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THE CAUCHY PROBLEM FOR DIFFERENTIAL OPERATORS

WITH DOUBLE CHARACTERISTICS

TATSUO NISHITANI

Abstract. In this monograph we provide a general picture of the Cauchy
problem for differential operators with double characteristics from the view-
point that the Hamilton map and the geometry of orbits of the Hamilton flow
completely characterizes the well/ill-posedness of the Cauchy problem.

1. Introduction

Let P be a differential operator of orderm defined in a neighborhood of x̄ ∈ Rn+1

and let t = t(x) be a real valued smooth function given in a neighborhood of x̄ with
t(x̄) = 0. We assume that P is noncharacteristic with respect to H = {t(x) = 0}
at x̄, that is, (Ptm)(x̄) �= 0. Let u0(x), . . . , um−1(x) be m-tuple smooth functions
on H defined near x̄. Then the Cauchy problem is to find u, in a neighborhood
of x̄, satisfying Pu = 0 near x̄ and (∂/∂ν)ju(x) = uj(x), j = 0, . . . ,m − 1, on
H, where ν is the unit normal to H. Here (u0, . . . , um−1) is called the initial
data or the Cauchy data. Roughly speaking, the Cauchy problem is said to be E
well-posed in the direction t if for any initial data in E, which is a function space
given beforehand, there exists a unique solution to the Cauchy problem, and the
differential operator for which the Cauchy problem is well-posed in the direction t
is called hyperbolic in the direction t. Our main concern in this monograph is to
investigate which operators are hyperbolic in the direction t, where t is supposed
to be given.

Choosing a system of local coordinates x = (x0, x
′) = (x0, x1, . . . , xn) so that

t(x) = x0, x̄ = 0, and dividing P by a nonvanishing function, then we have

P = Dm
0 +

∑
|α|≤m,α0<m

aα(x)D
α =

m∑
j=0

Pj(x,D)

in these coordinates, where Pj(x,D) denotes the homogeneous part of P of degree
j and D = (D0, D

′) = (D0, D1, . . . , Dn), Dj = −
√
−1∂/∂xj , D

α = Dα0
0 · · ·Dαn

n ,
α = (α0, . . . , αn) ∈ N

n+1. The symbol of Pm(x,D),

p(x, ξ) = ξm0 +
∑

|α|=m,α0<m

aα(x)ξ
α,

is called the principal symbol. We start with giving a very concise definition of the
well-posedness of the Cauchy problem which is equivalent to the classical definition
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of the well-posedness that requires the unique existence of a solution with initial
data on every x0 = τ , |τ | < δ with a small δ > 0.

Definition 1.1. We say that the Cauchy problem for P is C∞ well-posed near the
origin in the x0 direction if one can find a positive constant ε and a neighborhood
ω of the origin such that for any |τ | ≤ ε and f(x) ∈ C∞

0 (ω) vanishing in x0 < τ
there exists a unique u(x) ∈ H∞(ω) vanishing in x0 < τ which satisfies Pu = f in
ω. Here H∞(ω) stands for

⋂∞
k=0H

k(ω) with a standard L2 based Sobolev space
Hk(ω).

It follows easily from the definition that if u ∈ H∞(ω) vanishing in x0 < τ
satisfies Pu = 0 in x0 < t (τ < t < ε), then it results u = 0 in x0 < t. In
this definition we require the causality that the future does not influence the past,
which is much weaker, at a glance, than the requirement of the finite propagation
speed, but this requirement of the causality consists in the essential part of the
hyperbolicity.

Lemma 1.2. Assume that the Cauchy problem for P is C∞ well-posed near the
origin in the x0 direction. Then one can find a positive ε and a neighborhood ω
of the origin such that for any compact set K ⊂ ω and for any p ∈ N there exist
C > 0, q ∈ N such that the estimate

‖u‖Hp(K∩{x0≤t}) ≤ C‖Pu‖Hq(K∩{x0≤t})

holds for every u ∈ C∞
0 (K ∩ {x0 ≥ −ε}) and every |t| < ε.

This could be considered to be an expression of the causality by an inequality.
Here we recall the definition of strictly hyperbolic operators.

Definition 1.3. We say that P is strictly hyperbolic near the origin in the x0

direction if the characteristic roots, that is, the roots of p(x, ξ0, ξ
′) = 0 with respect

to ξ0, are real distinct for any (x, ξ′), ξ′ �= 0, x in some neighborhood Ω of the
origin.

The Cauchy problem for general higher order strictly hyperbolic systems was first
studied by Petrovsky [54], and he derived energy estimates and proved the C∞ well-
posedness for any lower order term. The work was too hard to penetrate, and the
first simplification was made by Leray [31], where he derived energy estimates by
constructing a symmetrizer and constructed the solution by approximation from
the analytic case. Soon afterwards G̊arding [12] proved the existence of solutions
by functional analysis alone without the approximation process. Shortly afterwards
the Fourier analysis approach of Petrovsky reappeared by use of singular integral
operators [37, 38]. Nowadays we also have a middle course, reducing higher order
equations to first order equations by use of pseudodifferential operators and using
energy estimates for first order operators. See [16] for example.

Theorem 1.4 ([54], [31]). Assume that P is strictly hyperbolic near the origin in
the x0 direction. Then for P +Q with any differential operator of order m− 1 the
Cauchy problem is C∞ well-posed near the origin in the x0 direction.

In what follows we often omit “x0 direction” and “C∞” so that “well-posed”
means C∞ well-posed in the x0 direction.
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Definition 1.5. P is said to be strongly hyperbolic1 near the origin if the Cauchy
problem for P +Q is C∞ well-posed near the origin for any Q of order m− 1.

According to this definition we have the following.

Corollary 1.6. Strictly hyperbolic operators are strongly hyperbolic operators.

Meanwhile it was proved that the characteristic roots must be real for the Cauchy
problem to be well-posed, in [29] for the case of simple characteristics and in [39]
in full generality.

Theorem 1.7 ([29], [39]). Assume that the Cauchy problem for P is well-posed
near the origin. Then all the characteristic roots ξ0 are real for any ξ′ ∈ Rn and
any x ∈ ω with some neighborhood ω of the origin.

After standing about ten years, it was proved that the Levi condition2 is nec-
essary and sufficient for the well-posedness of the Cauchy problem for differential
operators with real characteristics of constant multiplicity of at most two in Mi-
zohata and Ohya [40, 41]. Subsequently the necessity of the Levi condition for
the well-posedness was proved in Flaschka and Strang [11] and the sufficiency was
proved in Chazarain [8] for differential operators with real characteristics of constant
multiplicity of any order. Soon after it was actively studied under which conditions
the Cauchy problem is well-posed, assuming a priori the smoothness of character-
istic roots. Around the same period the work of Ivrii and Petkov [18] appeared
(which introduced the Hamilton map, the linearization of the Hamilton vector field
Hp at a multiple characteristic, and clarified some close relations between the well-
posedness of the Cauchy problem and the structure of the Hamilton map), which
gave an impact to researchers on hyperbolic differential equations. (p fails to be
strictly hyperbolic polynomial at singular points of Hp.) In this monograph, we
try to give an overview on progress of the well-posedness of the Cauchy problem
for differential operators with double characteristics obtained in the 1980s along
the direction suggested in [18]. For results on the Cauchy problem for differential
operators in the 1980s, including an overview of hyperbolic differential operators
with constant coefficients, we refer to G̊arding [13, 14] and Melrose [34], Ivrii [22].

2. Hamilton map and well-posedness of the Cauchy problem

By taking Theorem 1.7 into consideration we assume that the characteristic roots
of p(x, ξ) are all real. We start with the definition of characteristics.

Definition 2.1. If p(x, ξ) vanishes at ρ = (x0, ξ0) ∈ R2(n+1), ξ0 �= 0, of order r,

that is, ∂α
x ∂

β
ξ p(ρ) = 0 for any |α + β| < r and ∂α

x ∂
β
ξ p(ρ) �= 0 for some |α + β| = r,

we call ρ a characterisitc of order r of p.

By definition strictly hyperbolic operators are those whose characteristics are
real and simple. If the Cauchy problem for differential operators with multiple
characteristics is well-posed, then the following necessary condition must be verified
at such multiple characteristics.

1 In [18] strongly hyperbolic operators are called regularly hyperbolic operators.
2 The word Levi condition stems from [32]. One space-dimensional case was also studied in

[30].
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Theorem 2.2 ([18]). Assume that the Cauchy problem for P is well-posed near
the origin and let (0, ξ0) be a characteristic of order r. Then we have

∂α
x ∂

β
ξ Pm−j(0, ξ

0) = 0, |α+ β| < r − 2j j = 0, . . . , [r/2],

where [r/2] stands for the integer part of r/2.

In [18] we find many other necessary conditions for the well-posedness. Here we
only cite a necessary condition which is independent of the choice of local coordi-
nates. For differential operators with real simple characteristics we have Theorem
1.4. Then, in what follows, we are concerned with differential operators with double
characteristics.

Definition 2.3. One calls

Hp =
n∑

j=0

( ∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

)

the Hamilton vector field of p. The integral curves of Hp, that is, solutions of the

Hamilton equation Ẋ = Hp(X) on the surface p = 0, are called the bicharacteristic
of p.

Multiple characteristics of p are singular (stationary) points of the Hamilton
vector field Hp. Let ρ = (x0, ξ0) be a double characteristic of p. We linearize

the Hamilton equation Ẋ = Hp(X) at ρ where X = (x, ξ); that is, by inserting
X(s) = (x0, ξ0)+ εY (s) into the equation, then the term linear in ε in the resulting

equation is Ẏ = 2Fp(ρ)Y , where Fp(ρ) is given by

Fp(ρ) =
1

2

⎛
⎜⎜⎝

∂2p

∂x∂ξ
(ρ)

∂2p

∂ξ∂ξ
(ρ)

− ∂2p

∂x∂x
(ρ) − ∂2p

∂ξ∂x
(ρ)

⎞
⎟⎟⎠ .

Definition 2.4. We call Fp(ρ) the Hamilton map3 of p at ρ.

A special spectral structure of Fp(ρ) results from the fact that p(x, ξ0, ξ
′) = 0

has only real roots ξ0 for any (x, ξ′).

Lemma 2.5 ([18], [15]). All eigenvalues of the Hamilton map Fp(ρ) are on the
imaginary axis, with possibly one exception being a pair of nonzero real eigenvalues
±λ, λ > 0.

Definition 2.6. One says that ρ is an effectively hyperbolic characteristic if Fp(ρ)
has a nonzero real eigenvalue; we also say that p(x, ξ) is effectively hyperbolic4 at
ρ. Otherwise ρ is said to be noneffectively hyperbolic characteristic and p(x, ξ) is
called noneffectively hyperbolic at ρ.

