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Abstract

We correct the proof of the implication CD(K,N) ⇒ RicN ≥ K in [7] (N ∈
[n,∞]) and [8, 9] (N < 0, N = 0). The same correction applies to a review in [10,
Chapter 18].

In [7] (see the proof of Theorem 1.2(i) in §8.2) and the following papers [8, 9], to show
the implication from the curvature-dimension condition CD(K,N) to the lower weighted
Ricci curvature bound RicN ≥ K, we used the Brunn–Minkowski inequality (derived from
CD(K,N)) and an asymptotic formula of the volume of the form

m(Z1/2(A−, A+))

cnεn
= e−V(v)

(
1 +

Ric(v)

2
r2
)
+O(r3). (1)

However, its rigorous proof was not given, and we found that (1) seems (reasonable but)
technically involved. Thus, here we explain an alternative, direct proof along the lines
of (5) ⇒ (1) of [4, Theorem 7.3]. We refer to [5] for the derivation from the Brunn–
Minkowski inequality to the lower weighted Ricci curvature bound (and hence to the
curvature-dimension condition) on weighted Riemannian manifolds.

Let (M,F ) be a (connected, smooth) Finsler manifold of dimension n ≥ 2 and m be
a smooth positive measure on M . Given v ∈ TxM \ {0}, let η : (−ε, ε) −→ M be the
geodesic with η̇(0) = v and V be a smooth vector field on a neighborhood U of x such
that V (η(t)) = η̇(t) and that every integral curve of V is geodesic. On U , we decompose
m as m = e−ψ volgV , where volgV is the volume measure induced from the Riemannian
metric gV on U . Put ψη := ψ ◦ η for simplicity. Then, the weighted Ricci curvature is
defined by

RicN(v) := Ric(v) + ψ′′
η(0)−

ψ′
η(0)

2

N − n

for N ∈ (−∞, 0] ∪ (n,∞), and Ricn(v) and Ric∞(v) are defined as the limits. Note that,
by definition, for N ∈ (n,∞) and N ′ ∈ (−∞, 0),

Ricn(v) ≤ RicN(v) ≤ Ric∞(v) ≤ RicN ′(v) ≤ Ric0(v).

We prove that CD(K,N) implies RicN ≥ K (i.e., RicN(v) ≥ KF 2(v) for all v ∈ TM).
We refer to [7] for CD(K,N) with N ∈ [n,∞], [8] for N < 0, and [9] for N = 0. A review
can be found in [10, Chapter 18] as well.
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Proof. Assume on the contrary that RicN(v) < K − 2ε for some ε > 0 and v ∈ TxM with
F (v) = 1. We divide the proof into five cases depending on N .

(i) We first consider N ∈ (n,∞). Take a gv-orthonormal basis (ei)
n
i=1 of TxM with

e1 = v, and a smooth function ϕ on U such that

∇ϕ(x) = v, g∇ϕ
(
D∇ϕ
ei

[∇ϕ], ej
)
= −

ψ′
η(0)

N − n
δij.

For sufficiently small δ, s > 0, we consider a probability measure

µ0 = ρ0m := m
(
B+(x, δ)

)−1 ·m|B+(x,δ)

and a map
Tt(z) := expz

(
st∇ϕ(z)

)
, t ∈ [0, 1].

Then, µt := (Tt)♯µ0 is the unique minimal geodesic from µ0 to µ1 with respect to
the L2-Kantorovich–Wasserstein distance (by [11, Theorem 13.5] with the help of
[6, Theorem 5.1]). Setting

Φ(t) := log
(
det
[
dTt(x)

])
as in [8], we have Φ′(0) = s trace(B), where

Bij := g∇ϕ
(
D∇ϕ
ei

[∇ϕ], ej
)
= −

ψ′
η(0)

N − n
δij.

Moreover, the Riccati equation yields

Φ′′(0) = −Ric(sv)− s2 trace(B2).

Now, we consider the functions

c1(t) := exp

(
ψη(0)− ψη(st)

N − n

)
, c2(t) := eΦ(t)/n,

c(t) := c1(t)
(N−n)/N · c2(t)n/N =

(
eψη(0)−ψη(st) · det

[
dTt(x)

])1/N
=
(
detm

[
dTt(x)

])1/N
.

