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In this paper, we generally use the letter n by a positive integer, the letter
p by a prime number, and the letter = by a positive real number. We denote
by N the set of positive integers, by P the set of prime numbers, and by Ns(x)
the open d-neighborhood of z. We use the notations Zn§$ f(z), szw f(p),
]_[p f(p), and so on, to indicate sums or products over all positive integers n
or all prime numbers p, within the specified ranges. We use symbols O, o and
~ as below. f(z) = O(g(x)), f(z) = o(g(x)) and f(z) ~ () (as & — o0
mean respectively that |f(z)/g(x)| is bounded for all sufficiently large x, that
f(x)/g(x) converges to 0 as © — oo and that f(z)/g(x) converges to 1 as x — oc.

We denote by 7(z) the number of prime numbers at most x, and by u(x)
the average density of prime numbers in the neighbourhood of z. Namely,

#(P N Ns(z))

m(z) = (PN (0, x)) () = H(NA Ny (@)’

where a positive number § is small compared with x, but is large enough to get
the meaningful statistical data. In our computational experiments (see §4), we
take 108 < z <10, and 6 to be §(P N N;(x)) = 105. It follows from the prime
number theorem that u(z) ~ log(z) .

For a positive integer n, we define the next prime np(n) by the smallest
prime number greater that n, and the gap to the next prime gap(n) by the
distance to the next prime (i.e. gap(n) = np(n) —n). Let u(x|gap=d) be the
average density of positive integers n satisfying gap(n) = d in the integers near
x, pup(x | gap=d) the average density of prime numbers p satisfying gap(p) = d
in the prime numbers near z, and p(z | prime A gap=d) the average density of
prime numbers p satisfying gap(p) = d in the integers near z;

(NN Gap(d) N Ns(x))

p(z | gap=d) =

§(NN Ns(z)) ’
_ o _ E(PNGap(d) N Ns(x))
/”'P(x | gap_d) - ﬁ(P N N(;(x)) ’
: _ o _ $(PNGap(d) N Ns(x))
(x| prime A gap=d) = AN Ny (@) )



where Gap(d) is the set of the integers n satisfying gap(n) = d. The subscript
p in p, means to narrow parent population to prime numbers. By definition,

(@ | prime A gap=d) = pu(z) pp(z | gap=d).

We may consider the average density u(n) as the probability of the event
whether an integer n is a prime number. If we assume the independence on
these events for all positive integers, we have

d—1
ol | gap=d) = (e +d) [] (1 = e + 1)),

t=1

The prime number theorem p(x) ~ log(z)~! implies that
pp( | gap=d) ~ log(w) (1 — log(x) )",
pu( | prime A gap=d) ~ log(z) 2,
On the other hand, the Hardy-Littlewood conjecture (Conjecture 3.1) about
the prime gaps leads us to

pu(z | prime A gap=d) ~ cqlog(z) 2,

where ¢q = 20H3§p\d(p -1/(p=2),c= szs p(p —2)/(p — 1)*> = 0.66016 - - -
(Corollary 3.3). The Hardy-Littlewood conjecture takes account of a sieve by
congruence relations and a bias of the number of irreducible residue classes in
small interval. The conjecture gives a good approximation to the number of
prime numbers with a given gap. The first estimate is different to the estimate
due to the Hardy-Littlewood conjecture, so we have to correct the path to get
the estimate. However, we comment that log(z)~ (1 — log(z)~1)?~! gives a
good approximation to the average density p(x | gap=d) (not of u,(z | gap=d)),
on experimental data.

Let m and m’ be positive integers. For any o € (Z/mZ)* and any 3 €
(Z/m'Z)*, we define the average density p,(x | ) of prime numbers belonging
to o in prime numbers near x, the average density u,(x | np€f3) of prime numbers
whose next prime belongs to § in prime numbers near x, and the average density
tp(x | a— ) of prime numbers whose next prime belongs to 8 in prime numbers
belonging to a near z, as below.

_ H(PNanNs(z))
8(P N Np(B) N Ns(x))

Hp(@ [npEB) = T ey
_ #(PNnanNp(B) N Ns(z))
pp(x | a—p) = $#(PNan Ns(z)) ’

where Np(() is the set of integers n satisfying np(n) € 8. If we assume inde-
pendence the event on a congruence condition for a given prime p and the event
on a congruence condition for the next prime np(p), then we have

pp(x | a—=p) = pp(z | npef).



