
EXTENSIONS OF TWO CHOW STABILITY CRITERIA
TO POSITIVE CHARACTERISTICS

SHINNOSUKE OKAWA

Abstract. We extend two results on Chow (semi-)stability to
positive characteristics. One is on the stability of non-singular
projective hypersurfaces of degree greater than 2, and the other is
the criterion by Y.Lee in terms of log canonical thresholds. Some
properties of log-canonicity in positive characteristics are discussed
with a couple of examples, in connection with the proof of the latter
one. It is also proven in appendix that the sum of Chow (semi-
)stable cycles are again Chow (semi-)stable.

1. Introduction

We work over an algebraically closed field k of arbitrary character-
istic.

Let X ⊂ Pn
k be an effective cycle of dimension r and degree d in a

projective space of dimension n. Analysis of the Chow (semi-)stability
of X is one of the basic problems in Geometric Invariant Theory (GIT).
Contrary to the asymptotic Chow (semi-)stability, the precise classifi-
cation of Chow (semi-)stable cycles is quite a subtle problem, and is
known only for few cases, even for projective hypersurfaces. To name a
few, J.Shah studied the case of plane sextics ([Sh]) and recently R.Laza
did the case of cubic fourfolds ([L]), both in relation with period maps.

On the other hand, there are two sufficient conditions for Chow
(semi-)stability in terms of the singularity of X or that of Chow divisor
Z(X) ⊂ G = Grassk(n− r, n + 1), which deal with general situations.
Both have been proven in characteristic zero, and the purpose of this
paper is to extend them to arbitrary characteristics. Namely we prove
the following two theorems:

Theorem 1.1 (= Theorem 3.1). If d ≥ 3, any non-singular projective
hypersurface of degree d is Chow stable.
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Theorem 1.2 (= Theorem 4.1). Let X be an effective cycle of dimen-
sion r and degree d in Pn

k . Let (G, Z(X)) be the log pair defined by the
Chow divisor Z(X) of X. If lct(G, Z(X)) > n+1

d
(resp. ≥ n+1

d
), then

X is Chow stable (resp. Chow semi-stable).

In the statement of Theorem 1.2 lct(G, Z(X)) stands for the log
canonical threshold of (G, Z(X)), which measures how good the singu-
larity of Z(X) is (see §2.2 for detail).

Characteristic zero case of Theorem 1.1 is due to Mumford ([GIT,
Chapter 4 §2]), and that of Theorem 1.2 is due to Y.Lee ([Le]).

The original proof of Theorem 1.1 works only when the characteristic
of the base field does not divide d (see §3). To prove the general case,
we depend on the corresponding result in characteristic zero.

We sketch the proof of Theorem 1.1 in positive characteristics. First
we take a suitable lift of the equation of given hypersurface over the
ring of Witt vectors. This defines a family of projective hypersurfaces
over the ring. We are assuming that the closed fiber is non-singular,
hence the geometric generic fiber is again non-singular. Since we know
that Theorem 1.1 holds in characteristic zero, we obtain some inequal-
ities for the Hilbert-Mumford numerical functions of the lift. By the
choice of the lift, those numerical functions coincide with those of the
original hypersurface. Thus we obtain the inequalities for the numerical
functions of the original one, concluding the proof.

The point is that the singularity of the hypersurface over the generic
point is better than that of the special fiber, so that we can use the
corresponding stability criterion in characteristic zero. This method
seems to be applicable to other stability problems (see the remark at
the beginning of §4).

In §3.2 it will also be shown that the complement of the locus of non-
singular hypersurfaces is an irreducible divisor, even when p divides
d. In general some multiple of the defining equation of this divisor
lifts to the usual discriminant in characteristic zero. These are shown
by a version of standard geometric arguments (see, for example, [Mu,
Chapter 5, §2]).

Theorem 1.2 will be proven along the same line as the proof given in
[Le], but we must modify several points. This is due to the fact that
some properties of log canonicity which hold in characteristic zero fail
in positive characteristics, because of the existence of wild ramifications
and inseparable morphisms.

We can prove that the property of log canonicity which we need still
holds for finite separable morphisms. It turns out that this is enough
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for our purpose, for we can use a perturbation technique so that we
need not to deal with the inseparable morphisms (see §4).

In §4 we also discuss some other properties of log canonicity, with a
couple of (counter-)examples.

In Appendix A we reprove Proposition 4.9, which is a key step for the
proof of Theorem 1.2, via the theory of F-singularities, in characteristic
zero. The main tool of the proof is the Fedder-type criterion (Lemma
A.4) due to [HW].

In Appendix B we prove the following

Propostion 1.3 (= Proposition B.1). Let Y, Z be Chow semi-stable
cycles of the same dimension in a projective space Pn

k . Then Y + Z is
again Chow semi-stable. Furthermore if Y is Chow stable, so is Y +Z.

This proposition may be well-known to experts, but the author could
not find it in the literature. The proof is a simple application of the
fact that the stability can be checked 1-PS wise, which is essentially
same as the numerical criterion. But the conclusion itself seems to be
rather surprizing: if we have two Chow stable cycles, the sum of them
is always Chow stable no matter how badly they touch.

Proposition 1.3 will be used to give a family of stable projective
hypersurfaces whose stability can not be detected by Theorem 1.2 (see
Example B.5).

Acknowledgement. The author would like to express his sincere grat-
itude to his supervisor Professor Yujiro Kawamata for his valuable ad-
vice, many suggestions to improve this paper and warm encouragement.
He is indebted to Prof. Yongnam Lee for kindly answering the author’s
question and Prof. Shunsuke Takagi for his invaluable comments and
useful discussions. He would also like to thank Prof. Kei-ichi Watan-
abe for his useful comments and interest in my work, and Dr. Shohei
Ma for his nice comments.