3 We call Fp the Hamilton map after [15]. In [18] they called Fp the fundamental matrix.
One of the authors [18] has told me an episode about the origin of the terminology fundamental
matrix: When he was a graduate student, they had the following definitions among mathematical
students: “Derivative” of the drunken party is the party financed through deposit bottles and in
order to be able to get one bottle in the second round one should consume at least 13 in the first.
“Fundamental” drunken party is a party with a nonzero second derivative.

4 The word effective is chosen in [15] and stems from Ivrii’s conjecture.
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Definition 2.7. The positive trace of Fp(ρ) is given by

Tr+Fp(ρ) =
1

2

∑
|μj |,

where the sum is taken over all pure imaginary eigenvalues iμj of Fp(ρ) repeated
according to their multiplicities.

Theorem 2.8 ([18]). Assume that P is strongly hyperbolic near the origin. Then
there is a neighborhood of the origin where every multiple characteristic of p is at
most double and effectively hyperbolic.

In [18] they conjectured that the converse is also true. This conjecture was
affirmatively answered in [19], [42], [23] for special cases, in [24], [35],5 [45] for
general second order operators and in [26], [43] for general higher order operators.

Theorem 2.9 ([19], [35], [23, 24, 26], [42, 43, 45]). Assume that every multiple
characteristic of p is at most double and effectively hyperbolic. Then P is strongly
hyperbolic near the origin.

In [23, 24] the proofs were based on the transformation of the operator P to
an operator with “nice” lower order terms by means of integro-pseudodifferential
operators and on the energy estimates for the resulting operator, while in [43, 45]
the proof was based on weighted energy estimates with pseudodifferential weights
of which symbol is a power of (microlocal) time function, after some preliminary
transformation by Fourier integral operators. For details we refer to [25], [27]. It is
possible to avoid the use of Fourier integral operators in the latter method [49].6

In what follows we are concerned with the case where p is noneffectively hyper-
bolic at double characteristics. The subprincipal symbol Psub(x, ξ) of P is defined
by reference to any local coordinates x as follows:7

Psub(x, ξ) = Pm−1(x, ξ) +
i

2

n∑
j=0

∂2p

∂xj∂ξj
(x, ξ).

Theorem 2.10 ([18], [15]). Let ρ = (0, ξ0) be a noneffectively hyperbolic charcter-
istic of p. If the Cauchy problem for P is C∞ well-posed near the origin, then we
have

(2.1) ImPsub(ρ) = 0, −Tr+Fp(ρ) ≤ RePsub(ρ) ≤ Tr+Fp(ρ).

This was proved in [18] for one of three cases depending on the properties of
Fp(ρ), and the proof for the other two cases was given in [15].

Definition 2.11. The condition (2.1) is called the Ivrii-Petkov-Hörmander condi-
tion (IPH condition for short). If Tr+Fp(ρ) = 0 the IPH condition is reduced to
Psub(ρ) = 0 and is called the Levi condition.

Let ρ be a double characteristic of p. Then we have as ε → 0

p(ρ+ εX) = ε2
(
pρ(X) +O(ε)

)
, X = (x, ξ) ∈ R

2(n+1),

5 Estimates proving the regularity of solutions are obtained. But the estimates are not usual
ones and are not enough to prove the well-posedness of the Cauchy problem.

6 If we consider two or more differential operators with the same effectively hyperbolic char-
acteristics, we are forced to treat the problem without Fourier integral operators.

7 Psub is invariantly defined at double characteristics.
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where pρ(X) is called the localization of p at ρ, which is nothing but the second
order term in the Taylor expansion of p at ρ, and hence would be considered as the
first approximation of p near ρ.

Lemma 2.12 ([18]). pρ(X) is a quadratic hyperbolic form in X = (x, ξ) ∈ R
2(n+1),

that is, a quadratic form of signature (−1, 1, . . . , 1, 0, . . . , 0).

Let pρ(X,Y ) be the polar form of pρ(X). Then it is clear that

pρ(X,Y ) = σ(X,Fp(ρ)Y ), X, Y ∈ R
2(n+1),

and in particular we have pρ(X) = σ(X,Fp(ρ)X), where σ((x, ξ), (y, η)) = 〈ξ, y〉 −
〈x, η〉 is the standard symplectic 2 form on Rn+1 × Rn+1 and 〈x, y〉 =

∑n
j=0 xjyj .

Lemma 2.13 ([15]). Let Q(X) be a quadratic hyperbolic form on R2(n+1) and let
F ∈ M2(n+1)(R) be the Hamilton map of Q, that is, the map given by the formula

1

2
Q(X,Y ) = σ(X,FY ), X, Y ∈ R

2(n+1).

Then choosing a suitable symplectic basis on R
2(n+1) we see that Q takes one of the

following forms:

(1) Q = λ(x2
0 − ξ20) +

∑k
j=1 μj(x

2
j + ξ2j ) +

∑�
j=k+1 ξ

2
j ,

(2) Q = −ξ20 +
∑k

j=1 μj(x
2
j + ξ2j ) +

∑�
j=k+1 ξ

2
j ,

(3) Q = −ξ20 + 2ξ0ξ1 + x2
1 +

∑k
j=2 μj(x

2
j + ξ2j ) +

∑�
j=k+1 ξ

2
j

where λ > 0, μj > 0. In the case (1) F has a nonzero real eigenvalue, and in the
cases (2) and (3) all eigenvalues of F are on the imaginary axis. In the cases (1)
and (2) we have KerF 2∩ ImF 2 = {0}, while KerF 2∩ ImF 2 �= {0} in the case (3).

Therefore in a suitable symplectic basis, the localization pρ(X) of p will be
one of (1), (2), (3) in Lemma 2.13. But in studying the well-posedness of the
Cauchy problem, not all canonical transformations are allowed,8 and hence the
canonical form of pρ in Lemma 2.13 would not always be applicable. This is a main
reason why the studies of the Cauchy problem are not so straightforward. In [17],
partly motivated by this observation, quadratic hyperbolic operators are intensively
studied.

In what follows we restrict ourselves to study the Cauchy problem for differential
operators with characteristics at most double which are noneffectively hyperbolic.
Since the studies of the Cauchy problem for differential operators with characteris-
tics at most double can be reduced to those for second order operators, differential
in x0, and pseudodifferential in x′, then in what follows we assume that P takes
the form

P (x,D) = −D2
0 +A1(x,D

′)D0 +A2(x,D
′)

with classical pseudodifferential operators Aj(x,D
′) of order j so that Aj(x, ξ

′) ∼
Aj0 + Aj1 + · · · . Here Ajk is of homogeneous of degree j − k in ξ′. Then the
principal symbol p(x, ξ) is

p(x, ξ) = −ξ20 +A10(x, ξ
′)ξ0 +A20(x, ξ

′).

8 One can only use the canonical transformation such that the Fourier integral operator asso-
ciated with it preserves the causality.
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Let us set P1(x, ξ) = A11(x, ξ
′)ξ0 + A21(x, ξ

′). In this note we always assume that
the doubly characteristic set Σ of p(x, ξ) verifies the following conditions:9

(2.2)

⎧⎪⎨
⎪⎩
Σ is a C∞ manifold,

dimTρΣ = dimKerFp(ρ), ρ ∈ Σ,

rank (σ|Σ) = constant.

By conjugation with a Fourier integral operator with x0 as a parameter, one can
assume p(x, ξ) = −ξ20 + q(x, ξ′). For this p, the conditions (2.2) are equivalent to
saying that one can find, at each ρ ∈ Σ, ξ0 = φ0, φj(x, ξ

′), j = 1, . . . , r, with
linearly independent differentials dφj(ρ) such that

{
p = −ξ20 +

∑r
j=1 φj(x, ξ

′)2, Σ = {φj = 0, j = 0, . . . , r},
rank({φi, φj}(ρ))0≤i,j≤r = constant, ρ ∈ Σ,

holds in a neighborhood of ρ, where {φi, φj} denotes the Poisson bracket of φi and
φj :

{φi, φj} =

n∑
k=0

(∂φi

∂ξk

∂φj

∂xk
− ∂φi

∂xk

∂φj

∂ξk

)
= Hφi

φj .

Theorem 2.14 ([20], [15]). Assume that p is noneffectively hyperbolic at every
point of Σ and

(2.3) KerF 2
p ∩ ImF 2

p = {0}

holds on Σ. If the conditions

(2.4) ImPsub = 0, Tr+Fp + RePsub ≥ ε

hold on Σ with some ε > 0, then the Cauchy problem for P is well-posed near the
origin.

Remark 2.15. If (2.3) and Tr+Fp = 0 hold on Σ, then Σ is an involutive manifold,
and in this case the Cauchy problem is well-posed if and only if the Levi condition
is satisfied on Σ ([15]).

We make some comments on the proof of Theorem 2.14 in the next section. In
the following we quote condition (2.4) as the strict IPH condition. At this stage the
main remaining problem is that in the case that (2.3) fails, and hence the condition

(2.5) KerF 2
p ∩ ImF 2

p �= {0}

is assumed on Σ, is the Cauchy problem still C∞ well-posed under the strict IPH
condition or are other new conditions needed for the well-posedness? There also
remains the question as to whether one can take ε = 0 in (2.4), that is, whether or
not the IPH condition itself is sufficient for the well-posedness.

9 It seems to be a quite reasonable assumption when one studies a general case.
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3. Energy estimates and elementary decomposition

In this note pseudodifferential operators are assumed to be Weyl quantized, that
is, we define the pseudodifferential operator p(x′, D′) with symbol p(x′, ξ′) by

p(x′, D′)u = (2π)−n

∫
ei(x

′−y′)ξ′
p((x′ + y′)/2, ξ′)u(y′)dy′dξ′.

We also denote p(x′, D′) = Op(p(x′, ξ′)) and the symbol of p(x′, D′)q(x′, D′) by
p(x′, ξ′)#q(x′, ξ′). If there is no confusion we denote the symbol p(x′, ξ′) or the
operator p(x′, D′) by the same p. Let us consider

P = −MΛ +BΛ +Q,

where M = D0 − m(x,D′), Λ = D0 − λ(x,D′), and m(x, ξ′), λ(x, ξ′), B(x, ξ′) ∈
S(〈ξ′〉, g0). We assume Q(x, ξ′) ∈ S(〈ξ′〉2, g0), where g0 = |dx|2 + 〈ξ′〉−2|dξ′|2, and
hence S(〈ξ′〉m, g0) = Sm

1,0. For pseudodifferential operators, we refer to Chapter 18
in [16]. With a large positive parameter θ we put

Pθ = P (x,D0 − iθ,D′), Λθ = Λ− iθ, Mθ = M − iθ

so that Pθ = −MθΛθ +BΛθ +Q. Denote by (u, v) the L2(Rn) inner product. For
later use we state an energy inequality in a somewhat more general form than is
needed here.

