Corrections to “CD(K, N) = Ricy > K”
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Abstract

We correct the proof of the implication CD(K, N) = Ricy > K in [7] (N €
[n,o0]) and [8, 9] (N < 0, N = 0). The same correction applies to a review in [10,
Chapter 18].

In [7] (see the proof of Theorem 1.2(i) in §8.2) and the following papers [8, 9], to show
the implication from the curvature-dimension condition CD(K, N) to the lower weighted
Ricci curvature bound Ricy > K, we used the Brunn—Minkowski inequality (derived from
CD(K, N)) and an asymptotic formula of the volume of the form

m(Za(A AD) vy <1 N RiCT(v)Tz) + 00, (1)

CpE™

However, its rigorous proof was not given, and we found that (1) seems (reasonable but)
technically involved. Thus, here we explain an alternative, direct proof along the lines
of (5) = (1) of [4, Theorem 7.3]. We refer to [5] for the derivation from the Brunn-
Minkowski inequality to the lower weighted Ricci curvature bound (and hence to the
curvature-dimension condition) on weighted Riemannian manifolds.

Let (M, F) be a (connected, smooth) Finsler manifold of dimension n > 2 and m be
a smooth positive measure on M. Given v € T, M \ {0}, let n: (—e,e) — M be the
geodesic with 77(0) = v and V' be a smooth vector field on a neighborhood U of x such
that V' (n(t)) = n(t) and that every integral curve of V' is geodesic. On U, we decompose
m as m = e ¥ vol,,, where vol,, is the volume measure induced from the Riemannian
metric gy on U. Put ¢, := 1 on for simplicity. Then, the weighted Ricci curvature is
defined by 0
o (0
Ricy (v) := Ric(v) + 4;(0) N7
for N € (—00,0] U (n,00), and Ric,(v) and Rics(v) are defined as the limits. Note that,
by definition, for N € (n,00) and N’ € (—o0,0),

Ric, (v) < Ricy(v) < Ricy(v) < Ricyr(v) < Rico(v).
We prove that CD(K, N) implies Ricy > K (i.e., Ricy(v) > KF?(v) for all v € TM).

We refer to [7] for CD(K, N) with N € [n, 00|, [8] for N < 0, and [9] for N = 0. A review
can be found in [10, Chapter 18] as well.
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Proof. Assume on the contrary that Ricy(v) < K — 2¢ for some ¢ > 0 and v € T, M with
F(v) = 1. We divide the proof into five cases depending on N.

(i) We first consider N € (n,00). Take a g,-orthonormal basis (e;)?; of T, M with
e; = v, and a smooth function ¢ on U such that
i (0)

Vo(z) =v,  gve(DL°IVe]e;) = —Nn_ - 0ij-

For sufficiently small d, s > 0, we consider a probability measure

-1
Mo = pom = m(B+($,5)) . m|B+(x75)

and a map
Ti(z) :=exp,(stVe(z)), te€0,1].

Then, g = (T¢)so is the unique minimal geodesic from py to py with respect to
the L2-Kantorovich-Wasserstein distance (by [11, Theorem 13.5] with the help of
[6, Theorem 5.1]). Setting

®(t) = log (det [th(x)D

as in [8], we have ®'(0) = strace(B), where

Byj = gve(D2°[Vl,e5) = —
Moreover, the Riccati equation yields
®"(0) = —Ric(sv) — s* trace(B?).

Now, we consider the functions

ci(t) = exp(¢"(0> — wn(8t>), co(t) = ®®/m

N —n
(N=n)/N WIN _ (b (0)=(st) N
c(t) = er(t) ()N = (e 2(O=n(st) . Jet [th(x)D

= <detm [th(LE)} ) 1/N.
It follows from /(0) W (0) 5(0)
a0 " N e =

and the Riccati equation above that

t B
= —Ricy(sv) — s trace(Bz) (5 race(



(i)

(i)

Recalling the choice of B, we find

trace(B?) = (tracz(B)) = (7;\;%_((2)2

Therefore, we obtain

= —s’Ricy(v) > —(K — 2¢)s*F?(v).

Let us denote ¢ above by ¢,, and set d, := F(sV¢(z)) = d(z,T1(z)). Then, by
continuity,
cl(t) K—e¢
> R
c.(t) N
holds for every z € B*(z,d) and t € [0, 1] (by letting 6, s > 0 smaller if necessary).
This implies

d2

S(—eyn((1 — t)d:)
S(x—e)/N (d2)
by [3, Lemma 2.2] (or [8, Lemma 2.1]), and hence

S(r—e)/N(td>)
S(r—e)/n(d2)

c.(t) < c:(0) + cz(1)

~1/N <

sa—en((1 — t)dz)po(z)—l/N N S(i—e)/n (td2) (Ta())

Pt (Tt(z)) S(rc—ey/n(dz) S(k—e)/N(dz)

by the Monge-Ampere equation, where

1.
7 sin(vkr) k>0,
sp(r):==4qr k=0,
I
N sinh(v/—kr) k <O.

This means that the reduced curvature-dimension condition CD*(K, N) fails, and
hence CD(K, N) also fails (see [1, Propositions 2.5, 2.8]).

N = n: If Ric,(v) < K — 2¢, then we have Ricy(v) < K — ¢ for some N € (n, c0).
Thus, CD(K, N) does not hold by (i), and hence CD(K,n) also fails.

N < 0: In this case, in the same manner as (i), we have
c(t) K —¢

d2
o) SN

which yields

sy~ (1 —1)d.)
S(k—=)/n(d2)

S(k—2)/N (td)
S(k—e)/N(dz)

c.(t) > c.(0) + c.(1)

and

~iyN _ Su—agn((L=8d.) iy Sr—en(td:) ~1/N
T.(z > z + ————"(T4(z .
Pt( t( )) S(Kfs)/N(dz) Po( ) S(Kfe)/N(dz) P1 1( ))

This means that CD*(K, N) fails, and hence CD(K, N) also fails (see [8, Proposi-
tion 4.7] and the proof of [8, Theorem 4.10]).
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(iv) N = oo: If Riceo(v) < K — 2¢, then we have Ricy(v) < K — ¢ for some N < 0.
Thus, CD(K, N) does not hold by (iii), and hence CD(K, o0) also fails.

(v) N =0: Since Ricy(v) < Ricy(v) for all N < 0, we find

Pt (Tt(z)) > (S(K;(g});]_\fs()gjlv(_dzt))dz)po(z)—l/N + SS((I;__?)//];[V((tiZ)) o (T1(2>)1/N>

by (iii), which implies

p(Tu(2)) = (D)oo 4 () (Ta(2) )

by [8, Proposition 4.7], where
N—1)/N
© Sk ()Y
TKN(T) =t _— .
sk/(n-1)(T)

Letting N 1 0 (then —1/N 7 00), we obtain

(1 — t)S,KJrE(dZ

pi(Ti(z)) > maX{ S_rcre((1 t)dzgﬂo(Z) S_K+—E<tdZ)P1(T1(Z)) }

Hence, CD(K,0) does not hold. O

The above argument closely followed the proof of [2, Theorem 6.1], which established
the equivalence between the timelike curvature-dimension condition TCD (K, N) (with an
arbitrary exponent ¢ € (0,1)) and the lower weighted Ricci curvature bound Ricy > K
in timelike directions for measured Finsler spacetimes (covering the same range N €
(—00,0] U [n, o0] as above).
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