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1 Introduction

1.1 Problems

Let us study a 2× 2 system

Lu = ∂tu−A(t, x)∂xu+B(t, x)u

where t, x ∈ R and A(t, x), B(t, x) are 2 × 2 matrices which are real analytic
near the origin in R2. Moreover we assume that A(t, x) is real valued. We study
the following Cauchy problem:

(C.P.)
{

Lu = f
u(τ, x) = u0(x).

We start with:

Definition 1.1.1 We say that the Cauchy problem (C.P.) is well posed near
the origin if one can find a neighborhood U ⊂ W of the origin and ε > 0 such
that for any u0(x) ∈ C∞(W ∩ {t = τ}), |τ | < ε and for any f ∈ C∞(W ) there
is a solution u ∈ C∞(U) to (C.P.).

Remark: From the Holmgren’s uniqueness theorem, the uniqueness of solutions
to (C.P.) is garanteed.

Definition 1.1.2 We say that ∂t − A(t, x)∂x is strongly hyperbolic near the
origin if for any B(t, x) the Cauchy problem (C.P.) is C∞ well posed near the
origin.

Our main concerns are the next two questions: (A) Characterize L for which
the Cauchy problem (C.P.) is C∞ well posed. (B) Characterize strongly hyper-
bolic systems.
Example 1.1.1. Let us consider

Pv = ∂2
t v − a(t, x)∂2

xv + b(t, x)v = f.

If we set u1 = ∂xv, u2 = ∂tv, u = t(u1, u2), then the equation is reduced to the
following system:

Lu = ∂tu−
(

0 1
a 0

)
∂xu+

(
0 0
b 0

)
u =

(
0
f

)
.

If the Cauchy problem (C.P.) for P is C∞ well posed then so is for L and vice
versa. An interesting case is that a(0, 0) = 0 and hence rankA(0, 0) = 1.
Example 1.1.2: Let us consider

A(t, x) =
(

x2 − t4/2 x2 + xt2

−x2 + xt2 −(x2 − t4/2)

)
.
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Then we will see that for any B(t, x), the Cauchy problem (C.P.) is not C∞

well posed. On the other hand note that the eigenvalues of A(t, x) are ±t4/2
which implies that L is strictly hyperbolic apart from t = 0.
Example 1.1.3: Let

A(t, x) =
(
a11(t, x) a12(t, x)
a21(t, x) a22(t, x)

)
be symmetric, that is a12(t, x) = a21(t, x). Then L is strongly hyperbolic. Note
that the eigenvalues are not necessarily smooth.
Example 1.1.4: Let us consider

A(t, x) =
(
a11(t, x) a12(t, x)
a21(t, x) −a11(t, x)

)
where a2

11(t, x)+a12a21(t, x) ≡ 0. That is the eigenvalue 0 is folded. If we factor
out the common factor K(t, x) among aij(t, x) one can write

A(t, x) =
(

Kσρ Kσ2

−Kρ2 −Kσρ

)
where ρ and σ are relatively prime. Let us write

B(t, x) =
(
b11 b12
b21 b22

)
.

Then a necesary and sufficinet condition for the Cauchy problem (C.P.) to be
well posed is:

ρ∂tσ − σ∂tρ+ b12σ
2 − b21ρ

2 + (b11 − b22)σρ ≡ 0

( Levi condition).
Example 1.1.5: Let us consider

A(t, x) = ψ(t, x)
(

0 1
t2 0

)
.

In this case ∂t −A(t, x)∂x is strongly hyperbolic for any ψ(t, x).
Example 1.1.6: Let us consider

A(t, x) = ψ(t, x)
(

0 1
t4 0

)
.

Let us write

B =
(
b11 b12
b21 b22

)
.

Then a necessary and sufficient condition for (C.P.) to be well posed is given by
b21(0, x) = 0. Note that the condition is independent of ψ (6= 0). In this lecture

we shall provide a necessary and sufficient condition for C∞ well posedness of
(C.P.). We also give a necessary and sufficient condition in order that ∂t −
A(t, x)∂x is strongly hyperbolic.

Before closing this subsection we recall the Lax-Mizohata theorem:
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Theorem 1.1.1 If (C.P.) is C∞ well posed near the origin then all eigenvalues
of A(t, x) are real when (t, x) varies near the origin.

We next remark that one can assume always the trace of A(t, x) is zero.

Lemma 1.1.1 In a new system of local coordinates:

s = t, y = φ(t, x), φ(0, x) = x

one can assume that trA(t, x) ≡ 0, where φ(t, x) verifies

∂φ

∂t
=

1
2
trA(t, x), φ(0, x) = x.

Proof: Easy.
In what follows we assume that trA(t, x) ≡ 0 and hence

A(t, x) =
(
a11 a12

a21 −a11

)
.

Let us denote h(t, x) = −detA(t, x) = a2
11 + a12a21. Note that if all eigenvalues

of A(t, x) are real then
h(t, x) ≥ 0

and vice versa.

1.2 Reduction to second order 2×2 quasi diagonal system

Let us take

T =
(

1 i
i 1

)
.

