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Abstract

On Euclidean and Hilbert spaces, Riemannian manifolds, and CAT(0)-spaces, gra-
dient flows of convex functions are known to satisfy the contraction property, which
plays a fundamental role in optimization theory and possesses fruitful analytic and ge-
ometric applications. On (non-inner product) normed spaces, however, gradient flows
of convex functions do not satisfy the contraction property. We give a detailed proof
of this characterization of inner products, and discuss a possible form of a weaker
contraction property on normed spaces.

1 Introduction

Analysis of gradient flows of convex functions is a fundamental subject in many branches
of mathematics, such as optimization theory, operator theory, partial differential equations,
geometric analysis, to name a few. Beyond the classical setting of Euclidean and Hilbert
spaces (see, e.g., [Br]), there has been a growing interest in gradient flows of convex functions
on metric spaces. (The convexity is then understood as the geodesic convexity meaning that
the restriction of a function to every minimizing geodesic is convex.) Such a generalization
was intensively studied on CAT(0)-spaces (nonpositively curved metric spaces in the sense
of triangle comparison) in 1990s [Jo1, Jo2, Ma]; we refer to [AGS, Ba1, Ba2] for further
reading and more recent developments. Besides CAT(0)-spaces, there are also a number
of related studies on CAT(1)-spaces [OP], Alexandrov spaces of curvature bounded below as
well asWasserstein spaces over them [Ly, Oh1, Pe, Sa], and metric measure spaces satisfying
the Riemannian curvature-dimension condition RCD(K,∞) [St].

On a metric space (X, d), a gradient curve ξ of a function f is tending to the direc-
tion in which f decreases most efficiently (measured by the distance structure d), which
is a solution to the equation ξ̇(t) = ∇[−f ](ξ(t)) in the smooth setting. One of the most
important properties of gradient curves ξ, ζ of a convex function is the contraction (or the
non-expansion) property:

d
(
ξ(t), ζ(t)

)
≤ d
(
ξ(0), ζ(0)

)
for all t ≥ 0. (1.1)
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The contraction property plays a vital role from both theoretical and applied viewpoints.
It implies the continuous dependence (especially the uniqueness) of gradient curves on their
initial points, and gradient curves provide a contraction semigroup (gradient flow) which
can be analyzed by means of operator theory, partial differential equations, etc.

In the spaces mentioned in the first paragraph, appropriately defined gradient curves of
convex functions satisfy the contraction property (1.1). We remark and stress that those
spaces are all “Riemannian” in the sense that they exclude all non-Riemannian Finsler
manifolds (and all non-inner product normed spaces). In fact, on a normed space (Rn, ∥ ·∥),
we will show that the contraction property (1.1) holds for every convex function if and
only if the norm ∥ · ∥ comes from an inner product (Theorem 3.1). We remark that, in
[OS2, §4], we have already seen an example of a convex function on a normed space whose
gradient flow does not have the contraction property. We shall prove that, by testing only
for the maximum of linear functions, the contraction property fails for all non-inner product
normed spaces.

The lack of the contraction property is one of the main difficulties of analysis of gradient
flows in “non-Riemannian” spaces. There is no known quantitative estimate, and even the
uniqueness of gradient curves is unclear (see [AGS, p. 4] and [Oh2, Preface(b)] for related
remarks). The main aim of this short article is to draw more attention to this fundamental
open problem and discuss a possible weaker contraction property available for normed spaces
and, more generally, Finsler manifolds (see Remark 3.3). Such a generalized contraction
property will be obviously beneficial in optimization theory and Banach space theory, as well
as geometric analysis on Finsler manifolds, since heat flow on (measured) Finsler manifolds
can be regarded as gradient flow of the relative entropy on the L2-Wasserstein space (we
refer to [OS1, OZ] for more details). Moreover, solutions of some evolution equations can be
regarded as gradient flow in the Lp-Wasserstein space with p ̸= 2, which is non-Riemannian
even when the underlying space is Riemannian (see, for example, [Ke] on q-heat flow).
We also refer to [LOZ, Oh3, OZ] and the references therein for for further related works
concerning gradient flows in some classes of Finsler manifolds.

