A question on the Cauchy problem in the Gevrey classes for weakly hyperbolic equations

Tatsuo Nishitani*

1 Introduction

Consider a differential operator P(x, D) of order m defined in a neighborhood Ω of the origin of \mathbb{R}^n with coordinates $x = (x_1, x_2, \dots, x_n) = (x_1, x')$;

$$P(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}, \quad D^{\alpha} = D_1^{\alpha_1} \cdots D_n^{\alpha_n}, \quad D_j = -i\partial/\partial x_j$$

where we assume that $a_{\alpha}(x)$ are in some Gevrey classes $\gamma^{(s)}(\Omega)$ or $\gamma^{\langle s \rangle}(\Omega)$. By $\gamma^{(s)}(\Omega)$ we mean the set of functions $f \in C^{\infty}(\Omega)$ such that for any compact set $K \subseteq \Omega$ there are constants C > 0, A > 0 for which the following inequalities hold:

$$(1.1) |D^{\alpha}f(x)| \le CA^{|\alpha|}(|\alpha|!)^s, \ x \in K, \ \alpha \in \mathbb{N}^n.$$

By $\gamma^{\langle s \rangle}(\Omega)$ we mean the set of functions $f \in C^{\infty}(\Omega)$ such that for any compact set $K \in \Omega$ and any A > 0 there is a constant C > 0 for which (1.1) hold. Evidently $\gamma^{\langle s \rangle} \subset \gamma^{\langle s \rangle} \subset \gamma^{\langle s' \rangle}$ for s < s'. Consider the Cauchy problem

(1.2)
$$\begin{cases} P(x,D)u(x) = 0, & (x_1,x') \in \omega \cap \{x_1 > \tau\}, \\ D_1^j u(0,x') = u_j(x'), & j = 0,\dots, m-1, & x' \in \omega \cap \{x_1 = \tau\} \end{cases}$$

where $\omega \subset \Omega$ is some open neighborhood of the origin of \mathbb{R}^n . We say that the Cauchy problem (1.2) is (uniformly) well-posed in $\gamma^{(s)}$ (resp. in $\gamma^{(s)}$) near the origin if there exist ω and $\epsilon > 0$ such that for any $u_j \in \gamma^{(s)}(\mathbb{R}^{n-1})$ (resp. $u_j \in \gamma^{(s)}(\mathbb{R}^{n-1})$) and for any $|\tau| < \epsilon$ the Cauchy problem (1.2) has a unique solution $u \in C^m(\omega)$. We say that the Cauchy problem is locally solvable in $\gamma^{(s)}$ at the origin if for any $u_j \in \gamma^{(s)}(\mathbb{R}^{n-1})$ one can find a neighborhood $\omega_{\{u_j\}}$ of the origin such that (1.2) with $\tau = 0$ has a solution $u \in C^m(\omega_{\{u_i\}})$.

Write

$$P(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{m} = p(x,\xi) + \sum_{j=0}^{m-1} P_{j}(x,\xi)$$

^{*}Department of Mathematics, Osaka University: nishitani@math.sci.osaka-u.ac.jp

where $p(x,\xi)$ is of homogeneous of degree m in ξ , called the principal symbol of P and $P_j(x,\xi)$ denotes the homogeneous part of degree j in ξ . We assume that the hyperplanes $\{x_1 = t\}$ are non-characteristic, that is

(1.3)
$$p(x,\theta) \neq 0, \ \theta = (1,0,\ldots,0) \ x \in \Omega,$$

which is almost necessary for C^{∞} well-posedness of the Cauchy problem ([7]). Then without restrictions one may assume $a_{(m,0,\ldots,0)}(x)=1$. If the Cauchy problem (1.2) is locally solvable in $\gamma^{(s)}$, s>1 at the origin then $p(0,\xi_1,\xi')=0$ has only real roots for any $\xi'\in\mathbb{R}^{n-1}$ ([8]) so we assume also that

$$(1.4) p(x,\xi-i\theta) \neq 0, \ \xi \in \mathbb{R}^n, \ x \in \Omega,$$

that is the equation $p(x,\xi_1,\xi')=0$ in ξ_1 has only real roots for any $x\in\Omega$, $\xi'\in\mathbb{R}^{n-1}$.

For a given $P(x,\xi)$, which is a polynomial in ξ of degree m, we consider several realizations (quantizations) of $P(x,\xi)$. Let $a(x,\xi) \in S_{1,0}^m$ be a classical symbol of pseudodifferential operator then we define op^t(a), $0 \le t \le 1$ by

$$(\operatorname{op}^{t}(a)u)(x) = (2\pi)^{-n} \int e^{i(x-y)\xi} a((1-t)x + ty, \xi)u(y)dyd\xi.$$

Note that, assuming that $a_{\alpha}(x)$ are constant outside some compact neighborhood of the origin for simplicity, we see

$$\sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha} u(x) = \operatorname{op}^{0}(P) u(x), \ \sum_{|\alpha| \le m} D^{\alpha} (a_{\alpha}(x) u(x)) = \operatorname{op}^{1}(P) u(x).$$

When t = 1/2 the quantization op^{1/2}(a) is called Weyl quantization and also denoted by op^w(a). The next results are implicit in [3] and [4].