Proposition 3.1. The following inequality holds:

2Im(Pθu,Λθu) ≥
d

dx0
(‖Λθu‖2 + ((ReQ)u, u) + θ2‖u‖2) + θ‖Λθu‖2

+2θRe(Qu, u) + 2((ImB)Λθu,Λθu) + 2((Imm)Λθu,Λθu)

+2Re(Λθu, (ImQ)u) + Im([D0 − Reλ,ReQ]u, u)

+2Re((ReQ)u, (Imλ)u) + θ3‖u‖2 + 2θ2((Imλ)u, u).

Let ρ be a double characteristic of p(x, ξ) = −ξ20 +
∑r

j=1 φ
2
j = −ξ20 + q(x, ξ′).

Definition 3.2. We say that p(x, ξ) admits an elementary decomposition at ρ if
we can find classical real valued symbols λ , m of degree 1, a nonnegative symbol
Q of degree 2 defined in a conic neighborhood U of ρ, and a positive constant C
such that we have10

(3.1)

{
p(x, ξ) = −(ξ0 −m)(ξ0 − λ) +Q,

∣∣{ξ0 − λ,Q}
∣∣ ≤ CQ,∣∣{ξ0 −m, ξ0 − λ}

∣∣ ≤ C(
√
Q+ |m− λ|)

in U .

Assuming (2.3) it can be seen that p admits a local elementary decomposition,
that is, we can find classical symbols λ, m, Q defined in a neighborhood W of the
origin such that (3.1) holds in W .

Lemma 3.3. Assume (2.3). For any ρ̄ ∈ Σ there exist a conic neighborhood V of
ρ̄ and a smooth h(ρ) defined in V ∩ Σ satisfying

(3.2) h(ρ) ∈ KerF 2
p (ρ), pρ(h(ρ)) < 0, σ(Hx0

, Fp(ρ)h(ρ)) = −1.

When h(ρ) satisfies (3.2) it follows from σ(v, Fp(ρ)h(ρ)) = 0 and v �= 0 that
pρ(v) > 0.

10 In the present case p = −ξ20 + q we have necessarily m = −λ.
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Put w(ρ) = Fp(ρ)h(ρ) with h(ρ) obtained in Lemma 3.3. Since ImFp(ρ) is the
linear subspace spanned by {Hξ0 , Hφ1

, . . . , Hφr
}, one may assume w(ρ) = Hξ0 −∑r

j=1 γjHφj
. With

λ =
r∑

j=1

γj(x, ξ
′)φj(x, ξ

′)

we write

p = −(ξ0 + λ)(ξ0 − λ) + q̂, q̂ =

r∑
j=1

φ2
j − (

r∑
j=1

γjφj)
2 = q − λ2.

Since Hξ0−λ ∈ KerFp on V ∩ Σ we see {ξ0 − λ, φj} = 0, j = 1, . . . , r. It follows
from Lemma 3.3 that

∑r
j=1 γ

2
j < 1, and hence

(3.3) |λ|2 ≤ δq

holds with some δ < 1. This gives an elementary decomposition of p at ρ̄. Therefore
by a compactness argument we can choose a finite number of ρ′i ∈ Σ′ ∩ {|ξ′| = 1},
Σ′ = {φj = 0, j = 1, . . . , r} and conic neighborhoods Vi of ρ′i where we have
elementary decomposition. Using a partition of unity {χi} subordinate to the
covering {Vi} we define λ =

∑
χiλi. Since one can take δ < 1 in (3.3), then taking

advantage of this space one can show that p = −(ξ0 + λ)(ξ0 − λ) + (q− λ2) gives a
local elementary decomposition.

Proposition 3.4. Assume that (2.3) holds on Σ. Then p admits a local elementary
decomposition.

We now assume that p(x, ξ) admits a local elementary decomposition near the
origin. We first note the following lemma.

Lemma 3.5. Assume that p(x, ξ) admits an elementary decomposition at ρ, p =
−(ξ0 −m)(ξ0 − λ) +Q. Then we have

Tr+Fp(ρ) = Tr+FQρ

where Qρ is the localization of Q at ρ.

By virtue of this lemma the strict IPH condition is reduced to the condition
Tr+FQρ

+ RePsub(ρ) ≥ ε, and hence from Melin’s inequality [33, 16] there exist
c > 0, C > 0 such that

((Q+ RePsub)u, u) ≥ c‖u‖21/2 − C‖u‖2

holds where ‖u‖s = ‖〈D′〉su‖. Noting

P = −MΛ +Q+
i

2
{ξ0 −m, ξ0 − λ}(x,D′) + Psub +R, R ∈ S(1, g0)

we apply Proposition 3.1 with B = 0, Imm = 0, Imλ = 0, ImQ = {ξ0 − m, ξ0 −
λ}/2+ ImPsub, and ReQ = Q+RePsub. Considering the fact that {ξ0−λ,Q} is the
principal symbol of −Im[D0 − Reλ,ReQ], the energy estimates are easily obtained
under the strict IPH condition.

For the question whether one can take ε = 0 in Theorem 2.14, there is a coun-
terexample. Let consider the differential operator

(3.4) P = −D2
0 +

k∑
j=1

μj(x
2
jD

2
n +D2

j ) + b(x0)Dn = p(x,D) + b(x0)Dn.
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In view of Lemma 2.13 the principal symbol p(x, ξ) verifies (2.3). In this case
the IPH condition is equivalent to the fact that b(x0) is real valued and |b(x0)| ≤∑k

j=1 μj .

Proposition 3.6 ([47]). There exists a real valued smooth function b(x0) defined
near the origin which verifies the IPH condition such that the Cauchy problem for
P of (3.4) is not C∞ solvable.

On the other hand, the question as to which differential operators the IPH con-
dition is sufficient for the well-posedness of the Cauchy problem is closely related
to Melin-Hörmander’s inequality (Theorem 3.3.1 in [15], Theorem 22.3.2 in [16]).
We can find some related results in [53].

4. Well-posedness and elementary decomposition

We now ask whether the elementary decomposition might still be possible even
under the condition (2.5).

Lemma 4.1 ([21]). Assume that p(x, ξ) admits an elementary decomposition at ρ.
Then there is no bicharacteristic with a limit point in Σ (nearρ).

Let qi, ri be positive constants verifying the condition
∑k

i=1 r
−1
i = 1 and consider

(4.1) p(x, ξ) = −ξ20 +

k−1∑
i=0

qi(xi − xi+1)
2ξ2n +

k∑
i=1

riξ
2
i + ξ−1

n

k∑
i=1

εiξiξ
2
k,

where 1 ≤ k ≤ n− 1. Note that
∑k

i=1 r
−1
i = 1 is equivalent to the condition (2.5).

In [44] it was proved that there exists a bicharacteristic of p(x, ξ), with a suitable
choice of {εi}, with a limit point in Σ = {ξi = 0, 0 ≤ i ≤ k, xi = xi+1, 0 ≤ i ≤ k−1}.
Hence the elementary decomposition is not possible in general under the condition
(2.5). Based on this fact it has been studied under which conditions the elementary
decomposition is possible. Before stating the conclusion we prepare a lemma.

Lemma 4.2. Assume that (2.5) holds on Σ. Then for every ρ ∈ Σ one can find
smooth z1(ρ), z2(ρ) such that

z1(ρ) ∈ KerFp(ρ) ∩ ImF 3
p (ρ),

z2(ρ) ∈ KerF 2
p (ρ) ∩ ImF 2

p (ρ), Fp(ρ)z2(ρ) �= 0,

σ(w, z1(ρ)) = 0 =⇒ σ(w,Fp(ρ)w) ≥ 0

hold in a neighborhood of ρ in Σ.

Since Fp(ρ)z2(ρ) is proportional to z1(ρ), in what follows we may assume that
Fp(ρ)z2(ρ) = −z1(ρ) without restrictions. Let S(x, ξ) be a smooth function van-
ishing on Σ and satisfying

(4.2) HS(ρ) ∈ KerF 2
p (ρ) ∩ ImF 2

p (ρ), Fp(ρ)HS(ρ) �= 0, ρ ∈ Σ.

Theorem 4.3 ([46], [2]). Assume that (2.5) is verified on Σ. Let S be a smooth
function satisfying (4.2) and vanishing on Σ. Then the following two conditions
are equivalent:

(1) H3
Sp = 0 on Σ,

(2) p admits an elementary decomposition at any point on Σ.
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This result was proved in [46] with some restrictions and was completed in [2].
We sketch the proof of how to make an elementary decomposition. We first make a
preliminary decomposition. In what follows we will work in a conic neighborhood
of some ρ ∈ Σ and there will be no special mention of this hereafter. There is a
smooth Λ(x, ξ) vanishing on Σ such that HΛ is proportional to z1. We may assume

Λ = ξ0 − λ, λ =

r∑
j=1

γjφj = 〈γ, φ〉.

Let us write p = −(ξ0 + λ)(ξ0 − λ) + |φ|2 − 〈γ, φ〉2. It follows from Lemma 4.2
that

∑r
j=1 σ(w,Hφj

)2 − (
∑r

j=1 γjσ(w,Hφj
))2 ≥ 0 if σ(w, z1) = 0. Since the linear

subspace {(σ(w,Hφj
))1≤j≤r | σ(w, z1) = 0} coincides with Rr, we conclude that

|γ| ≤ 1. On the other hand we see from 0 = σ(z2, Fpz2) =
∑r

j=1 σ(z2, Hφj
)2 −

(
∑r

j=1 γjσ(z2, Hφj
))2 that |γ| ≥ 1 because (σ(z2, Hφj

))1≤j≤r �= 0. Thus we get

|γ| = 1. We extend γ outside Σ keeping |γ| = 1, and we denote such an extended
symbol by the same γ. Let ψ1 = 〈γ, φ〉, ψ2, . . . , ψr be related to {φj} by an
orthogonal transformation. Switching the notation from {ψj} to {φj} again and
renumbering if necessary, one can write

(4.3) p = −(ξ0 + φ1)(ξ0 − φ1) + |φ′|2, φ′ = (φ2, . . . , φr),

where {ξ0−φ1, φj} = 0, j = 1, . . . , r, on Σ and {φ1, φ2} �= 0. Although {ξ0−φ1, φj}
is a linear combination of φi, if one really needs φ1 in the expression, then one cannot
control the term {ξ0−φ1, φ

2
j} by |φ′|2. This is the essential difference from the case

(2.3).

Proposition 4.4. Assume that H3
Sp = 0 holds on Σ. Then we can write

p = −(ξ0 + λ)(ξ0 − λ) +Q,

where λ = φ1 + 〈β′, φ′〉φ1 + kφ3
1|ξ′|−2 and ξ0 − λ, Q, φj verifies the following:

Q ≥ c(|φ′|2 + φ4
1|ξ′|−2), |{ξ0 − λ,Q}| ≤ C(|φ′|2 + φ4

1|ξ′|−2),(4.4)

{ξ0 − λ, φj} = O(|φ|), j = 1, . . . , r, {φ1, φ2} �= 0,

where c, C are positive constants, β′ = (β2, . . . , βr) is smooth on Σ and k is a
negative constant. In particular p admits an elementary decomposition at every
point on Σ.