This article is organized as follows. In Section 2, we review necessary notions and recall
the proof of the contraction property in the Euclidean case. Section 3 is devoted to the proof
of the failure of the contraction property for normed spaces (Theorem 3.1). We also discuss
a possible form of a weaker contraction property for normed spaces inspired by Theorem 3.1.

2 Preliminaries

The canonical coordinates of Rn are denoted by (xi)ni=1. We will freely identify points and
vectors in Rn in a canonical way.

2.1 Gradient curves in normed spaces

By a normed space (Rn, ∥ · ∥), we will mean a possibly asymmetric one; precisely,

(1) ∥x∥ ≥ 0 for all x ∈ Rn and ∥x∥ = 0 if and only if x = 0;

(2) ∥cx∥ = c∥x∥ for all x ∈ Rn and c > 0;
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(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rn.

Then, the function d(x, y) := ∥y − x∥ gives an asymmetric distance function on Rn. In this
generality, a common notion of a gradient curve for a locally Lipschitz function f : Rn −→ R
is a solution ξ : [0, T ) −→ Rn to the energy dissipation identity

f
(
ξ(t)

)
= f

(
ξ(s)

)
− 1

2

∫ t

s

|ξ̇|2(r) dr − 1

2

∫ t

s

|∂f |2
(
ξ(r)

)
dr (2.1)

for all 0 < s < t < T , where

|ξ̇|(r) := lim sup
ρ→r

∥ξ(max{r, ρ})− ξ(min{r, ρ})∥
|r − ρ|

is the (forward) metric derivative of ξ and

|∂f |(x) := lim sup
y→x

max{f(x)− f(y), 0}
∥y − x∥

is the local (descending) slope of f . Since “≥” always holds in (2.1) by the Cauchy–
Schwarz and Young inequalities, satisfying “≤” is the essential condition and implies “ξ̇(r) =
∇[−f ](ξ(r))” at almost every r. We refer to [AG, AGS] for further reading, and to [OZ]
and the references therein for the asymmetric case.

If ∥ · ∥ is strictly convex (in the sense that ∥x+ y∥ = ∥x∥+ ∥y∥ holds only when x = ay
or y = ax for some a ≥ 0) and f is differentiable, then we can introduce a gradient curve
simply as a solution to

ξ̇(t) = ∇[−f ]
(
ξ(t)

)
,

where ∇[−f ](x) := L(−df(x)) is the gradient vector defined via the Legendre transform
L : Rn −→ Rn associated with the norm ∥ · ∥ given by

L(α) :=
(
1

2

∂[∥ · ∥2∗]
∂αi

(α)

)n

i=1

,

where ∥ · ∥∗ is the dual norm on Rn, namely

∥α∥∗ := sup

{
n∑

i=1

αix
i

∣∣∣∣ ∥x∥ ≤ 1

}
.

(Note that ∥·∥2∗ is differentiable since ∥·∥ is strictly convex.) We remark that ∇[−f ] ̸= −∇f
in general due to the asymmetry of ∥ · ∥. In the case where ∥ · ∥∗ is twice differentiable on
Rn\{0} and df(x) ̸= 0, the gradient vector is written (with the help of Euler’s homogeneous
function theorem) as

∇[−f ](x) =

(
−

n∑
j=1

1

2

∂2[∥ · ∥2∗]
∂αi∂αj

(
−df(x)

) ∂f
∂xj

(x)

)n

i=1

. (2.2)

We remark that ∥ · ∥2∗ is twice differentiable at the origin 0 only when ∥ · ∥ happens to be
induced from an inner product, thereby we excluded 0 (see, for example, [Oh2, Proposi-
tion 1.7]).
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In (2.2),

g∗ij(α) :=
1

2

∂2[∥ · ∥2∗]
∂αi∂αj

(α) (2.3)

(with α ̸= 0) is the inverse matrix of

gij
(
L(α)

)
:=

1

2

∂2[∥ · ∥2]
∂xi∂xj

(
L(α)

)
, (2.4)

provided that (gij(L(α)))ni,j=1 is positive-definite. By definition, for each v ∈ Rn \ {0}, the
symmetric matrix (gij(v))

n
i,j=1 gives an inner product gv approximating ∥ · ∥ in the direction

v up to second order (see [Oh2, §3.1] for a related account on Finsler manifolds).

