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In this talk we work over k = k, char (k) = p ≥ 0.
Varieties are normal and projective over k.

Definition (Multi-section ring)
Let Γ ⊂ Div (X) be a finitely generated semigroup of
Cartier divisors on X.
The multi-section ring of Γ is

RX(Γ) =
⊕
D∈Γ

H0(X,OX(D)).
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Remark
The multi-section ring

RX(Γ) =
⊕
D∈Γ

H0(X,OX(D))

of Γ has a Γ-graded k-algebra structure in the following
way:

for f ∈ H0(X,OX(D)), set deg (f) = D.
for f ∈ H0(X,OX(D)) and g ∈ H0(X,OX(E)), set
f · g := f ⊗ g ∈ H0(X,OX(D + E)) .
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Example (Section ring)
D : Cartier divisor, Γ = ND.

RX(Γ) =
⊕
n≥0

H0(X,OX(nD))

is the section ring of D (usually denoted by RX(D)).

When RX(D) is of finite type over k, ProjRX(D) is a
normal projective variety.
There is a natural dominant rational map

ϕD : X 99K ProjRX(D).

(A resolution of) ϕD is an algebraic fiber space.
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Example (Cox ring)

Assume X is Q-factorial (for simplicity).
Assume that Pic (X) is finitely generated and the natural
map

Pic (X)Q → N1(X)Q

is an isomorphism.· · · (*)
Let Γ ⊂ Div (X) be a finitely generated group of Cartier
divisors such that

ΓQ → Pic (X)Q; D 7→ OX(D)

is isomorphic. For such a group Γ, RX(Γ) is called a Cox
ring of X. (We always assume the assumption (*) when
dealing with Cox rings).
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Example (Pic (X) ∼= Z)

The section ring of an ample divisor is a Cox ring.
For example, let us think of X = Grass(2, 4).
Then RX(OX(1)) = k[x1, . . . , x6]/(x1x2 − x3x4 + x5x6)
(Fano⇒canonical singularity: cf [Bworn]).

Example (Cox ring of a toric variety)
X : smooth toric. We can choose Γ ⊂ Div (X) such that

RX(Γ) ∼= k[x1, . . . , xm].

xi ←→ a torus invariant prime divisor on X.
m = dim (X) + rank Pic (X).
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Definition (of Mori dream space)
Assume X is Q-factorial.
Assume that Pic (X) is finitely generated and the natural
map

Pic (X)Q → N1(X)Q

is an isomorphism · · · (∗).

Then X is a Mori dream space (MDS) if and only if a Cox
ring RX(Γ) of X is of finite type over k.

Remark
Finite generation of RX(Γ) does not depend on the choice
of Γ.
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VGIT/ Geometry of line bundles

Fact (Hu-Keel 2000)
Suppose X satisfies (∗). Then X is a Mori dream space if
and only if (⇐⇒ ) the following conditions hold:

1 Nef (X) is rational polyhedral and every nef divisor is
semi-ample.

2 There is a finite collection of small birational maps
fi : X 99K Xi such that each Xi satisfies (*) and (1),
and Mov (X) is the union of the f ∗i (Nef (Xi)).

Remark
⇐ is not so difficult. I.e. finite generation of a Cox ring
follows from the assumptions on line bundles on X.
⇒ follows from the theory of VGIT.
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Example (of Mori dream spaces)

1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.

2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.

3 (X,∆) klt log Fano⇒ X is a Mori dream space
(over C, due to [BCHM]).

4 K3 surface X is
a Mori dream space

⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).

4 K3 surface X is
a Mori dream space

⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space

⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral

⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Example (of Mori dream spaces)
1 Those X satisfying Pic (X) ∼= Z.
2 Quasi-smooth toric varieties.
3 (X,∆) klt log Fano⇒ X is a Mori dream space

(over C, due to [BCHM]).
4 K3 surface X is

a Mori dream space
⇐⇒ Nef (X)(= Mov (X)) is rational polyhedral
⇐⇒ |Aut (X)(= Bir (X))| <∞.

Remark
We expect the similar result for Calabi-Yau manifolds and
projective complex symplectic varieties in general.

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

1 Introduction – Multi-section ring

2 Properties of Cox rings and geometry of line bundles
Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

3 Multi-section rings and surjective morphisms

4 Geometric implications

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Assume X is Q-factorial, Pic (X) is finitely generated and
the natural map

Pic (X)Q → N1(X)Q

is an isomorphism · · · (∗).

