行列の計算例題(行列式)

          


例題:次の行列式を計算せよ。

\[ \left|\,\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}@{}}0 & {-}1 & {-}2 & 2 \\ 2 & 1 & {-}2 & 2 \\ 2 & 2 & {-}1 & {-}1 \\ {-}2 & 1 & 1 & 2\end{array}\,\right| \]

解答

\( \qquad \qquad \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}0 & {-}1 & {-}2 & 2 \\ 2 & 1 & {-}2 & 2 \\ 2 & 2 & {-}1 & {-}1 \\ {-}2 & 1 & 1 & 2\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(0, 1)\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}{-}1 & 0 & {-}2 & 2 \\ 1 & 2 & {-}2 & 2 \\ 2 & 2 & {-}1 & {-}1 \\ 1 & {-}2 & 1 & 2\end{array}\,\right| \qquad \begin{array}{l}\text{第1列と第2列を}\\\quad\text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}wr{15pt}@{}}{-}1 & 0 & {-}2 & 2 \\ 0 & 2 & {-}4 & 4 \\ 0 & 2 & {-}5 & 3 \\ 0 & {-}2 & {-}1 & 4\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, -1, -2, -1]\end{array} \)

\( \qquad \qquad \qquad = (-1) \times (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & {-}4 & 4 \\ 2 & {-}5 & 3 \\ {-}2 & {-}1 & 4\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}2 & {-}4 & 4 \\ 2 & {-}5 & 3 \\ {-}2 & {-}1 & 4\end{array}\,\right|\qquad \begin{array}{l}\text{非零(絶対値)最小元を探す}\\\qquad(2, 1)\end{array} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}2 & {-}1 & 4 \\ 2 & {-}5 & 3 \\ 2 & {-}4 & 4\end{array}\,\right| \qquad \begin{array}{l}\text{第1行と第3行を}\\\quad \text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}1 & {-}2 & 4 \\ {-}5 & 2 & 3 \\ {-}4 & 2 & 4\end{array}\,\right| \qquad \begin{array}{l}\text{第1列と第2列を}\\\quad\text{入れ替える}\end{array} \)

\( \qquad \qquad \qquad = 1 \times \left|\,\begin{array}{@{}rwr{15pt}wr{15pt}@{}}{-}1 & {-}2 & 4 \\ 0 & 12 & {-}17 \\ 0 & 10 & {-}12\end{array}\,\right|\qquad \begin{array}{l}\text{\((1,1)\)成分を使って}\\\text{第1列の成分を小さくする}\\\qquad[0, 5, 4]\end{array} \)

\( \qquad \qquad \qquad = 1 \times (-1) \times \left|\,\begin{array}{@{}rwr{15pt}@{}}12 & {-}17 \\ 10 & {-}12\end{array}\,\right|\qquad\text{段を減らす} \)

\( \qquad \qquad \qquad = (-1) \times \left|\,\begin{array}{@{}rwr{15pt}@{}}12 & {-}17 \\ 10 & {-}12\end{array}\,\right| = (-1) \times ( 12\times (-12) - (-17)\times 10 ) = -26 \)