2. Preliminary

2.1. Notations from scheme theory. We need some notations from
[Ha].

Let R be an N-graded ring. For a homogeneous ideal I of R we denote
by V (I) the corresponding closed subscheme Proj(R/I) of ProjR.

For a homogeneous element f ∈ R, we denote by D+(f) the open
subscheme of Proj(R) defined by the non-vanishing of f . This sub-
scheme is known to be affine, with coordinate ring

R(f) =

{
r

fn
|r ∈ R, deg(r) = n · deg(f)

}
.
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2.2. Notions of singularities. In this subsection, we summarize the
notions of singularities of pairs which we need later.

Definition 2.1 (discrepancy, log canonical, Kawamata log terminal).
Let X be a normal variety over k and ∆ be an effective R-Weil divisor
on X such that KX + ∆ is R-Cartier.

Let π : Y → X be a birational morphism from another normal
variety Y over k and E ⊂ Y be a prime divisor. Then in a neighborhood
of the generic point of E, the following canonical bundle formula holds:

KY = π∗(KX + ∆) + aE.

The real number a in the above equation is called the discrepancy of E
with respect to (X, ∆), and denoted by a(E; X, ∆). It is independent
of the choice of Y and π, depending only on the valuation of k(X)
corresponding to E.

We say that the log pair (X, ∆) is log canonical (lc, for short) (resp.
Kawamata log terminal, klt) if a(E; X, ∆) ≥ −1 (resp. > −1) holds for
all E.

A finer version is:

Definition 2.2. Let x ∈ X be a point. We say that the log pair (X, ∆)
is log canonical at x if the restriction of (X, ∆) to an open neighborhood
of x is log canonical (similar for klt).

Definition 2.3 (log canonical threshold). Let (X, ∆) be a log canonical
pair and D be an effective R-Cartier divisor on X. The log canonical
threshold of D with respect to (X, ∆) is defined as follows:

lct(X, ∆; D) = sup{t ∈ R|(X, ∆ + tD) is log canonical}.
For a point x ∈ X, we set
lctx(X, ∆; D) = sup{t ∈ R|(X, ∆ + tD) is log canonical at x}.
When we consider the case ∆ = 0, we write lct(X, ∆; D) = lct(X,D)

for short (resp. lctx(X, ∆; D) = lctx(X,D)).
The following is a basic fact ([KoM, Corollary 2.35(5)]):

Propostion 2.4. Let k be a field of characteristic zero. Then
lct(X, ∆) = sup{t ∈ R|(X, t∆) is klt}.

2.3. Chow stability and the numerical criterion. Let X ⊂ Pn
k

be an effective r-dimensional cycle of degree d. We associate to X
its Chow divisor Z(X), which is a hypersurface of degree d of the
Grassmannian G = Grassk(n − r, n + 1), as follows (one may consult
either [Ko2] or [GKZ] for detail). If X is a variety, set Z(X) = {L ∈
G|L ∩ X 6= φ}. For a general cycle X, define Z(X) additively. The
defining equation of Z(X) is called the Chow form of X (Chow form is
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determined by X only up to scalar multiplication). The homogeneous
coordinate ring of G with respect to the Plücker embedding is denoted
by B =

∑
d≥0 Bd. This is the subring of the polynomial ring of (n −

r)(n + 1) indeterminants U
(j)
i ’s, where (i, j) runs through the range

i = 0, . . . , n and j = 1, . . . , n− r, generated by all the (n− r)× (n− r)

minors of the matrix (U
(j)
i ). The Chow form of a cylce X is an element

of Bd (up to scalar multiplication), so that the Chow divisor Z(X) of
X can be regarded as an element of the projective space P∗Bd. The
canonical action of SL(n+1, k) on Pn

k naturally induces a linear action
on Bd, hence we can discuss the GIT (semi-)stability of an element
of P∗Bd (here we are using the terminology “stable” in the sense of
“properly stable” in [GIT], which requires the finiteness of the stabilizer
subgroup. We heavily rely on the numerical criterion, so we follow this
terminology 1). Chow (semi-)stability of X is defined to be the (semi-
)stability of Z(X) in the above sense.

Next we recall the Hilbert-Mumford numerical criterion (numerical
criterion, for short) for stability, explicitly describing the numerical
function µ in our case following [GIT, Proposition 2.3]. We start with
some preparations.

For a non-negative integer n, set

(1) [n] = {0, 1, . . . , n}.
For a subset I ⊂ [n] with #I = n− r, let ∆I be the (n− r)× (n− r)

minor of the matrix (U
(j)
i ) obtained by picking out the n − r rows

according to I. Recall that Bd is a k-vector space generated by the set
{∆I1 . . . ∆Id

|I` ⊂ [n], #I` = n− r for all ` = 1, . . . , d}.
Now fix X. Take any g ∈ SL(n + 1, k) and let F be the Chow form

of g∗X (= the defining equation of g∗Z(X)). Set
(2)

R = {~r = (r0, . . . , rn) ∈ Zn+1 \ {0}|
n∑

i=0

ri = 0, r0 ≤ r1 ≤ · · · ≤ rn}.

An element ~r ofR corresponds to a non-trivial one-parameter subgroup
(1-PS for short) λ : Gm → SL(n+1, k) of SL(n+1, k) which is defined
by λ(t) = diag(tr0 , . . . , trn). If we regard Bd as a representation of Gm

via λ, the subspace of Bd generated by ∆I1 · · ·∆Id
is an eigenspace of

weight

wt(I1, . . . , Id) =
d∑

`=1

∑
i∈I`

ri =
n∑

i=0

ri ·#{`|i ∈ I`}.