2.2 Contraction in Euclidean spaces revisited

Before discussing the non-contraction in normed spaces, let us recall how to show the con-
traction in the Euclidean setting. We denote by | · | and ⟨·, ·⟩ the standard Euclidean norm
and inner product, respectively.

Let f : Rn −→ R be a convex C1-function and ξ, ζ : [0, T ) −→ Rn be gradient curves of
f . For t > 0, we have

d

dt

[
|ζ(t)− ξ(t)|2

]
= 2⟨ζ(t)− ξ(t), ζ̇(t)− ξ̇(t)⟩ (2.5)

= −2
〈
ζ(t)− ξ(t),∇f

(
ζ(t)

)
−∇f

(
ξ(t)

)〉
.

Put γ(s) := (1− s)ξ(t) + sζ(t) for s ∈ [0, 1]. Then the convexity of f implies that

f
(
γ(s)

)
≤ (1− s)f

(
ξ(t)

)
+ sf

(
ζ(t)

)
,

from which we find
f(γ(s))− f(ξ(t))

s
≤ f(ζ(t))− f(γ(s))

1− s
.

By letting s → 0 and s → 1, since γ̇(0) = γ̇(1) = ζ(t)− ξ(t), we obtain〈
∇f
(
ξ(t)

)
, ζ(t)− ξ(t)

〉
≤ f

(
ζ(t)

)
− f

(
ξ(t)

)
≤
〈
∇f
(
ζ(t)

)
, ζ(t)− ξ(t)

〉
(2.6)

(that is, ∇f is monotone). Hence, combining this with (2.5), we have the contraction

d

dt

[
|ζ(t)− ξ(t)|2

]
≤ 0.

Moreover, for a K-convex function f with K ∈ R in the sense that

f
(
(1− s)x+ sy

)
≤ (1− s)f(x) + sf(y)− K

2
(1− s)s|y − x|2

for all x, y ∈ Rn and s ∈ (0, 1), we have the K-monotonicity〈
∇f
(
ξ(t)

)
, ζ(t)− ξ(t)

〉
−
〈
∇f
(
ζ(t)

)
, ζ(t)− ξ(t)

〉
≤ −K|ζ(t)− ξ(t)|2
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as well as the K-contraction property

|ζ(t)− ξ(t)| ≤ e−Kt|ζ(0)− ξ(0)|. (2.7)

In the case of a normed space (Rn, ∥ · ∥), on the one hand, we have

d

dt

[
∥ζ(t)− ξ(t)∥2

]
=

n∑
j=1

∂[∥ · ∥2]
∂xj

(
ζ(t)− ξ(t)

)
·
(
ζ̇j(t)− ξ̇j(t)

)
=

n∑
i,j=1

∂2[∥ · ∥2]
∂xi∂xj

(
ζ(t)− ξ(t)

)
·
(
ζi(t)− ξi(t)

)(
ζ̇j(t)− ξ̇j(t)

)
in place of (2.5), where we assumed that ∥ · ∥ is C2 on Rn \ {0} as well as ξ(t) ̸= ζ(t), and
used the homogeneous function theorem in the second line. Substituting ξ̇(t) = ∇[−f ](ξ(t))
yields that, with the help of (2.2), (2.3) and (2.4),

d

dt

[
∥ζ(t)− ξ(t)∥2

]
= 2

n∑
i,j,k=1

gij
(
ζ(t)− ξ(t)

)
·
(
ζi(t)− ξi(t)

)
×
(
g∗jk
(
−df

(
ξ(t)

)) ∂f
∂xk

(
ξ(t)

)
− g∗jk

(
−df

(
ζ(t)

)) ∂f
∂xk

(
ζ(t)

))
. (2.8)

On the other hand, for γ(s) = (1− s)ξ(t) + sζ(t) as above, we observe

lim
s→0

f(γ(s))− f(ξ(t))

s
=

n∑
i=1

∂f

∂xi

(
ξ(t)

