
ON GLOBAL OKOUNKOV BODIES OF MORI DREAM SPACES

SHINNOSUKE OKAWA

Abstract. The author gives an approach and partial answer to a problem posed
by Lazarsfeld and Mustaţă on the rational polyhedrality of the global Okounkov
body of a Mori Dream Space.
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1. Introduction

Let X be a projective variety of dimension n. A flag Y• on X is a sequence

Y• = Y0 ) Y1 ) · · · ) Yn = {pt}
of closed subvarieties such that each Yi is smooth at the point Yn.

For a flag Y• and a line bundle L on X, we can define the Okounkov body
∆Y•(X,L), which is a compact convex set in Rn. It is known that the Euclidian
volume of this body coincides with the volume of the line bundle L (up to n!).
Therefore we can regard Okounkov body as a geometric refinement of the volume
function for line bundles.
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We can also define the notion of global Okounkov body ∆Y•(X), which is a closed
convex cone in Rn×N1(X)R whose fiber over a big line bundle L ∈ N1(X)R coincides
with the Okounkov body ∆Y•(X,L) of L.

In [LM], Lazarsfeld and Mustaţă asked the following problem ([LM, Problem 7.1]):

Problem 1.1. Does a Mori dream space admit a flag with respect to which the
global Okounkov body is rational polyhedral?

Mori dream space is a class of projective varieties which contains log Fano vari-
eties. In particular it can be regarded as a generalization of toric varieties. It is
known that for a Mori dream space X the volume function vol(·) : Eff (X) → R is
piecewise polynomial (this follows from Proposition 3.5 and the fact that the vol-
ume of a nef line bundle equals to its self-intersection number). Problem 1.1 can be
regarded as a refinement of this fact.

Problem 1.1 is known to be true for toric varieties ([LM, Proposition 6.1 (ii)]); in
that case, we choose the flag consisting of torus invariant strata.

The purpose of this article is to propose an approach toward the problem, give
some partial answers.

We first establish a formula (see Lemma 4.1) which describes slices of an Okounkov
body as the Okounkov body of certain line bundles on Y1, the first piece of the flag
Y•. This enables us to calculate Okounkov bodies inductively.

As a first application of the formula, we obtain the following result:

Lemma 1.2. Problem 1.1 is true for surfaces.

To deal with higher dimensional cases, we define the notion of a good flag:

Definition 1.3. Let X be a MDS. A flag Y• = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {pt} is said
to be good if the following conditions hold:

• Yi is the birational image of a MDS, say Ỹi, for i = 1, . . . , n − 2, such that
there exists a sequence of closed immersions

Ỹ1 ⊃ Ỹ2 ⊃ · · · ⊃ Ỹn−2

compatible with the projections to Yi’s.
• Yi is not contained in the base loci of line bundles on Yi−1

for all i = 1, 2, . . . , n− 1
• Y0 is not contained in the images of the exceptional loci of small Q-factorial

modifications of Ỹ ′
i s or exceptional loci of birational morphisms Ỹi → Yi

appearing in the first condition.

Note that the last two conditions are fulfilled if Yi is a general member of a base
point free linear system.

Remark 1.4.

• Since only P1 is a Mori dream curve, we cannot expect in general that Y1

is a Mori dream curve. But we do not need this because line bundles on a
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curve behaves quite nicely. This is the reason why we do not assume that
Yn−1 is a MDS.

• We should not assume that Yi itself is a MDS. In fact, when we think of a
rational homogeneous variety (which is a MDS since it is a Fano), a natu-
ral candidate for a good flag is the one consisting of Schubert subvarieties.
Schubert varieties are not necessarily Q-factorial, hence we have to pass to
their Bott-Samelson resolutions.

With this notion, we can show

Theorem 1.5. Let X be a MDS and Y• is a good flag . Then ∆Y•(X) is a rational
polyhedral cone.

The final part of the article is devoted to a discussion of how to construct such a
flag.

Jow Shin-Yao proved ([S, Theorem 6]) that a sufficiently ample and very gen-
eral divisor of a MDS of dimension at least three again is a MDS, provided that
the ambient variety satisfies certain GIT condition. Therefore, the following naive
expectation arises:

Problem 1.6. Let X be a MDS of dimension at least three (not necessarily sat-
isfying the GIT condition above). Let A be a sufficiently ample and very general
divisor of X. Then A also is a MDS.