Theorem 1.1. Assume $P(x,\xi) = p(x,\xi) + \sum_{j=0}^{r} P_j(x,\xi)$ and the coefficients $a_{\alpha}(x)$ belong to $\gamma^{(m/r)}$ (resp. $\gamma^{(m/r)}$). Then for any $0 \le t \le 1$ the Cauchy problem for $\operatorname{opt}^t(P)$ is well-posed in $\gamma^{(s)}$ near the origin for $1 < s < \min\{m/r, 2\}$ (resp. $\gamma^{(s)}$ for $1 < s \le \min\{m/r, 2\}$).

Corollary 1.1. Assume that the coefficients $a_{\alpha}(x)$ belong to $\gamma^{(2)}$ (resp. $\gamma^{(2)}$). Then for any $0 \le t \le 1$ the Cauchy problem for $\operatorname{opt}(p)$ is well-posed in $\gamma^{(s)}$ near the origin for 1 < s < 2 (resp. $\gamma^{(s)}$ for $1 < s \le 2$).

To confirm the result, first note that under the assumption there is some M>0 such that

(1.5)
$$P(x, \xi + i\tau\theta) \neq 0, \quad |\tau| \geq M(1 + |\xi|)^{r/m}, \quad x, \xi \in \mathbb{R}^n$$

that is P is m/r -hyperbolic (see [5]). Then Theorem 1.1 was proved for op⁰(P) in [4] and Corollary 1.1 for op⁰(p) is implicit in [3]. Next we recall a formula for change of quantization (e.g. [6]). One can pass from any t -quantization to the t' -quantization by

(1.6)
$$\operatorname{op}^{t'}(a_{t'}) = \operatorname{op}^{t}(a_{t}), \quad a_{t'}(x,\xi) = e^{-i(t'-t)D_{x}D_{\xi}}a_{t}(x,\xi).$$

In particular, we have

$$\operatorname{op}^{t}(P(x,\xi)) = \operatorname{op}^{0}(e^{itD_{x}D_{\xi}}P(x,\xi)).$$

On the other hand, from [3] one has

$$\left| (\partial_x^{\beta} \partial_{\xi}^{\alpha} p)(x, \xi - i\theta) \right| \le C_{\alpha\beta} (1 + |\xi|)^{|\beta|} \left| p(x, \xi - i\theta) \right|, \quad \alpha, \beta \in \mathbb{N}^n.$$

which is sufficient to estimate new terms appear by operating $e^{itD_xD_\xi}$ to $P(x,\xi)$.

2 A question on Theorem 1.1

If P is of constant coefficients, $P(x,\xi) = P(\xi)$, the Cauchy problem for P(D) is $\gamma^{(s)}$ well-posed for 1 < s < m/r ([5]) if (1.5) holds and it is also clear that the results are optimal considering examples $P(D) = D_1^m + cD_n^r$ with a suitable $c \in \mathbb{C}$. Clearly the case r = 0 corresponds to the hyperbolicity in the sense of Gårding and the Cauchy problem for P(D) is C^{∞} well-posed. In the variable coefficient case, on the other hand, we are restricted to $1 < s < \min\{m/r, 2\}$ in both Theorem 1.1 and Corollary 1.1. Here we give an example which shows that one can not really exceed 2. Consider

(2.1)
$$P_b(x,\xi) = \xi_1^3 - (\xi_2^2 + x_2^2 \xi_n^2) \xi_1 - b x_2^3 \xi_n^3$$

with $b \in \mathbb{R}$ which was studied in [2]. Note that (1.4) is equivalent to $b^2 \leq 4/27$. In [2] it was proved that there is $0 < \bar{b} < 2/3\sqrt{3}$ such that the Cauchy problem for op⁰ $(P_{\bar{b}})$ is not locally solvable at the origin in $\gamma^{(s)}$ for s > 2. From this we obtain immediately

Proposition 2.1. Let $m \geq 3$ and $n \geq 3$ and consider

$$p(x,\xi) = \left(\xi_1^3 - (\xi_2^2 + x_2^2 \xi_n^2)\xi_1 - \bar{b}x_2^3 \xi_n^3\right)\xi_1^{m-3}$$

which is a homogeneous polynomial in ξ of degree m with polynomial coefficients. For any $0 \le t \le 1$ the Cauchy problem for $\operatorname{op}^t(p)$ is not locally solvable at the origin in $\gamma^{(s)}$ for s > 2, in particular, not well-posed in $\gamma^{(s)}$, s > 2 near the origin.

Indeed from (1.6) one sees that $\operatorname{op}^{t'}(p) = \operatorname{op}^{t}(p)$ for any $0 \le t', t \le 1$ so that

$$\operatorname{op}^{t}(p) = \left(D_{1}^{3} - (D_{2}^{2} + x_{2}^{2}D_{n}^{2})D_{1} - \bar{b}x_{2}^{3}D_{n}^{3}\right)D_{1}^{3} = \operatorname{op}^{0}(P_{\bar{b}})D_{1}^{m-3}$$

which proves the assertion.