)
·
(
ζi(t)− ξi(t)

)
,

thereby the convexity of f implies

n∑
i=1

(
∂f

∂xi

(
ξ(t)

)
− ∂f

∂xi

(
ζ(t)

))
·
(
ζi(t)− ξi(t)

)
≤ 0 (2.9)

in place of (2.6). Therefore, if(
g∗ij
(
−df

(
ξ(t)

)))
=
(
g∗ij
(
−df

(
ζ(t)

)))
=
(
gij
(
ζ(t)− ξ(t)

))−1

(2.10)

holds as n× n matrices, then we deduce from (2.8) and (2.9) the contraction

d

dt

[
∥ζ(t)− ξ(t)∥2

]
≤ 0.

When the norm ∥·∥ comes from an inner product, gv (defined by gij(v)) coincides with the
original inner product for any v ̸= 0 and (2.10) always holds. On a normed space, however,
gv depends on the direction v and (2.10) does not hold unless ζ(t)− ξ(t) = a∇[−f ](ξ(t)) =
b∇[−f ](ζ(t)) for some a, b > 0.

In view of (2.10), the difficulty in the case of normed spaces stems from the difference
between the directions in question; ζ(t) − ξ(t) from the first variation of the distance and
∇[−f ](ξ(t)) (or ∇[−f ](ζ(t))) from the gradient flow equation. When (2.10) holds in some
way, we can connect them and apply the convexity (2.9) of f . We refer to [OP, OS2] for
related studies. In [OP] we introduced a condition called the commutativity for metric
spaces, which corresponds to (2.10) and turned out a Riemannian condition. In [OS2] we
investigated a sufficient condition for the contraction, called the skew convexity.
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3 Non-contraction in normed spaces

Let (Rn, ∥ · ∥) be a possibly asymmetric normed space in the sense of Subsection 2.1. We
will denote by S := {x ∈ Rn | ∥x∥ = 1} the unit sphere of the norm.

We remark that it is natural to assume the strict convexity of ∥·∥. In fact, without strict
convexity, gradient curves are not unique and there is no chance to have the contraction
property (see [AG, Example 4.23], [OS2, Remark 4.1]).

Theorem 3.1 (Non-contraction in normed spaces). Suppose that a (possibly asymmetric)
strictly convex normed space (Rn, ∥ · ∥) satisfies the contraction property in the sense that

∥ζ(t)− ξ(t)∥ ≤ ∥ζ(0)− ξ(0)∥ (3.1)

holds for all t ∈ [0, T ) for every convex function f : Rn −→ R and any gradient curves
ξ, ζ : [0, T ) −→ Rn for f . Then, the norm ∥ · ∥ is necessarily induced from an inner product.

We will see that, in fact, the contraction is tested only for the maximum of two linear
functions in our proof.

Proof. We divide the proof into five steps.

Step 1. We first show that ∥·∥ is differentiable on Rn\{0}. For a convex function, the direc-
tional differentiability in all directions implies the differentiability (by [Ro, Theorem 25.1]).
Thus, assuming the contrary, let ∥ · ∥ be not directionally differentiable at v ∈ S. Then, the
closure of the set

K := {x ∈ Rn | v + λ(x− v) ∈ S for some λ > 0}

is not a halfspace (∂K is not a hyperplane) but a closed convex cone with origin at v. Hence,
we can modify the coordinates in such a way that v = (1, 0, . . . , 0) ∈ S and ∥x∥ > 1 holds
for some δ > 0 and all

x = (1 + as, s, x3, . . . , xn)

with a ∈ (−δ, δ) and (s, x3, . . . , xn) ∈ Rn−1 \{0} (to be precise, the strict inequality ∥x∥ > 1
for all (s, x3, . . . , xn) ∈ Rn−1 \ {0} is guaranteed by the strict convexity).

We consider the convex function

f(x) = max{−x1 + εx2, c(−x1 − εx2)}

for ε ∈ (0, δ) and c ∈ (0, 1). By the choice of δ, we have

∇[−f ](x) =

{
(1, 0, . . . , 0) when (1− c)x1 < (1 + c)εx2,

(c, 0, . . . , 0) when (1− c)x1 > (1 + c)εx2.

