MORI DREAM SPACES OF CALABI-YAU TYPE AND
THE LOG CANONICITY OF THE COX RINGS

YUJIRO KAWAMATA AND SHINNOSUKE OKAWA

ABSTRACT. We prove that a Mori dream space over a field of
characteristic zero is of Calabi-Yau type if and only if its Cox ring
has at worst log canonical singularities. By slightly modifying the
arguments we also reprove the characterization of varieties of Fano
type by log terminality of their Cox rings.

1. INTRODUCTION

Throughout the paper we work over a field k£ of characteristic zero.
A normal projective variety X is said to be of Fano type (respectively
of Calabi-Yau type) if there exists a boundary Q-divisor A on X such
that (X, A) has klt singularities (resp. log canonical singularities) and
—(Kx + A) is ample (resp. numerically trivial). [BCHM10] proved
that a Q-factorial variety of Fano type is a Mori dream space. Then
[GOST12, Theorem 1.1] proved that a Q-factorial variety of Fano type
can be characterized as a Mori dream space whose Cox ring has at
worst log terminal singularities. In [GOST12| they also considered
the Calabi-Yau version and proved Theorem 1.1 below, assuming some
conjecture (see [GOST12, Theorem 4.13]). The conjecture has been
partially verified in [FT11, Theorem 3.4], so that their arguments work
in the corresponding cases [GOST12, Theorem 4.10]. Unfortunately it
seems to be difficult to solve the conjecture in full generality at this
moment.

In this paper we give a conjecture-free proof to the Calabi-Yau ver-
sion. Namely, we verify the following theorem.

Theorem 1.1. Let X be a Mori dream space over a field of character-
istic zero. Then X is of Calabi-Yau type if and only if the Cox ring of
X has at worst log canonical singularities.
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A normal projective variety X is said to be of Calabi-Yau type if
(X, A) has log canonical singularities and Kx + A is numerically trivial
for some boundary Q-divisor A. Note that a variety of Calabi-Yau type
is not necessarily a Mori dream space. For example, a K3 surface is a
Mori dream space if and only if its automorphism group is finite (see
[AHL10, Theorem 2.11]).

By slightly modifying the arguments, we can also reprove [GOST12,
Theorem 1.1] in Theorem 4.1. During the preparation of this paper,
we received a preprint version of [B12] from Morgan Brown in which
he independently gave a different proof to the “only if” directions of
Theorem 1.1 and Theorem 4.1.

Here we give the idea of the proof of Theorem 1.1. For the “only
if” direction, we first take a set of r = rankPic (X) ample divisors
Ay, ..., A, which are linearly independent in Pic (X )Q, and take the
affine space bundle 7: Y = SpecySym(€D, Ox(4;)) — X. From a
boundary Q-divisor A on X which makes the pair (X, A) log Calabi-
Yau, we construct a boundary divisor Ay on Y such that the pair
(Y, Ay) is also log canonical and Ky + Ay is Q-linearly trivial. By
contracting the zero section of 7w, we obtain a birational morphism
f:Y — Z such that (Z,Ayz) is log canonical and Kz + Ay is Q-
linearly trivial for some Q-divisor Az. It turns out that there exists a
small birational morphism from the spectrum of the Cox ring of X to
Z. Thus we prove the log canonicity of the Cox ring.

In our proof of the “if” direction of Theorem 1.1, we first derive the
Q-effectivity of the anti-canonical divisor of X from the log canonicity
of the Cox ring, by using a similar construction as above and applying
the numerical characterization of the pseudo-effective divisors due to
[BDPP13] (for a Mori dream space, this result is much easier to prove;
see Proposition 2.6). Since X is assumed to be a Mori dream space, we
can apply the anti-canonical MMP which terminates in a semi-ample
model in the same way as in [GOST12]. By the standard facts from
[HKO00], the semi-ample model is the quotient of an open subset of the
spectrum of the Cox ring by the dual torus action of Pic (X). We can
assume that the action is free, so that the log canonicity descends to
the quotient. Therefore the semi-ample model is of Calabi-Yau type.
As demonstrated in [GOST12, Proof of Theorem 1.2], we can trace
back the anti-canonical MMP to prove that X itself is of Calabi-Yau

type.
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2. PRELIMINARIES

We start with the definitions of varieties of Fano type and Calabi-Yau
type.