1The author would like to thank Dr. S. Ma for this remark.
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Given g ∈ SL(n + 1, k) and ~r ∈ R, the numerical function of X
associated to them is defined as follows:

Definition 2.5 (numerical function). Let I(F ) be the set of such d-
tuples (I1, . . . , Id) that the coefficient of ∆I1 · · ·∆Id

in F is not zero.
Then set

µ(Z(X), g, ~r) = µ(V (F ), id, ~r) = min
(I1,...,Id)∈I(F )

wt(I1, . . . , Id).

Remark 2.6. µ(Z(X), g, ~r) depends only on g, ~r and the set I(F ).

Now the numerical criterion is:

Propostion 2.7. X is Chow stable (resp. semi-stable) if and only if
µ(Z(X), g, ~r) < 0 (resp. ≤ 0) holds for any g ∈ SL(n + 1, k) and
~r ∈ R.

Next we rephrase Proposition 2.7 in such a way as to prove Theorem
4.1. This reinterpretation is just a generalization of [Le, Lemma 2.1].
Before that, we need some preparations. Take an arbitrary g ∈ SL(n+
1, k) and let F be the Chow form of g∗X.

Let f be the local equation of F on D+(∆[n−r−1]) ' SpecB(∆[n−r−1]).
Recall that B(∆[n−r−1]) is the polynomial ring over k with the set of

indeterminants
{

xI = ∆I

∆[n−r−1]
; I

}
where I runs through those subsets

of [n] (see (1)) satisfying the following two conditions:

#I = n− r

#(I ∩ [n− r − 1]) = n− r − 1.
(3)

Therefore f is a polynomial in xI ’s. Now assign nontrivial integral
weights ~r = (r0, . . . , rn) ∈ R to X0, . . . , Xn, so that the induced weight
w(xI) on xI satisfies

(4) w(xI) =
∑
i∈I

ri −
n−r−1∑

i=0

ri,

which is non-negative by the assumption r0 ≤ r1 ≤ · · · ≤ rn.
Now Proposition 2.7 is equivalent to

Lemma 2.8. A cycle X is Chow stable (resp. semi-stable) if and only
if

(5)
w(f)∑
I w(xI)

<
d

n + 1

(resp. ≤ d
n+1

) holds for all g ∈ SL(n + 1, k) and ~r ∈ R (see (2) for the
definition of R).
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In the left hand side of (5), w(f) denotes the weighted multiplicity of
f (= the lowest weight of the monomials occurring in f) with respect
to the weight (w(xI))I .

Proof. We only discuss the stable case. Semi-stable case can be proven
similarly.

The inequality (5) is equivalent to

(6) d
∑

I

w(xI)− (n + 1)w(f) > 0.

Combining the calculation of w(xI) (see (4)) with the definition of
w(f), we see that the left hand side of (6) equals to

d

(∑
I

∑
i∈I

ri − (n− r)(r + 1)
n−r−1∑

i=0

ri

)
− (n + 1)

(
µ(X, g, ~r)− d

n−r−1∑
i=0

ri

)
.

Recalling the conditions (3) posed on I’s we see

∑
I

∑
i∈I

ri = (n− r − 1)(r + 1)
n−r−1∑

i=0

ri + (n− r)
n+1∑

i=n−r

ri.

A little calculation shows that the left hand side of (6) boils down to

d(n− r)
n∑

i=0

ri − (n + 1)µ(X, g, ~r) = −(n + 1)µ(X, g, ~r),

since we assumed that
∑n

i=0 ri = 0.
Therefore (5) is equivalent to the condition µ(X, g, ~r) < 0.

¤

2.4. Chow stability in characteristic p from characteristic zero.
Let k be a field of characteristic p > 0 and X be a cycle in Pn

k . In this
subsection we want to propose a method to deduce the Chow (semi-
)stability of X from the corresponding results in characteristic zero.

From now on, we denote by W = W (k) the ring of Witt vectors.
This is a discrete valuation ring (DVR for short) of characteristic zero,
whose residue field is isomorphic to k (see [S, Chapter 2 §5 Theorem
5]). Actually these are all the properties of W which we need in this
paper. We denote by K the field of fractions of W and by mW the
unique maximal ideal of W .

Take g ∈ SL(n + 1, k) and let F be the Chow form of g∗X as in the
previous subsection. Let FW be a lift of F over W such that a monomial
which does not appear in F never appears in FW , which is equivalent to
the assumption I(F ) = I(FW ) (see Definition 2.5 for the definition of
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I). Note that FW defines a hypersurface V (FW ) ⊂ GrassK(n−r, n+1)
of degree d, where K is the algebraic closure of K.

Theorem 2.9. Assume that for any g ∈ SL(n + 1, k) we can take FW

such that I(F ) = I(FW ) holds and V (FW ) is stable (resp. semi-stable)
with respect to the induced action of SL(n + 1, K). Then X is Chow
stable (resp. Chow semi-stable).

Proof. Since FW is (semi-)stable, µ(V (FW ), id, ~r) < 0 (resp. ≤ 0) holds
for any ~r ∈ R (see (2) in the previous subsection for the definition ofR).
But it holds that µ(V (FW ), id, ~r) = µ(Z(X), g, ~r), since I(F ) = I(FW )
(see Remark 2.6). Therefore µ(Z(X), g, ~r) holds for all g ∈ SL(n+1, k)
and ~r ∈ R, hence we see the Chow (semi-)stability of X by Proposition
2.7. ¤
Remark 2.10. By the result of C. S. Seshadri ([Se, Proposition 6], see
also [GIT, Appendix to Chapter 1, §G]), the converse of Theorem 2.9
also holds: if X is Chow stable (resp. Chow semi-stable), any lift FW

of F is also Chow stable (resp. Chow semi-stable) with respect to the
induced action of SL(n + 1, K).