It turns out that this problem is not at all clear, even for quite simple cases.
Therefore we are forced to construct good flags on a case-by-case basis. We discuss

two special cases. The first one is a Mori dream 3-fold given in [KLM, Proposition
3.5]. It behaves badly to a class of flags, but still we can find a good flag such that
the global Okounkov body is rational polyhedral.

The second one is rational homogeneous varieties. There is a natural candidate for
the flag Y• for such varieties so that the global Okounkov body is rational polyhedral,
but there still remains some difficulty.

Here is a historical remark. The notion of Okounkov body first appeared in the
works of Andrei Okounkov. His aim was to describe the multiplicities of irreducible
representations appearing in a representation in terms of the volume of certain
convex bodies so that he can prove that the log concavity holds for the multiplicities
by using the Brunn-Minkowski inequality for convex bodies ([O] is an interesting
survey).

Later Lazarsfeld and Mustaţă defined similar convex bodies (which they called
the Okounkov body) for big line bundles and did a foundational work ([LM]). In
this case, the volume of the convex body associated to a big line bundle coincides
with the volume of the line bundle as mentioned above.
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2. (Global) Okounkov body

In this section we recall the definition and first properties of (global) Okounkov
bodies. Most of the subjects in this section was taken from [LM].

Consider any divisor D on X. We begin by defining a function

ν = νY• : H0
(
X,OX(D)

) \ {0} −→ Zn , s 7→ ν(s) =
(
ν1(s), . . . , νn(s)

)
.

Given
0 6= s ∈ H0

(
X,OX(D)

)
,

set to begin with
ν1 = ν1(s) = ordY1(s).

After choosing a local equation for Y1 in X, say t1, s determines a section

s̃1 = s⊗ t−ν1
1 ∈ H0

(
X,OX(D − ν1Y1)

)

that does not vanish (identically) along Y1, and so we get by restricting a non-zero
section

s1 ∈ H0
(
Y1,OY1(D − ν1Y1)

)
.

Then take
ν2 = ν2(s) = ordY2(s1).

In general, given integers a1, . . . , ai ≥ 0 denote by O(D−a1Y1−a2Y2− . . .−aiYi)|Yi

the line bundle

OX(D)|Yi
⊗OX(−a1Y1)|Yi

⊗OY1(−a2Y2)|Yi
⊗ . . . ⊗OYi−1

(−aiYi)|Yi

on Yi. Suppose inductively that for i ≤ k one has constructed non-vanishing sections

si ∈ H0
(
Yi,O(D − ν1Y1 − ν2Y2 − . . .− νiYi)|Yi

)
,

with νi+1(s) = ordYi+1
(si), so that in particular

νk+1(s) = ordYk+1
(sk).

Dividing by the appropriate power of a local equation of Yk+1 in Yk yields a section

s̃k+1 ∈ H0
(
Yk,O

(
D − ν1Y1 − ν2Y2 − . . .− νkYk

)
|Yk
⊗OYk

(−νk+1Yk+1)
)

not vanishing along Yk+1. Then take

sk+1 = s̃k+1|Yk+1 ∈ H0
(
Yk+1,O

(
D − ν1Y1 − ν2Y2 − . . .− νk+1Yk+1

)
|Yk+1

)
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to continue the process. Note that while the sections s̃i and si will depend on the
choice of a local equation of each Yi in Yi−1, the values νi(s) ∈ N do not.

Definition 2.1. (Graded semigroup of a divisor). The graded semigroup of D
is the sub-semigroup

Γ(D) = ΓY•(D) =
{
(νY•(s),m)

∣∣ 0 6= s ∈ H0
(
X,OX(mD)

)
, m ≥ 0

}

of Nn ×N = Nn+1. ¤
Writing Γ = Γ(D), denote by

Σ(Γ) ⊆ Rn+1

the intersection of all the closed convex cones containing Γ. The Okounkov body of
D is then the slice of this cone at the level one:

Definition 2.2. (Okounkov body). The Okounkov body of D (with respect to
the fixed flag Y•) is the compact convex set

∆Y•(X,D) = Σ(Γ) ∩ (
Rn × {1}).

We view ∆(D) in the natural way as a closed convex subset of Rn.

We can show that it is compact, and that it depends only on the numerical class
of the divisor D (see [LM] for detail).

Remark 2.3. ∆Y•(X,L) does depend on the choice of the flag Y•. For example,
even if X is a toric Fano and L is ample, we have to chose a suitable flag Y• to make
∆Y•(X,L) rational polyhedral (see [KLM, Example 3.4]).

