Maximal displacement of

branching symmetric stable processes
available at arXiv:2106.15215

Yuichi Shiozawa

(Osaka University, Japan)
The 10th International Conference on Stochastic Analysis and its Applications
Kyoto University

September, 2021

1. Introduction

- Reproduction only on a compact set in \mathbb{R}^{d}
$\triangleright L_{t}$: forefront of the particle range at time t
$\triangleright\left(\left\{X_{t}\right\}_{t \geq 0},\left\{P_{x}\right\}_{x \in \mathbb{R}^{d}}\right)$: symm. α-stable proc. on \mathbb{R}^{d} generated by $-\frac{1}{2}(-\Delta)^{\alpha / 2} \quad(\alpha \in(0,2))$

$$
\Rightarrow P_{x}\left(\left|X_{t}\right|>R\right) \sim \frac{c_{0} t}{R^{\alpha}}(R \rightarrow \infty) \quad \text { (heavy tail) }
$$

○ Branching RW on \mathbb{Z} with spatially homogeneous branching [Durrett(83), Bhattacharya-Hazra-Roy(17)]

○ (conti. time) Catalytic branching RW on \mathbb{Z} [Bulinskaya(21)]
(reproduction only on finite points)
2. Model and results

(1) μ-killed symm. stable proc.
(2) binary branching at the lifetime
(3) indep. reproduction
$\triangleright \mu$: positive Radon meas. on $\mathbb{R}^{\boldsymbol{d}}$ with compact support
$\triangleright G_{\beta}(x, y): \beta$-resolvent of the symm. α-stable proc. on \mathbb{R}^{d}

$$
\lim _{\beta \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G_{\beta}(x, y) \mu(\mathrm{d} y)=0 \quad \text { (Kato class) }
$$

$\triangleright \lambda:=\inf \operatorname{Spec}\left(\frac{1}{2}(-\Delta)^{\alpha / 2}-\mu\right):$ intensity of branching
In what follows, we assume $\underline{\boldsymbol{\lambda}<0}$
\Rightarrow the ground state $h \in C_{\boldsymbol{b}}^{+}\left(\mathbb{R}^{\boldsymbol{d}}\right)$ exists and

$$
h(x) \sim \frac{C_{0}}{|x|^{d+\alpha}} \int_{\mathbb{R}^{d}} h(y) \mu(\mathrm{d} y) \quad(|x| \rightarrow \infty)
$$

$\triangleright Z_{t}:=$ population at time t
$\triangleright \mathrm{X}_{t}^{k}$: position of the k th particle at time $t\left(1 \leq k \leq Z_{t}\right)$
$\triangleright L_{t}:=\max _{1 \leq k \leq Z_{t}}\left|\mathrm{X}_{t}^{k}\right|:$
maximal norm of particles alive at time t (forefront)
$\triangleright M_{t}:=e^{\lambda t} \sum_{k=1}^{Z_{t}} h\left(\mathrm{X}_{t}^{k}\right):$ nonneg. square integrable martingale
Theorem. $\exists c_{*}>0$ (explicit), $\forall \kappa>0$,

$$
\lim _{t \rightarrow \infty} \mathbb{P}_{x}\left(e^{\lambda t / \alpha} L_{t} \leq \kappa\right)=\mathbb{E}_{x}\left[\exp \left(-\kappa^{-\alpha} c_{*} M_{\infty}\right)\right]
$$

RHS: average over the Fréchet distribution with parameter α scaled by $c_{*} M_{\infty}$ [Bovier(17), Thm 1.12]

Remark. [(Non)degeneracy of M_{∞}]

- $d=1, \alpha \in(1,2) \Rightarrow \lambda<0$ and $\mathbb{P}_{x}\left(M_{\infty}>0\right)=1$
- $d>\alpha \Rightarrow \mathbb{P}_{x}\left(M_{\infty}=0\right) \in(0,1)$

3. Comment on the proof of Theorem

$\triangleright R^{\kappa}(t)=\kappa e^{-\lambda t / \alpha} \quad(\kappa>0:$ fixed $)$
By the Markov and branching properties at time $T(\leq t)$,

$$
\mathbb{P}_{x}\left(L_{t} \leq R^{\kappa}(t)\right)=\mathbb{E}_{x}\left[\prod_{k=1}^{Z_{T}} \mathbb{P}_{\mathrm{X}_{T}^{k}}\left(\boldsymbol{L}_{t-T} \leq \boldsymbol{R}^{\kappa}(t)\right)\right] \cdots(\mathrm{A})
$$

By the second moment method [Nishimori-S(21+)],

$$
\mathbb{P}_{\mathrm{X}_{T}^{k}}\left(L_{t-T} \leq R^{\kappa}(t)\right) \asymp \exp \left(-\frac{c_{*}}{\kappa^{\alpha}} e^{\lambda T} h\left(\mathrm{X}_{T}^{k}\right)\right) \cdots(\mathrm{B})
$$

By (A) and (B), we have as $t \rightarrow \infty$ and $T \rightarrow \infty$,

$$
\mathbb{P}_{x}\left(L_{t} \leq R^{\kappa}(t)\right) \asymp \mathbb{E}_{x}\left[\exp \left(-\frac{c_{*}}{\kappa^{\alpha}} M_{\infty}\right)\right] \cdots(\mathrm{C})
$$

4. Tail probability and examples
$\triangleright a(t)$: positive m'ble funct. s.t. $a(t) \rightarrow \infty(t \rightarrow \infty)$
Theorem B. $\exists c_{*}>0$ (as in Thm), loc. uniformly in $x \in \mathbb{R}^{d}$,

$$
\mathbb{P}_{x}\left(e^{\lambda t / \alpha} L_{t}>a(t)\right) \sim \frac{c_{*}}{a(t)^{\alpha}} h(x)(t \rightarrow \infty)
$$

Example. [Catalytic branching] $\triangleright d=1, \alpha \in(1,2)$
$\triangleright \mu=c \delta_{0}\left(c>0, \delta_{0}:\right.$ Dirac meas. at the origin)
\Rightarrow reproduction only at the origin
Theorems hold, λ and $h(x)$ can be written explicitly [S(08)].