3. Chow stability of non-singular hypersurfaces

In this section X denotes a hypersurface of degree d in Pn
k .

In §3.1, we prove the stability of non-singular hypersurfaces of de-
gree greater than 2. This is an easy application of Theorem 2.9. In
§3.2 we study the complement of the locus of non-singular hypersur-
faces via geometric arguments. It turns out that the complement is an
irreducible divisor and that some multiple of its defining equation lifts
to the usual discriminant in characteristic zero.

3.1. A proof via lifting to characteristic zero. First of all we recall
that the characteristic zero case of Theorem 3.1 was settled in [GIT,
Chapter 4 §2]. Thanks to a theorem by Matsumura and Monsky, the
proof given there also works for characteristic p cases if p does not
divide d. We briefly recall the proof and see why it does not work for
the cases when p do divide d.

Let F (X0, X1, . . . , Xn) be a homogeneous polynomial of degree d.
We have the Euler’s lemma:

dF =
n∑

i=0

Xi
∂F

∂Xi

.

Therefore we see that

(7) V

(
F,

∂F

∂X0

,
∂F

∂X1

, . . . ,
∂F

∂Xn

)
= V

(
∂F

∂X0

,
∂F

∂X1

, . . . ,
∂F

∂Xn

)
,
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provided that p does not divide d. The emptiness of the latter is equiv-
alent to the vanishing of the discriminant of F when d ≥ 2. This shows
the semi-stability of non-singular hypersurfaces of degree greater than
1. Furtheremore, when d ≥ 3, it is known (see [MM, Theorem 1])
that only finitely many projective linear transformations preserve the
given non-singular hypersurface. This means that any non-singular
hypersurface is stable, provided d ≥ 3 and p 6 |d.

The above argument does not work in general, for the equality (7)
may break down when p divides d. Actually when p divides d the right
hand side of the equality (7) can not be empty. This will be proven in
the next subsection (see Proposition 3.2).

Even when p divides d, a closer look at the numerical criterion shows
that non-singular hypersurfaces are always (semi-)stable if d > n + 1
(resp. d ≥ n+1) (see [N, Lemma 4.2]. This may also be deduced from
Theorem 4.1, for (Pn

k , X) is log canonical when X is a non-singular
hypersurface).

Now we prove that the stability is always the case:

Theorem 3.1. If d ≥ 3, any non-singular projective hypersurface of
degree d is Chow stable.

Proof. The theorem is already established when chark = 0, so we as-
sume chark > 0. We use Theorem 2.9. Let X ⊂ Pn

k be an non-
singular projective hypersurface of degree greater than 2. Take any
g ∈ SL(n + 1, k) and let Fk be an equation of g∗X. Note that in this
case Fk itself is the Chow form of g∗X. Take a lift FW of Fk over the
ring of Witt vectors W satisfying I(Fk) = I(FW ) (see Definition 2.5
for the definition of I). Then it is easy to see the

Claim. V (FW ) is an integral scheme.

Proof. Since W is a DVR, W [X0, . . . , Xn] is a UFD. So it is enough to
show that FW is an irreducible element of W [X0, . . . , Xn]. Suppose for
a contradiction that FW = G ·H holds for some G,H ∈ W [X0, . . . , Xn]
such that neither G nor H is a unit. Note that both G and H are
homogeneous, since FW is. G ·H = FW = Fk 6= 0 (here F denotes the
reduction mod mW of F ), so neither G nor H is contained in mW .
This means that deg G, deg H ≥ 1. Therefore deg G, deg H ≥ 1 must
hold, contradicting the irreducibility of Fk. ¤

Note that V (FW ) dominates the generic point of Spec W , hence the
above claim means that V (FW ) is flat over Spec W (see [Ha, Chapter
III, Proposition 9.7]). Also it is projective over Spec W .

The closed fiber of V (FW ) → Spec W is g∗X, which is non-singular.
Therefore the geometric generic fiber is also non-singular (see [EGA IV,
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(12.2.4)(iii)]). Since the characteristic of the generic fiber is zero and
deg(FW ) ≥ 3, we already know that it is stable. By Theorem 2.9, we
see that X is stable too. ¤

3.2. The defining equation. Let Hypd(n) be the projective space
of degree d hypersurfaces in Pn

k , and Uns ⊂ Hypd(n) be the locus of
non-singular hypersurfaces. In this subsection we study the defining
equation for the complement of the locus of non-singular hypersurfaces,
Hypd(n) \ Uns. This is already well-known when p does not devide d,
so we are interested in the cases when p divide d. First we show the
following

Propostion 3.2. Assume d is divided by p and let X = V (F ) ⊂ Pn
k be

an arbitrary hypersurface of degree d. Then

V

(
∂F

∂X0

,
∂F

∂X1

, . . . ,
∂F

∂Xn

)
6= ∅

holds.

Proof. Set

Z =

{
(x,X); x ∈ V

(
∂F

∂X0

,
∂F

∂X1

, . . . ,
∂F

∂Xn

)}
⊂ Pn

k ×Hypd(n)

and p : Z → Pn
k and q : Z → Hypd(n) be the natural projections. First

we show the

Claim. p is a smooth morphism with connected fibers.

