行列の計算例題(行列式(余因子展開))

          


例題:次の行列式を余因子展開を使って計算せよ。

\[ \left|\,\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}@{}}1 & {-}1 & 0 & {-}1 \\ 1 & {-}2 & {-}1 & 2 \\ {-}2 & 1 & 2 & {-}2 \\ 1 & {-}2 & {-}2 & {-}1\end{array}\,\right| \]

解答

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}1 & {-}1 & 0 & {-}1 \\ 1 & {-}2 & {-}1 & 2 \\ {-}2 & 1 & 2 & {-}2 \\ 1 & {-}2 & {-}2 & {-}1\end{array}\,\right| \qquad \) (余因子展開) 第4列で展開する : [-1, 2, -2, -1]

\( \qquad\quad = (-1)^{4-1}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}2 & {-}1 \\ {-}2 & 1 & 2 \\ 1 & {-}2 & {-}2\end{array}\,\right| + (-1)^{4-2}\times2\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ {-}2 & 1 & 2 \\ 1 & {-}2 & {-}2\end{array}\,\right| + (-1)^{4-3}\times(-2)\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & {-}2 & {-}1 \\ 1 & {-}2 & {-}2\end{array}\,\right| + (-1)^{4-4}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & {-}2 & {-}1 \\ {-}2 & 1 & 2\end{array}\,\right| \)

\( \qquad\quad = (-1)^{4-1}\times(-1)\times3 + (-1)^{4-2}\times2\times4 + (-1)^{4-3}\times(-2)\times1 + (-1)^{4-4}\times(-1)\times(-3) \)

\( \qquad\quad = 16 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}2 & {-}1 \\ {-}2 & 1 & 2 \\ 1 & {-}2 & {-}2\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [-1, 2, -2]

\( \qquad\quad = (-1)^{3-1}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}{-}2 & 1 \\ 1 & {-}2\end{array}\,\right| + (-1)^{3-2}\times2\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}2 \\ 1 & {-}2\end{array}\,\right| + (-1)^{3-3}\times(-2)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}2 \\ {-}2 & 1\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-1}\times(-1)\times3 + (-1)^{3-2}\times2\times0 + (-1)^{3-3}\times(-2)\times(-3) \)

\( \qquad\quad = 3 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}{-}2 & 1 \\ 1 & {-}2\end{array}\,\right| = (-2)\times(-2) - 1\times1 = 3 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}2 \\ 1 & {-}2\end{array}\,\right| = 1\times(-2) - (-2)\times1 = 0 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}2 \\ {-}2 & 1\end{array}\,\right| = 1\times1 - (-2)\times(-2) = -3 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ {-}2 & 1 & 2 \\ 1 & {-}2 & {-}2\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, 2, -2]

\( \qquad\quad = (-1)^{3-2}\times2\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| + (-1)^{3-3}\times(-2)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 1\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-2}\times2\times(-1) + (-1)^{3-3}\times(-2)\times(-1) \)

\( \qquad\quad = 4 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| = 1\times(-2) - (-1)\times1 = -1 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 1\end{array}\,\right| = 1\times1 - (-1)\times(-2) = -1 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & {-}2 & {-}1 \\ 1 & {-}2 & {-}2\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, -1, -2]

\( \qquad\quad = (-1)^{3-2}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| + (-1)^{3-3}\times(-2)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-2}\times(-1)\times(-1) + (-1)^{3-3}\times(-2)\times(-1) \)

\( \qquad\quad = 1 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| = 1\times(-2) - (-1)\times1 = -1 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| = 1\times(-2) - (-1)\times1 = -1 \)

\( \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}1 & 0 \\ 1 & {-}2 & {-}1 \\ {-}2 & 1 & 2\end{array}\,\right| \qquad \) (余因子展開) 第3列で展開する : [0, -1, 2]

\( \qquad\quad = (-1)^{3-2}\times(-1)\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 1\end{array}\,\right| + (-1)^{3-3}\times2\times\left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| \)

\( \qquad\quad = (-1)^{3-2}\times(-1)\times(-1) + (-1)^{3-3}\times2\times(-1) \)

\( \qquad\quad = -3 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ {-}2 & 1\end{array}\,\right| = 1\times1 - (-1)\times(-2) = -1 \)

\( \qquad \left|\,\begin{array}{@{}rwr{15pt}@{}}1 & {-}1 \\ 1 & {-}2\end{array}\,\right| = 1\times(-2) - (-1)\times1 = -1 \)