Examples of uniformly symmetrizable systems for which the Cauchy problem is ill-posed in the Gevrey class > 2

Tatsuo Nishitani

Osaka University

Yamaguchi University, 2024/01/06

- ロ ト - 4 回 ト - 4 □

- 1. Uniformly symmetrizable (= diagonalizable) systems
- 2. An example
- 3. Ill-posedness of the Cauchy problem for the example
- 4. Well-posedness of the Cauchy problem for the example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

5. Remarks

Examples of uniformly symmetrizable systems for which the Cauchy problem is ill-posed in the Gevrey class > 2Uniformly diagonalizable systems

Uniformly diagonalizable systems

Consider first-order systems

$$L = D_t - \sum_{j=1}^n A_j(t,x) D_{x_j} = D_t - A(t,x,D_x), \ (t,x) \in \mathbb{R}^{1+n}$$

L: uniformly diagonalizable $\iff \exists C > 0, \forall (t, x, \xi) \in \mathbb{R}^{1+n} \times S^{n-1}$ $\exists T(t, x, \xi) \text{ s.t. } \|T(t, x, \xi)\|, \|T^{-1}(t, x, \xi)\| \leq C,$ $T(t, x, \xi)A(t, x, \xi)T^{-1}(t, x, \xi) = \text{diagonal (or symmetric)}$ $\iff L \text{ is uniformly symmetrizable,}$ $\exists C > 0, \forall (t, x, \xi) \in \mathbb{R}^{1+n} \times S^{n-1}, \exists \text{ symmetric positive definite}$ matrices $S(t, x, \xi)$, such that $\|S(t, x, \xi)\|, \|S^{-1}(t, x, \xi)\| \leq C$ and SA is symmetric. Examples of uniformly symmetrizable systems for which the Cauchy problem is ill-posed in the Gevrey class > 2Uniformly diagonalizable systems

Some related results

Theorem (V.lvrii and V.Petkov, 1974) If the Cauchy problem is L^2 well-posed then the system is uniformly symmetrizable.

Theorem (K.Kajitani, 1984)

Assume that $L(t, x, \tau, \xi)$ is uniformly symmetrizable then the Cauchy problem for L + B is well-posed in the Gevrey class of order 1 < s < 2 for arbitrary lower order term B.

Theorem (G.Métivier, 2014)

If $L(t, x, \tau, \xi)$ is uniformly symmetrizable with a symmetrizer $S(t, x, \xi)$ which is Lipschitz continuous in $(t, x, \xi) \in \mathbb{R}^{1+n} \times S^{n-1}$ then the Cauchy problem for L is L^2 well-posed.

An example

Consider the following 3×3 system proposed by G.Métivier (2014):

$$\begin{split} \mathcal{L}_{a} &= \frac{\partial}{\partial t} + \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \frac{\partial}{\partial x} + x \begin{pmatrix} 0 & a & 1\\ -a & 0 & 0\\ 1 + a^{2} & 0 & 0 \end{pmatrix} \frac{\partial}{\partial y} \\ &= \frac{\partial}{\partial t} + A_{1} \frac{\partial}{\partial x} + x A_{2}(a) \frac{\partial}{\partial y} = \frac{\partial}{\partial t} + G_{a}, \quad a \in \mathbb{C}. \end{split}$$

 L_0 is symmetric hyperbolic system when a = 0.

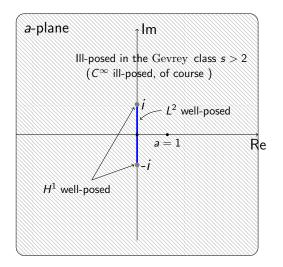
Proposition(G.Métivier) L_a is uniformly symmetrizable for $\forall a \in \mathbb{R}$. If $\mathbb{R} \ni a \neq 0$ there exists no symmetrizer which is continuous at $x = \xi = 0$, $\eta = 1$. When a = 1 the Cauchy problem for L_1 is not C^{∞} well-posed.