Making an orthogonal transformation of φ2, . . . , φr we can assume that {φ1, φj} =
O(|φ|), j = 3, . . . , r. Choosing k large negative it is clear that the first inequality
in (4.4) holds. We check that we can choose a smooth β′ such that Proposition 4.4
holds. With {ξ0 − φ1, φj} = 〈αj , φ〉, αj = (αj1, . . . , αjr) we have

{ξ0 − λ,Q} = 2(〈α′
1, φ

′〉+ 〈{φ′, φ′}β′, φ′〉)φ1 − 2φ3
1〈α′

1, β
′〉+O(Q),

where α′
1 = (α21, . . . , αr1) and {φ′, φ′} stands for the (r− 1)× (r− 1) matrix with

(i, j)th entry {φi, φj}. We show that we can take β′ such that

(4.5) {φ′, φ′}β′ + α′
1 = 0, 〈α′

1, β
′〉 = 0.

Lemma 4.5. Assume that H3
Sp = 0. Then we have 〈α′

1, v〉 = 0 for any v provided
{φ′, φ′}v = 0.
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Since the rank of {φ′, φ′} is constant by assumption, there exists a smooth β′

satisfying the first equation of (4.5) in view of Lemma 4.5. The second identity
follows from the first one because {φ′, φ′} is antisymmetric.

Assume (2.5). If H3
Sp = 0 holds on Σ, then from Theorem 4.3 the elementary

decomposition of p is possible at every point on Σ, and hence under the strict IPH
condition one can obtain microlocal energy estimates.11 Nevertheless since φ2

1 could
not be controlled by Q, it is not known whether or not p admits a local elementary
decomposition. It also seems to be hard to correct microlocal energy estimates.12

So we abandon this way and adopt the technique employed in [43]. We fix any
ρ ∈ Σ. There is a conic neighborhood of ρ where Proposition 4.4 holds. We extend
φj by 0 outside such a conic neighborhood of ρ′ (ρ = (0, ρ′)) so that φj ∈ S(〈ξ′〉, g0)
and define λ as in Proposition 4.4. Let χ be 1 near ρ′ with small compact support
and let b(x, ξ′) be the solution to

(4.6) {ξ0 − λ, b} = 0, b(0, x′, ξ′) = (1− χ(x′, ξ′))〈ξ′〉.
Then p̂ = −(ξ0+λ)(ξ0−λ)+ Q̂ with Q̂ = q+Mb(x, ξ′)2 admits a local elementary
decomposition provided M > 0 is large enough. Take χ1 of smaller support than χ
and define b1(x, ξ

′) just as in (4.6). Then

P̂ = p̂+ P1 +Mb1(x, ξ
′) + P0

satisfies the strict IPH condition. In the following we denote P̂ , Q̂ by P , Q, respec-
tively, again. Put Λ = D0 − λ and set

Ns(u) = ‖Λu‖2s + Re ((Q+ RePsub)u, u)s + ‖u‖2s+1/2.

Then we can find T > 0 such that with I = [−T, T ] we have

(4.7) Ns(u(t)) +

∫ t

−T

Ns(u(x0))dx0 ≤ C(s, T )

∫ t

−T

‖Pu‖2sdx0

for any u ∈ C2(I;H∞(Rn)) vanishing in x0 < τ , |τ | < T and for any s ∈ R. For the
adjoint operator P ∗ = Op(p + P̄sub) + R, R ∈ S(1, g0) the time reversed estimate
(4.7) holds, and then by a standard functional analytic argument we conclude that
for any f ∈ C0(I;H∞) vanishing in x0 ≤ τ there exists u ∈ C2(I;H∞) vanishing in
x0 ≤ τ which verifies Pu = f . Let us denote u = Gf . Let τ , ε, ν be small positive
numbers (ε < τ ), and with

dε(x
′, ξ′;κ′) = {χ̃(x′ − y′)|x′ − y′|2 + |ξ′〈ξ′〉−1 − η′〈η′〉−1|2 + ε2}1/2,

φ(x, ξ′;κ′) = x0 − 2ντ + νdε(x
′, ξ′;κ′), κ′ = (y′, η′)

we define Φ by Φ = exp (1/φ(x, ξ′;κ′)) if φ < 0 and by Φ = 0 if φ > 0, where
χ̃ ∈ C∞

0 (Rn) cuts off a neighborhood of x′ = 0. Here φ(x, ξ′;κ′) is a typical
example of a spatial type symbol which was used in estimating wave front sets in
[20, 21]. Repeating the arguments in [20] we conclude that there is a ν0 > 0 such
that we have

Ns(Φu(t)) +

∫ t

−T

Ns(Φu)dx0

≤ C(s, T )
(
Ns−1/4(u(t)) +

∫ t

−T

(
‖ΦPu‖2s +Ns−1/4(u)

)
dx0

)
11 See [2] and Theorem 1.3 in [3].
12 We can find an explanation about this difficulty in Section 5 in [3].
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for 0 < ν ≤ ν0. From this estimate it follows that for any open conic sets Γi,
i = 0, 1, 2, in R2n \ {0} with Γ0 � Γ1 � Γ2 and for any hi(x

′, ξ′) ∈ S(1, g0), i = 1, 2,
with supph1 ⊂ Γ0, supp h2 ⊂ Γ2 \ Γ1, there exists δ = δ(Γi) > 0 such that

(4.8) ‖Dj
0h2Gh1f(t)‖2p ≤ C(p, q)

∫ t

−T

‖f(x0)‖2qdx0, j = 0, 1,

for any f ∈ C0(I;H∞) vanishing in x0 ≤ τ and for any |t| < δ, p, q ∈ R. This
inequality implies that any perturbation in Γ0 does not go out of Γ1 within the time
interval δ (modulo the right-hand side term). Then repeating the same arguments
in [43] we get the following.

Theorem 4.6. Assume (2.5) and that H3
Sp = 0 holds on Σ. Then the Cauchy

problem for P is C∞ well-posed under the strict IPH condition.

Remark 4.7. Assume (2.5) and that H3
Sp = 0, Tr+Fp = 0 hold on Σ. Then the

Cauchy problem is well-posed if and only if the Levi condition is satisfied on Σ
([52]).

Now the case that (2.5) holds while p does not admit an elementary decomposi-
tion remains to be studied. We study this case in the following sections.

5. Geometry of bicharacteristics

In this section we discuss how the geometry of bicharacteristics near the doubly
characteristic manifold Σ relates to the possibility of elementary decomposition.
Recall that bicharacteristics are solutions of the Hamilton equations

(5.1) ẋ = ∂p(x, ξ)/∂ξ, ξ̇ = −∂p(x, ξ)/∂x

on which p(x, ξ) vanishes.

Proposition 5.1 ([44]). Assume that the codimension of Σ is 3. Then p admits
an elementary decomposition if and only if there is no bicharacteristic of p with a
limit point in Σ.

As for general case we have the following.

Theorem 5.2 ([1], [48]). Assume (2.5). Let U be a neighborhood of ρ such that
H3

Sp(ρ) �= 0, ρ ∈ Σ ∩ U . Then one can find a bicharacteristic with a limit point in
U ∩ Σ.

In [1], as in the same way as in [44]; they tried to find a bicharacteristic with a
limit point in Σ choosing a domain with piecewise smooth boundaries on which Hp

points outward except for one piece of the boundary where Hp points inward.13 In
[48] the existence of such bicharacteristics was proved directly. We sketch the proof
given in [48]. Assume (2.5). There is an open set V ⊂ U where p has the form

p = −ξ20 +

�∑
j=1

φ2
j +

∑
j∈I1

φ2
j +

∑
j∈I2

φ2
j ,

where I0 = {0, 1, . . . , �}, I1, I2 are partitions of the set {0, 1, . . . , r} with even �
(≥ 2) such that {φi, φj} = 0 if i, j belong to different Ik, and det({φi, φj})i,j∈I1 �= 0.
Moreover {φi, φj} = 0 on V ∩ Σ if i, j ∈ I2 and dimKer({φi, φj})i,j∈I0 = 1. Here

13 In the case of codimension 3 the Hamilton equations are reduced to a dynamical system in
the plane and one has an advantage of special aspects of 2-dimensional dynamical systems ([44]).
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we have set φ0 = ξ0. Since the case � = 2 is easier than the case � ≥ 4, we assume

� ≥ 4. We also assume I1 = ∅ so that p = −ξ20+
∑�

j=1 φ
2
j+

∑r
j=�+1 φ

2
j for simplicity.

Note that {φi, φj} = 0 on V ∩Σ if 0 ≤ i ≤ r, �+ 1 ≤ j. Using the same arguments
proving (4.3) one can find a smooth orthogonal transformation of {φj}, 1 ≤ j ≤ �

to {φ̃j}, such that −ξ20 +
∑�

j=1 φ
2
j is transformed, after switching the notation from

{φ̃j} to {φj} again, to −(ξ0 + φ1)(ξ0 − φ1) +
∑�

j=2 φ
2
j , where {ξ0 − φ1, φj} = 0 is

verified on V ∩ Σ for every j. Choose a system of symplectic coordinates (X,Ξ)
such that X0 = x0, Ξ0 = ξ0 − φ1, and switching the notation from (X,Ξ) to (x, ξ)
one can write

(5.2) p = −ξ20 − 2ξ0φ1 +
�∑

j=2

φ2
j +

r∑
j=�+1

φ2
j .

Since dimKer ({φi, φj}2≤i,j≤�) = 1 one can choose c = (c2, . . . , c�) with |c| = 1
which spans Ker ({φi, φj}2≤i,j≤�). We make a smooth orthogonal transformation

from {φj}2≤j≤� to {φ̃j}2≤j≤� such that φ̃2 =
∑

cjφj and denote φ̃j by φj again.
Then we have {φ2, φj} = 0 on V ∩ Σ unless j = 1. We summarize as follows.

Lemma 5.3. Choosing a suitable system of symplectic coordinates, p can be written
in the form (5.2) in some open set V , where

{ξ0, φj} = 0, 1 ≤ j ≤ r, {φ2, φj} = 0, j �= 1, {φ2, φ1} �= 0,

{φi, φj} = 0, 0 ≤ i ≤ r, �+ 1 ≤ j ≤ r, det ({φi, φj})3≤i,j≤� �= 0

holds in V ∩ Σ.