Definition 2.1 (cf. [PS09, Lemma-Definition 2.6]). Let X be a pro-
jective normal variety over a field and A an effective Q-divisor on X
such that Ky + A is Q-Cartier.

(i) We say that (X, A) is a klt Fano pairif —(Kx + A) is ample and
(X,A) is klt. We say that X is of Fano type if there exists an
effective Q-divisor A on X such that (X, A) is a klt Fano pair.

(ii) We say that X is of Calabi-Yau type if there exits an effective
Q-divisor A such that Kx + A ~q 0 and (X, A) is log canonical.

Next we give the definition of Mori dream spaces.

Definition 2.2 (cf. [HK00]). A normal projective variety X over a
field is called a Mori dream space if X satisfies the following three
conditions:
(i) X is Q-factorial, Pic(X) is finitely generated, and Pic (X)
NI(X)Qa
(ii) The nef cone Nef(X) is the affine hull of finitely many semi-ample
line bundles,
(iii) there exists a finite collection of small birational maps f;: X --»
X; such that each X; satisfies (i) and (ii), and that the closed
movable cone Mov(X) is the union of the f;(Nef(X;)).

Q:

The following is one of the most important properties of Mori dream
spaces.
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Proposition 2.3. ([HKO00, Proposition 1.11]) Let X be a Mori dream
space. Then for any divisor D on X, a D-MMP can be run and ter-
minates.

The notion of multi-section rings and the Cox rings are repeatedly
used in the studies of Mori dream spaces.

Definition 2.4 (Multi-section rings and Cox rings). Let X be an in-
tegral normal scheme. For a semi-group I' of Weil divisors on X, the
['-graded ring

Der
is called the multi-section ring of T'.

Suppose that the divisor class group Cl(X) is finitely generated.
For such X, choose a group I' of Weil divisors on X such that I'q —
Cl(X)q is an isomorphism. Then the multi-section ring R(X,T') is
called a Cox ring of X.

Remark 2.5 (See [GOST12, Remark 2.18] for details). As seen above,
the definition of Cox rings depends on the choice of the group I'. We
can prove that the ambiguity does not affect the basic properties of
rings, such as finite generation, log terminality (log canonicity), etc. In
fact, there is a canonical way to define Cox rings without ambiguity
(up to isomorphisms) due to Hausen [Hau08]. We can check that the
properties of rings mentioned above holds for his Cox ring if and only
if ours has the same properties. Since our definition of Cox rings as
multi-section rings is easier for calculation, we adopt our definition in
this paper.

If X is not Q-factorial, our definition of Cox ring is different from that
of [HKO00], since we also take not-necessarily-Q-Cartier Weil divisors
into account. If we assume the finite generation of Cox rings in our
sense, we can show the existence of a small Q-factorization and Cox
rings do not change under this operation. This is why we think our
definition is more natural. See [AHL10, Theorem 2.3| for details.

We need the following intersection-theoretic characterization of ef-
fective (resp. big) divisors on a Mori dream space.

Proposition 2.6. Let D be a divisor on a Mori dream space X. Then
X is Q-effective (resp. big) if and only if its intersection number with
a general member of any covering family of curves is at least (strictly
greater than) zero.

Proof. Note that the Q-effectivity and the pseudo-effectivity are equiv-
alent for divisors on a Mori dream space. It is enough to show the
following statement. 0
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Claim. Let X be a Mori dream space and D a not big but Q-effective
(resp. not Q-effective) divisor on X. Then there exists a curve C in a
covering family on X such that C - D =0 (resp. C- D <0).

Proof. We run a D-MMP
X = Xg - X; ==» -+ —» Xy,

so that the pushforward Dy of D on Xy is semi-ample (resp. there
exists a Dy-Mori fiber space from Xy).

Note that all the birational maps above are surjective in codimension
one. Therefore we can find an open subset U of X whose complement
has codimension at least two such that all the birational maps above
are identities on U.