L_a is uniformly diagonalizable for any $a \in \mathbb{C}$

$$P_{a}(\zeta_{0},\zeta)=\zeta_{0}I+A_{1}\zeta_{1}+A_{2}(a)\zeta_{2},\quad \zeta=(\zeta_{1},\zeta_{2})$$

det $P_a(\zeta_0, \zeta) = \zeta_0(\zeta_0^2 - \zeta_1^2 - \zeta_2^2)$ is independent of $a \in \mathbb{C}$. The roots of det $P_a(\zeta_0, \zeta) = 0$ are real distinct $\zeta_0 = 0$, $\zeta_0 = \pm |\zeta|$ then $\exists N(\zeta)$, homogeneous of deg. 0 in ζ , $||N(\zeta)||, ||N^{-1}(\zeta)|| \leq C$ $(\zeta \neq 0)$ such that $N^{-1}P_aN$ is diagonal. When $\xi^2 + x^2\eta^2 \neq 0$, $N(\xi, x\eta)$ diagonalizes L_a . If $\xi^2 + x^2\eta^2 = 0$ $((\xi, \eta) \neq 0)$ hence $\xi = 0$, x = 0 then $L_a = \partial/\partial t$ itself is diagonal.

III/Well-posedness of the Cauchy problem for L_a



Special solution to L_a^*

The adjoint of L_a is

$$L_{a}^{*} = -\frac{\partial}{\partial t} - A_{1}^{*}\frac{\partial}{\partial x} - x A_{2}^{*}\frac{\partial}{\partial y} = -\frac{\partial}{\partial t} + G_{a}^{*}.$$

Look for solutions to $G_a^*V(x, y) = i\beta V(x, y)$ in the form $V = e^{\pm iy} E^{\pm}(x)$ so that the problem is reduced to

$$(A_1^*\partial_x \pm ixA_2^*)E^{\pm}(x) = -i\beta E^{\pm}(x), \quad E^{\pm}(x) = \begin{pmatrix} u^{\pm}(x) \\ v^{\pm}(x) \\ w^{\pm}(x) \end{pmatrix}.$$

If $u^{\pm}(x)$ satisfies $(\partial_x^2 - x^2 + \beta^2 \pm i\bar{a})u^{\pm}(x) = 0$ then with

$$v^{\pm}(x) = \frac{i}{\beta}(\partial_x \pm i\bar{a}x)u^{\pm}(x), \quad w^{\pm}(x) = \mp \frac{x}{\beta}u^{\pm}(x)$$

we have $G^*_a(e^{\pm iy}E^{\pm}(x)) = i\beta(e^{\pm iy}E^{\pm}(x)).$

By homogeneity
$$G_a^*(e^{\pm i\eta^2 y}E^{\pm}(\eta x)) = i\eta\beta(e^{\pm i\eta^2 y}E^{\pm}(\eta x))$$
 one has
 $L_a^*(e^{i\beta\eta t\pm i\eta^2 y}E^{\pm}(\eta x)) = 0.$
 $\beta^2 \pm i\bar{a} = 1 \Longrightarrow (\partial_x^2 - x^2 + 1)e^{-x^2/2} = 0$

Lemma

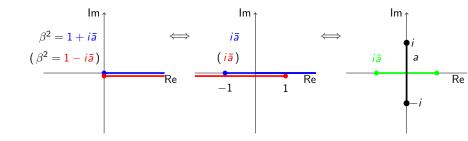
Assume that $a \notin \{ix \in i\mathbb{R}; -1 \le x \le 1\}$. Then either $\beta^2 + i\overline{a} = 1$ or $\beta^2 - i\overline{a} = 1$ has a root $\beta \in \mathbb{C}$ with $\text{Im } \beta \neq 0$. With $u^{\pm}(x) = e^{-x^2/2}$ (we may assume $\text{Im } \beta > 0$)

$$\widetilde{W}_{\eta}^{\pm}(t,x,y) = \exp\left(i\beta\eta t \pm i\eta^2 y - \frac{1}{2}\eta^2 x^2\right)\left(W_0 + \eta x W_1^{\pm}\right)$$

solves $L_a^* \widetilde{W}_{\eta}^{\pm} = 0$ where

$$W_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad W_1^{\pm} = \begin{pmatrix} 0 \\ -i(1 \mp i\bar{a})/\beta \\ \mp 1/\beta \end{pmatrix}$$
 (constant vectors).

Proof of Lemma



III-posedness

Consider the following Cauchy problem

$$\begin{cases} L_a U = 0, \\ U(0, x, y) = \phi(x)\psi(y)W_0 \end{cases}$$
(1)

where $\phi, \psi \in C_0^{\infty}(\mathbb{R})$ are real valued.