We denote by m,(x) the number of prime numbers belonging to o at most
x, by m. () the number of prime numbers at most 2 whose next prime belongs
to B, and by 7y g(z) the number of prime numbers belonging to « at most x
whose next prime belongs to 5. By the definitions of the average densities, we
have

mole) = 1PN 0.0) ~ [ (] 0 ar
() = HP O ND(B) 0 (0. 2)) ~ | " iyt | up€B) u(t) dt,
o) = H(P O ND(8) 0 0, ) ~ | it 0 B) (£ ) u(t) .

The Dirichlet prime number theorem implies that 7, (x)/7(z) ~ 1/p(m), and
7. g(x)/m(x) ~ 1/p(m'), and then

1

Mp($|a)“‘m

1
’ Mp(l' | npeﬁ) (,O(m/) .

We call p,(z|a—pg) the distribution of prime numbers with congruence
conditions. Our goal is to get approximate expressions of prime distributions
tp(z | a—pB) and m, g(x)/m(x), with the evaluated error terms. We have only
shown approximate expressions in elementary cases (Theorem 2.2), and conjec-
tured the limit values (Conjecture 2.1) by experimental data.

Conjecture 2.1. Let m and m' be positive integers. For any irreducible residue
class o on modulo m and any irreducible residue class 3 on modulo m’, we have

1 lim 7Ta75($) _ 1
p(m/)’ e m(@)  p(m)p(m’)

lim p,(z]|a—p) =
Tr—00

Theorem 2.2. The above conjecture holds, in the case that one of m and m'
is a power of 2 and the other is not divisible by 4. Furthermore, the error terms
are evaluated as much as well-known estimates on the prime number theorem
and the Dirichlet’s prime number theorem.

Now, we will give the proof of theorem 2.2. Let m, m/, a and 8 be as in
the theorem. We put mgy = lem(m, m'), o/ = {a € a|(a, mg) =1}, f' = {b €
B (b, mg) = 1}, and decompose o = a3 U---Uas and /' = 1 U--- U S into
the disjoint union of irreducible residue classes on modulo mg. We can split
tp(x | a—B) to the sum of probabilities of exclusive events.

pp(@|a—pB) =Y my(x|ai—p;).
2]
Weput D; ; = (8 —a;) N (0, 00) ={b—alaca;,befj,b>alfor1<i<s
and 1 < j <t. For any prime number p belonging to oy, p+ D; ; is the set of all

integers belonging to 3; more than p. The event that np(p) € §; is the disjoint
union of the exclusive events that gap(p) = d for any d € D; ;. We have

(x| ai—=B)) = Y ppla|gap=d),
dEDi,j



and then

Ta,p(x Zﬁo‘wﬁa O(1).

The error term of the last equation is evaluated by the number of prime factor
of mg, so it is bounded.

First, we treat the case that m is not divisible by 4 and m’ is the power of
2. We put m; = lem(m, 2). The parallel translation T'(n) = n + m; for any
integer n induces the translations on (Z/mZ)*, (Z/m'Z)* and (Z/moZ)*. We
write T'(c;) = oy and T'(3;) = B/, then D; ; = Dy jr. For x > my, we have

pp(x | T(i) =T (B5)) ~ pp( | @i ;).

The error term on this evaluation formula is able to be evaluated small than
any positive numbers to take sufficiently large 5. We choosed § in anticipation
of the error evaluation of the evaluation formula. It follows from T'(a) = a and

T(B) =T(B1)U---T(B;) that
pp(x | =T () = (x| T(a)—T(B) = > pp(x | T(ei)—T(8;))

i
~ Zup(x | i—B)) = pp(a | a—p).
i

Since my is congruent to 2 on modulo 4, and m’ is the power of 2, the action
of the translation T on (Z/m’'Z)* is cyclic of order m//2, that is equal to the
order of (Z/m'Z)*. The translation T acts transitively on (Z/m’Z)*. Hence,
pp(z | @—p) does not depend on the choice of 3. The sum ) p,(z |a—0) is
the probability of whole events, so it is equal to 1. We obtain

1
o(m')
and from the Dirichlet’s prime number theorem

Tap(T) 1
r(@) " plm)e(m’)’

The error terms of the above evaluation formulae are given by the estimates of
the prime number theorem and the Dirichlet’s prime number theorem. Theorem
2.2 holds in the case that m’ is the power of 2.

