φ
(
i‖w‖g

)
dLg(w)

= in
∫

Tη(−τ)M

[{
f
(
Q1(w)(−τ)

)
+ f

(
Q1(w)(τ)

)
− 2f

(
m

(
Q1(w)(−τ), Q1(w)(τ)

))}
+ 2

{
f
(
m

(
Q1(w)(−τ), Q1(w)(τ)

))
− f

(
Q2(w)(0)

)}
+ 2

{
f
(
Q2(w)(0)

)
− f

(
Q1(w)(0)

)}]
φ
(
i‖w‖g

)
dLg(w)

≥ 0 − 4Lετ 2 · in
∫

Tη(−τ)M

φ
(
i‖w‖g

)
dLg(w) = −4Lετ 2.

Here the third inequality follows from the convexity of f with respect to F . Therefore
we have HessF fi(v) ≥ −4Lε for any F -unit vector v ∈ π−1(B+(x, r)). We consequently
deduce the following analogue of [GW1, Theorem 2] (see also [GW2, Lemma 8]).
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Proposition 6.7 Let f : M −→ R be a convex function on a C∞-Finsler manifold
(M,F ). Then, for any x ∈ M and r > 0 such that B̄+(x, r) is compact, there exists a
family {fi}i∈N of C∞-functions on B+(x, r) satisfying the following conditions:

(i) The function fi uniformly converges to f |B+(x,r) as i diverges to infinity.

(ii) The Lipschitz constant of fi tends to that of f |B+(x,r) as i goes to infinity.

(iii) It holds that

lim inf
i→∞

(
inf

v∈π−1(B+(x,r)),F (v)=1
HessF fi(v)

)
≥ 0.

6.3 Proof of Theorem 6.6

We first consider a convex function f : M −→ R and use the approximation {fi}i∈N as in
Proposition 6.7 to proceed along Bangert’s argument. We may assume F (gradF fi(z)) ≤
L + i−1 and HessF fi(v) ≥ −i−1F (v)2 for all z ∈ B+(x, r) and v ∈ π−1(B+(x, r)) \ 0.
Recall that L is the Lipschitz constant of f |B+(x,r). Moreover, we can choose smaller
r > 0 satisfying r ¿ infz∈B+(x,r) inj(z) because the function z 7−→ inj(z) is continuous.
Fix a local coordinate system Φ : U −→ Rn on an open set U ⊃ B̄+(x, r) and denote
by g the C∞-Riemannian metric on U induced through Φ from the standard Euclidean
structure of Rn.

Given a g-unit vector v ∈ π−1(B+(x, r/2)), let ξv : [−τ, τ ] −→ M be the geodesic
with respect to F such that ξ̇v(0) = v and dF (x, ξv(−τ)) = r. Then we define V :=
gradF [dF (ξv(−τ), ·)] and observe that V is a C∞-vector field on B+(x, r/2). Thus we can
define gv := gV as a C∞-Riemannian metric of B+(x, r/2).

Lemma 6.8 The curve ξv is a geodesic with respect to gv.

Proof. This lemma is a consequence of [Sh3, Lemma 6.2.1, (6.14)]. Here we give a direct
proof for thoroughness. In this proof, we denote quantities with respect to gv by ĝij, γ̂i

jk

and so forth.
We first observe that ĝij(π(V )) = gij(V ) and

∂ĝij

∂xk

(
π(V )

)
=

∂gij

∂xk
(V ) +

∑
m

∂gij

∂ym
(V )

∂V m

∂xk

(
π(V )

)
=

∂gij

∂xk
(V ) +

2

F

∑
m

Aijm(V )
∂V m

∂xk

(
π(V )

)
.

Combining this with
∑

i Aijk(V )V i(π(V )) = 0 (cf. [BCS, (1.4.6)]), we see∑
j,k

γ̂i
jk

(
π(V )

)
V jV k =

∑
j,k

γi
jk(V )V jV k =

∑
j,k

Γi
jk(V )V jV k.