If D is not big (resp. not Q-effective), we take Dy-litaka fiber space
(resp. Dy-Mori fiber space) f: Xy — Y. Since the relative dimen-
sion of f is positive, there is a curve C’ in a covering family which
is contained in a fiber of f. Since Xy \ U has codimension at least
two, we can choose C' so that it is contained in U. Now let C' be
the strict transform of C" on X. We see that this C' has the desired
properties. O

Remark 2.7. The intersection theoretic characterization of pseudo-
effective divisors was first proven in [BDPP13, Theorem 0.2]. On the
other hand, the characterization of big divisors in Proposition 2.6 does
not hold for an arbitrary variety. For example, it is known that there
exists a strictly nef divisor on a smooth projective surface which is not
Q-effective. See [Har70, Example 10.6].

3. PROOF OF THEOREM 1.1

3.1. Cox rings of Calabi-Yau Mori dream spaces. In this sub-
section, we prove the “only if” direction of Theorem 1.1.

Theorem 3.1. Let X be a Mori dream space of Calabi- Yau type. Then
Cox rings of X have at worst log canonical singularities.

Proof. Choose ample line bundles Ay, ..., A, on X which are linearly
independent in Pic (X)q, where r = rank Pic (X). Consider the follow-
ing natural morphism

Y= SpecXSym(@ Ox(4A;)) = Z = Spec R(X,I'),

where IV is the semi-group generated by the classes of A;, and let
m:Y — X be the structure morphism. Since A; are ample, f is a
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birational projective morphism which contracts the zero section of m,
which we denote again by X (see [Har66, Proposition 3.5]).
If (X,A) is a log canonical pair, then it follows that

i=1
is also a log canonical pair, where E; C Y is the divisor corresponding
to the projection @@, Ox(4;) — @#j Ox(4;). Set Ay =37 | E; +
7*A. Then it holds that (Ky + Ay)|x = Kx + A ~q 0. Since the
restriction map Pic(Y)q — Pic(X)q is bijective, this implies that
Ky+Ay is Q-linearly trivial. Thus we see that Kz+Ayz = f.(Ky+Ay)
is also Q-linearly trivial, where Ay = f,Ay. Hence we get the equality

Ky + Ay = f*(KZ + AZ);

concluding that (Z, Ay) is a log canonical pair.

We shall derive the log canonicity of the Cox rings of X.

Set I' = I + (—I"). Then the multi-section ring R(X,T") is a Cox
ring of X. Consider the natural injective ring homomorphism

R(X,T") —» R(X,T).
Claim. The corresponding morphism
Spec R(X,T') — Spec R(X,T")
18 birational and contracts no divisor.

Proof. Choose an ample divisor Ay from the interior of the cone spanned
by I'V. Then for any positive integer m > 0 and a non-zero global sec-
tion s € H'(X, Ox(mAy)), the natural ring homomorphism

R(X,T")s = R(X,T)

is an isomorphism.

By [HK00, Lemma 2.7], if we take two global sections s; and sy
of mAg such that the corresponding divisors on X have no common
component, then {si,so} C R(X,I') is a regular sequence. Therefore
the divisors of s; and s, have no common irreducible components, and
this concludes the proof. U

From the claim above, we see that the pair (Spec R(X,I"), A’) is also
log canonical, where A’ is the effective Q-divisor naturally defined from
Ay. Since Spec R(X,T') is Q-factorial by [HK00, Proposition 2.9], we
see that Spec R(X,TI") itself is log canonical. O
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3.2. Mori dream spaces with log canonical Cox rings. In this
subsection we prove the “if” direction of Theorem 1.1.

Theorem 3.2. Let X be a Mori dream space whose Cozx rings have at
worst log canonical singularities. Then X is of Calabi- Yau type.

Proof.