There is a globalization of this notion (see [LM, §4.2]):

Theorem-Definition 2.4. There exists a closed convex cone

∆Y•(X) ⊆ Rn ×N1(X)R

characterized by the property that the fibre of ∆Y•(X) over any big class ξ ∈ N1(X)Q
is ∆Y•(X, ξ), i.e.

pr−1
2 (ξ) ∩∆(X) = ∆Y•(X, ξ) ⊆ Rn × {ξ} = Rn.

The cone ∆Y•(X) is called the global Okounkov body of X with respect to the
flag Y•.

The following theorem says that the global Okounkov body is a refinement of the
volume function:

Theorem 2.5. If D is any big divisor on X, then

volRn

(
∆(D)

)
=

1

n!
· volX(D).

The quantity on the right is the volume of D, defined as the limit

volX(D) =def lim
m→∞

h0
(
X,OX(mD)

)

mn/n!
.
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3. Basics of Mori Dream Spaces

In this section we summarize some basic facts about Mori dream spaces. For
detail, see [HK].

First of all, we recall the definition of Mori dream space.

Definition 3.1. Let X be a normal projective variety. A small Q-factorial modifica-
tion (SQM, for short) of X is a small (i.e. isomorphic in codimension one) birational
map f : X 99K Y to another Q-factorial projective variety Y .

Definition 3.2. A normal projective variety X is called a Mori Dream Space pro-
vided that the following conditions hold:

(1) X is Q-factorial and Pic (X)Q
∼= N1 (X)Qholds.

(2) Nef (X) is the affine hull of finitely many semi-ample line bundles.
(3) There is a finite collection of SQMs fi : X 99K Xi such that each Xi satisfies

(1) and (2), and Mov (X) is the union of the f ∗i (Nef (Xi)).

The following is a basic fact on MDS (see [HK, Proposition 1.11 (2)] and the proof
given there):

Proposition 3.3. The fi of (3.2) are the only SQMs of X. There are finitely many
birational contractions gj : X 99K Yj with Yj MDSs, such that

Eff (X) =
⋃
j

(
g∗j (Nef (Yj)) ∗ ex(gj)

)

is a decomposition of Eff (X) into closed convex chambers with disjoint interiors
(these chambers are called Mori chambers in [HK]). Here ex(gj) denotes the cone
spanned by the irreducible components of the exceptional locus of gj, and ∗ denotes
the join. They are in one-to-one correspondence with birational contractions of X
having Q-factorial image.

Moreover, pushing out by a suitable SQM fi : X 99K Xi, every contracting rational
map X 99K X ′ becomes a genuine morphism Xi → X ′.

Using Proposition 3.3, we can see that the Zariski decompositions of divisors on
MDS’s are quite easy to describe.

Definition 3.4 (Zariski decomposition). Let X be a normal projective variety. Let
D be a pseudo-effective Cartier divisor. A Zariski decomposition of D (in the sense
of Cutkosky-Kawamata-Moriwaki) is a decomposition

D ∼Q P + N

where P,N are Q-divisors on X and ∼Q denotes Q-linear equivalence such that

• P is nef and N is effective
• for all sufficiently divisible m ∈ N>0 the map H0(X,mP ) → H0(X,mD)

(multiplication by the section corresponding to mN) is isomorphic.
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When dim X ≥ 3, Zariski decomposition (in the sense above) does not exist in
general. However MDS possesses quite nice properties concerning Zariski decompo-
sitions. This is an easy application of Proposition 3.3 (for a proof, see [Ok]):

Proposition 3.5. Let X be a MDS. Then there exists a decomposition of the effec-
tive cone of X

Eff (X) =
⋃

finite

C

into finitely many rational polyhedral cones C such that for each chamber C there
exists a small Q-factorial modification fi : X 99K Xi of X and two Q-linear maps

P,N : C → Eff (X)

such that for any Z-divisor D ∈ C, D ∼Q P (D) + N(D) gives a Zariski decomposi-
tion of D as a divisor on Xi; i.e.

• P (D) ∈ SA (Xi).
• N(D) ≥ 0.
• The natural map

H0(X,P (D)⊗m) → H0(X,OX(D)⊗m),

which is defined by a multiplication of a non-zero global section of the line
bundle OX(mN(D)) is isomorphic for every sufficiently divisible positive in-
teger m.

Conversely, a normal projective variety satisfying Definition 3.2 (1) and having
the property above actually is a MDS1.

