種数1の保型関数体 $M_0(N)$ の $\mathbf{newform}$ の構成について- (non-)CM 型楕円曲線に付随する \mathbf{abel} 拡大 -

赤坂 正純 (大阪大学大学院 理学研究科) 小川 裕之 (大阪大学大学院 理学研究科) 山本 芳彦 (大阪大学大学院 理学研究科)

先に η 関数を使った newform の構成を行った. 重さ 1 の newform を幾つか作ったのだが、それらに付随する L 関数は、 $\mathbb Q$ 上の絶対 Galois 群 $G_{\mathbb{Q}}$ の, ある 2 次元既約表現の Artin L 関数に等しい. 例 として level N=11 をとる. $f_1(\tau)=\eta(\tau)\eta(11\tau)$ とおく. f_1 は 指標 ε をもつ level 11 重さ 1 の Hecke 固有形式である. 虚二次体 $K=\mathbb{Q}(\sqrt{-11})$ の導手 (2) の合同類群を H(2) とおく. K の類数は 1で, H(2) は位数 3 の巡回群である. H(2) の位数 3 の指標 χ に付随 する $Hecke\ L$ 関数を $L(s,\chi)$ とおく. このとき f に付随する L 関数 L(s, f) は Hecke L 関数 $L(s, \chi)$ に等しい. 指標 χ に対応する K 上 の類体を L_{χ} とおく. χ は $Gal(L_{\chi}/K)$ の 1 次元表現とみなせるので, この意味で Hecke L 関数 $L(s,\chi)$ はK 上の Artin L 関数 $L(s,\chi,K)$ に等しい. L_{χ} は \mathbb{Q} 上 Galois で, $Gal(L_{\chi}/\mathbb{Q})$ は位数 6 の二面体群 D_3 に同型である. χ に誘導された $\mathrm{Gal}(L_\chi/\mathbb{Q})$ の 2 次元既約表現 ρ の 指標を ψ とおくと, $L(s, \chi, K) = L(s, \psi, \mathbb{Q})$ が成り立つ. 結局, 重 さ 1 の newform に付随する L 関数を $\mathbb Q$ 上の絶対 Galois 群 $G_{\mathbb Q}$ の 2 次元既約表現の Artin L 関数として表すことができた.

ところで、保型関数体 $M_0(11)$ は種数 1 なので $\operatorname{modular}$ 曲線 $X_0(11)$ は楕円曲線である.

$$X_0(11): y^2 + y = x^3 - x^2 - 10x - 20$$

楕円曲線 $X_0(11)$ の 2 等分方程式は

$$4x^3 - 4x^2 + 1$$

で 2 等分点の (x-座標の) 体 $\mathbb{Q}(X_0(11)[2])$ は \mathbb{Q} 上の D_3 -拡大になる。2 等分方程式の判別式は -2^6 11 なので、 $\mathbb{Q}(X_0(11)[2])$ は $K=\mathbb{Q}(\sqrt{-11})$ 上の 2 の外不分岐な 3 次巡回拡大である。2 は K/\mathbb{Q} で惰性しているので、2 等分点の体 $\mathbb{Q}(X_0(11)[2])$ は上の L_χ に一致する。

以上をまとめると、楕円曲線 $X_0(11)$ の 2 等分点の体の $\mathbb Q$ 上の Galois 群 $(D_3$ と同型) の 2 次既約表現の指標 ψ に付随する $Artin\ L$ 関数 $L(s,\psi,\mathbb Q)$ は、適当な指標 ε をもつ level 11 重さ 1 の newform に付随する L 関数 L(s,f) に等しい.

保型関数体 $M_0(N)$ の種数が 1 の場合に、重さ 1 の newform f を η 関数で作っていたのだが、その作り方から直ちに L(s,f) が虚二次体 $K=\mathbb{Q}(\sqrt{-N})$ 上の Hecke L 関数になり、誘導表現をとることで、 $G_\mathbb{Q}$ の 2 次元既約表現の Artin L 関数として書けることがわかる.ここでの結果は、この 2 次元既約表現が楕円曲線 $X_0(N)$ のある等分点の群の上の表現として自然に記述されることと、 $X_0(N)$ の等分点の上の表現をうまく選ぶと、その表現に付随する L 関数を Möllin 変換したものは、適当な level の指標付き Hecke 固有形式になることである.

このことから得られる一つの例を level N=19 でみる. $f_1(\tau)=\eta(\tau)\,\eta(19\tau)$ は重さ 1 level 19 指標 ε の正則保型形式で, $f_2=f_1|T_5$ も重さ 1 level 19 指標 $\overline{\varepsilon}$ の正則保型形式である. それらの積 $f_1\,f_2$ が重さ 2 の指標のつかない cusp form である. 一方で, 楕円曲線 $X_0(19)$ の 2 等分点の体 $\mathbb{Q}(X_0(19)[2])$ を考えると, $\mathbb{Q}(X_0(19)[2])$ は \mathbb{Q} 上の D_3 -拡大体で $\mathbb{Q}(\sqrt{-19})$ を含む. $\mathbb{Q}(X_0(19)[2])/\mathbb{Q}$ に対応する 2 次元既 約表現の指標を ψ とおくき, $L(s,\psi,\mathbb{Q})$ を Möllin 変換したもの (ここで n^{-s} ···→ $(q^{1/2})^n=e^{n\pi i \tau}$ と変換する) を $f(\tau)$ とおく. このとき f は重さ 1 適当な指標をもつ level 19 の Hecke 固有形式で, f^2 は重さ 2 level 19 の cusp form であること $(f^2=f_1\,f_2$ ということ) がわ かる.