行列の計算例題(簡約化)

          


例題:次の行列を有理数体 \(\mathbb{Q}\) において簡約化せよ。

\[ \left[\begin{array}{@{}rwr{20pt}wr{20pt}wr{20pt}wr{20pt}@{}}4 & 4 & {-}3 & {-}1 & {-}3 \\ 0 & 0 & 1 & 1 & 0 \\ {-}1 & {-}2 & 0 & {-}2 & 2 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \]

解答

有理数体上の基本変形

loop start : (0, 0) : (4, 5)

第1列の、第1行から第4行までで非零(絶対値)最小元を探す [3]

II : 第1行と第3行を入れ替える
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}4 & 4 & {-}3 & {-}1 & {-}3 \\ 0 & 0 & 1 & 1 & 0 \\ {-}1 & {-}2 & 0 & {-}2 & 2 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}{-}1 & {-}2 & 0 & {-}2 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 4 & 4 & {-}3 & {-}1 & {-}3 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \]

I : (1,1) 成分を1にする
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}{-}1 & {-}2 & 0 & {-}2 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 4 & 4 & {-}3 & {-}1 & {-}3 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 0 & 1 & 1 & 0 \\ 4 & 4 & {-}3 & {-}1 & {-}3 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \]

III : 第1行の (1,1) 成分(主成分)を使って第1列の他の成分を0にする : \( [0,0,4,3] \)
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 0 & 1 & 1 & 0 \\ 4 & 4 & {-}3 & {-}1 & {-}3 \\ 3 & 2 & {-}1 & {-}1 & {-}1\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}3 & {-}9 & 5 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \]

第1行まで手続き完了

loop start : (1, 1) : (4, 5)

第2列の、第2行から第4行までで非零(絶対値)最小元を探す [3]

II : 第2行と第3行を入れ替える
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}3 & {-}9 & 5 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & {-}4 & {-}3 & {-}9 & 5 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \]

I : (2,2) 成分を1にする
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & {-}4 & {-}3 & {-}9 & 5 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 1 & 3/4 & 9/4 & {-}5/4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \]

III : 第2行の (2,2) 成分(主成分)を使って第2列の他の成分を0にする : \( [2,0,0,{-}4] \)
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 2 & 0 & 2 & {-}2 \\ 0 & 1 & 3/4 & 9/4 & {-}5/4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & {-}4 & {-}1 & {-}7 & 5\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 0 & {-}3/2 & {-}5/2 & 1/2 \\ 0 & 1 & 3/4 & 9/4 & {-}5/4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 & 0\end{array}\right] \]

第2行まで手続き完了

loop start : (2, 2) : (4, 5)

第3列の、第3行から第4行までで非零(絶対値)最小元を探す [3]

III : 第3行の (3,3) 成分(主成分)を使って第3列の他の成分を0にする : \( [{-}3/2,3/4,0,2] \)
\[ \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 0 & {-}3/2 & {-}5/2 & 1/2 \\ 0 & 1 & 3/4 & 9/4 & {-}5/4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 2 & 0\end{array}\right] \quad \to \quad \left[\begin{array}{@{}rwr{25pt}wr{25pt}wr{25pt}wr{25pt}@{}}1 & 0 & 0 & {-}1 & 1/2 \\ 0 & 1 & 0 & 3/2 & {-}5/4 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \]

第3行まで手続き完了

loop start : (3, 3) : (4, 5)

第4列の、第4行から第4行までで非零(絶対値)最小元を探す [0]

第5列の、第4行から第4行までで非零(絶対値)最小元を探す [0]

(3, 5): 最終列 (5) まで手続き完了。終了する