Step 1. We prove that — Ky is Q-effective.
Let C be an arbitrary movable curve on X. We take a set of divisors
Dy, ..., D, on X with the following properties.

e They form a basis of Cl1(X)g, so that if we set I' = P;_, ZD;,
then R(X,I') is a Cox ring of X.

e The effective cone of X is contained in the cone spanned by
Dy, ..., D,, so that

RX.T)= @ HUX,Y dD)
1.y >0 i
holds.
e (-D;>0holds fori=1,...,r.
We note that the choice of the divisors D; depends on C.
Let Y be the total space of the direct sum @, Ox(—D;):

Y = SpecXSym(@ Ox (D))

and regard X C Y as the zero section. Then we have H(Y, Oy ) =
R(X,T'). Therefore we have a natural birational morphism f: Y —
Z = Spec R(X,T') which is not necessarily proper.

Lemma 3.3. Let E; be the divisors on'Y corresponding to the divisors
D;. Then the exceptional locus of f is contained in the union of the
E;.

Proof. If the assertion does not hold, then there exists a curve C’ on Y’
which is not contained in the union of the F; and mapped to a point
by f. Since the morphism f is defined by the elements of R(X,T"), for
any s € R(X,TI'), the value of s is constant on C’. We note that C" is
not necessarily complete.

Take a positive linear combination D = > d;D; which is very am-
ple. For a global section 0 # s € H(X, D), we see that divy(3) =
m*divx(s) + > d;F;, where m: Y — X is the structure morphism and
5 is s regarded as a global function on Y. This equality can be checked
locally as follows. Take an open subset U C X on which Ox(D;) are
trivial. By fixing its nowhere vanishing section s; € H*(U, Ox (D)) for



8 YUJIRO KAWAMATA AND SHINNOSUKE OKAWA

each 4, we obtain an isomorphism 7—(U) = U x A”. Under this isomor-
phism, the divisors E; are identified with i-th coordinate hyperplanes
and 5 is identified with a function of the form fz¢'--- 2% where z; are
coordinates of A” and f € HO(U, Op) is given by s = f(®;5°%). Thus

divy (3) e 1) = (7 (divx(s) + D diFi) o)

holds.

Suppose that 7(C”) is not a point. Then we can take a section s €
H°(X, D) such that the divisor divy (s) does not contain C’ but intersect
C’. Hence s is not constant on C’; a contradiction. If 7(C") is a point,
C" is a curve in the fiber 71 (7(C")), which is identified with A" by
choosing a nowhere-vanishing local section of Ox(D;) around = (C") for
each . If 7(C") is not contained in divx(s), we see that the restriction
of s to the fiber is a non-zero monomial of exponent (dy,...,d,) under
the identification. Since C” is assumed to be not contained in the
coordinate hyperplanes, we can find a suitable exponent (dy,...,d,)
such that the monomial is not constant on C”. U

Since Z has only log canonical singularities, we can write f*K, =
Ky + ), e;E; such that e; <1 for all 4. Then (Ky + ) . e;E;)|x ~q 0
because X is mapped to a point by f. By the adjunction formula, we
have KX ~Q — Z(l — BZ)DZ

It follows that (Kx - C) < 0. Since C' was arbitrary, we conclude
that —Kx is Q-effective by Proposition 2.6.

Step 2. Since X is a Mori dream space, we have a (—Kx)-MMP
X = Xg - Xy - - - Xy,

where each step is a birational map and — Ky, is semi-ample, because
—Kx is Q-effective.

Fix a Cox ring R(X,I") of X. We recall some facts on the GIT
of Cox rings from [HKO00, Proposition 2.9]. First of all, there exists
a canonical action of the torus 7' = Hom(T', k*) on the affine variety
Spec R(X,T"), and Xy is the categorical quotient by 7" of the semi-
stable locus U C Spec R(X,I") with respect to a character of 7" which
corresponds to an ample divisor on Xy ([HK00, Proof of Proposition
2.9]).

Since X is Q-factorial and Xy is obtained from a MMP starting
from X, we see that Xy also is Q-factorial. Q-factoriality of Xy,
in turn, implies that the quotient U — U/T = Xy is the geometric
quotient (see [HK00, Proposition 1.11(2)] and [HK00, Corollary 2.4]).
Moreover, by replacing [" with its subgroup of finite index if necessary,
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we can assume that the torus 7" acts on U freely ([HKO00, Proposition
2.9]). Therefore the quotient morphism U — U/T = Xy is smooth.