Put

bc :=
1− c

1 + c

2

ε
> 0

and observe
(1 + c)εbc = 2(1− c) > (1− c).
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6

-

S

x1 = 1 + ax2

-
ξ+

-
ξ−

Figure 1: Step 1 for n = 2

This implies that

∇[−f ]
(
(1, bc, 0, . . . , 0)

)
= (1, 0, . . . , 0), ∇[−f ]

(
(−1,−bc, 0, . . . , 0)

)
= (c, 0, . . . , 0).

Hence, the gradient curves emanating from (1, bc) and (−1,−bc) are given by

ξ+(t) = (1 + t, bc, 0, . . . , 0) for t ∈ [0, 1),

ξ−(t) = (−1 + ct,−bc, 0, . . . , 0) for t ≥ 0,

respectively (see Figure 1). Thus, it follows from the assumed contraction property (3.1)
that ∥∥(2 + (1− c)t, 2bc, 0, . . . , 0

)∥∥ ≤ ∥(2, 2bc, 0, . . . , 0)∥

for t ∈ [0, 1). However, since bc → 0 as c → 1, we have∥∥(2 + (1− c)t, 2bc, 0, . . . , 0
)∥∥ > ∥(2, 2bc, 0, . . . , 0)∥

when c is close to 1, a contradiction.

From here on, we assume that ∥ · ∥ is differentiable on Rn \ {0}. Note that ∥ · ∥ is then
C1 on Rn \ {0} (see [Ro, Corollary 25.5.1]).

Step 2. Next, to prove the symmetry of ∥ · ∥, we assume in contrary that the function

ϕ : S −→ (0,∞), where −ϕ(v) · v ∈ S,

is not constant (and hence its derivative is not identically zero). Thus, by choosing appro-
priate coordinates, the hyperplane x2 = 1 is tangent to S at v := (0, 1, 0, . . . , 0) and the
hyperplane x2 = b is tangent to S at w := (−a,−b, 0, . . . , 0) for some a, b > 0. Now, given
c > 0, the function

f(x) = max{cb−1x2,−bx2}

is convex and we have

∇[−f ](x) =

{
cw when x2 > 0,

bv when x2 < 0.
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6

-

S

6

�

v

w

6

y+

ξ+

�

y−
ξ−

Figure 2: Step 2 for n = 2 (S is C1)

Hence, for y± := (±1,∓s, 0, . . . , 0) with small s > 0,

ξ+(t) := y+ + tbv, ξ−(t) := y− + tcw

are gradient curves emanating from y+, y−, respectively, for small t ≥ 0 (see Figure 2).
Thus, the hypothesized contraction property (3.1) implies that

d+

dt

[
∥ξ+(t)− ξ−(t)∥

]
t=0

= d
[
∥ · ∥

]
y+−y−

(bv − cw) ≤ 0.

Letting s → 0, since ∥ · ∥ is C1 on Rn \ {0}, we obtain

d
[
∥ · ∥

]
(2,0,...,0)

(bv − cw) ≤ 0.

Moreover, by the contraction property between

ζ+(t) := (1, s, 0, . . . , 0) + tcw, ζ−(t) := (−1,−s, 0, . . . , 0) + tbv,

we also find
d
[
∥ · ∥

]
(2,0,...,0)

(cw − bv) ≤ 0.

Therefore,
d
[
∥ · ∥

]
(2,0,...,0)

(bv − cw) = 0

holds for any c > 0. This means that S is tangent to (λ, 0, . . . , 0) + R · (bv − cw) for λ > 0
with (λ, 0, . . . , 0) ∈ S and arbitrary c > 0. However, this is possible only when v and w are
linearly dependent, so that a = 0. This is a contradiction and completes the proof of the
symmetry.

Step 3. Given arbitrary v ∈ S, let us modify the coordinates in such a way that v =
(1, 0, . . . , 0) and the hyperplane x1 = 1 is tangent to S at v. Then we consider the convex
function

f(x) = |x1|

and shall show that lines parallel to v and passing through S∩ f−1(0) are tangent to S (this
is indeed guessed from the argument in the previous step).