In the case that m is the power of 2, we can show that p,(z | a—3) does not
depend on the choice of a.

>y | a—pB) ~ p(m) py(x | a—p).

pp(x | a—B) ~

)

On the other hand,

4(P N an Np(8) N Ny(a))
pplar| o) = P B
:ﬁ@ﬂaﬁNMMHN%D 4(P N Ny(a))
g(P N Ns(z)) f(P Nan Ns(x))
_4(PNan Np(8) n Ni(x)
(PN Ny ()

p(m).



The last evaluation follows from the Dirichlet’s prime number theorem. Hence,

pip(@ | =) ~ Z“P x| a—pB)/p(m Zﬁ PﬂaﬂNp(ﬁ) N Ns(z))

§(P N Ns(x))
_HPANMANNs(e) 1
= ﬁ(PﬁN5($)) —:up< | pEﬁ) (p(m/)z
and then
Ta’g(l') 1

~

m(@)  p(m)e(m’)
The proof of Theorem 2.2 concluded.
83. Hardy-Littlewood conjecture

We denote by m4(z) the number of prime numbers p at most x satisfying
that p+d is also prime. G. H. Hardy and J. E. Littlewood conjectured as below.

Conjecture 3.1 (Hardy-Littlewood, [4]).

T — -1
ma(x) ~ Cdys BE where ¢ = H pp)) and cq = 2¢ H L
p>3 s<plal

According to the book of G. H. Hardy-E. M. Wright ([5]), we introduce the
deduction leading to the Conjecture 3.1. Let x be a positive real number, and N,
be the product of the prime numbers at most the square root of z. For a positive
real number X, we put S(X) the number of the integers at most X prime to
N,. The ratio S(X)/X is the average density of integers prime to N, at most
X. In the case of X = N, we have S(N,)/Ny = ¢(Ny)/No =[]« z(1—1/p).
The right hand side is evaluated by the Mertens’s formula.

Theorem 3.2 (Mertens). Let v be the Euler constant.

[T0- )= 0

P g ()

R

p<z
Then, we have
e

S(Nz) 1 o 1
N pgi(l T eV g

If X is a positive multiple of N,, then the ratio S(X)/X is equal to S(N;)/N,.

We have S(X)/X ~ 2e~7log(z)~! for any sufficiently large positive real number
X. In the case of X = x, S(z) is the number of the prime numbers more than
vz at most . We have S(z) = n(x) —7(\/z) ~ zlog(x)~! by the prime number

theorem.
S(x) 1 e S(Nz)
x log(x) 2 N, °
The ratio S(z)/x is €7/2 (= 0.89---) times than the ratio S(N;)/N,. The

average density of integers prime to N, at most x is €7 /2 times that the average
density of integers prime to N, at most N,.




For a positive real number X and a positive integer d, we put S4(X) the
number of the integers n at most X so that both n and n + d are prime to N,.
Since N, is square-free, we have

ssv) = [T =2 T[w-1 =N 2= TT a- .
p)d pld pld p<f

where H; yq means a product over all odd primes at most v/z not deviding d.
The ratio S4(X)/X is the average density that both an integer n at most X and
n + d are prime to N,. In case of X = x, we consider that the ratio Sq(z)/x is
(€7/2)? times than the ratio S(N,)/N,.

Sa(x) € SWNe) € P —2 1
EEr i b Y S | S

It follorws from the Mertens’ formula 67/2 ~Il,< (1 —=1/p)~" log(z)~" that

e | (L | L= | ([

1 1
p<\f b 0g() pld p= p<VzT p
,p—2 1
“ e =1 1L 7=
og(a: pJ/d p<f /p
1 p—1 p—2 p
log(x )2 H ]-_-[ H p—1
3<p|d 3<p<f p<f
1 p—1 p(p 2
log(x )2 H H 21
3<p|d 3<p<f
1 p—1yyplp-— 2
log(:r)2 H H
3< \d 3<p
~ “log(x)?”