Theorem

Assume that $a \notin \{ix \in i\mathbb{R}; -1 \le x \le 1\}$. Let $\psi \in C_0^{\infty}(\mathbb{R})$ be an even function such that $\psi \notin \gamma_0^{(2)}(\mathbb{R})$ and $\phi \in C_0^{\infty}(\mathbb{R})$ with $\phi(0) \neq 0$. Let Ω be any neighborhood of the origin of \mathbb{R}^3 such that $\operatorname{supp} \phi(x)\psi(y) \subset \Omega \cap \{t = 0\}$. Then (1) has no $C^1(\Omega)$ solution.

Sac

Corollary

Assume that $a \notin \{ix \in i\mathbb{R}; -1 \le x \le 1\}$. Then the Cauchy problem for L_a is ill-posed in the Gevrey class of order s > 2.

Proof of ill-posedness

Suppose that there were a neighborhood Ω of the origin such that $\operatorname{supp} \phi(x)\psi(y) \subset \Omega \cap \{t = 0\}$ and (1) has a solution $U \in C^1(\Omega)$. For $\delta > 0$ we denote

$$D_{\delta} = \{(t, x, y) \in \mathbb{R}^3 \mid x^2 + y^2 + |t| < \delta\}.$$

Recall

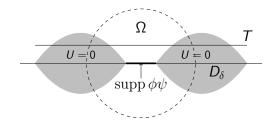
Theorem (Holmgren)

There exists $\delta_0 > 0$ such that if $U(t, x, y) \in C^1(D_{\delta})$ with $0 < \delta \le \delta_0$ verifies

$$\left\{\begin{array}{ll} L_a U = 0 & in \quad D_{\delta}, \\ U(0, x, y) = 0 & on \quad (x, y) \in D_{\delta} \cap \{t = 0\}\end{array}\right.$$

then U(t, x, y) vanishes identically in D_{δ} .

Holmgren's theorem



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

From Holmgren's theorem one can choose a T > 0 such that supp $U \cap \{0 \le t \le T\} \subset \Omega$. Denoting

$$\begin{split} & W_{\eta}^{\pm}(t,x,y) = e^{-i\beta\eta T} \widetilde{W}_{\eta}^{\pm}(t,x,y) \\ &= e^{\pm i\eta^2 y - i\beta\eta (T-t)} e^{-\eta^2 x^2/2} \big(W_0 + \eta x W_1^{\pm} \big) \end{split}$$

we have obviously $L_a^*W_\eta^\pm = 0$. From

$$0 = \int_0^T (L_a^* W_\eta^{\pm}, U) dt = \int_0^T (W_\eta^{\pm}, L_a U) dt + (W_\eta^{\pm}(T), U(T)) - (W_\eta^{\pm}(0), U(0))$$

it follows that

$$(W_{\eta}^{\pm}(T), U(T)) = (W_{\eta}^{\pm}(0), U(0)).$$
⁽²⁾

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Proof of ill-posedness:continued

The left-hand side of (2) is

$$(W_{\eta}^{\pm}(T), U(T)) = (e^{\pm i\eta^2 y - \eta^2 x^2/2} (W_0 + \eta x W_1^{\pm}), U(T))$$

which is O(1) as $\eta
ightarrow \infty$ while the right-hand side is

$$\eta^{-1} e^{-i\beta\eta T} \hat{\psi}(\eta^2) \int e^{-x^2/2} \phi(\eta^{-1} x) dx$$
(3)

where $\hat{\psi}$ denotes the Fourier transform of ψ . From (3) we conclude that there is C > 0 such that for large positive η one has

$$|\hat{\psi}(\eta^2)| \leq C\eta e^{(-\ln\beta)\eta T}$$

Since ψ is even this shows that $|\hat{\psi}(\eta)| \leq C' e^{-c |\eta|^{1/2}}$ with some c > 0 and hence $\psi \in \gamma_0^{(2)}(\mathbb{R})$ which is a contradiction.

Well-posedness

Consider

$$\tilde{L}_{a}U = \frac{\partial}{\partial t}U + A_{1}\frac{\partial}{\partial x}U + \phi(x)A_{2}\frac{\partial}{\partial y}U = F$$

where $\phi(x)$ is a smooth real valued scalar function with bounded derivatives of all order and $U = {}^{t}(u, v, w)$ and $F = {}^{t}(f, g, h)$. We are interested in the case $\phi(x) = x$ in a compact neighborhood of the origin but it is not necessarily assumed.