We work in a neighborhood of a fixed ρ̄ ∈ V . Since {φ1, φ2} �= 0 we can take
ψ1, . . . , ψk (r + k = 2n) so that ξ0, x0, φ1, φ2, . . . , φr, ψ1, . . . , ψk to be a system of
local coordinates around ρ̄ such that

{ξ0, ψj} = 0, {φ2, ψj} = 0, 1 ≤ j ≤ k,

holds on V ∩ Σ. From the Jacobi identity it follows that

{φ2, {φj , ξ0}} = 0, j = �+ 1, . . . , r,

holds on V ∩Σ. Note that a solution γ(s) = (x(s), ξ(s)) of the Hamilton equations
satisfies

d

ds
f(γ(s)) = {p, f}(γ(s)).

With t = 1/s we introduce new unknowns:

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ0(s) = t4Ξ0(t), x0(s) = tX0(t),

φ1(γ(s)) = t2Φ1(t), φ2(γ(s)) = t3Φ2(t),

φj(γ(s)) = t4Φj(t), 3 ≤ j ≤ �,

φj(γ(s)) = t3Φj , �+ 1 ≤ j ≤ r,

ψj(γ(s)) = t2Ψj(t), 1 ≤ j ≤ k.
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Then denoting V = (X0,Φ2,Ξ0,Φ1,Φj ,Ψj), the Hamilton equations (5.1) are re-
duced to

(5.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

DΞ0 = −4Ξ0 − 2κ2Φ1Φ2 + tG(t, V ),
DX0 = −X0 + 2Φ1 + tG(t, V ),
DΦ1 = −2Φ1 + 2δΦ2 + tG(t, V ),
DΦ2 = −3Φ2 − 2κ2Φ

2
1 + 2δΞ0 + tG(t, V ),

tDΦj = −4tΦj − 2κjΦ
2
1 − 2

∑�
k=3{φk, φj}(ρ̄)Φk + tG(t, V ), 3 ≤ j ≤ �,

DΦj = −3Φj + tG(t, V ), �+ 1 ≤ j ≤ r,
DΨj = −2Ψj − 2

∑r
k=�+1{φk, ψj}(ρ̄)Φk + tG(t, V ), 1 ≤ j ≤ k,

where D = t(d/dt) and {φj , ξ0} =
∑r

i=1 C
j
i φi, κj = Cj

1(ρ̄), δ = {φ1, φ2}(ρ̄) and
G(t, V ) is a smooth function in (t, V ) with G(t, 0) = 0. From Lemma 5.3 we see
FpHφ1

= δHφ2
, FpHφ2

= δHξ0 , FpHξ0 = 0, and hence we can take S = φ2 in (4.2).
This proves

κ2 = C2
1 =

{φ2, {φ2, ξ0}}
{φ2, φ1}

=
H3

φ2
p

{φ2, φ1}
�= 0

on Σ. Set

E = {
∑

0≤j≤i

ti(log t)jVij | Vij ∈ C
N},

E# = {
∑

1≤i,0≤j≤i

ti(log t)jVij | Vij ∈ C
N}.

If V ∈ E with Φ2(0) �= 0 formally satisfies (5.4), then it necessarily follows that
Φ2(0) = −1/κ2δ

2 and hence V (0) is uniquely determined thanks to

det({φi, φj}(ρ̄))3≤i,j≤� �= 0.

Note that X0(0) �= 0. Using such uniquely determined V (0) = V̄ we look for a
formal solution in the form V̄ + V with V ∈ E#. Set

V I = (X0,Φ2,Ξ0,Φ1), V II = (Φ3, . . . ,Φ�),

V III = (Φ�+1, . . . ,Φr), V IV = (Ψ1, . . . ,Ψk).

Then V = t(V I , V II , V III , V IV ) satisfies

(5.5) HDV = AV + tF +G(t, V ), A =

⎡
⎢⎢⎣
AI O O O
BII AII O O
O O −3E O
O O BIV −2E

⎤
⎥⎥⎦

with H = E ⊕ O ⊕ E ⊕ E, where E and O are the identity and the zero matrix,
respectively, F is a constant vector, and

G(t, V ) =
∑

2≤i,0≤j≤i

Gijt
i(log t)j , Gij = Gij(Vpq | q ≤ p ≤ i− 1).

Lemma 5.4. The eigenvalues of AI consist of {−6,−4,−1, 1}. AII is the matrix
({φi, φj}(ρ̄))3≤i,j≤�, and hence AII is diagonalizable with nonzero pure imaginary
eigenvalues.

Applying standard arguments in constructing a formal solution around the reg-
ular singular point t = 0 we get the following.
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Proposition 5.5. There exists a formal solution V ∈ E to (5.5) with Φ2(0) �= 0,
X0(0) �= 0.

This formal solution is uniquely determined up to a term at, a ∈ Ker(H − A).
We now set u = V II , v = (V I , V III , V IV ). Since AII is diagonalizable, making a
change of unknowns, we may assume that AII is a diagonal matrix. Denoting by
(uN , vN ), which is obtained from a formal solution in Proposition 5.5, by discarding
the terms of order greater than N , then for any given m ∈ N there is N = N(m)
such that (uN , vN ) satisfies (5.4) modulo O(tm+1). We look for a solution to (5.4)
in the form (uN , vN ) + tm(u, v). Then the equation satisfied by (u, v) is (after
dividing by tm)

(5.6)

{ (
t2d/dt− iΛ

)
u = −t(mI −K1)u+ L1(t)v + tR1(t, u, v) + tF1(t),

tdv/dt = −(mI −K2)v + L2(t)v + tR2(t, u, v) + tF2(t),

where Rj(t, u, v) are C1 functions defined near (0, 0, 0) ∈ R×C
N1 ×C

N2 satisfying

|Rj(t, u, v)| ≤ Bj(|u|+ |v|)
and Lj(t), tL

′
j(t) are continuous and Kj are constant matrices. Moreover, as noted

above, Λ is assumed to be diag(λ1, . . . , λN1
), λj ∈ R \ {0}. Although the equation

(5.6) is a coupled system of two systems which has t = 0 as a singular point
of the first kind and the second kind, respectively, taking the fact that iΛ is a
diagonal matrix with pure imaginary diagonal entries into account we can apply
the successive approximation method taking m enough large. Thus conclude the
following.

Proposition 5.6. Let m ∈ N be enough large. Then there exists a unique solution
(u, v) to (5.6) with u(0) = 0, v(0) = 0.

Thus we see that there is a bicharacteristic with a limit point in Σ. Noting
X0(0) �= 0 it is clear from (5.3) that this bicharacteristic is tangent to Σ. From
Theorems 4.3 and 5.2 we have the following.

Theorem 5.7 ([2], [48]). Assume that (2.5) is verified on Σ. Then p admits an ele-
mentary decomposition at every point of Σ if and only if there is no bicharacteristic
with a limit point in Σ.

6. Gevrey 5 well-posedness

In this section assuming (2.5) we study the well-posedness of the Cauchy problem
for P in the Gevrey classes.

Definition 6.1. Let W be an open set in Rd and let s ≥ 1. We say f(x) ∈ γ(s)(W )
if for any compact set K ⊂ W one can find C, A > 0 such that for all α ∈ Nd we
have

|∂α
x f(x)| ≤ CA|α||α|!s, x ∈ K.

We set γ
(s)
0 (W ) = C∞

0 (W ) ∩ γ(s)(W ).

In this section the coefficients of P are assumed to be in γ(s)(Ω) with some
neighborhood Ω of the origin, where s > 1 is enough close to 1.14

14 We assume that the coefficients are in the Gevrey class also with respect to x0 for simplicity,
although this is not necessary.
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Theorem 6.2 ([4]). Assume that (2.5) and the Levi condition Psub = 0 are satisfied
on Σ. Then the Cauchy problem for P is well-posed in γ(s) with 1 ≤ s ≤ 5 in a

neighborhood of the origin. That is, for any f(x) ∈ C∞(R; γ
(s)
0 (Rn)) vanishing in

x0 ≤ τ there is a u ∈ C∞ vanishing in x0 ≤ τ and satisfying

Pu = f

in a neighborhood of the origin.15

As stated in Section 4 one can write p in the form of (4.3) in a conic neighborhood
of ρ ∈ Σ. We may assume {φ2, φ1}(ρ) > 0 without restrictions. We extend φj

outside a conic neighborhood of ρ to be 0 so that φj ∈ S(〈ξ′〉, g0). In the same way
as in Section 4 let b(x, ξ′) be a solution to (4.6) and put φr+1 = Mb(x, ξ′) with a
large positive constant M . Then

p̂ = −(ξ0 + φ1)(ξ0 − φ1) +
r+1∑
j=1

φ2
j

coincides with the original p in a conic neighborhood of ρ and satisfies

{ξ0 − φ1, φj} =

r+1∑
k=1

Cjkφk, {φ2, φ1}+ |φr+1| ≥ c|ξ′|.

In what follows we again denote p̂ by p. From the Levi condition Psub = 0 we can
write Psub =

∑r+1
j=0 Cjφj , where φ0 = ξ0. Introducing a small parameter μ > 0 and

changing the time scale so that x0 → μx0 we consider

p(x, ξ, μ) = μ2p(μx0, x
′, μ−1ξ0, ξ

′)

= −(ξ0 − φ1(x, ξ
′, μ))(ξ0 + φ1(x, ξ

′, μ)) +
r+1∑
j=2

φj(x, ξ
′, μ)2.

The introduction of the parameter μ, although not necessary, helps much to handle
the pseudodifferential calculus.16 In the following we often omit writing μ and it is
assumed that

κ = 1/5.

We introduce the symbol

w(x, ξ′, μ) =
√
φ2
1〈μξ′〉−2 + 〈μξ′〉−4κ, Φ =

√
1− aw,

where a constant a > 0 is chosen so that 1− aw ≥ c1 > 0. Without restrictions we
may assume a = 1. With

g = w(x, ξ′, μ)−2
(
|dx|2 + 〈ξ′〉−2

μ |dξ′|2
)
, ḡ = 〈μξ′〉4κ

(
|dx|2 + 〈ξ′〉−2

μ |dξ′|2
)

we have w ∈ S(w, g), where 〈ξ′〉μ = μ−1〈μξ′〉. Note that g ≤ ḡ and for any fixed
μ > 0 one has S(〈μξ′〉m, ḡ) = Sm

3/5,2/5. With Φ one can write p(x, ξ, μ) in the form

p = −(ξ0 − φ1Φ)(ξ0 + φ1Φ) +
r+1∑
j=2

φ2
j + wφ2

1 = −MΛ +Q,

15 From the classical result of Bronshtein [7] the Cauchy problem for general second order dif-

ferential operators P with real characteristics is γ(s) well-posed with 1 ≤ s < 2 in a neighborhood
of the origin.