Proof. Let x : Spec Ω → Pn
k be a geometric point. By the definition

of Z above, it is easy to see that Zx ⊂ Pn
Ω is a linear subspace. To

see that the dimension of the linear subspace is independent of x, we
show that Zx is isomorphic to Z(1:0:···:0), where (1 : 0 : · · · : 0) ∈ Pn

Ω.
Consider the action of SLΩ(n+1) on Pn

Ω×Hypd(n)Ω which is defined by
g · (x,X) = (gx, g∗X) for g ∈ SLΩ(n+1). It can be easily checked that
this action preserves Z and that we obtain an isomorphism between
Z(1:0:···:0) and Zx via this action. ¤

Next we calculate the dimension of Z(1:0:···:0). Note that if we write

F (X) =
∑

|α|=d

CαXα

by using multi-indices, (Cα; |α| = d) gives a system of coordinates for
the projective space Hypd(n). Then

Z(1:0:···:0) = V (C(010···0), C(0010···0), . . . , C(00···01)) ⊂ Hypd(n)
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holds. Therefore

dim Z = dimPn
k + dim Z(1:0:···:0)

= n + (dim Hypd(n)− n)

= dim Hypd(n).

Now all we have to show is that p : Z → p(Z) is generically finite,
since then we see that dim p(Z) = dim Z = dim Hypd(n), hence p(Z) =
Hypd(n). To see this, we can easily check the finiteness of the fiber of
p at

F (X) = Xd−1
0 X1 + Xd−1

1 X2 + · · ·+ Xd−1
n−1Xn + Xd−1

n X0.

¤
Next we study Hypd(n) \ Uns. Recall that the non-singularity of

X = V (F ) is equivalent to the emptiness of the left hand side of (7).
By using this fact, we show the following

Theorem 3.3. Assume p divides d. Then

Hypd(n) \ Uns

is an irreducible divisor. Moreover some multiple of its defining equa-
tion lifts to the discriminant in characteristic zero.

Example 3.4. Consider the case (n, d) = (1, 4). Let

X = V (F ), F = a0X
4
0 + a1X

3
0X1 + a2X

2
0X

2
1 + a3X0X

3
1 + a4X

4
1

be an hypersurface in P1
k. When chark 6= 2, the defining equation for

Hyp4(1) \ Uns is given by D = 4S3 − T 2, where

S = 22 · 3a0a4 − 3a1a3 + a2
2

T = 23 · 32a0a2a4 − 33a0a
2
3 + 32a1a2a3 − 33a2

1a4 − 2a3
2.

When chark = 2, D mod 2 = (T mod 2)2 and the defining equation
for Hyp4(1) \ U is given by T mod 2 = a0a

2
3 + a1a2a3 + a2

1a4.

Proof of Theorem 3.3. Let W = W (k) be the ring of Witt vectors. Set

I =

{
(x,X); x ∈ V

(
F,

∂F

∂X0

,
∂F

∂X1

, . . . ,
∂F

∂Xn

)}
⊂ Pn

W×Spec W Hypd(n),

where Hypd(n) = |OPn
W

(d)| is the projective space of families of degree
d projective hypersurfaces over Spec W . Let p : I → Pn

W , q : I →
Hypd(n) be the natural projections. As in the proof of Proposition
3.2, we can show the following
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Claim. p is a smooth morphism with connected fibers.

Therefore we see that both I and Ik, restriction of I over the closed
point Spec k ⊂ Spec W , are integral schemes.

Now consider the integral closed subscheme q(I) ⊂ Hypd(n). Note
that the defining equation for q(I) is the usual discriminant, and that
q(I)k, restriction of q(I) over Spec k ⊂ Spec W , coincides with q(Ik) as
sets. ¤

4. Y.Lee’s criterion in characteristic p

Next we prove the following

Theorem 4.1. Let X be an effective cycle of dimension r and degree d
in Pn

k . Let (G, Z(X)) be the log pair defined by the Chow divisor Z(X)
of X. If lct(G, Z(X)) > n+1

d
(resp. ≥ n+1

d
), then X is Chow stable

(resp. Chow semi-stable).

See §2.3 for notations. Our proof goes along the same line as the
original one by Y.Lee ([Le]), but we need to modify several points.

Before the proof, we point out that we might prove Theorem 4.1
via Theorem 2.9 as in the previous section, provided that the following
conjecture would be true (below W is the ring of Witt vectors and K, k
are the field of fractions and the residue field of W, respectively):

Conjecture 4.2. Let XW → Spec W be a smooth proper morphism
where XW is an integral scheme. Let DW be an effective R-divisor on
XW , such that no irreducible component is contained in a fiber of the
projection to Spec W . By XK and DK we denote the restrictions of XW

and DW over the generic point of Spec W . Similarly Xk, Dk denote the
restrictions of XW and DW over the closed point of Spec W . Then if
(Xk, Dk) is log canonical, so is (XK , DK). In particular lct(Xk, Dk) ≤
lct(XK , DK).

Note that the lower semi-continuity of log canonical thresholds in
a smooth family is already established over C (see [Laz, Corollary
9.5.39]).

4.1. Log canonicity in positive characteristics. In this subsection,
we discuss how the log canonicity of log pairs are preserved under
finite morphisms. Some properties of log canonicity which hold in
characteristic zero fail in characteristic p > 0, but we can circumvent
those difficulties and obtain Proposition 4.9, which is the key for the
proof Theorem 4.1.
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When the characteristic of the base field is zero, it is well known
that log canonicity is preserved under finite dominant morphisms (see
[KoM, Proposition 5.20(4)]). Namely:

Theorem 4.3. Let g : X ′ → X be a finite dominant morphism of
normal varieties over a field of characteristic zero. Let ∆ (resp. ∆

′
)

be a Q-divisor on X (resp. X ′) such that KX + ∆ is Q-Cartier and
g∗(KX + ∆) = KX′ + ∆

′
. Then (X, ∆) is log canonical if and only if

(X ′, ∆′) is.

We should note that the canonical divisors KX and KX′ in Theorem
4.3 above are chosen in such a way that KX′ = g∗KX +R holds, where
R is the ramification divisor of g.