It leads us to Sq(z) = m4(z) —7ma(y/x) that Sq(z) is the number of prime numbers
p more that /T at most z satisfying that p + d is also prime. Therefore,
ma(z) = Sa(z) + Sa(Vx) + Sa(Vz) + Sa(Vz) + - -
x
“log(a)>”
Corollary 3.3. Suppose that the Conjecrure 3.1 holds, then

p(z | prime A gap=d) ~ ¢4 log(x) 2.

We denote by 7g4(z) the number of prime numbers p at most z satisfying
that gap(p) = d, for any positive number x and any even integer d. It is easy
to show that

7),
log(z)~?

from the above argument that lead us to the Hardy-Littlewood conjecture.
Hence, Corollary 3.3 is concluded by

Ta(x) = ma(x) + O(

T
Ta(x) ~ / p(t | prime A gap=d) dt.
2



84. Numerical experiments

In this section, we give some experimental data and numerical calculations
of statistic estimator of u,(z | a—0), to be expected establishment of the limit
value of the prime distribution p,(z|a—3) with congruence conditions (Con-
jecture 2.1). In this section, a prime range means a finite set of consecutive
prime numbers. We define

f(RNan Np(B))
iR

@a,5(R) =

for any prime range R. We put a prime range R, consisting of odd prime
numbers at most 2" for each 20 < r < 28, and a prime range R, consisting
of the first ten million prime numbers greater than 2° for each 20 < s < 44,
and split R, o in ten disjoint prime ranges {Rs; }1<i<10 consisting of one million
consecutive prime numbers, for each 20 < s < 44. For example

Rao={3,5,7, -+, 1048573} (82024 primes)

Ros ={3,5, 7, ---, 268435399} (14630842 primes)
Rop,0 = {1048583, - - -, 180985369} (ten million primes)
Ro10 = {2097169, --- , 182387531} (ten million primes)
Ry40 = {17592186044423, - - - , 17592491056057} (ten million primes)
Rgp1 = {1048583, -- -, 16845919} (one million primes)
Rop.2 = {16845949, - -- , 33871501} (one million primes)
Rop,10 = {162034127, - - -, 180985369} (one million primes)

For any even integer 4 < m < 30 and any «, 8 € (Z/mZ)*, we plot a point
whose z-coordinate is the common logarithm of the median of R (i.e. the digit
number of a prime number) and y-coordinate is wq, g(R) where R runs through
above prime ranges. In the case of m = 4, we draw two graphs for « = 1 (mod
4) and for e = 3 (mod 4). In the graphs, we take digit numbers on abscissa axis,
put the intersection point of axes at the coordinate (6, 1/¢(4)), and indicate
the experimental data of 8 = 1 (mod 4) by small filled circles, and of § = 3
(mod 4) by crosses.
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These graphs are quite similar. This leads us to p,(z|a—03) ~ uy(z|f—a)
for any «, 8 € (Z/4Z)*. More generally, we can show the following symmetric
property by the same way to show Theorem 2.2.

Theorem 4.1. Let m be the power of 2, For any «, 8 € (Z/mZ)*, and any
even integer d, we put o' = a+d, 8/ = f+d € (Z/mZ)*. Then we have
tp(@ [ a—=B) ~ pp(x [ o' =) and Ta,5(x) ~ Tar g ().



Let m be an even positive integer, and «, § € (Z/mZ)*. We put D =
{b—alaea,be B, b—a>0}. We define the estimator of the average density
tp(x | a—pB) as the following three equations. For any positive number z,

pp(x | a—B) =Y (x| gap=d)

deD
py (x| gap=d) = 1, (z,d) [ (1= p(x, 1))
1<t<d
/ Tt,m Ct ,LL(l‘—Ft) (ift—FOé € (Z/mZ)*)
(2, t) = _
0 (otherwise)

where ¢, is a Hardy-Littlewood constant defined in §3, and

_ p— 1 - Cgcd(m,t)
o= ] 2 T )
3<p|m, pJt

We consider that (x| a—0) (resp. p;,(v|gap=d) and p,(z, t)) is an esti-
mator of p,(z|a—03) (reap. up(z|gap=d) and p,(z, t)), as below. The first
equation means p, (v |a—/3) to divide into the sum of the exclusive events
(x| gap=d) for every d € D.