16 For example the parameter μ was efficiently used in [45].
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where φ1Φ = φ1 + ψφ1, ψ ∈ S(w, g). Since P = Op(p+ Psub) + R, R ∈ μ2S(1, g),
taking the Levi condition into account one can write

P = −MΛ +B0Λ +Q, Q = Op(
r+1∑
j=2

φ2
j + wφ2

1 +R+Q0),

where B0 ∈ μS(1, g), R = Op(
∑r+1

j=1 Cjφj), Cj ∈ μS(1, g), Q0 ∈ μ2S(〈μξ′〉2κ, ḡ).
Although there are so many articles on the composition e±〈μD′〉κ with pseudo-

differential operators of S1,0 class,17 one can hardly find any literature about the
composition with pseudodifferential operators of Sρ,δ class. So we summarize some

composition formulas between e±〈μD′〉κ and pseudodifferential operators which we
use in this monograph.

Definition 6.3. Let 0 ≤ ν < 1 and let gν = 〈μξ′〉ν(|dx′|2 + 〈ξ′〉−2
μ |dξ′|2). We say

a(x′, ξ′, μ) ∈ γ(s)S(m, gν) if there is A > 0 such that

|∂α
x′∂

β
ξ′a(x

′, ξ′, μ)| ≤ Cβm(x′, ξ′, μ)A|α||α|!s/2

×(〈μξ′〉−ν/2〈ξ′〉μ)−|β|(|α|s/2 + 〈μξ′〉ν/2)|α|

holds for any α, β ∈ Nn.

In particular, if a(x′, ξ′, μ) satisfies

(6.1) |∂α
x′∂

β
ξ′a(x

′, ξ′, μ)| ≤ Cβm(x′, ξ′, μ)A|α||α|!s〈ξ′〉−|β|
μ , ∀α, β ∈ N

n,

then we have clearly a(x′, ξ′, μ) ∈ γ(s)S(m, gν).

Lemma 6.4. Let s > 2 and assume that f verifies (6.1) with m(x′, ξ′, μ) = 1. Let
s > 2 and then we have√

f(x′, ξ′, μ)2 + 〈μξ′〉−ν ∈ γ(s)S(
√
f(x′, ξ′, μ)2 + 〈μξ′〉−ν , gν).

Now assume that φ(ξ′, μ) ∈ S(〈μξ′〉1/s, |dx′|2 + 〈ξ′〉−2
μ |dξ′|2) satisfies

φ(ξ′ + η′, μ)− φ(ξ′ − η′, μ) ≤ C〈μη′〉1/s.

Then we have the following.

Proposition 6.5. Let ν + s−1 ≤ 1 and let a(x′, ξ′, μ) ∈ γ(s)S(〈μξ′〉m, gν) be inde-

pendent of x′ if |x′| is large enough. With eφ(D
′,μ)a(x′, D′, μ)e−φ(D′,μ) = b(x′, D′, μ)

we have {
b(x′, ξ′, μ) =

∑N−1
j=0 bj(x

′, ξ′, μ) +RN (x′, ξ′, μ),

RN ∈ μNS(〈μξ′〉m−N(1−1/s−ν/2)+nν/2, gν),

where bj ∈ μjS(〈μξ′〉m−j(1−1/s−ν/2), gν) is given by

bj =
∑
|α|=j

(−i)|α|

α!
∂α
η′eφ(ξ

′+η′/2,μ)−φ(ξ′−η′/2,μ)|η′=0∂
α
x′a(x′, ξ′, μ).

Lemma 6.4 shows that w ∈ γ(s)S(w, ḡ) (s > 2) if φ1 satisfies (6.1) withm = 〈μξ′〉.

17 For example see [27] and the references therein.
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Proposition 6.6. Let τ > 0. We have

(6.2) e(τ−x0)〈μD′〉κPe−(τ−x0)〈μD′〉κ = −MΛ +B0Λ +Q

with M = D0 − i〈μD′〉κ − Op(m), Λ = D0 − i〈μD′〉κ −Op(λ), B0 ∈ μS(1, ḡ) and
m = −φ1Φ+ im1 +m2, λ = φ1Φ+ iλ1 + λ2, where m1, λ1 ∈ μS(〈μξ′〉κ, g) are real
valued and m2, λ2 ∈ μ2S(〈μξ′〉−κ, ḡ). Moreover Q verifies{

Q = Op(q + iq1 + q2 + r), q =
∑r+1

j=2 φ
2
j + wφ2

1,

q1 =
∑r+1

j=2 ajφj + a1wφ1, q2 =
∑r+1

j=1 cjφj ,

where aj ∈ μS(〈μξ′〉κ, g) are real valued and cj ∈ μS(1, ḡ), r ∈ μ2S(〈μξ′〉2κ, ḡ).

Denote the right-hand side of (6.2) by P . Similarly to Proposition 3.1 we have

2Im (Pu,Λu) ≥ d

dx0

(
‖Λu‖2 + ((ReQ)u, u) + ‖〈μD′〉κu‖2

)
+ ||〈μD′〉κ/2Λu||

+2((ImB0)Λu,Λu) + 2Re (〈μD′〉κ(ReQ)u, u) + 2((Imm)Λu,Λu)

+2Re (Λu, (ImQ)u) + Im ([D0 − Reλ,ReQ]u, u)

+2Re ((ReQ)u, (Imλ)u) + (1− Cμ)‖〈μD′〉3κ/2u‖2.

Here we check how the term Im ([D0 −Reλ,ReQ]u, u) can be estimated. The main
part of the symbol of −Im [D0 − Reλ,ReQ] is {ξ0 − φ1, φ

2
j} = 2{ξ0 − φ1, φj}φj =∑r+1

k=1Cjkφkφj , j ≥ 2. If j, k ≥ 2, then Re (Op(Cjkφkφj)u, u) is easily managed.
The main point here is that Cj1 �= 0 in general because H3

Sp = 0 is not assumed.
Thus we must estimate Re (Op(Cj1φ1φj)u, u), j ≥ 2.

Lemma 6.7. Let a ∈ μS(1, g) be real valued. Then we have

(Op(aφ1φj)u, u) ≤ Cμ (Op(φ2
j〈μξ′〉κ)u, u)

+Cμ (Op(φ2
1w〈μξ′〉κ)u, u) + Cμ3‖〈μD′〉3κ/2u‖2

for j �= 1.

Write aφ1φj = Re (μ1/2〈μξ′〉κ/2φj#μ−1/2a〈μξ′〉−κ/2φ1)+R, R ∈ μ3S(〈μξ′〉2κ, g)
and note that

μ1/2〈μξ′〉κ/2φj#μ1/2〈μξ′〉κ/2φj = μ〈μξ′〉κφ2
j +R1,

μ−1/2a〈μξ′〉−κ/2φ1#μ−1/2a〈μξ′〉−κ/2φ1

= (μ−1a2w−1〈μξ′〉−2κ)φ2
1w〈μξ′〉κ +R2

with R1 ∈ μ3S(〈μξ′〉κ, g1), R2 ∈ μ3S(〈μξ′〉3κ, g). Since w−1 ∈ S(〈μξ′〉2κ, g) in view
of μ−1a2w−1〈μξ′〉−2κ ∈ μS(1, g) we get Lemma 6.7. Next check Re (Λu, (ImQ)u).
From Proposition 6.6 we see that the main part of ImQ is q1.

Lemma 6.8. We have the following estimates:

|(Λu, q1u)| ≤ Cμ‖〈μD′〉κ/2Λu‖2 + Cμ
r+1∑
j=2

(Op(〈μξ′〉κφ2
j )u, u)

+Cμ(Op(w〈μξ′〉κφ2
1)u, u) + Cμ3‖〈μD′〉1/2u‖2.
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For instance, we sketch how to estimate (Λu,Op(ajφj)u). We write ajφj =

〈μξ′〉κ/2#〈μξ′〉−κ/2ajφj + R. Then noting R ∈ μ2S(〈μξ′〉2κ, g) and writing R =

〈μξ′〉κ/2#〈μξ′〉−κ/2R +R1, R1 ∈ μ3S(1, g), we have

|(Λu,Op(ajφj)u)| ≤ Cμ‖〈μD′〉κ/2Λu‖2

+Cμ‖Op(〈μξ′〉−κ/2ajφj)u‖2 + Cμ3‖〈μD′〉3κ/2u‖2.

Noting 〈μξ′〉−κ/2ajφj = 〈μξ′〉−κaj#〈μξ′〉κ/2φj +R, R ∈ μ2S(〈μξ′〉1/2, g) we see

μ−1‖Op(〈μξ′〉−κ/2ajφj)u‖2 ≤ Cμ‖Op(〈μξ′〉κ/2φj)u‖2 + Cμ3‖〈μD′〉1/2u‖2

≤ Cμ(Op(〈μξ′〉κφ2
j)u, u) + Cμ3‖〈μD′〉1/2u‖2.

Repeating similar arguments we obtain Lemma 6.8. We estimate ‖〈μD′〉1/2u‖2 in
Lemma 6.8. From the assumption one has {φ1, φ2}+ |φr+1| ≥ cμ〈μξ′〉. Estimating
the commutator [Op(〈μξ′〉κ/2φ1

√
w),Op(〈μξ′〉κ/2φ2)] we see that there is a constant

c > 0 such that

cμ(Op(〈μξ′〉1+κ
√
w)u, u) ≤ (Op(〈μξ′〉κwφ2

1)u, u)

+ (Op(〈μξ′〉κφ2
2)u, u) + (Op(φ2

r+1)u, u) + Cμ‖〈μD′〉3κ/2u‖2.

Write Cμ〈μξ′〉1+κ
√
w − μ〈μξ′〉 = Cμ〈μξ′〉1+κ

√
w
(
1− C−1w−1/2〈μξ′〉−κ

)
, which is

Cμ(ψ#ψ)+R, where ψ ∈ S(〈μξ′〉(1+κ)/2w1/4, g), R ∈ μ3S(〈μξ′〉3κ, g). Thus we get
the following.

Lemma 6.9. We have

μ‖〈μD′〉1/2u‖2 ≤ C(Op(φ2
1w〈μξ′〉κ)u, u)

+ C(Op(φ2
2〈μξ′〉κ)u, u) + C(Op(φ2

r+1)u, u) + Cμ‖〈μD′〉3κ/2u‖2.

On the other hand Re (〈μD′〉κ(ReQ)u, u) is bounded from below as follows:

Re (〈μD′〉κ(ReQ)u, u) ≥
r+1∑
j=2

(Op(〈μξ′〉κφ2
j )u, u)

+(Op(〈μξ′〉κwφ2
1)u, u)− Cμ2‖〈μD′〉3κ/2u‖2.

From these estimates it follows that Im ([D0−Reλ,ReQ]u, u) is bounded by constant
times Re (〈μD′〉κ(ReQ)u, u) + μ2‖〈μD′〉3κ/2u‖2.

Applying the preceding lemmas we get the following energy estimates.