When the characteristic of the base field is positive, we need to mod-
ify Theorem 4.3. First we consider the case when g is separable. In this
case we may have wild ramifications, so we only have a weaker version
of the ramification formula:

Lemma 4.4. Let g : X → Y be a finite separable morphism between
normal varieties over k. Let E ⊂ X be a prime divisor on X and r be
the ramification index of g along E. Then there exists a non-negative
integer b ≥ r− 1 such that KX = g∗KY + bE holds around the generic
point of E.

Proof. Set V = Y \ Sing Y and U = g−1(V ) − Sing X. Note that the
closed subsets we have through away have codimension greater than 1.
Over U we have the following exact sequence:

(8) g∗ΩV
f−→ ΩU → ΩU/V → 0.

Since g is separable, ΩU/V generically vanishes (see [M, Theorem 59]).
Hence f is generically isomorphic.

Let F : g∗OV (KV ) → OU(KU) be the highest exterior product of the
morphism f in (8) above. This is also generically isomorphic. Therefore
ker F is a torsion subsheaf of the torsion free sheaf g∗OV (KV ), so is
trivial. Hence we see that F is injective.

Take a generic closed point e of E ∩ U which is contained in no
other irreducible component of Supp ΩU/V except for E. Set e′ = g(e),
E ′ = g(E). Choose systems of local coordinates x1, . . . , xn at e and
y1, . . . , yn at e′, satisfying the following conditions:

(a) E = div(x1) near e (resp. E ′ = div(y1)).
(b) g∗yi = xi holds for all i = 2, . . . , n.
(c) there exists an invertible function u at e such that g∗y1 = u · xr.

In (c), r denotes the ramification index of g along E. Now
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F (g∗(dy1 ∧ · · · ∧ dyn)) = d(u · xr
1) ∧ dx2 ∧ dx3 ∧ · · · ∧ dxn

=

(
∂u

∂x1

x1 + ru

)
xr−1

1 dx1 ∧ dx2 · · · ∧ dxn,(9)

so there exists some non-negative integer b that

KX = g∗KY + bE

holds in a neighborhood of e.
If r 6≡ 0 (mod p), b = r − 1. Now assume the contrary, i.e. assume

E is wildly ramifying. Then

(9) =
∂u

∂x1

xr
1dx1 ∧ dx2 · · · ∧ dxn

6= 0,

since otherwise F is not generically isomoprhic. In this case we see
that

b = valE

(
∂u

∂x1

)
+ r ≥ r,

where valE denotes the valuation corresponding to E.
¤

Remark 4.5. Ramification formula for inseparable morphisms are dis-
cussed in [RS]. In this case the ramification divisor is defined only up
to linear equivalence. If we adopt this version of ramification formula,
the ‘only if’ part of Theorem 4.3 does not hold in general. For our
purpose we need not to deal with inseparable cases.

With the weaker version of ramification formula above, we can prove
that the ’only if’ part of the Theorem 4.3 still holds for separable
morphisms:

Propostion 4.6. Let k be an algebraically closed field of characteristic
p > 0. Let g : X ′ → X be a finite separable morphism of normal
varieties over k. Let ∆ (resp. ∆

′
) be a Q-divisor on X (resp. X ′)

such that KX + ∆ is Q-Cartier and g∗(KX + ∆) = KX′ + ∆
′
. Then if

(X, ∆) is log canonical, so is (X ′, ∆′).

Proof. The proof goes along the same line as the proof of ([KoM, Prop
5.20(4)]), once we replace the ramification formula by the weaker ver-
sion given above. ¤
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Remark 4.7. In general, the ’if’ part of Theorem 4.3 holds only when
there exists no wildly ramifying divisor. In such a case, the proof goes
as in characteristic zero. If some of the ramification divisors are wildly
ramifying it may not hold. An example is:

Example 4.8. Let X = X ′ = A1
k. Set g : X ′ → X; g(x) = xp(x + 1),

∆ = p+1
p

div(x) and ∆′ = div(x). Since g∗dx = xpdx, we obtain

g∗(KX + ∆) = KX′ + ∆′.

Note that (X, ∆) is not lc, but (X ′, ∆′) is.

Using Proposition 4.6, we can extend [Ko, Proposition 8.13] over
arbitrary fields:

Propostion 4.9. Take any f ∈ k[x1, . . . , xn]. Assign a weight w =
(w(xi))i=1,...,n ∈ (Z≥0)

n \ {0} to the variables x1, . . . , xn and let w(f)
be the weighted multiplicity of f (= the lowest weight of the monomials
occurring in f). Then

1

lct0(An, div(f))
≥ w(f)∑n

i=1 w(xi)
.

Proof.

Step 1. First we establish the inequality for those w’s such that w(xi) >
0 holds for all i = 1, . . . , n, and p divides none of the w(xi)’s.

In this case the inequality can be established along the same line
as the original proof, since we have Proposition 4.6. For the sake of
completeness, we reestablish the argument.

Consider g : An
k → An

k given by g(xi) = x
w(xi)
i . By the assumptions

on w(xi)’s, g is dominant and separable. Take a real number c ∈ R≥0

and assume (An
k , c · div(f)) is lc at 0. Now calculate the pull-back of

KAn
k

+ c · div(f) by g:

g∗(KAn
k

+ c · div(f))

= KAn
k

+
n∑

i=1

(1− w(xi)) div(xi) + c · div(f(x
w(x1)
1 , . . . , xw(xn)

n ))

=: KAn
k

+ ∆′.