When m=2 we have a result similar to Proposition 2.1:

Proposition 2.2. Let $n \geq 3$ and consider

$$P_{mod}(x,\xi) = \xi_1^2 - 2x_2\xi_1\xi_n - \xi_2^2 - x_2^3\xi_n^2$$

which is a homogeneous polynomial in ξ of degree 2 with polynomial coefficients. For any $0 \le t \le 1$ the Cauchy problem for $\operatorname{op}^t(P_{mod})$ is not locally solvable at the origin in $\gamma^{(s)}$ for s > 5, in particular, not well-posed in $\gamma^{(s)}$, s > 5 near the origin.

This result for $\operatorname{op}^0(P_{mod})$ was proved in [1] (where there is some insufficient part of the proof, see the correction in [10]). Then to conclude Proposition 2.2 it is enough to note $\operatorname{op}^t(P_{mod}) = \operatorname{op}^0(P_{mod})$ for $0 \le t \le 1$.

We would now ask ourselves is there an example of a homogeneous polynomial p in $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, $n \geq 3$ of order 2 with real analytic coefficients satisfying (1.3) and (1.4) such that the Cauchy problem for $\operatorname{op}^t(p)$, for any $0 \leq t \leq 1$, is not well-posed in $\gamma^{(s)}$, s > 2, or is there some $2 < \overline{s} \leq 5$ such that for any such p the Cauchy problem for $\operatorname{op}^w(p)$ is well-posed in $\gamma^{(s)}$ for $s < \overline{s}$ near the origin.

Note that the case n=2 (and m=2) is quite special.

Proposition 2.3. Consider

$$P(x,\xi) = \xi_1^2 - 2a(x)\xi_1\xi_2 + b(x)\xi_2^2 + c(x), \quad x = (x_1, x_2)$$

which is a polynomial in $\xi = (\xi_1, \xi_2)$ with real analytic a(x), b(x), c(x) such that $\Delta(x) = a^2(x) - b(x) \ge 0$ near the origin (a, b are real valued). Then the Cauchy problem for $\operatorname{op}^w(P)$ is C^{∞} well-posed near the origin.

In fact if we make a real analytic change of coordinates $y = \kappa(x) = (x_1, \phi(x))$ such that $\phi_{x_1}(x) - a(x)\phi_{x_2}(x) = 0$, $\phi(0, x_2) = x_2$ where $\phi_{x_j} = \partial \phi(x)/\partial x_j$ then we see that

$$\operatorname{op}^{w}(P(x,\xi))(u \circ \kappa)$$

$$= \left(\operatorname{op}^{0}(\eta_{1}^{2} - \alpha \tilde{\Delta} \eta_{2}^{2} + \beta_{1} \tilde{\Delta}_{x_{2}} \eta_{2} + \beta_{2} \tilde{\Delta} \eta_{2} + \beta_{3} \eta_{1} + \beta_{4}\right) u\right) \circ \kappa$$

where $\tilde{\Delta} = \Delta \circ \kappa^{-1}$, $\tilde{\Delta}_{x_2} = \Delta_{x_2} \circ \kappa^{-1}$ and $\alpha = \alpha(y) \ge c > 0$, $\beta_i = \beta_i(y)$ are real analytic near y = 0. Noting that $\left| \tilde{\Delta}_{x_2} \right| \le C \left| \tilde{\Delta}_{y_2} \right| \le C' \left| \sqrt{\tilde{\Delta}} \right|$ it suffices to apply [9, Theorem 1.1] to the right-hand side.

References

- [1] E.Bernardi, T.Nishitani: On the Cauchy problem for noneffectively hyperbolic operators, the Gevrey 5 well posedness, J. Anal. Math. 105 (2008) 197-240.
- [2] E.Bernardi, T.Nishitani: Counterexamples to C^{∞} well posedness for some hyperbolic operators with triple characteristics, Proc. Japan Acad. **91**, Ser. A (2015) 19-24.
- [3] M.D.Bronshtein: The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trans. Moscow Math. Soc. No.1(1982), 83-103.
- [4] K.Kajitani: Wellposedness in Gevrey classes of the Cauchy problem for hyperbolic operators, Bull. Sci. Math., 2^e série 111 (1987), 415-438.

- [5] E.Larsson: Generalized hyperbolicity, Ark. Math. 7 (1969), 11-32.
- [6] A.Martinez: An introduction to semiclassical and microlocal analysis, Springer-Verlag, 2002.
- [7] S.Mizohata: On the evolution equations with finite propagation speed, Proc. Japan Acad., 46 (1970) 258-261.
- [8] T.Nishitani: On the Lax-Mizohata theorem in the analytic and Gevrey classes, J. Math. Kyoto Univ., 18 (1978) 509-521.
- [9] T.Nishitani: A necessary and sufficient condition for the hyperbolicity of second order equations with two independent variables, J. Math. Kyoto Univ., 24 (1984), 91-104.
- [10] T.Nishitani: Cauchy problem for noneffectively hyperbolic operators. MSJ Memoirs, vol. **30**, Mathematical Society of Japan, Tokyo, 2013.