Theorem

If $a \in \{ix \in i\mathbb{R}; -1 < x < 1\}$ then the Cauchy problem for \tilde{L}_a is L^2 well-posed, and in particular, \tilde{L}_a is strongly hyperbolic.

Theorem If $a \in \{ix \in i\mathbb{R}; -1 \le x \le 1\}$ then the Cauchy problem for \tilde{L}_a is H^1 well-posed.

Proof of well-posedness:symmetrization

Let
$$a \in \{ix \in i\mathbb{R}; -1 < x < 1\}$$
 so that $a = i\mu, \ \mu \in \mathbb{R}, \ |\mu| < 1$:

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & i\mu & 1 \\ -i\mu & 0 & 0 \\ 1-\mu^2 & 0 & 0 \end{pmatrix}.$$

Denote

$$S=\left(egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1/(1-\mu^2) \end{array}
ight)$$

which is symmetric positive definite. It is easy to check that SA_1 and SA_2 are both hermitian, that is A_1 and A_2 are *simultaneously* symmetrizable by S.

Energy estimates

Let $U \in C^1(\mathbb{R}; C_0^{\infty}(\mathbb{R}^d))$. Then $(SA_1 \partial U / \partial x, U) + (U, SA_1 \partial U / \partial x) = ((SA_1 - A_1^*S) \partial U / \partial x, U) = 0,$ $(SA_2 \phi(x) \frac{\partial U}{\partial y}, U) + (U, SA_2 \phi(x) \frac{\partial U}{\partial y})$ $= (\phi(x)(SA_2 - A_2^*S) \frac{\partial U}{\partial y}, U) = 0.$

Then one has

$$\frac{d}{dt}(SU,U) = \frac{d}{dt} \|S^{1/2}U\|^2 = 2\operatorname{Re}(SU,F) \le 2\|S^{1/2}U\|\|S^{1/2}F\|$$

where (\cdot, \cdot) and $\|\cdot\|$ stands for the $L^2(\mathbb{R}_{x,y})$ inner product and the norm respectively.

Hence we have $\frac{d}{dt} \|S^{1/2}U\| \le \|S^{1/2}F\|$. Integrating this inequality

$$\|S^{1/2}U(t)\| \leq \|S^{1/2}U(0)\| + \int_0^t \|S^{1/2}\widetilde{L}_{a}U(s)\|ds.$$

Lemma For $U \in C^1(\mathbb{R}; C_0^\infty(\mathbb{R}^d))$ one has

$$\|U(t)\| \leq \frac{1}{\sqrt{1-\mu^2}} \Big(\|U(0)\| + \int_0^t \|\tilde{L}_a U(s)\| ds \Big).$$
(4)

The same estimate holds for \tilde{L}_{a}^{*} .

Proof: Since $||V|| \leq ||S^{1/2}V|| \leq (1-\mu^2)^{-1/2}||V||$ the assertion for \tilde{L}_a is immediate. Since S^{-1} symmetrizes A_1^* and A_2^* simultaneously and $||S^{-1/2}V|| \leq ||V|| \leq (1-\mu^2)^{-1/2}||S^{-1/2}V||$ the same assertion for \tilde{L}_a^* holds.

Proof of well-posedness:continued

Denote by H^s and $\|\cdot\|_s$, $s \in \mathbb{R}$ the usual L^2 based Sobolev space of order s and the norm respectively. Assume that B = B(t, x, y)is smooth with bounded derivatives of all order and fix T > 0. For any $s \in \mathbb{R}$ there is $C_s > 0$ such that we have

$$\|U(t)\|_{s} \leq C\Big(\|U(0)\|_{s} + \int_{0}^{t} \|(\tilde{L}_{a} + B)^{*}U(\tau)\|_{s}d\tau\Big)$$
(5)

for any $U \in C^1([0, T]; H^s) \cap C^0([0, T]; H^{s+1})$. Therefore the usual duality arguments proves that for any $U_0 \in H^s$ there exists a solution $U(t) \in C^1([0, T]; H^{s-1}) \cap C^0([0, T]; H^s)$ to the Cauchy problem

$$\begin{cases} (\tilde{L}_a + B)U = 0, \\ U(0) = U_0. \end{cases}$$

The uniqueness of solution follows from (4). (1)