By Proposition 4.6, we see (An
k , ∆

′) is lc at 0. Let E be the ex-
ceptional divisor of the blow-up of An

k at the origin. We know that
a(E;An

k , ∆
′) ≥ −1 holds. With a calculation we see that a(E;An

k , ∆
′)

equals to −1 +
∑

i w(xi)− cw(f), obtaining the inequality.
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Step 2. Now consider the continuous function ϕ : (Q≥0)
n \ {0} → Q

defined by

ϕ(w) =
w(f)∑
i w(xi)

,

as in the case when w(xi)’s are integers. If we replace w by some
positive multiple of it, the value of ϕ never changes. Therefore ϕ factors
through the quotient space

S := (Q≥0)
n \ {0}/Q>0,

inducing the continuous function ϕ : S → Q.
The set of points represented by those w’s satisfying the assumptions

in Step 1 is dense in S. Hence, by the continuity of ϕ, we see that

ϕ(s) ≤ 1

lct0(An, div(f))

holds for arbitrary s ∈ S. We finish the proof.

¤

Remark 4.10. Step 2 in the proof above is inevitable, for (An
k , ∆

′)
need not be lc if g is inseparable. For example, consider the case
n = 2, w(x1) = w(x2) = p and f(x1, x2) = x1 − x2. In this case
lct0(A2

k, div(f)) = 1. On the other hand

∆′ = (1− p) div(x1x2) + p · div(x1 − x2),

hence (A2
k, ∆

′) is not lc at the origin.

4.2. Proof of Theorem 4.1.

Proof of Theorem 4.1. We only discuss stable case. Semi-stable case
can be proven exactly in the same way. We have only to confirm the
inequality (5) of Lemma 2.8. On the other hand, by the assumption
and Proposition 4.9, the inequality clearly holds. ¤

Appendix A. Proposition 4.9 via F-singularities

Proposition 4.9 was the main ingredient of the proof of Theorem
4.1. In this Appendix A we reprove it in characteristic zero, using the
notion of F-singularities.

A.1. Notion of F-singularities. In this subsection, we summarize
some definitions and results about F-singularities which we need. For
detail one can consult [HW], [TW]. Below k denotes a field of charac-
teristic p > 0, until otherwise stated.
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Definition A.1. Let A be an integral domain of charateristic p, F :
A → A be the Frobenius map defined by F (x) = xp. For an A-module
M , we denote by F e

∗M(or eM for short) the A-module which is obtained
by pulling back the action of A on M via the ring homomorphism
F e : A → A, the e-times iteration of F . A is said to be F-finite if F∗A
is a finite A-module.

If k is a perfect field, all the rings which are essentially of finite type
over k are F-finite.

Definition A.2. Let A be an F-finite Noetherian local normal ring.
Let ∆ be an effective R-divisor on Spec A. Set A(∆) = {0} ∪ {f ∈
K(A)∗| div(f) + ∆ ≥ 0}. (A, ∆) is said to be F-pure if the A-module
homomorphism A → F e

∗A → F e
∗ (A((q − 1)∆)) splits for all q = pe,

where the first arrow is the e-times iteration of the Frobenius map and
the second one is the natural inclusion. Similarly we say that (A, ∆) is
strongly F-regular if for any non-zero element c ∈ A there exists q = pe

such that A → F e
∗A → F e

∗ (A((q − 1)∆))
×c−→ F e

∗ (A((q − 1)∆)) splits as
an A-module homomorphism.

Remark A.3. It can be shown that strong F -regularity implies F -
purity (see [HW, Proposition 2.2(1)]).

Take a normal variety X over k and an effective R-divisor ∆ on X.
We say (X, ∆) is F-pure if (Ox,X , ∆) is F-pure for all x ∈ X.

For such a pair, the F-pure threshold is defined and denoted by
Fpt(X, ∆) = sup{t ∈ R|(X, t∆) is F-pure}.

F-pure threshold measures how bad the singularity of a log pair
(X, ∆) is. Larger Fpt means that the singularity of (X, ∆) is better.

Now we state a useful consequence of F-purity, which actually char-
acterizes F -purity in most cases. Below b·c denotes the round down of
·.
Lemma A.4. Let k = k. Set A = k[x1, . . . , xn](x1,...,xn),m = (x1, . . . , xn)A.
Take any non-zero element f ∈ A \ {0} and a non-negative ratio-
nal number t ∈ Q≥0. Then if (A, t · div(f)) is F-pure, f b(q−1)tc /∈
(xq

1, . . . , x
q
n) holds for all q = pe.

Proof. The ’only if ’ part of ([HW, Proposition 2.6(1)]) holds without
the assumption that div(f) is reduced (the proof given in that paper
works for non-reduced cases too). The lemma above is its special case.

¤

Next we recall the relationship between klt singularities and F-singularities.
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Definition A.5. Let k be a field of characteristic zero. Let X be a
normal variety over k, ∆ be an effective R-divisor on X. Let A be a
subring of k which is of finite type over Z. A model of (X, ∆) over A is a
pair (X , δ) of a normal scheme X of finite type and flat over Spec A and
an effective R-divisor δ on X such that (X , δ)×Spec A Spec k ' (X, ∆)
over Spec k. Note that A/P is a finite field for all 0 6= P ∈ Spec A.
We say that (X, ∆) is of strongly F-regular type if there exists a dense
open subset U ⊂mSpecA such that (X , δ)×Spec ASpec(A/P ) is strongly
F-regular for all P ∈ U . This notion does not depend on the choice of
A and models on it.

Theorem A.6. Let (X, ∆) be a log pair over Spec k, where k is a field
of characteristic zero. Then (X, ∆) is klt if and only if it is of strongly
F-regular type.

A.2. Proof of Proposition 4.9 in characteristic zero. Let k be a
field of characteristic zero.