Proposition 6.10. Denote the right-hand side of (6.2) by P . Then one can find
μ0 > 0, C > 0, c > 0 such that for 0 < μ < μ0 the inequality

C

∫ t

−T

‖〈μD′〉−κ/2Pu‖2dx0 ≥
{
‖Λu(t, ·)‖2 + c‖〈μD′〉κu(t, ·)‖2

}
+c

∫ t

−T

{
‖〈μD′〉κ/2Λu‖2 + ‖〈μD′〉3κ/2u‖2 + μ‖〈μD′〉1/2u‖2

}
dx0

holds for any u ∈ C2(I;H∞(Rn)) vanishing in x0 < τ , |τ | < T .

By a similar argument as in Section 4 we conclude that there exists a solution
operator G, u = Gf verifying (4.8). Let us set

Ĝ = e−(τ−x0)〈μD′〉κGe(τ−x0)〈μD′〉κ .
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Then one can take δ > 0 such that for h1, h2 in Section 4 one has the estimate

‖e(τ−t)〈μD′〉κDj
0h2Ĝh1f(t)‖p ≤ C(p, q)

∫ t

−T

‖e(τ−x0)〈μD′〉κf(x0)‖qdx0, j = 0, 1

for any f ∈ C0([−T, T ]; γ
(1/κ)
0 (Rn)) vanishing in x0 ≤ τ and for any 0 ≤ t ≤ δ, p,

q ∈ R. Then a repetition of the same arguments in [43] proves Theorem 6.2.

7. Optimality of Gevrey 5 well-posedness

Consider the differential operator

(7.1) P (x,D) = −D2
0 + 2x1D0D2 +D2

1 + x3
1D

2
2

with symbol p(x, ξ).18 Note that the doubly characteristic manifold of p is given
by Σ = {ξ0 = 0, x1 = 0, ξ1 = 0} (ξ2 �= 0). The localization of p at the double
characteristic ρ = (0, (0, 0, 0, 0, 1)) ∈ Σ is

pρ = −ξ20 + 2x1ξ0 + ξ21 ,

which is case (3) in Lemma 2.13 (k = 1, � = 1, where x1 and ξ1 are exchanged19)
and hence noneffectively hyperbolic at ρ ∈ Σ where KerF 2

p (ρ)∩ ImF 2
p (ρ) �= {0}. It

is also clear that Psub = 0 and thus the Levi condition is satisfied. For this p the
curve

(7.2) x1 = −x2
0

4
, x2 =

x5
0

8
, ξ0 = 0, ξ1 =

x3
0

8
, ξ2 = c

is a bicharacteristic (parametrized by x0) which is tangent to Σ as x0 → 0, where
c �= 0 is an arbitrary constant.

Definition 7.1. We say that the Cauchy problem for P is locally γ(s) solvable
at the origin if for any (u0, u1) ∈ (γ(s)(R2))2 there exist a neighborhood U of the
origin and u(x) ∈ C∞(U) satisfying{

Pu = 0 in U,

Dj
0u(0, x

′) = uj(x
′), x′ ∈ U ∩ {x0 = 0}, j = 0, 1.

Theorem 7.2 ([4]). The Cauchy problem for P is not locally γ(s) solvable at the
origin if s > 5. In particular, the Cauchy problem for P is not C∞ well-posed near
the origin.20

Making a suitable change of a system of local coordinates leaving the initial plane
x0 = c invariant P can be written

P = −D2
0 + (D1 + x0D2)

2 + (x1

√
1 + x1D2)

2 = −D2
0 +A2 +B2,

where A∗ = A, B∗ = B so that P is of divergence free. After [9], [42] it has been
conjectured that for second order differential operators of divergence free with real
analytic coefficients

−D2
0u+

n∑
i,j=1

Dxi
(aij(x)Dxj

u), aij(x) = aji(x),

18 Exchanging x1 and ξ1, p(x, ξ) turns out to be the case (4.1) with k = 1.
19 Since the exchange of x1 and ξ1 is a canonical transformation so that the spectre of Fp and

bicharacteristics of p are invariant.
20 Discussions about the location of zeros of Stokes coefficients given in [4] is insufficient. Here

we give a rough sketch on how to modify the arguments there. For more details see [51].
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with nonnegative characteristic form
∑n

i,j=1 aij(x)ξiξj ≥ 0, the Cauchy problem is
C∞ well-posed and has been extensively studied. Theorem 7.2 provides a coun-
terexample for this conjecture.

We give a sketch of the proof. We look for a solution to PU = 0 of the form

Uρ(x) = eiρ
5x2+

i
2 ζρx0w(x1ρ

2),

where ζ ∈ C and ρ is a positive parameter. That is w solves the equation

w′′(x) = (x3 + ζx− ζ2ρ−2/4)w(x).

Introducing parameters ζ, ε ∈ C with small |ε| let us consider
(7.3) w′′(x) = (x3 + ζx+ ε)w(x), ζ, ε ∈ C,

so that if w(x; ζ, ε) verifies (7.3), then

Uρ(x) = eiρ
5x2+

i
2 ζρx0w(x1ρ

2; ζ, η), η = −ζ2ρ−2/4

satisfies PUρ(x) = 0.

Theorem 7.3 ([55]). The differential equation (7.3) has a solution Y(x; ζ, ε) such
that

(1) Y(x; ζ, ε) is an entire function of (x, ζ, ε),
(2) Y(x; ζ, ε) admits an asymptotic representation

Y(x; ζ, ε) ∼ x−3/4(1 + p(x; ζ, ε))e−( 2
5x

5/2+ζx1/2),

where p(x; ζ, ε) → 0 uniformly on each compact set in (ζ, ε) space as x → ∞
in any closed subsector of the open sector | arg x| < 3π/5.

With ω = exp(2πi/5), Yk(x; ζ, ε) = Y(ω−kx;ω−2kζ, ω−3kε), k = 1, 2, 3, 4, turns
out to be a solution to (7.3) and Yk is subdominant in Sk; | arg x − 2kπ/5| < π/5
(Y0 = Y). The asymptotic representation of Yk is obtained from Theorem 7.3
which holds in | arg x−2kπ/5| < 3π/5. Since Yk and Yk+1 are linearly independent
one can write

Yk(x; ζ, ε) = Ck(ζ, ε)Yk+1(x; ζ, ε) + C̃k(ζ, ε)Yk+2(x; ζ, ε).

The key to the proof of Theorem 7.2 is the following result about the location of
zeros of the Stokes coefficient C0(ζ, 0).

Proposition 7.4. There is at least one zero of C0(ζ, 0) with Im ζ < 0.

Here we summarize several properties of the Stokes coefficients Ck(ζ, ε), C̃k(ζ, ε)
which will be needed in the following.

Proposition 7.5 ([55]). The Stokes coefficients have the form C0(0, 0) = 1 + ω,

C̃k(ζ, ε) = −ω, Ck(ζ, ε) = C0(ω
−2kζ, ω−3kε), and C0(ζ, ε) is an entire function of

(ζ, ε) such that

(7.4) ∂ζC0(ζ, ε)|(ζ,ε)=(0,0) �= 0.

With c(ζ) = C0(ζ, 0) we have

(7.5) c(ζ) + ω2c(ωζ)c(ω4ζ)− ω3 = 0 ∀ζ ∈ C.

For the proofs we refer to Chapter 5 in Sibuya [55].

Lemma 7.6 ([56]). The relation C0(ζ, ε) = ω̄C0(ω̄ζ̄, ωε̄) holds. In particular, we

have c(ζ) = ω̄c(ω̄ζ̄).
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Suppose that c(ζ) has no zero; then from (7.5) we see that c(ζ) avoids the values
ω3 and 0. Thus from Picard’s Little Theorem it follows that c(ζ) is a constant
which contradicts (7.4). This together with C0(0, 0) = 1 + ω proves the following.

Lemma 7.7. C0(ζ, 0) has at least one zero ζ0 ( �= 0).

Lemma 7.8 ([51]). The Stokes coefficient c(ζ) has no zero in the closed sector
3π/5 ≤ arg ζ ≤ π.

We turn to the proof of Proposition 7.4. From Lemma 7.7 there exists ζ �= 0
such that c(ζ) = 0. Lemma 7.8 shows that −π < arg ζ < 3π/5. If −π < arg ζ < 0,
then this ζ is a desired zero. If 0 ≤ arg ζ < 3π/5 and hence −π < arg ω̄ζ̄ ≤ −2π/5,
we see that ω̄ζ̄ is a desired zero by virtue of Lemma 7.6.

From Proposition 7.4 there is a zero ζ0 of C0(ζ, 0) with Im ζ0 < 0. We take
ζ = ζ(ε) satisfying

C0(ζ,−ζ2ε/4) = 0

such that ζ(0) = ζ0. Note that ζ(ε) is given by Puiseux series,

ζ(ε) = ζ0 +

∞∑
j=0

ζj(ε
1/p)j = ζ̃(ε1/p), ζ̃(0) = ζ0,

where p is an integer and ζ̃(z) is holomorphic in a neighborhood of z = 0. Setting

η(ε) = −ζ̃(ε)2εp/4 we have

(7.6) Y0(x; ζ̃(ε), η(ε)) = −ωY2(x; ζ̃(ε), η(ε)) ∀x ∈ C,

for enough small |ε| � 1. Since we have

Y0(x; ζ̃, η) = x−3/4(1 +R(x, ζ̃, η))e−( 2
5x

5/2+ζ̃x1/2)

in the open sector | arg x| < 3π/5, then Y0(x; ζ̃, η) decays as exp (−2x5/2/5) when

R � x → +∞. Recall Y0(x; ζ̃(ε), η(ε)) = −ωY0(ω
−2x;ω−4ζ̃(ε), ω−6η(ε)) by (7.6).

Note that ω−2x = eπi/5|x| if x < 0, and hence

(ω−2x)5/2 = i|x|5/2, ω−4ζ̃(ω−2x)1/2 = iζ̃|x|1/2

so that Y0(x; ζ̃, η) decays as exp (Im ζ̃|x|1/2) when R � x → −∞. This proves that

Y0(x; ζ̃(ε), η(ε)) ∈ S(R). In particular, Y0(x; ζ̃(ε), η(ε)) is bounded uniformly in
x ∈ R and |ε| � 1:

|Y0(x; ζ̃(ε), η(ε))| ≤ B, x ∈ R, |ε| � 1.

Take a small T > 0 and set

Uρ(x) = exp
(
−iρ5x2 +

i

2
ζ̃(ρ−2/p)ρ(T − x0)

)
Y(x1ρ

2; ζ̃(ρ−2/p), η(ρ−2/p))

for ρ > 0. It is clear that PUρ = 0. Take φ ∈ C∞
0 (R) and θ ∈ C∞

0 (R) with small
supports near the origin and consider the following Cauchy problem:

(7.7)

{
Pu = 0,

u(0, x′) = 0, D0u(0, x
′) = φ̄(x1)θ̄(x2).