Since Spec R(X,I") is log canonical, so is its open subset U. Hence
we see that Xy = U/T has log canonical singularities. By taking a
general effective Q-divisor Ay on Xy which is Q-linearly equivalent
to —Kx,, we obtain a log Calabi-Yau pair (Xy, Ay) due to the semi-
ampleness of —Kx, .

Finally we trace back the (—Kx)-MMP as in [GOST12, Proof of
Theorem 1.2], showing that X itself is of Calabi-Yau type.

O

Remark 3.4. The choice of the divisors Dy,..., D, in the proof of
Theorem 3.2 is essential, and the proof does not work if we naively
choose a collection of divisors corresponding to the extremal rays of
the effective cone.

For example!, let X be a toric Del Pezzo surface obtained by blowing
up P? at three points which are not co-linear. The complete fan ¥ C
R? corresponding to X is spanned by six primitive vectors u; (i =
1,2,...,6), where

) — (L 10 =1 =10
1, U2y ...,U6) — 011 0 -1 =1/

X has six (—1)-curves C1,...,Cs corresponding to the u;, and they
span the effective cone of X. Since the effective cone has dimension
four, it is not simplicial.

Set
S= P HX 0D )

Clyenny cgEZZO 7
and Z = SpecS. Z is an affine toric variety corresponding to the
cone 0, C R? x RS which is spanned by twelve vectors w; = u; + ¢;
(1=1,2,...,6) and w6 = ¢; (1 =1,2,...,6), where ey, ..., e are the
standard basis of R®. The singularity of Z does not have an obvious
relationship with that of the Cox ring. In fact Z is not Q-factorial since
oz is not simplicial, despite that the Cox ring of X is a polynomial ring.

We have a simplicial partial decomposition Z§:1 0; C 0z, where

0; = cone (U; + €;,Uiy1 + €i11,€1,€2, ..., €5).

Correspondingly, there is a birational morphism

f:Y = SpecySym(@) Ox(C)) — 2,

'We thank Osamu Fujino for drawing our attention to this example.
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which is similar to the one which appeared in the proof of Theorem
3.2. There is no divisor which is contracted by f, but the zero section,
which is isomorphic to X, is contracted to a point.

4. CHARACTERIZATION OF VARIETIES OF FANO TYPE REVISITED

Using the similar arguments as above, we can reprove the character-
ization of varieties of Fano type (=[GOST12, Theorem 1.1]).

Theorem 4.1. Let X be a Q-factorial normal projective variety over
k. X s of Fano type if and only if the Cox ring of X is of finite type
and log terminal.

Proof. For “only if” direction it is enough to prove that the Cox ring
of X is log terminal, since the finite generation is proved in [BCHM10,
Corollary 1.3.2]. We only point out which part of the proof of Theorem
3.1 should be modified.

Instead of thinking of the pair

<Y, iEZ +7T*A> s
i=1

we should think of the following klt pair

<Y, Ay: = (1 —E)ZEZ-+7T*A>
i=1

for some positive number € < 1.

Then it holds that (Ky + Ay)|x = Kx + A+ €)Y . A;, since we
have Oy (F;)|x ~ Ox(—A4;). By replacing A; from the beginning if
necessary, we can assume that there exists e such that —(Kx +A) ~q
ey . Ai, so that (Ky + Ay)|x ~q 0.

Therefore we get the equality

Ky + Ay = fY(Kz + Ag)

as before, where Ay = f,Ay. Hence the pair (Z, Ay) is klt. The rest
of the proof is the same.

For the proof of the “if” direction, we first prove that —Kx is big. If
we carry out the same arguments as in Step 1 of the proof of Theorem
3.2, by the log terminality of the Cox ring we see that e; < 1 holds for
all 7. Since some positive linear combination of the D; is ample, we
deduce that C' - (=Kx) = C - (>_(1 —e;)D;) > 0. Since X is a Mori
dream space, this implies the bigness of —Kx by Proposition 2.6.

Next, by arguing as in Step 2, we arrive at a model Xy such that
— K, is semi-ample and big. We can also show that X is log terminal
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from the log terminality of the Cox ring, concluding that Xy is of Fano
type. The rest is the same. U
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