4. Inductive calculation of Okounkov bodies

4.1. Slices of Okounkov bodies. We recall some facts on the slices of Okounkov
bodies.

Lemma 4.1. Let X be a normal projective variety and L be a big line bundle on X.
Let Y• be a flag on X such that Y1 6⊂ B+(L), where B+(L) denotes the augmented
base locus of the line bundle L (see [L, Definition 10.3.2]). Take some rational
number t ∈ Q≥0 which satisfies the following properties:

• L− tY1 is big
• L− tY1 admits a Zariski decomposition
• Y1 6⊂ B+(P (L− tY1)),

where P (L− tY1) is the positive part of L− tY1.
Then

(1) ∆Y•(L)ν1=t := ∆Y•(L) ∩ {ν1 = t} = ∆Y•(Y1, P (L− tY1)|Y1)

1the author would like to thank Prof. Y.-H. Kiem for asking him if it could be the case.
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holds up to the parallel transportation by the valuation vector of the restriction of
the section of N(L− tY1).

Proof. Since Y1 6⊂ B+(L), the following holds

∆Y•(L)ν1=t = ∆Y•(Y1|X,L− tY1),

where the right hand side denotes the restricted Okounkov body (see [LM, Theorem
4.24]). By a property of the Zariski decomposition, the right hand side of (1) is a
parallel transportation of ∆Y•(Y1|X,P (L− tY1)) by the valuation vector mentioned
in the statement of the lemma.

By [LM, Corollary 4.25 (i)], (n − 1)! times the volume of ∆Y•(Y1|X,P ) equals
to the restricted volume of P . By [ELMNP, Corollary 2.17], the restricted volume
of P equals to (P n−1 · Y1) since Y1 6⊆ B+ (P ). On the other hand, since P is nef,
the volume of P |Y1 , which in turn equals the (n − 1)! times the volume of the
Okounkov body ∆Y•(Y1, P |Y1), equals to (P n−1 · Y1). Summing up, we see that
∆Y•(Y1|X,P ) ⊆ ∆Y•(Y1, P |Y1) are closed convex bodies of the same volume. Hence
they must coincide. ¤

4.2. A decomposition of the Effective cone. Fix a flag Y• on a MDS X such
that Y1 avoids the base loci of effective line bundles on X. Let

π : Pic (X)R × Rn → Pic (X)R × R; (D, ν1, ν2, . . . , νn) 7→ (D, ν1)

be the projection.
The purpose of this subsection is to prove the existence of a decomposition of

π(∆Y•(X)) ⊂ Eff (X)× R≥0 into finitely many rational polyhedral cones such that
on each of the cones the function ϕ : (D, t) 7→ P (D − tY1) is rationally linear.

Consider the linear mapping

T : Eff (X)× R≥0 → Pic (X)R; (D, t) 7→ D − tY1.

By Lemma A.2 for each Mori chamber C ⊂ Pic (X)R, C = T−1(C) is a rational
polyhedral cone. Combined with Proposition 3.5, we see that ϕ is rationally lin-
ear on C. Therefore we have the decomposition T−1(Eff (X)) =

⋃ C into rational
polyhedral subcones. Now we can show the following

Lemma 4.2. π(∆Y•(X)) = T−1(Eff (X)) holds.

Proof. T−1(Eff (X)) ⊆ π(∆Y•(X)) follows from Lemma 4.1. Conversely, choose a
point (D, t) from the interior of π(∆Y•(X)).

Then we can apply [LM, Corollary A.3] to obtain

π−1(D, t)
⋂

∆Y•(X) = ∆Y•(Y1|X,D − tY1).

Moreover we know that the left hand side has an interior point. Hence D − tY1 ∈
Eff (X) must hold. Since T−1(Eff (X)) is closed, this is enough to show the lemma.

¤
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Thus we obtain the desired decomposition of π(∆Y•(X)).

4.3. Proof of Lemma 1.2.

Proof of Lemma 1.2. Let Y• be a good flag. Consider the following projection

π : Pic (X)R × R2 → Pic (X)R × R; (D, ν1, ν2) 7→ (D, ν1).

Let C ⊂ Eff (X) × R≥0 be a chamber as in §4.2. By Lemma A.1, it is enough to
show that π−1(C)

⋂
∆Y•(X) is a rational polyhedral cone. To prove it, it is enough

to show that the function

(2) (D, t) 7→ Vol (∆Y•(D)ν1=t)

is rationally linear on C, since

∆Y•(D)ν1=t = [0, Vol (∆Y•(D)ν1=t)]

holds.
But we know from Lemma 4.1 that the right hand side of (2) equals to
deg (∆Y•(Y1, P (D − tY1)|Y1)) = Y1.(P (D− tY1)), which is clearly rationally linear

in (D, t). ¤

4.4. Proof of Theorem 1.5.

Proof of Theorem 1.5. Consider the following projection

π : Pic (X)R × Rn → Pic (X)R × R; (D, ν1, ν2, . . . , νn) 7→ (D, ν1).