Proof of Proposition 4.9. Assume for a contradiction that

1

lct0(An
k , div (f))

<
w(f)∑
i w(xi)

(10)

holds for some w = (w(xi))i. Note that w(f) > 0 holds in (10). Then

there exists some rational number t >
P

i w(xi)

w(f)
such that (An

k , t ·div (f))

is klt (see Proposition 2.4). Let A be the ring generated over Z by the
coefficients of f . By Theorem A.6, we can take a maximal ideal m of
A such that the reduction of (An

A, t · div (f)) at m is strongly F-regular
(therefore F-pure) at the origin (see Remark A.3). Now we replace t,
if necessary, so that p := char(A/m) does not divide the denominator
of t. Then we can take some q = pe such that t(q− 1) ∈ Z. By Lemma
A.4, we see that

(11) f t(q−1) 6∈ (xq
1, . . . , x

q
n).

On the other hand, the equation of f is of the form

(12) f = f(x1, . . . , xn) =
∑

α

Cαxα.

From (11), we see that there exist α(1), . . . , α(t(q−1)) satisfying

Cα(j) 6= 0
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for all j = 1, . . . , t(q − 1), and

(13)

t(q−1)∑
j=1

α
(j)
i ≤ q − 1

for all i = 1, . . . , n. By the definition of w(f), we see that

(14)
n∑

i=1

w(xi)α
(j)
i ≥ w(f)

(
>

∑
i w(xi)

t

)

holds for all j. Now

(q − 1)
n∑

i=1

w(xi) = t(q − 1) ·
∑

i w(xi)

t

<
(14)

t(q−1)∑
j=1

(
n∑

i=1

w(xi)α
(j)
i

)

=
n∑

i=1

w(xi)




t(q−1)∑
j=1

α
(j)
i




≤
(13)

(q − 1)
n∑

i=1

w(xi),

which is a contradiction. ¤

Remark A.7. When the characteristic of k is positive, via a similar
argument we may prove the following inequality:

(15)
1

Fpt0(An, div(f))
≥ w(f)∑

i w(xi)
.

(15) is a direct consequence of (and is slightly weaker than) Propo-
sition 4.9, since we have the following general implication

F-pure ⇒ log canonical

(see [HW, Theorem 3.3] for detail. Examples of singularities whose lct
are strictly greater than Fpt can be found in [TW, Example 2.5]).

Appendix B. Chow stability of the sum

In this section we show that the sum of two Chow semi-stable cycles
of the same dimension are again Chow semi-stable. Moreover if one of
them is stable, it follows that the sum also becomes stable.
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Propostion B.1. Let Y, Z be Chow semi-stable cycles of the same
dimension in a projective space Pn

k . Then Y + Z is again Chow semi-
stable. Furthermore if Y is Chow stable, so is Y + Z.

In the proof we freely use the notation like limt→0 λ(t)·F , as in [GIT],
since the idea becomes clearer. To be logically complete, we of course
need to replace the argument suitably. It is a routine work, so we omit
the detail.

Proof. Let d,e be the degrees of Y and Z respectively. Let F ∈ Bd,
G ∈ Be be the Chow forms of Y and Z, respectively. Then the Chow
form of Y + Z is given by F ·G ∈ Bd+e.

Choose a non-trivial 1-parameter subgroup (1-PS) λ : Gm → SL(n+
1, k). Via λ we pull back the canonical actions of SL(n + 1, k) onto
Bd,Be and Bd+e to Gm. Now consider the natural multiplication map
µ : Bd × Be → Bd+e, given by (F,G) 7→ F ·G. If we pose the diagonal
action of Gm on the left hand side, µ becomes equivariant.

Assume that Y, Z are both Chow semi-stable. Then both limt→0 λ(t)·
F 6= 0 and limt→0 λ(t) · G 6= 0 holds. Now since we know that µ is
continuous,

lim
t→0

λ(t) · (F ·G)

=(lim
t→0

λ(t) · F ) · (lim
t→0

λ(t) ·G)

6=0,

since B = ⊕d≥0Bd is an integral domain. Therefore Y + Z is again
Chow semi-stable.

Second, assume further that Y is Chow stable. Then limt→0 λ(t)·F =
∞, so that

lim
t→0

λ(t) · (F ·G)

=(lim
t→0

λ(t) · F ) · (lim
t→0

λ(t) ·G)

=∞ · (lim
t→0

λ(t) ·G)

=∞,

since (limt→0 λ(t) ·G) is not 0. Therefore Y + Z is Chow stable.
¤

Remark B.2. We can not expect the converse of Proposition B.1 at
all. There exists a semi-stable cycle such that all its subcycles are
unstable:
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Example B.3. Take the union of three lines on a plane which are in a
general position. The union itself is Chow semi-stable (see [GIT, §4-2]),
but lines and reducible conics on a plane are Chow unstable.

However, the following holds:

Propostion B.4. Let Z be a cycle of Pn
k . Then the followings are

equivalent:

(1) Z is Chow (semi-)stable.
(2) mZ is Chow (semi-)stable for any positive integer m ∈ Z>0.
(3) mZ is Chow (semi-)stable for some positive integer m ∈ Z>0.

Proof. We have only to prove (3)⇒(1). Let G be the Chow form of Z.
Then Gm gives the Chow form of mZ. Assume that mZ is Chow semi-
stable. Take any 1-PS λ as in the proof of the Proposition B.1. Then
0 6= limt→0 λ(t) · Gm = (limt→0 λ(t) ·G)m, hence limt→0 λ(t) · G 6= 0.
Therefore Z is semi-stable. Stable case can also be shown via a similar
argument. ¤
Example B.5. Let Y ⊂ Pn

k be a non-singular hypersurface of degree
3, which is Chow stable by Theorem 3.1. By Proposition B.1, mY is
also Chow stable for all the positive integers m. On the other hand,
lct(Pn

k ,mY ) = 1
m

and hence 1
m

< n+1
3m

if n ≥ 3. Thus we obtain a
sequence of examples of Chow stable hypersurfaces whose stability can
not be detected by Theorem 4.1.
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