From Holmgren’s uniqueness theorem (see Theorem 4.2 in [36] for example; note
that P is of polynomial coefficients) we may assume that a solution u(x) to the
Cauchy problem (7.7) verifies u(x) = 0 in |x0| ≤ T , |x′| ≥ r with small T > 0,
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r > 0. We now integrate the L2(R2) inner product (PUρ, u) from 0 to T in x0 to
get

(D0Uρ(T ), u(T )) + (Uρ(T ), D0u(T ))− (2x1D2Uρ(T ), u(T ))

= (Uρ(0), D0u(0)).
(7.8)

Since Y(ρ2x1; ζ̃, η) is bounded uniformly in ρ and x1, we see that the left-hand side
of (7.8) is O(ρ5). On the other hand the right-hand side is

∫
R2

e−iρ5x2+iζ̃ρT/2Y(ρ2x1; ζ̃ , η)φ(x1)θ(x2)dx
′

= eiζ̃ρT/2θ̂(ρ5)ρ−2

∫
Y(x1; ζ̃, η)φ(ρ

−2x1)dx1,

where θ̂ stands for the Fourier transform of θ. Noting that ζ̃(ρ−2/p) → ζ0 as ρ → ∞
one can find c > 0 such that

∣∣eiζ̃ρT/2
∣∣ ≥ ecρT for large ρ. Therefore we conclude

(7.9) ρ−7ecρT |θ̂(ρ5)|
∣∣∣ ∫ Y(x1; ζ̃, η)φ(ρ

−2x1)dx1

∣∣∣ = O(1).

Note that θ ∈ γ
(5)
0 (R) if and only if |θ̂(ξ)| ≤ Ce−L|ξ|1/5 with some positive constants

L, C > 0. Taking this into account we choose an even function θ ∈ C∞
0 (R) satisfying

θ �∈ γ
(5)
0 (R). Then it follows that eCρρ−N |θ̂(ρ5)| is not bounded when ρ → ∞ for

any N ∈ N and for any C > 0. Let us write

∫
Y(x1; ζ̃ , η)φ(ρ

−2x1)dx1 =
2∑

k=0

ρ−2k

k!
φ(k)(0)

∫
Y(x1; ζ̃, η)x

k
1dx1 +O(ρ−6)

and note that ∫
Y(x1; ζ̃ , η)x

k
1dx1 →

∫
Y(x1; ζ0, 0)x

k
1dx1

as ρ → ∞.

Lemma 7.9. At least one of

∫
Y(x1; ζ0, 0)x

k
1dx1, k = 0, 1, 2,

is different from 0.

It is now clear that, choosing φ(k)(0), k = 0, 1, 2, suitably, (7.9) does not hold.
That is, for such initial data the Cauchy problem (7.7) has no C∞ solution in any
neighborhood of the origin.
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8. Concluding remarks

Denoting W = ImF 2
p ∩ KerF 2

p we can summarize the obtained results on the
well-posedness of the Cauchy problem for differential operators with double char-
acteristics in the following table.

Spectrum of
Fp

W Geometry of bicharac-
teristics of p near Σ

Well-
posedness
of the Cauchy
problem for
P

Elementary
decomposi-
tion

Exists
nonzero real
eigenvalue

W =
{0}

Two bicharacteristics
intersect Σ transver-
sally21

C∞well-
posed for any
lower order
term

impossible

No nonzero
real eigenvalue

W =
{0}

No bicharacteristic in-
tersects Σ

C∞well-
posed under
the Levi or
the strict IPH
condition

possible

W �=
{0}

Exists a bicharacteris-
tic tangent to Σ

Gevrey 5
well-posed
under the
Levi condition.
Under
the strict
IPH condition?

impossible

We will see in this table that the only part which remains to be unclear is what
we can assert on the well-posedness of the Cauchy problem if W �= {0}, Tr+Fp > 0
and there is a bicharacteristic with a limit point in Σ. A model operator satisfying
these conditions is

P (x,D) = −D2
0 + 2x1D0D2 +D2

1 + x3
1D

2
2 + a(x2

3D
2
2 +D2

3),

where a > 0 is a positive constant and hence Tr+ Fp = a, which coincides with P
in (7.1) when a = 0. The doubly characteristic manifold is Σ = {ξ0 = ξ1 = ξ3 =
0, x1 = x3 = 0}. Since Psub = 0 the strict IPH condition is clearly verified. If we
define (x1, x2, ξ0, ξ1, ξ2) by (7.2) and (x3, ξ3) by x3 = 0, ξ3 = 0, then this curve is
still a bicharacteristic of P even if a > 0. That is, in the viewpoint of “classical
mechanics”, there exists the singular orbit (7.2) for P with a ≥ 0. In the case
a = 0 it seems reasonable to suppose that the existence of this singular orbit causes
nonsolvability in C∞ to the Cauchy problem. From this point it is expected that
the Cauchy problem for P with a > 0 is not C∞ well-posed. On the other hand, in
the viewpoint of “quantum mechanics” it is forbidden to choose x3 = 0, ξ3 = 0 at
the same time by Heisenberg’s uncertainty principle. Up to now it is only known
that the Cauchy problem for P with a > 0 is γ(6) well-posed.

21 One can find more detailed discussions on the behavior of bicharacteristics in [28].
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We will see in Theorems 6.2 and 7.2 that the Gevrey 5 class appears very nat-
urally as a function space in which the Cauchy problem is well-posed in the case
that there is a bicharacteristic with a limit point in Σ. This suggests some possi-
ble relations between the geometry of bicharacteristics and the Gevrey classes in
which the Cauchy problem is well-posed. Indeed, as we explain in the following,
there is a close correspondence between them. To formulate this correspondence
we introduce the notion of Gevrey strong hyperbolicity (well-posedness) following
Definition 1.5. In what follows we assume that the coefficients of P are real analytic
or in the Gevrey class γ(s) with s(> 1) close to 1 in a neighborhood of the origin.

Definition 8.1. Let s > 1. Then P is said to be Gevrey s strongly hyperbolic at
the origin if the Cauchy problem for P +Q with any differential operator of order
1 defined near the origin is locally γ(κ) solvable at the origin for every 1 ≤ κ < s.

Theorem 8.2 ([6]). Assume (2.5) and that the codimension of Σ is 3. Then P is
Gevrey 3 strongly hyperbolic at the origin.

The Gevrey index 3 in the above theorem is optimal in the following sense. Let
us consider P of (7.1).

Theorem 8.3 ([6]). The Cauchy problem for P + AD2, A ∈ C \ R+ is not locally
γ(s) solvable at the origin if s > 3.

Theorem 8.4 ([5]). Assume (2.5) and that there is no bicharcateristic with a limit
point in Σ. We also assume that the codimension of Σ is 3. Then P is Gevrey 4
strongly hyperbolic at the origin.

The Gevrey index 4 in the above theorem is optimal in the following sense. Let
us consider the following model operator which verifies the conditions in Theorem
8.4:

P = −D2
0 + 2D0D1 + x2

1D
2
2.

Theorem 8.5 ([17], [50]). The Cauchy problem for P + AD2, A ∈ C \ R+ is not
locally γ(s) solvable at the origin if s > 4.

We summarize the preceding results on Gevrey strong hyperbolicity in the fol-
lowing table.

Spectrum of Fp W Geometry of bicharacter-
istics of p near Σ

Gevrey s strong hy-
perbolicity of P

Exists nonzero
real eigenvalue

W =
{0}

Two bicharacteristics in-
tersect Σ transversally

Gevrey ∞ strongly
hyperbolic22

Nononzero real
eigenvalue

W �=
{0}

No bicharacteristic inter-
sects Σ

Gevrey 4 strongly
hyperbolic

Exists a bicharacteristic
tangent to Σ

Gevrey 3 strongly
hyperbolic

W =
{0}

No bicharacteristic inter-
sects Σ

Gevrey 2 strongly
hyperbolic23

From this table we see that, supposing that the codimension of Σ is 3, the
threshold of Gevrey strong hyperbolicity occurs only at s = 2, 3, 4 and that these

22 That is, locally γ(s) solvable for any s ≥ 1.
23 This is a special case of the well known result of [7]. The optimality of the Gevrey index 2

is also well known.
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thresholds completely determine the structure of the Hamilton map Fp and the
geometry of bicharacteristics near Σ. The restrictions on the codimension of Σ in
Theorems 8.2 and 8.4 seem to be technical but not yet removed.
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37. S. Mizohata, Systèmes hyperboliques, J. Math. Soc. Japan 11 (1959), 205–233. MR0123835
38. S. Mizohata, Note sur le traitement par les opérateurs d’intégrale singulière du problème de
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Birkhäuser, 2009, pp.217–233.

https://www.ams.org/mathscinet-getitem?mr=759681
https://www.ams.org/mathscinet-getitem?mr=810976
https://www.ams.org/mathscinet-getitem?mr=1166190
https://www.ams.org/mathscinet-getitem?mr=1203754
https://www.ams.org/mathscinet-getitem?mr=0097628
https://www.ams.org/mathscinet-getitem?mr=0081406
https://www.ams.org/mathscinet-getitem?mr=0063548
https://www.ams.org/mathscinet-getitem?mr=0328393
https://www.ams.org/mathscinet-getitem?mr=725587
https://www.ams.org/mathscinet-getitem?mr=0599580
https://www.ams.org/mathscinet-getitem?mr=0123835
https://www.ams.org/mathscinet-getitem?mr=0123836
https://www.ams.org/mathscinet-getitem?mr=0170112
https://www.ams.org/mathscinet-getitem?mr=0276606
https://www.ams.org/mathscinet-getitem?mr=0303100
https://www.ams.org/mathscinet-getitem?mr=593968
https://www.ams.org/mathscinet-getitem?mr=751377
https://www.ams.org/mathscinet-getitem?mr=751378
https://www.ams.org/mathscinet-getitem?mr=775976
https://www.ams.org/mathscinet-getitem?mr=925251
https://www.ams.org/mathscinet-getitem?mr=1116094
https://www.ams.org/mathscinet-getitem?mr=2062708


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE CAUCHY PROBLEM FOR DIFFERENTIAL OPERATORS 197

51. T. Nishitani, A note on zero free regions of the Stokes multipliers for second order ordinary
differential equations with cubic polynomial coefficients, Funkcialaj Ekvac. 54 (2011), 473–
483. MR2918148

52. T. Nishitani, Local and microlocal Cauchy problem for non-effectively hyperbolic operators,
J. Hyperbolic Differ. Equ. 11 (2014), 185–213. MR3190116

53. C. Parenti and A. Parmeggiani, On the Cauchy problem for hyperbolic operators with double
characteristics, Comm. Partial Differential Equations 34 (2009), 837–2009. MR2560303
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