Let C ⊂ Eff (X) × R≥0 be a chamber as in §4.2. By Lemma A.1, it is enough to
show that π−1(C)

⋂
∆Y•(X) is a rational polyhedral convex cone.

Consider the following linear mapping:

ϕ : Pic (X)R×Rn → Pic (Y1)R×Rn−1; (D, t, ν ′) 7→ (P (D−tY1)|Y1 , ν
′−ν ′(N(D − tY1))),

where ν ′ = (ν2, ν3, . . . , νn). Let ϕC be the restriction of ϕ to π−1(C). Recall
that ϕC is rationally linear. Now since ∆Y•(X,D)ν1=t = ∆Y•(Y1, P (D − tY1)|Y1) +
ν ′(N(D − tY1)), for each (D, t, ν ′) ∈ π−1(C)

(D, t, ν ′) ∈ ∆Y•(X) ⇐⇒ ϕC(D, t, ν ′) ∈ ∆Y•(Y1).

Therefore π−1(C)
⋂

∆Y•(X) = ϕ−1
C (∆Y•(Y1)). Since we assumed that Y• is a good

flag, Y1 is the image of a birational morphism from a MDS Ỹ1 and we can identify
∆Y•(Y1) with a subcone of the global Okounkov body of Ỹ1 (with respect to the flag
obtained by Ỹi’s). Hence it is a rational polyhedral cone. By Lemma A.2, it follows
that ϕ−1

C (∆Y•(Y1)) also is a rational polyhedral cone. ¤
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5. Constructing good flags

In this section, we discuss the existence problem of good flags.
As mentioned before, Problem 1.6 is true if X satisfies the small unstable locus

condition (see [S]). An easiest example of a MDS which does not satisfy the condition
is X = P1 × Pn−1. Let A ⊂ X be a general ample divisor of type (a, b). If a
is sufficiently large, A → Pn−1 is a finite map. Therefore OA(p,−1) is ample for
p >> 1. Therefore there exists a nef divisor N on A which is not the restriction
of a nef divisor on X (this does not happen if X satisfies the small unstable locus
condition; see [S]). It does not seem to be easy (at least to the author) to check if
N is semi-ample or not. Therefore it seems to be hopeless to solve Proposition 1.6.

Next we construct a good flag for a MDS given in [KLM, Proposition 3.5]. We
use the same notations as in the paper.

Let H be a sufficiently general member. We see that H → π(H) is a blow-up of
π(H) ∼= P2 in π(H)

⋂
(C1

⋃
C2) = {8 points}. By [TVV, Example 1.1(a)], H turns

out to be a MDS. Set Y1 = H, and choose Y2, Y3 sufficiently general. This gives a
good flag for X, and ∆Y•(X) is a rational polyhedral cone by Theorem 1.5.

Finally we discuss the case when X is a rational homogeneous variety. For such
an X, the flag Y• consisting of Schubert varieties seems to be the most natural one.
We cannot expect that Schubert varieties are Q-factorial, but still we can take their
Bott-Samelson resolutions. The author heard from Dave Anderson that it has been
proven that Bott-Samelson varieties are log Fano, hence are MDSs. Therefore if we
could show that each Yi is in a general position in Yi−1, we are done. Unfortunately
this seems to be difficult, since Yi is contained in the complement of the dense
open orbit of the action of Borel group on Yi−1. We need more information on the
geometry of Schubert varieties to overcome this problem.

Appendix A. Some combinatorial lemmas

In this section, we recall some elementary combinatorial facts which we need.

Lemma A.1. Let ∆ ⊂ Rp+q be a closed cone. Let π : Rp+q → Rp be the natural
projection, and assume that π(∆) is a rational polyhedral cone. Suppose furthermore
that π(∆) is decomposed into finitely many rational polyhedral cones, and for each
cone C π−1(C)

⋂
∆ is rational polyhedral. Then ∆ itself is a rational polyhedral

cone.

Lemma A.2. Let T : Rp → Rq be a linear mapping defined over Q, and let ∆ ⊂ Rq

be a rational polyhedral cone. Then so is T−1(∆). In particular, if we restrict
T to another rational polyhedral cone ∆′ ⊂ Rp, the same conclusion holds: i.e.
(T |∆′)−1(∆) = ∆′ ⋂ T−1(∆) is a rational polyhedral cone.
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