Case $a = \pm i$

$$\tilde{L}_{a} = \frac{\partial}{\partial t} + \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \frac{\partial}{\partial x} + \phi(x) \begin{pmatrix} 0 & \pm i & 1\\ \mp i & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \frac{\partial}{\partial y}$$

The third equation of $\tilde{L}_a U = F$ is

$$\frac{\partial w}{\partial t} = h$$
 hence $\frac{\partial}{\partial t} \left(\frac{\partial w}{\partial y} \right) = \frac{\partial h}{\partial y}$

from which it follows that

$$\left\|\partial w(t)/\partial y\right\| \leq \left\|\partial w(0)/\partial y\right\| + \int_0^t \left\|\partial h(s)/\partial y\right\| ds.$$
 (6)

The first two equations of $\tilde{L}_a U = F$ yield a symmetric system for (u, v) assuming $\partial w / \partial y$ to be known.

Case $a = \pm i$: energy estimates

One has

$$\frac{d}{dt} \|U\|^2 = -2 \operatorname{Re}\left(\phi \frac{\partial w}{\partial y}, u\right) + 2 \operatorname{Re}(F, U).$$
(7)

The right-hand side is bounded by $C(\|\partial w(t)/\partial y\| + \|F(t)\|)\|U(t)\|$. From (7) one has

$$\|U(t)\| \leq \|U(0)\| + C \int_0^t \left(\left\| \partial w(s) / \partial y \right\| + \|F(s)\| \right) ds.$$
 (8)

Inserting (6) into (8) one obtains

$$\|U(t)\| \leq C' \big(\|U(0)\| + \|\partial U(0)/\partial y\| \big) + C' \int_0^t \big(\|\tilde{L}_a U(s)\| + \|\frac{\partial}{\partial y}\tilde{L}_a U(s)\| \big) ds$$
(9)

for $0 \leq t \leq T$.

 $\tilde{L}_a^* U = F$

$$\tilde{L}_a^* = -\frac{\partial}{\partial t} - \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \frac{\partial}{\partial x} - \phi(x) \begin{pmatrix} 0 & \mp i & 0\\ \pm i & 0 & 0\\ 1 & 0 & 0 \end{pmatrix} \frac{\partial}{\partial y}$$

Since the first two equations of $\tilde{L}_a^*U = F$ split from the third equation and yield a symmetric system then we have with $V = {}^t(u, v)$ and $G = {}^t(f, g)$

$$\|V(t)\| + \|\partial V(t)/\partial y\| \leq C(\|V(0)\| + \|\partial V(0)/\partial y\|) + C \int_0^t (\|G(s)\| + \|\partial G(s)/\partial y\|) ds.$$
(10)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

From the third equation of $\tilde{L}_a^* U = F$ we have

$$\|w(t)\| \le \|w(0)\| + C \int_0^t (\|h(s)\| + \|\partial u(s)/\partial y\|) ds.$$
 (11)

Inserting (10) into (11) one has

$$\|w(t)\| \leq C'(\|U(0)\| + \|\partial U(0)/\partial y\|) + C'\int_0^t (\|F(s)\| + \|\partial F(s)/\partial y\|) ds.$$

Together with (10) energy estimate (9) holds also for \tilde{L}_a^* . Repeating similar arguments one concludes that the Cauchy problem for \tilde{L}_a is C^{∞} well-posed (actually H^1 well-posed).

Remarks

The Cauchy problem for

$$L_a^{(0)} = \frac{\partial}{\partial t} + A_1 \frac{\partial}{\partial x} + y A_2(a) \frac{\partial}{\partial y}, \quad a \in \mathbb{C}$$

is L^2 well-posed, hence C^∞ well-posed for any lower order term. The Cauchy problem for

$$L_a^{(1)} = rac{\partial}{\partial t} + A_1 rac{\partial}{\partial x} + t A_2(a) rac{\partial}{\partial y}, \quad a \in \mathbb{C}$$

is C^{∞} well-posed for arbitrary lower order term (with regularity loss). These examples can be generalised $L_a^{(0)} \Longrightarrow$ transversally strictly hyperbolic systems with involutive characteristics (Métivier, N, 2018), $L_a^{(1)} \Longrightarrow$ transversally strictly hyperbolic systems with symplectic

 $L_a^{(-)} \implies$ transversally strictly hyperbolic systems with symplectic characteristics (N, 2020).