8



6

-

S

v

w

y+

y−

�
ξ+

-
ξ−

Figure 3: Step 3 for n = 2 (S is symmetric)

To this end, take w ∈ S ∩ f−1(0) and put y+ := v + sw and y− := −v − sw for s > 0.
Note that f(y±) = f(±v) = 1 and ∇[−f ](y±) = ∇[−f ](±v) = ∓v, and hence the gradient
curves for f emanating from y± are given by

ξ+(t) := y+ − tv, ξ−(t) := y− + tv

for t ∈ [0, 1) (see Figure 3). Then we observe from

∥ξ+(t)− ξ−(t)∥ = ∥y+ − y− − 2tv∥ = 2∥v + sw − tv∥

that

1

2

d

dt

[
∥ξ+(t)− ξ−(t)∥

]
t=0

= −d
[
∥ · ∥

]
v+sw

(v) = −d
[
∥ · ∥

]
(v/s)+w

(v) → −d
[
∥ · ∥

]
w
(v)

as s → ∞, where the latter equality is a consequence of the 1-homogeneity of ∥ · ∥. Hence,
the contraction property (3.1) implies

d
[
∥ · ∥

]
w
(v) ≥ 0.

Moreover, replacing w with −w gives the reverse inequality thanks to the symmetry of ∥ · ∥,
indeed,

d
[
∥ · ∥

]
−w

(v) = d
[
∥ · ∥

]
w
(−v) = −d

[
∥ · ∥

]
w
(v).

Therefore, we obtain
d
[
∥ · ∥

]
w
(v) = 0.

This yields that the line w + R · v is tangent to S at w as we claimed.

Step 4. By virtue of the previous step, we can choose coordinates such that the hyperplanes
x1 = 1 and x2 = 1 are tangent to S at v = (1, 0, . . . , 0) and w = (0, 1, 0, . . . , 0), respectively.
Now, for a > 0, we consider the convex function

f(x) = max{ax1, x2}.
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6

-

S

x2 = ax1

y+

y−

?
ξ+

�
ξ−

y′+

y′−

Figure 4: Step 4 for n = 2

Note that, by our choice of the coordinates,

∇[−f ](x) =

{
(−a, 0, . . . , 0) when ax1 > x2,

(0,−1, 0, . . . , 0) when ax1 < x2.

We take (r, ar, 0, . . . , 0) ∈ S with r = r(a) > 0 and put y− := (0,−as, 0, . . . , 0), y+ :=
(r, ar + s, 0, . . . , 0) for small s > 0. Observe that ∇[−f ](y−) = (−a, 0, . . . , 0), ∇[−f ](y+) =
(0,−1, 0, . . . , 0), and

ξ−(t) := y− − (at, 0) = (−at,−as, 0, . . . , 0),

ξ+(t) := y+ − (0, t) = (r, ar + s− t, 0, . . . , 0)

are gradient curves for f for 0 ≤ t < min{s, s/a} (see Figure 4). Then we have

d

dt

[
∥ξ+(t)− ξ−(t)∥

]
t=0

= d
[
∥ · ∥

]
(r,ar+(a+1)s)

(a,−1, 0, . . . , 0)

→ d
[
∥ · ∥

]
(r,ar)

(a,−1, 0, . . . , 0)

as s → 0. Hence, by the contraction property (3.1), we find

d
[
∥ · ∥

]
(r,ar)

(a,−1, 0, . . . , 0) ≤ 0.

A similar discussion for y′− := (−s, 0) and y′+ := (r+ as, ar) yields that, since ∇[−f ](y′−) =
(0,−1, 0, . . . , 0) and ∇[−f ](y′+) = (−a, 0, . . . , 0),

d
[
∥ · ∥

]
(r,ar)

(−a, 1, 0, . . . , 0) ≤ 0.