Therefore the geodesic equation DV
V V = 0 is common to F and gv. 2
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As B̄+(x, r) is compact, the following quantities are finite:

R1 := sup
v∈π−1(B+(x,r/2))\0

F (v)2

g(v, v)
, R2 := sup

v∈π−1(B+(x,r/2)),g(v,v)=1

∥∥∇gv
v ċv(0)

∥∥
gv

,

where we set cv(t) := expg tv and denote by ∇gv the Levi-Civita connection with respect
to gv. For any g-unit vector v ∈ TzM with z ∈ B+(x, r/2), we observe

Hessg fi(v, v) =
d2(fi ◦ cv)

dt2
(0) =

d

dt

∣∣∣
t=0

[
gv

(
ċv(t), gradgv fi ◦ cv(t)

)]
= gv

(
∇gv

v ċv(0), gradgv fi(z)
)

+ gv

(
v, (∇gv

v gradgv fi)(z)
)
.

Note that

gv

(
∇gv

v ċv(0), gradgv fi(z)
)
≥ −

∥∥∇gv
v ċv(0)

∥∥
gv
·
∥∥ gradgv fi(z)

∥∥
gv

≥ −R2(L + i−1),

gv

(
v, (∇gv

v gradgv fi)(z)
)

= Hessgv fi(v, v) =
d2(fi ◦ ξv)

dt2
(0) = HessF fi(v)

≥ −i−1F (v)2 ≥ −i−1R1.

Therefore we find

Hessg fi(v, v) ≥ −R2(L + i−1) − R1i
−1.

Now we define the function h(z) := {R2(L + 1) + R1}dg(x, z)2 for z ∈ B+(x, r/2).
Since Hessg[dg(x, ·)2](v, v) = 2, we obtain Hessg(fi + h)(v, v) ≥ 0 for any g-unit vector
v ∈ π−1(B+(x, r/2)), and hence fi + h is convex with respect to g. It follows from
Proposition 6.7(i) that f + h is also convex with respect to g, and it implies f ∈ F(M).
Thus we complete the proof of Theorem 6.6 for convex functions.

For a semi-convex function f : M −→ R and a point x ∈ M , we take small r > 0 such
that f is λ-convex on B+(x, r) for some λ ≤ 0 and that

r ¿ inf
z∈B+(x,r)

inj(z), hc
k(δ, C, 3r) ≥ C−2/2,

where k, δ ≥ 0 and C ≥ 1 are chosen so as to satisfy K ≤ k, T ≤ δ and C ≤ C on
B+(x, 3r). Recall (5.1) for the definition of hc

k. We set B±(x, r) := B+(x, r) ∩ B−(x, r)
for a while for brevity. Then the squared distance function h := dF (z, ·)2 from a point
z ∈ B±(x, r)\B̄±(x, r/2) is C∞ on B±(x, r/2) and satisfies HessF h(v) ≥ C−2 by Theorem
5.1 . Note indeed that

d(x, z) + d(z, z′) < r + d(z, x) + d(x, z′) < 5r/2

for any z′ ∈ B±(x, r/2), and hence the unique minimal geodesic from z to z′ is con-
tained in B+(x, 3r). Therefore f − λC2h is convex on B±(x, r/2), and thus f − λC2h ∈
F(B±(x, r/2)). As h is smooth, it shows f ∈ F(M) and completes the proof of Theorem
6.6.
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7 Almost everywhere second order differentiability

of c-concave functions

In this final section, we verify that a c-concave function ϕ on a Finsler manifold with the
quadratic cost function c(x, y) = d(x, y)2/2 is second order differentiable almost every-
where. To do so, we will follow a Riemannian discussion in [CMS]. More precisely, we use
Theorem 4.2 to show that −ϕ is semi-convex in the sense of Section 6, and then Theorem
6.6 is applied.

Throughout the section, let (M,F ) be a connected, forward geodesically complete
C∞-Finsler manifold, and fix the quadratic cost function c(x, y) := d(x, y)2/2. This is
the most fundamental cost function, however, c is not necessarily symmetric, for (M,F )
is only positively homogeneous. This is one of the most natural situations where we
encounter a nonsymmetric cost function.