Take Γ ⊂ Div (X) such that ΓQ ∼= Pic (X)Q (as before).
Consider the dual torus of Γ:

T := TX(Γ) := Homgp(Γ, k
∗).

Note that T ∼= (k∗)ρ(X), and there is the following
canonical isomorphism

Γ ∼= χ(T ); D 7→ evD,

where evD(t) = t(D) ∈ k∗ for t ∈ T .
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Since RX(Γ) is Γ-graded, T naturally acts on RX(Γ) as
follows:

for t ∈ T and f ∈ H0(X,OX(D)), set

t · f := evD(t)f = t(D)f.

Thus we obtain

T = TX(Γ) y V := VX(Γ) := SpecRX(Γ).

For this action, we consider the Variation of GIT quotients
(VGIT).
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Review on VGIT

Choose a character χ ∈ χ(T ).

For this, a T -invariant open subset V ss(χ) ⊂ V of V is
defined (called the semi-stable locus of χ).

Fact
The categorical quotient V ss(χ)//T exists. Moreover, it is
isomorphic to ProjRχ,
where Rχ = {f ∈ RX(Γ)| ∃n ∈ N ∀t ∈ T t · f = χ(t)nf} is
the ring of χ semi-invariants.

Remark
If χ = evD, then Rχ = RX(D).

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Review on VGIT

Choose a character χ ∈ χ(T ).
For this, a T -invariant open subset V ss(χ) ⊂ V of V is
defined (called the semi-stable locus of χ).

Fact
The categorical quotient V ss(χ)//T exists. Moreover, it is
isomorphic to ProjRχ,
where Rχ = {f ∈ RX(Γ)| ∃n ∈ N ∀t ∈ T t · f = χ(t)nf} is
the ring of χ semi-invariants.

Remark
If χ = evD, then Rχ = RX(D).

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Review on VGIT

Choose a character χ ∈ χ(T ).
For this, a T -invariant open subset V ss(χ) ⊂ V of V is
defined (called the semi-stable locus of χ).

Fact
The categorical quotient V ss(χ)//T exists. Moreover, it is
isomorphic to ProjRχ,

where Rχ = {f ∈ RX(Γ)| ∃n ∈ N ∀t ∈ T t · f = χ(t)nf} is
the ring of χ semi-invariants.

Remark
If χ = evD, then Rχ = RX(D).

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Review on VGIT

Choose a character χ ∈ χ(T ).
For this, a T -invariant open subset V ss(χ) ⊂ V of V is
defined (called the semi-stable locus of χ).

Fact
The categorical quotient V ss(χ)//T exists. Moreover, it is
isomorphic to ProjRχ,
where Rχ = {f ∈ RX(Γ)| ∃n ∈ N ∀t ∈ T t · f = χ(t)nf} is
the ring of χ semi-invariants.

Remark
If χ = evD, then Rχ = RX(D).

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Review on VGIT

Choose a character χ ∈ χ(T ).
For this, a T -invariant open subset V ss(χ) ⊂ V of V is
defined (called the semi-stable locus of χ).

Fact
The categorical quotient V ss(χ)//T exists. Moreover, it is
isomorphic to ProjRχ,
where Rχ = {f ∈ RX(Γ)| ∃n ∈ N ∀t ∈ T t · f = χ(t)nf} is
the ring of χ semi-invariants.

Remark
If χ = evD, then Rχ = RX(D).

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Finite generation/ Mori dream space
VGIT/ Geometry of line bundles

Relation to the geometry of line bundles

From now on we assume that RX(D) is of finite type over
k for any Cartier divisor D on X.

Remark
Every Mori dream space satisfies this condition, and we
expect that every log terminal variety X with KX ≡ 0 has
this property. This follows from standard conjectures on
log MMP (existence of log minimal model and log
abundance).

Let A be an ample divisor on X, and D be an arbitrary
divisor on X. We have the following commutative
diagram:
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Relation to the geometry of line bundles

V ss(evA)

/T

����

V ss(evA)
⋂
V ss(evD)

⊃oo

/T

����

⊂ // V ss(evD)

//T

����
V ss(evA)/T

∼=
��

V ss(evA)
⋂
V ss(evD)/T

⊃oo // V ss(evD)//T

∼=
��

X ϕD

//_____________________ ProjRX(D)

(⊂ is an open immersion)
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In particular
V ss(evD) = V ss(evE)

implies ϕD = ϕE.

