行列の計算例題(行列式)

          


例題:次の行列式を計算せよ。

\[ \left|\,\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}@{}}2 & {-}1 & 0 & {-}2 \\ {-}2 & 2 & 2 & 2 \\ 2 & 0 & {-}2 & 1 \\ 1 & {-}1 & 2 & {-}2\end{array}\,\right| \]

解答

\( \qquad \qquad \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}2 & {-}1 & 0 & {-}2 \\ {-}2 & 2 & 2 & 2 \\ 2 & 0 & {-}2 & 1 \\ 1 & {-}1 & 2 & {-}2\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(3, 0)\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}1 & {-}1 & 2 & {-}2 \\ {-}2 & 2 & 2 & 2 \\ 2 & 0 & {-}2 & 1 \\ 2 & {-}1 & 0 & {-}2\end{array}\,\right| \qquad \begin{array}{l}\text{第1行と第4行を}\\\quad \text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}1 & {-}1 & 2 & {-}2 \\ 0 & 0 & 6 & {-}2 \\ 0 & 2 & {-}6 & 5 \\ 0 & 1 & {-}4 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, -2, 2, 2]\end{array} \)

\( \qquad \qquad \qquad = (-1) \times 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}0 & 6 & {-}2 \\ 2 & {-}6 & 5 \\ 1 & {-}4 & 2\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}0 & 6 & {-}2 \\ 2 & {-}6 & 5 \\ 1 & {-}4 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(2, 0)\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}4 & 2 \\ 2 & {-}6 & 5 \\ 0 & 6 & {-}2\end{array}\,\right| \qquad \begin{array}{l}\text{第1行と第3行を}\\\quad \text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}1 & {-}4 & 2 \\ 0 & 2 & 1 \\ 0 & 6 & {-}2\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, 2, 0]\end{array} \)

\( \qquad \qquad \qquad = 1 \times 1 \times \left|\,\begin{array}{@{}rwr{15pt}@{}}2 & 1 \\ 6 & {-}2\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}@{}}2 & 1 \\ 6 & {-}2\end{array}\,\right| = 1 \times ( 2\times (-2) - 1\times 6 ) = -10 \)