行列の計算例題(行列式(余因子展開))

          


例題:次の行列式を余因子展開を使って計算せよ。

\[ \left|\,\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}@{}}1 & {-}1 & 0 & 2 \\ 2 & 0 & {-}1 & 2 \\ 1 & 1 & 0 & {-}2 \\ {-}2 & 2 & 1 & 1\end{array}\,\right| \]

解答

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}1 & {-}1 & 0 & 2 \\ 2 & 0 & {-}1 & 2 \\ 1 & 1 & 0 & {-}2 \\ {-}2 & 2 & 1 & 1\end{array}\,\right| \qquad \) (余因子展開) 第4列で展開する : [2, 2, -2, 1]

\( \qquad\quad = (-1)^{4-1}\times2\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & 0 & {-}1 \\ 1 & 1 & 0 \\ {-}2 & 2 & 1\end{array}\,\right| + (-1)^{4-2}\times2\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & 1 & 0 \\ {-}2 & 2 & 1\end{array}\,\right| + (-1)^{4-3}\times(-2)\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 2 & 0 & {-}1 \\ {-}2 & 2 & 1\end{array}\,\right| + (-1)^{4-4}\times1\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 2 & 0 & {-}1 \\ 1 & 1 & 0\end{array}\,\right| \)

\( \qquad\quad = (-1)^{4-1}\times2\times(-2) + (-1)^{4-2}\times2\times2 + (-1)^{4-3}\times(-2)\times2 + (-1)^{4-4}\times1\times2 \)

\( \qquad\quad = 14 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & 0 & {-}1 \\ 1 & 1 & 0 \\ {-}2 & 2 & 1\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [-1, 0, 1]

\( \qquad\quad = (-1)^{3-1}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & 1 \\ {-}2 & 2\end{array}\,\right| + (-1)^{3-3}\times1\times\left|\,\begin{array}{@{}rwr{15pt}@{}}2 & 0 \\ 1 & 1\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-1}\times(-1)\times4 + (-1)^{3-3}\times1\times2 \)

\( \qquad\quad = -2 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & 1 \\ {-}2 & 2\end{array}\,\right| = 1\times2 - 1\times(-2) = 4 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}2 & 0 \\ 1 & 1\end{array}\,\right| = 2\times1 - 0\times1 = 2 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & 1 & 0 \\ {-}2 & 2 & 1\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, 0, 1]

\( \qquad\quad = (-1)^{3-3}\times1\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & 1\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-3}\times1\times2 \)

\( \qquad\quad = 2 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & 1\end{array}\,\right| = 1\times1 - (-1)\times1 = 2 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 2 & 0 & {-}1 \\ {-}2 & 2 & 1\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, -1, 1]

\( \qquad\quad = (-1)^{3-2}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 2\end{array}\,\right| + (-1)^{3-3}\times1\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 2 & 0\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-2}\times(-1)\times0 + (-1)^{3-3}\times1\times2 \)

\( \qquad\quad = 2 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 2\end{array}\,\right| = 1\times2 - (-1)\times(-2) = 0 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 2 & 0\end{array}\,\right| = 1\times0 - (-1)\times2 = 2 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 2 & 0 & {-}1 \\ 1 & 1 & 0\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, -1, 0]

\( \qquad\quad = (-1)^{3-2}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & 1\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-2}\times(-1)\times2 \)

\( \qquad\quad = 2 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & 1\end{array}\,\right| = 1\times1 - (-1)\times1 = 2 \)