More precisely,

Theorem
For Q-effective Cartier divisors D and E on X,
V ss(evD) = V ss(evE) holds if and only if

ϕD = ϕE and
B (D) = B (E) (B: stable base locus).
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A generalization of GKZ fan

Suppose X is a Mori dream space: i.e. a Cox ring RX(Γ)
is of finite type over k.

Recall that we have the following natural isomorphisms

Pic (X)Q
∼= ΓQ ∼= χ(T )Q.

Theorem
Eff (X) has a finite fan structure such that the relative
interior of a cone of the fan is an equivalence class in two
senses.
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Example (smooth projective toric 3-fold of ρ = 3)

p1 6= p2 ∈ P3.

X = Blp1,p2P3 π−→ P3. H = π∗O(1).
X ′ = ‘the flop of the strict transformation of the line p1p2.’
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A generalization of GKZ fan

Remark
In the case of toric varieties, this is the GKZ fan defined
by Oda and Park.

Remark
We expect that a Calabi-Yau manifold with finite
automorphism group also has the similar fan structure on
the effective cone. But the number of cones can be
infinite, since the birational automorphisms group can be
infinite.
A general hypersurface of degree (2, . . . , 2) in (P1)n+1 is a
Calabi-Yau manifold of this kind, and is studied by Oguiso
in detail.
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Multi-section rings and surjective morphisms

Consider a surjective morphism

f : X → Y,

between normal projective varieties X and Y .

Let Γ ⊂ Div (Y ) finitely generated semigroup of Cartier
divisors on Y . We have

f ∗ : RY (Γ)→ RX(f ∗Γ),

a Γ-graded k-algebra homomorphism.
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Multi-section rings and surjective morphisms

Question
What can be said about the morphism
f ∗ : RY (Γ)→ RX(f ∗Γ), and what are the geometric
consequences?

⇒We take the Stein factorization

X
g−→ Ỹ

h−→ Y

of f , where
g is an algebraic fiber space (i.e. g∗OX ∼= OỸ )
h is finite surjective.
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Case (f is an algebraic fiber space)

f ∗ : RY (Γ)→ RX(f ∗Γ)

is an isomorphism.

Case (f is finite)

Proposition

f ∗ : RY (Γ)→ RX(f ∗Γ)

is an integral extension.
Moreover RY (Γ) is finitely generated if and only if
RX(f ∗Γ) is, and in this case f ∗ is finite.
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Sketch of proof.
The finite morphism f is further decomposed into

separable morphism.
⇒ Take the Galois closure. Finite Galois morphism is
the quotient by the Galois group.
⇒ If f is already Galois, RY (Γ) is the invariant
subring of RX(Γ) under the Galois group action.
General case is similar.
purely inseparable morphisms of degree p (if p > 0).
⇒ Such a morphism is the quotient by a rational
vector field δ ∈ Derk(Y )(k(X)): i.e.
OY = {f ∈ OX |δf = 0}.
⇒ “Use δ instead of the Galois group.”
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The first application of the result of the previous section is
the following:

Theorem
Let f : X → Y be a surjective morphism between normal
Q-factorial projective varieties.
If X is a Mori dream space, so is Y .

Sketch of the proof.
The main point of the proof is to prove that a Cox ring
RY (Γ) of Y is of finite type over k.
For this, it is enough to show RX(f ∗Γ) is of finite type.
Since X is a Mori dream space, any multi-section ring is
finitely generated (relatively easy).
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The second application is about VGIT.

Let f : X → Y be a surjective morphism between normal
Q-factorial projective varieties satisfying (*).
Choose ΓX ⊂ Div (X) (ΓY ⊂ Div (Y )) which defines a Cox
ring of X (Y ) satisfying f ∗ΓY ⊂ ΓX .
Set VX = SpecRX(ΓX) (VY = SpecRY (ΓY )),
TX = Homgp(ΓX , k

∗) (TY = Homgp(ΓY , k
∗)).

Note that we have a natural surjective morphism of affine
schemes

Vf : VX → VY

which comes from f ∗ : RY (ΓY )→ RX(ΓX), and

Tf : TX → TY ,

which comes from f ∗ : ΓY → ΓX .
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which comes from f ∗ : RY (ΓY )→ RX(ΓX), and

Tf : TX → TY ,

which comes from f ∗ : ΓY → ΓX .