Let X,Y ⊂ M be two compact sets. Then, given an arbitrary function ϕ : X −→
R ∪ {−∞}, we define its c-transform ϕc : Y −→ R ∪ {−∞} relative to (X,Y ) by

ϕc(y) := inf
x∈X

{c(x, y) − ϕ(x)}.

Similarly, we define the c-transform of a function ψ : Y −→ R∪ {−∞} relative to (X,Y )
by ψc(x) := infy∈Y {c(x, y) − ψ(y)} for x ∈ X. (Be careful of the order of x and y in c.)

Definition 7.1 (c-concave functions) Let X,Y ⊂ M be two compact sets. Then a func-
tion ϕ : X −→ R ∪ {−∞} which is not identically −∞ is said to be c-concave relative to
(X,Y ) if there is a function ψ : Y −→ R∪{−∞} whose c-transform ψc relative to (X,Y )
coincides with ϕ.

The class of c-concave functions is quite an important object in mass transport theory.
Roughly speaking, any optimal transport between two probability measures can be de-
scribed as the transport along the gradient vector field of some c-concave function. There-
fore the almost everywhere second order differentiability of c-concave functions plays a
crucial role in investigating the behavior of such an optimal transport, and is actually one
of the key technical ingredients in Cordero-Erausquin, McCann and Schmuckenschläger’s
work on Riemannian interpolation inequalities (see [CMS, Proposition 3.14]). See also
[Oh6] for a recent generalization to Finsler manifolds. We refer to [Br], [CMS], [Mc],
[RR], [Vi1], [Vi2] and the references therein for more details and further reading.

We summerize some basic properties of c-concave functions in the next lemma, and
prove it for completeness.

Lemma 7.2 Take two compact sets X,Y ⊂ M and a function ϕ : X −→ R ∪ {−∞}.
Then the following hold:

(i) We have ϕ ≤ ϕcc and ϕc = ϕccc.

(ii) Assume that ϕ is not identically −∞. Then ϕ is c-concave if and only if ϕ = ϕcc.

(iii) If ϕ is c-concave, then it is Lipschitz continuous.
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Proof. (i) For any x ∈ X and y ∈ Y , it follows from the definition of ϕc that ϕ(x) ≤
c(x, y) − ϕc(y). By taking the infimum over y ∈ Y , we find ϕ(x) ≤ ϕcc(x). In particular,
we see ϕc ≤ ϕccc. Moreover, given y ∈ Y , we observe

ϕccc(y) = inf
x∈X

sup
z∈Y

inf
w∈X

{
c(x, y) − c(x, z) + c(w, z) − ϕ(w)

}
≤ inf

x∈X

{
c(x, y) − ϕ(x)

}
= ϕc(y),

where the second inequality is deduced by choosing w = x. Thus we obtain ϕc(y) =
ϕccc(y).

(ii) If ϕ is c-concave, then ϕ = ψc for some function ψ : Y −→ R ∪ {−∞}. Hence
we have ϕ = ψc = ψccc = ϕcc by (i). The converse is clear by the definition of c-concave
functions.

(iii) The function c is bounded on X × Y since X and Y are compact. Thus ϕc is
bounded from above (otherwise, ϕ = ϕcc is identically −∞), and hence ϕ takes finite value
everywhere. For x ∈ X and ε > 0, take a point y ∈ Y where ϕ(x) ≥ c(x, y) − ϕc(y) − ε
holds. By the definition of ϕcc = ϕ, ϕ(w) ≤ c(w, y) − ϕc(y) holds for any w ∈ X, and
hence

ϕ(w) − ϕ(x) ≤ c(w, y) − c(x, y) + ε

=
1

2

{
d(w, y) + d(x, y)

}{
d(w, y) − d(x, y)

}
+ ε

≤
{

sup
z∈X,y∈Y

d(z, y)
}
· d(w, x) + ε.