Therefore, we obtain
d
[
∥ · ∥

]
(r,ar)

(a,−1, 0, . . . , 0) = 0, (3.2)

and the line (r, ar, 0, . . . , 0) + R · (a,−1, 0, . . . , 0) is tangent to S at (r, ar, 0, . . . , 0), for any
a > 0 and r = r(a) > 0. One can similarly show (3.2) for a < 0 and r = r(a) > 0 with
(r, ar, 0, . . . , 0) ∈ S.
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Step 5. The outcome of the previous step is that the parallelogram identity holds in the
2-plane P ⟨v, w⟩ including v and w. By the way of taking v, w in Step 3, for any v̄, w̄ ∈ Rn,
we can choose v, w such that v̄, w̄ ∈ P ⟨v, w⟩. Therefore, the parallelogram identity holds
for any v̄, w̄ ∈ Rn, and hence ∥ · ∥ comes from an inner product. This completes the proof.

Comparing Theorem 3.1 with the scaling invariance of the convexity of functions on Rn,
we can derive some immediate corollaries. For this purpose, for a function Φ: (0,∞) −→
(0,∞), we say that a strictly convex normed space (Rn, ∥ · ∥) satisfies the Φ-contraction
property if

∥ζ(t)− ξ(t)∥ ≤ Φ(t)∥ζ(0)− ξ(0)∥

holds for all t ∈ (0, T ) for every convex function f : Rn −→ R and any gradient curves
ξ, ζ : [0, T ) −→ Rn for f .

Corollary 3.2. Let (Rn, ∥ · ∥) be a (possibly asymmetric) strictly convex normed space,
which is not an inner product space. If (Rn, ∥ · ∥) satisfies the Φ-contraction property for
some Φ: (0,∞) −→ (0,∞), then we have

∥ζ(t)− ξ(t)∥ ≤ inf
s>0

Φ(s) · ∥ζ(0)− ξ(0)∥

for all t ∈ (0, T ), for any convex function f : Rn −→ R and gradient curves ξ, ζ : [0, T ) −→
Rn for f . In particular, (Rn, ∥ · ∥) does not satisfy the Φ-contraction property for any Φ
with infs>0Φ(s) ≤ 1.

Thus, the exponential contraction ∥ζ(t) − ξ(t)∥ ≤ e−Kt∥ζ(0) − ξ(0)∥ does not hold for
any K < 0 (compare this with (2.7)).

Proof. For any ε > 0, take s > 0 such that Φ(s) ≤ inf Φ+ ε. Then, given a convex function
f : Rn −→ R, gradient curves ξ, ζ : [0, T ) −→ Rn for f , and t ∈ (0, T ), we consider the
function cf with c = t/s. Note that cf is also convex and ξc(t) := ξ(ct), ζc(t) := ζ(ct) are
gradient curves for cf . Hence, it follows from the Φ-contraction property that

∥ζ(t)− ξ(t)∥ = ∥ζc(c−1t)− ξc(c
−1t)∥ ≤ Φ(c−1t)∥ζ(0)− ξ(0)∥ = Φ(s)∥ζ(0)− ξ(0)∥

≤
(
inf Φ + ε

)
· ∥ζ(0)− ξ(0)∥.

Since ε > 0 was arbitrary, we obtain the first assertion. The latter assertion is then a
consequence of Theorem 3.1.

Remark 3.3. (a) In view of Corollary 3.2, as a weaker contraction property on normed
spaces, what one could expect is a scaling invariant estimate of the form

∥ζ(t)− ξ(t)∥ ≤ C∥ζ(0)− ξ(0)∥ (3.3)

with some C > 1. Then, due to the “discontinuity” at t = 0, it seems difficult to apply
the method based on a differential inequality (as in Subsection 2.2 in the Euclidean
case).
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(b) Note that (3.3) suffices to show the uniqueness of gradient curves. Thus, since the
uniqueness fails in non-strictly convex normed spaces, the constant C would depend on
the strength of the convexity of the norm ∥ · ∥, such as the uniform convexity (see, for
example, [Oh2, §1.2.1]).

(c) Another direction is to consider K-convex functions for K > 0. Also in this case, we
may need to have a closer look on the uniform convexity (and smoothness) of ∥ · ∥.
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[Ba2] M. Bačák, Old and new challenges in Hadamard spaces. Jpn. J. Math. 18 (2023),
115–168.
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