行列の計算例題(行列式)

          


例題:次の行列式を計算せよ。

\[ \left|\,\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}@{}}{-}1 & {-}2 & {-}2 & 0 \\ {-}2 & {-}2 & 0 & 2 \\ 2 & {-}2 & 0 & {-}1 \\ {-}2 & {-}1 & {-}1 & 2\end{array}\,\right| \]

解答

\( \qquad \qquad \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}{-}1 & {-}2 & {-}2 & 0 \\ {-}2 & {-}2 & 0 & 2 \\ 2 & {-}2 & 0 & {-}1 \\ {-}2 & {-}1 & {-}1 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(0, 0)\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}{-}1 & {-}2 & {-}2 & 0 \\ 0 & 2 & 4 & 2 \\ 0 & {-}6 & {-}4 & {-}1 \\ 0 & 3 & 3 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, 2, -2, 2]\end{array} \)

\( \qquad \qquad \qquad = 1 \times (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & 4 & 2 \\ {-}6 & {-}4 & {-}1 \\ 3 & 3 & 2\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & 4 & 2 \\ {-}6 & {-}4 & {-}1 \\ 3 & 3 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(1, 2)\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}6 & {-}4 & {-}1 \\ 2 & 4 & 2 \\ 3 & 3 & 2\end{array}\,\right| \qquad \begin{array}{l}\text{第1行と第2行を}\\\quad \text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}1 & {-}4 & {-}6 \\ 2 & 4 & 2 \\ 2 & 3 & 3\end{array}\,\right| \qquad \begin{array}{l}\text{第1列と第3列を}\\\quad\text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}1 & {-}4 & {-}6 \\ 0 & {-}4 & {-}10 \\ 0 & {-}5 & {-}9\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, -2, -2]\end{array} \)

\( \qquad \qquad \qquad = (-1) \times (-1) \times \left|\,\begin{array}{@{}rwr{15pt}@{}}{-}4 & {-}10 \\ {-}5 & {-}9\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}@{}}{-}4 & {-}10 \\ {-}5 & {-}9\end{array}\,\right| = 1 \times ( (-4)\times (-9) - (-10)\times (-5) ) = -14 \)