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

The second application is about VGIT.
Let f : X → Y be a surjective morphism between normal
Q-factorial projective varieties satisfying (*).
Choose ΓX ⊂ Div (X) (ΓY ⊂ Div (Y )) which defines a Cox
ring of X (Y ) satisfying f ∗ΓY ⊂ ΓX .
Set VX = SpecRX(ΓX) (VY = SpecRY (ΓY )),
TX = Homgp(ΓX , k

∗) (TY = Homgp(ΓY , k
∗)).

Note that we have a natural surjective morphism of affine
schemes

Vf : VX → VY

which comes from f ∗ : RY (ΓY )→ RX(ΓX), and

Tf : TX → TY ,

which comes from f ∗ : ΓY → ΓX .

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

The second application is about VGIT.
Let f : X → Y be a surjective morphism between normal
Q-factorial projective varieties satisfying (*).
Choose ΓX ⊂ Div (X) (ΓY ⊂ Div (Y )) which defines a Cox
ring of X (Y ) satisfying f ∗ΓY ⊂ ΓX .
Set VX = SpecRX(ΓX) (VY = SpecRY (ΓY )),
TX = Homgp(ΓX , k

∗) (TY = Homgp(ΓY , k
∗)).

Note that we have a natural surjective morphism of affine
schemes

Vf : VX → VY

which comes from f ∗ : RY (ΓY )→ RX(ΓX),

and

Tf : TX → TY ,

which comes from f ∗ : ΓY → ΓX .

Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

The second application is about VGIT.
Let f : X → Y be a surjective morphism between normal
Q-factorial projective varieties satisfying (*).
Choose ΓX ⊂ Div (X) (ΓY ⊂ Div (Y )) which defines a Cox
ring of X (Y ) satisfying f ∗ΓY ⊂ ΓX .
Set VX = SpecRX(ΓX) (VY = SpecRY (ΓY )),
TX = Homgp(ΓX , k

∗) (TY = Homgp(ΓY , k
∗)).

Note that we have a natural surjective morphism of affine
schemes

Vf : VX → VY

which comes from f ∗ : RY (ΓY )→ RX(ΓX), and

Tf : TX → TY ,

which comes from f ∗ : ΓY → ΓX .
Shinnosuke Okawa Multi-section rings and surjective morphisms



Introduction – Multi-section ring
Properties of Cox rings and geometry of line bundles

Multi-section rings and surjective morphisms
Geometric implications

Summing up, we obtain the following equivariant diagram.

VXWW

Vf // // VY WW

TX
Tf // // TY

Then we can show the following theorem:

Theorem
For a divisor D ∈ ΓY , the equality

V ss
X (T ∗f evD) = V −1

f (V ss
Y (evD))

holds.

Note that for a divisor D ∈ ΓY we have T ∗f evD = evf∗D.
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Immediately we get

Corollary
D,E ∈ ΓY have the same semi-stable loci if and only if
f ∗D and f ∗E have.

In the case of Mori dream spaces, this means

Corollary
The fan of Y is the same as the restriction of the fan of X
to Pic (Y )R via f ∗ : Pic (Y )R ⊂ Pic (X)R.
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Remark (on Theorem)
Let f : U → V be an G-equivariant morphism of affine
schemes.

For a character χ ∈ χ(G), U ss(χ) ⊇ f−1(V ss(χ))
holds, but they are different in general.
If k[V ]→ k[U ] is an integral extension, then equality holds.
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Log terminality of Cox ring

Sannai gave the following conjecture:

Conjecture
Let X be a MDS over C. There exists an effective
Q-divisor ∆ on X such that

(X,∆) is klt
−(KX + ∆) is ample

(i.e. (X,∆) is log Fano) if and only if the singularity of the
Cox ring of X is at worst log terminal.
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Log terminality of Cox ring

Remark
Quite recently, a proof for ‘only if’ direction (when ∆ = 0)
appeared in [Morgan V. Brown, arXiv:1109.6368].

Remark
The ‘F -singularity version’ of the conjecture has been
verified by Sannai. i.e.

Proposition (Sannai (2011))
Suppose char (k) > 0. Then a MDS X over k is globally
F -regular if and only if the Cox ring of X is strongly
F -regular.
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