It follows from
c′1(0)

c1(0)
= −

sψ′
η(0)

N − n
=
s

n
trace(B) =

c′2(0)

c2(0)

and the Riccati equation above that

N
c′′(0)

c(0)
= (N − n)

c′′1(0)

c1(0)
+ n

c′′2(0)

c2(0)
− n(N − n)

N

(
c′1(0)

c1(0)
− c′2(0)

c2(0)

)2

= −RicN(sv)− s2 trace(B2) +
(s trace(B))2

n
.
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Recalling the choice of B, we find

trace(B2) =
(trace(B))2

n
=

nψ′
η(0)

2

(N − n)2
.

Therefore, we obtain

N
c′′(0)

c(0)
= −s2RicN(v) > −(K − 2ε)s2F 2(v).

Let us denote c above by cx, and set dz := F (s∇ϕ(z)) = d(z,T1(z)). Then, by
continuity,

c′′z(t)

cz(t)
> −K − ε

N
d2z

holds for every z ∈ B+(x, δ) and t ∈ [0, 1] (by letting δ, s > 0 smaller if necessary).
This implies

cz(t) ≤
s(K−ε)/N((1− t)dz)

s(K−ε)/N(dz)
cz(0) +

s(K−ε)/N(tdz)

s(K−ε)/N(dz)
cz(1)

by [3, Lemma 2.2] (or [8, Lemma 2.1]), and hence

ρt
(
Tt(z)

)−1/N ≤
s(K−ε)/N((1− t)dz)

s(K−ε)/N(dz)
ρ0(z)

−1/N +
s(K−ε)/N(tdz)

s(K−ε)/N(dz)
ρ1
(
T1(z)

)−1/N

by the Monge–Ampère equation, where

sk(r) :=


1√
k
sin(

√
kr) k > 0,

r k = 0,
1√
−k

sinh(
√
−kr) k < 0.

This means that the reduced curvature-dimension condition CD∗(K,N) fails, and
hence CD(K,N) also fails (see [1, Propositions 2.5, 2.8]).

(ii) N = n: If Ricn(v) < K − 2ε, then we have RicN(v) < K − ε for some N ∈ (n,∞).
Thus, CD(K,N) does not hold by (i), and hence CD(K,n) also fails.

(iii) N < 0: In this case, in the same manner as (i), we have

c′′z(t)

cz(t)
< −K − ε

N
d2z,

which yields

cz(t) ≥
s(K−ε)/N((1− t)dz)

s(K−ε)/N(dz)
cz(0) +

s(K−ε)/N(tdz)

s(K−ε)/N(dz)
cz(1)

and

ρt
(
Tt(z)

)−1/N ≥
s(K−ε)/N((1− t)dz)

s(K−ε)/N(dz)
ρ0(z)

−1/N +
s(K−ε)/N(tdz)

s(K−ε)/N(dz)
ρ1
(
T1(z)

)−1/N
.

This means that CD∗(K,N) fails, and hence CD(K,N) also fails (see [8, Proposi-
tion 4.7] and the proof of [8, Theorem 4.10]).
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(iv) N = ∞: If Ric∞(v) < K − 2ε, then we have RicN(v) < K − ε for some N < 0.
Thus, CD(K,N) does not hold by (iii), and hence CD(K,∞) also fails.

(v) N = 0: Since RicN(v) ≤ Ric0(v) for all N < 0, we find

ρt
(
Tt(z)

)
≥

(
s(K−ε)/N((1− t)dz)

s(K−ε)/N(dz)
ρ0(z)

−1/N +
s(K−ε)/N(tdz)

s(K−ε)/N(dz)
ρ1
(
T1(z)

)−1/N

)−N

by (iii), which implies

ρt
(
Tt(z)

)
≥
(
τ
(1−t)
K−ε,N(dz)ρ0(z)

−1/N + τ
(t)
K−ε,N(dz)ρ1

(
T1(z)

)−1/N
)−N

by [8, Proposition 4.7], where

τ
(t)
K,N(r) := t1/N

(
sK/(N−1)(tr)

sK/(N−1)(r)

)(N−1)/N

.

Letting N ↑ 0 (then −1/N ↑ ∞), we obtain

ρt
(
Tt(z)

)
≥ max

{
s−K+ε((1− t)dz)

(1− t)s−K+ε(dz)
ρ0(z),

s−K+ε(tdz)

ts−K+ε(dz)
ρ1
(
T1(z)

)}
.

Hence, CD(K, 0) does not hold.

The above argument closely followed the proof of [2, Theorem 6.1], which established
the equivalence between the timelike curvature-dimension condition TCDq(K,N) (with an
arbitrary exponent q ∈ (0, 1)) and the lower weighted Ricci curvature bound RicN ≥ K
in timelike directions for measured Finsler spacetimes (covering the same range N ∈
(−∞, 0] ∪ [n,∞] as above).
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