21. A. Arvanitoyeorgos, Y. Sakane and M. Statha: Invariant Einstein metrics on SU(N) and complex Stiefel manifolds, Tohoku Math. J., 72, no 2, (2020), 161 - 210. https://projecteuclid.org/euclid.tmj/1593136818
20. A. Arvanitoyeorgos, Y. Sakane and M. Statha: Einstein metrics on special unitary groups SU(2n), Recent Topics in Differential Geometry and its Related Fields, Proceedings of the 6th International Colloquium on Differential Geometry and its Related Fields, 5 - 27, World Sci. Publ., Singapore, 2019. https://doi.org/10.1142/9789811206696_0002
19. A. Arvanitoyeorgos, Y. Sakane and M. Statha: Homogeneous Einstein metrics on Stiefel manifolds associated to flag manifolds with two isotropy summands, J. Symbolic Comput., 101 (2020), 189 - 201. https://doi.org/10.1016/j.jsc.2019.08.001
18. A. Arvanitoyeorgos, Y. Sakane and M. Statha: New homogeneous Einstein metrics on quaternionic Stiefel manifolds, Advances in Geometry, 18 (2018), no 4, 509 - 524. https://doi.org/10.1515/advgeom-2018-0014
17. A. Arvanitoyeorgos, Y. Sakane and M. Statha: Homogeneous Einstein Metrics on Complex Stiefel Manifolds and Special Unitary Groups, Contemporary Perspectives in Differential Geometry and its Related Fields, Proceedings of the 5th International Colloquium on Differential Geometry and its Related Fields, 1 - 20, World Sci. Publ., Singapore, 2017. https://doi.org/10.1142/9789813220911_0001
16. I. Chrysikos and Y. Sakane: Non-naturally reductive Einstein metrics on exceptional Lie groups, Journal of Geometry and Physics 116 (2017), 152 - 186. http://doi.org/10.1016/j.geomphys.2017.01.030
15. A. Arvanitoyeorgos, Y. Sakane and M. Statha: New Einstein metrics on the Lie group SO(n) which are not naturally reductive, Geometry, Imaging and Computing 2 (2015), 77 - 108. http://dx.doi.org/10.4310/GIC.2015.v2.n2.a1
14. A. Arvanitoyeorgos, Y. Sakane and M. Statha: Einstein metrics on the symplectic group which are not naturally reductive, Current Developments in Differential Geometry and its Related Fields, Proceedings of the 4th International Colloquium on Differential Geometry and its Related Fields, 1 - 22, World Sci. Publ., Singapore, 2015. http://dx.doi.org/10.1142/9789814719780_0001
13. A. Arvanitoyeorgos, Y. Sakane and M. Statha: New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. 35, Supplement, (2014), 2-18. http://dx.doi.org/10.1016/j.difgeo.2014.01.007
12. I. Chrysikos and Y. Sakane: The classification of homogeneous Einstein metrics on flag manifolds with b2(M)=1, Bull. Sci. math. 138 (2014), no 6, 665 - 692. http://dx.doi.org/10.1016/j.bulsci.2013.11.002
11. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein Metrics on Generalized Flag Manifolds with G2-type t-Roots, Prospects of Differential Geometry and its Related Fields, Proceedings of the 3rd International Colloquium on Differential Geometry and its Related Fields, 15 - 38, World Sci. Publ., Hackensack, NJ, 2013. http://dx.doi.org/10.1142/9789814541817_0002
10. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein Metrics on Generalized Flag Manifolds with five isotropy summands, Int. J. Math. 24 (2013), no. 10. http://dx.doi.org/10.1142/S0129167X13500778
9. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on G2/T, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2485 - 2499. http://dx.doi.org/10.1090/S0002-9939-2013-11682-5
8. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Proving isometry for homogeneous Einstein metrics on flag manifolds by symbolic computation, J. Symbolic Comput. 55 (2013), 59 - 71. http://dx.doi.org/10.1016/j.jsc.2013.03.005
7. R. Ait-Haddou, Y. Sakane and T. Nomura: Chebyshev blossoming in Müntz spaces : toward shaping with Young diagrams, J. Comput. Appl. Math. 247 (2013), 172 - 208. http://dx.doi.org/10.1016/j.cam.2013.01.009
6. R. Ait-Haddou, Y. Sakane and T. Nomura: A Müntz type theorem for a family of corner cutting schemes, Comput. Aided Geom. Design 30 (2013), no. 2, 240 - 253. http://dx.doi.org/10.1016/j.cagd.2012.12.001
5. R. Ait-Haddou, Y. Sakane and T. Nomura: Gelfond-Bézier curves, Comput. Aided Geom. Design 30 (2013), no. 2, 199 - 225. http://dx.doi.org/10.1016/j.cagd.2012.10.002
4. A. Arvanitoyeorgos, K. Mori and Y. Sakane: Einstein metrics on compact Lie groups which are not naturally reductive, Geom. Dedicata 160 (2012), 261 - 285. http://dx.doi.org/10.1007/s10711-011-9681-1
3. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on generalized flag manifolds Sp(n)/(U(p) x U(q) x Sp(n-p-q)), Recent progress in differential geometry and its related fields, 1 - 24, World Sci. Publ., Hackensack, NJ, 2012. http://dx.doi.org/10.1142/9789814355476_0001
2. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on the generalized flag manifold Sp(n)/(U(p) x U(n-p)), Differential Geom. Appl. 29 (2011), suppl. 1, S16 - S27. http://dx.doi.org/10.1016/j.difgeo.2011.04.003
1. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Complete description of invariant Einstein metrics on the generalized flag manifold SO(2n)/U(p) x U(n-p), Ann. Global Anal. Geom. 38 (2010), no. 4, 413 - 438. http://dx.doi.org/10.1007/s10455-010-9221-5