As ε is arbitrary, this derives ϕ(w)− ϕ(x) ≤ Cd(w, x) with C = supz∈X,y∈Y d(z, y) which
could be adopted as the definition of the C-Lipschitz continuity of the function −ϕ in our
nonsymmetric metric space. Moreover, we obtain

|ϕ(w) − ϕ(x)| ≤ sup
z∈X,y∈Y

d(z, y) · max
{
d(w, x), d(x,w)

}
≤ sup

z∈X,y∈Y
d(z, y) · sup

z∈B̄+(w,d(w,x))

C(z) · d(w, x).

Here the second inequality follows from the observation that, for a minimal geodesic
η : [0, 1] −→ M from w to x,

d(x,w) ≤
∫ 1

0

F
(
− η̇(t)

)
dt ≤

∫ 1

0

C
(
η(t)

)
gη̇(t)

(
− η̇(t),−η̇(t)

)1/2
dt

=

∫ 1

0

C
(
η(t)

)
F

(
η̇(t)

)
dt ≤ sup

t∈[0,1]

C
(
η(t)

)
· d(w, x).

The terms supz∈X,y∈Y d(z, y) and supw,x∈X,z∈B̄+(w,d(w,x)) C(z) are finite since X and Y are
compact. 2

By virtue of Lemma 7.2(iii), we can restrict ϕ and ψ (= ϕc) in Definition 7.1 to
Lipschitz continuous, real-valued functions without loss of generality. In particular, the
infimum ϕ(x) = ϕcc(x) = infy∈Y {c(x, y) − ϕc(y)} is attained at some point y ∈ Y .
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Definition 7.3 (c-superdifferentials) Let X,Y ⊂ M be compact sets and ϕ : X −→ R
be a c-concave function relative to (X,Y ). Then the c-superdifferential of ϕ at a point
x ∈ X is the nonempty set

∂cϕ(x) := {y ∈ Y |ϕ(x) = c(x, y) − ϕc(y)}
= {y ∈ Y | c(x, y) − ϕ(x) ≤ c(z, y) − ϕ(z) for any z ∈ X}.

Theorem 7.4 Let (M,F ) be a connected, forward geodesically complete C∞-Finsler man-
ifold and c(x, y) = d(x, y)2/2 be the quadratic cost function. Take a compact set Y ⊂ M
and an open set U ⊂ M whose closure U is compact. Then, for any c-concave function
ϕ : U −→ R relative to (U, Y ), the function −ϕ is semi-convex on U with respect to F .
In particular, ϕ is second order differentiable almost everywhere on U .

Proof. Fix a minimal geodesic η : [0, 1] −→ U and take y ∈ ∂cϕ(η(1/2)) ⊂ Y . On one
hand, by the definition of the c-superdifferential ∂cϕ(η(1/2)), we observe

ϕ
(
η(0)

)
≤ ϕ

(
η(1/2)

)
+

1

2
d
(
η(0), y

)2 − 1

2
d
(
η(1/2), y

)2
,

ϕ
(
η(1)

)
≤ ϕ

(
η(1/2)

)
+

1

2
d
(
η(1), y

)2 − 1

2
d
(
η(1/2), y

)2
.

On the other hand, it follows from Theorem 4.2 (see also Corollary 4.4) that

d
(
y, η(1/2)

)2 ≥ 1

2
d
(
y, η(0)

)2
+

1

2
d
(
y, η(1)

)2 − Λ

4
d
(
η(0), η(1)

)2
,

where we set Λ := hs
k(δ, S, r) for r := supw∈Y,x∈U d(w, x), k, δ ≥ 0 and S ≥ 1 satisfying

K ≥ −k, T ≥ −δ and S ≤ S on
∪

w∈Y B+(w, r). Recall (4.3) for the definition of hs
k and

note that Λ is finite since U and Y are compact. Therefore we obtain

−ϕ
(
η(1/2)

)
≤ −ϕ(η(0)) + ϕ(η(1))

2
+

d(η(0), y)2 + d(η(1), y)2

4
− 1

2
d
(
η(1/2), y

)2

≤ −1

2
ϕ
(
η(0)

)
− 1

2
ϕ
(
η(1)

)
+

Λ

8
d
(
η(0), η(1)

)2
.

As Λ depends only on U and Y , −ϕ is (−Λ)-convex on U . By combining this with
Theorem 6.6, we complete the proof. 2
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