The term ¢; pu(z+t) estimates the average density of prime numbers p near n
satisfying that p+t is also prime, by the argument leading to Hardy-Littlewood
conjecture. Let m; be the number of irreducible residue classes & on modulo m
satisfying that ¢ + « is also irreducible residue. Then, we have

me=m(1-1/2) J[ a-1/p) [] @=2/p)=¢m)/rim

3<p|m, plt 3<p|lm,pft

If we assume that prime numbers p satisfying that p + ¢ is also prime are uni-
formly distributed in possible irreducible residue classes on modulo m, then
e(m)/my (= ry,) times of ¢, u(x + t) estimates the average density of prime
numbers p satisfying that p + t is also prime in prime numbers near .

For any prime number p near x, suppose that independence on probability
events that p + t is prime for any posirive integer ¢t. Then the probability of
gap(p) = d is equal to the product of the probability that p + d is prime and
the probabilities that p + ¢ is not prime for 1 < ¢ < d — 1. This is a reason to
define y,(x | gap=d) by the second equation.

The estimator pu,(z | a— () satisfies the same symmetric property as Theo-
rem 4.1.

Theorem 4.2. Let m be the power of 2, For any «, 8 € (Z/mZ)*, and any
even integer d, we put o' = a+d, 8/ = f+d € (Z/mZ)*. Then we have
pip ([ a—=03) ~ (x| o’ —f").

We want to calculate the value of the estimator ju,(x[a—f). The series
>4 My | gap=d) converges slowly for the large x, so we device the summation.
We substitute the ratio of sums cut off for a sufficiently large N. Namely, we
put
~7 ZdGDN /j,;)(l‘ | gap:d)
fip(x | a—f) = ; —J

Yaen Hp( | gap=d)




where Dy ={b—alac€a,be ,0<b—a< N}. Since

D wp(la—p) =Y (x| gap=d) = 1,
B d

fir, (2 | —3) takes a value close to (x| a—3) for any sufficiently large positive
number N. In the scope of our experiments, it is possible to obtain a sufficient
accuracy by taking the 100 times of m as N. We will show the graphs to overlap
the value of the estimator in the graphs of experimental data, as below, where

we put p(z) = log(z)~ 1.
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The above right graph is in the case of & = 1 (mod 4), and right graph in the case
of @ =1 (mod 8). Although it is hard to see, the points of experimental data are
arranged in order of 8 =7, 3, 5 and 1 (mod 8) from the top. The experimental
data of 8 = 7 and 8 = 3 (mod 8) are almost same values, and the points
corresponding to them on the graph overlap considerably. The estimators is also
arranged in the same order on (3, and located in proximity to the experimental
data. The graphs for another irreducible residue classes on modulo 4 and 8
are essentially the same as these graphs respectively, due to the symmetric
properties (Theorem 4.1, Theorem 4.2).
The next graphs are in the case of & = 1 (mod 6) and a = 5 (mod 6).
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Any symmetric property is not seen in the graphs. However the estimators are
located in proximity to the experimental data, and are a faithful reproduction
of the bias of the prime distribution with congruence conditions.

The following graphs are in case of « =1, 3, 5, 9, 11 and 13 on modulo 14.
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Finally, we draw eight graphs in case of « =1, 7, 11, 13, 17, 19, 23 and 29
on modulo 30 as below.

10



In all above graphs, the estimator yu,(z |a—f) is approximate the experi-
mental data very well.

Conjecture 4.3. Let m be an even positive integer, and «, 8 € (Z/mZ)*. Then

we have puy (v [ a—fF) ~ (v |a—pF) and

Toe)~ [ ilt1a=8) ylt] ) ute) .

We can calculate numerically the limit of the estimator j,(x | a— @), for an
arbitrary even positive integer m and «, § € (Z/mZ)*. In many numerical
calculation, the limit of the estimator is equal to the expected value.

Conjecture 4.4. Let m be an even positive integer, and «, 3 € (Z/mZ)*. Then

11



we have
1

o(m)

In generally, we give a conjecture of the limit of prime distributions with
congruence cognitions with different moduli.

lim py, (2] a—p) =

Conjecture 4.5. Let m and m' be even positive integers, and o € (Z/mZ)*,
B € (Z/m'Z)*. Then we have

lim p,(z|a—p) =

lim Mo (%) = 1
z—oo () p(m)p(m’)
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