Note that if the Cauchy problem for L is C∞ well posed then so is for T−1LT
and vice versa. Thus it is enough to study T−1LT :

L] = T−1LT = ∂t −A](t, x)∂x +B](t, x)

where A](t, x) = T−1A(t, x)T and B](t, x) = T−1B(t, x)T . More precisely

A](t, x) =

(
i(a12−a21)

2
a12+a21

2 + ia11
a12+a21

2 − ia11 − i(a12−a21
2

)
=
(

a]11 a]12a
]
21

−a]11

)
.

It is clear that

(1.2.1) ā]11 = −a]11, ā]12 = a]21.

Lemma 1.2.1 We have

|a]12| = |a]21| ≥ |a]11|, 4|a]12|2 ≥ tr(AtA) =
2∑

i,j=1

aij(t, x)2, |a]12|2 ≥ h.

In particular we have a]12(t, x) = 0 ⇐⇒ A(t, x) = O.
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Proof: Note that
h = (a]11)

2 + a]12a
]
21 = |a]12|2 − |a

]
11|2

by (1.2.1). Since h ≥ 0 it follows that |a]12|2 ≥ |a]11|2 and |a]12|2 ≥ h. Observing
that

A](A])∗ = T−1AtAT

we have tr(AtA) = tr(A](A])∗) = 2(|a]11|2 + |a]12|2) ≤ 4|a]12|2. q.e.d.

Lemma 1.2.2 Assume that A(t, x) is uniformly diagonalizable, that is for any
(t, x) there is a 2×2 matrix U(t, x) such that U(t, x)−1A(t, x)U(t, x) is diagonal,
where ‖U(t, x)−1‖, ‖U(t, x)‖ ≤ C, with C independent of (t, x). Then there is
a C > 0 such that

Ch(t, x) ≥
2∑

i,j=1

aij(t, x)2.

Proof: By assumption there is a U such that

U−1AU =
(
α(t, x) 0

0 −α(t, x)

)
.

Hence A = Udiag(α,−α)U−1 which shows ‖A‖2 ≤ ‖U‖2‖U−1‖2(2α2) ≤ 2C4α2.
On the other hand, since α2 = h = −detA, we have

2∑
i,j=1

aij(t, x)2 ≤ 2C4h.

q.e.d.

Let us put
M = ∂t +A]∂x + C + coB] −A]x

where coB] stands for the cofactor matrix of B], A]x = ∂xA
] and C will be

determined later. Actually this is the object we use in order to rduce L] to
second order 2× 2 “quasi” diagonal system.

Note that

L]M = ∂2
t − h∂2

x + (A]t −A]C + tr(AB))∂x
+(B] + coB] + C −A]x)∂t + L](C + coB] −A]x)

because, for instance, we have

B]A] −A]coB] = (B]A]) + co(B]A]) = tr(A]B]) = tr(AB).

We now want to choose C so that we have

A]t −A]C + tr(AB) = diagonal.
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Let us examine A]t −A]C + tr(AB) which is(
∂ta

]
11 − a]11c11 − a]12c21 + tr(AB) ∂ta

]
12 − a]11c12 − a]12c22

∂ta
]
21 + a]11c21 − a]21c11 −∂ta]11 + a]11c22 − a]21c21 + tr(AB)

)
.

We want to choose C so that{
∂ta

]
12 − a]11c12 − a]12c22 = 0,

∂ta
]
21 + a]11c21 − a]21c11 = 0

that is

(1.2.2) c11 =
∂ta

]
21

a]21
+
a]11

a]21
c21, c22 =

∂ta
]
12

a]12
− a]11

a]12
c12.

Lemma 1.2.3 Assume that C = (cij) verifies (1.2.2). Then with{
Y = a]21∂ta

]
11 − a]11∂ta

]
21 + a]21tr(AB),

Z = −a]12∂ta
]
11 + a]11∂ta

]
12 + a]12tr(AB)

we have
L]M = (∂2

t − h∂2
x)I +Q∂x +R∂t + S

where

Q =
(
Y/a]21 − hc21/a

]
21 0

0 Z/a]21 − hc21/a
]
12

)
and R = C −A]x +B] + coB], S = L](coB] −A]x).

Proof: We study (2,2)-entry of A]t −A]C + tr(AB):

−∂ta]11 + a]11

(
∂ta

]
12

a]12
− a]11

a]12
c12

)
− a]21c12 + tr(AB)

=
1

a]12
{−a]12∂ta

]
11 + a]11∂ta

]
12 − ((a]11)

2 + a]12a
]
21)c12 + tr(AB)

=
1

a]12
{Z − hc12}.

We can examine the other entries similary. q.e.d.

In what follows we take c12 = c21 = 0 (just for simplicity, because the term
h/a]12 is harmless by Lemma 1.2.1). Recall again

C =

 ∂ta
]
21

a]
21

0

0 ∂ta
]
12

a]
12

 .

Then we see that

L](C) =

 ∂t(
∂ta

]
21

as21
) 0

0 ∂t(
∂ta

]
12

a]
12

)

+

 a]11∂x(
∂ta

]
21

a]
21

) a]12∂x(
∂ta

]
12

a]
12

)

a]21∂x(
∂ta

]
21

a]
21

) −a]11∂x(
∂ta

]
12

a]
12

)

 .
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Lemma 1.2.4 Let us define

D] = a]11∂ta
]
12 − a]12∂ta

]
11.

Then we have Z = D] + a]12tr(AB), Y = D] + a]12tr(AB̄).

Proof: It is clear since a]11 = −a]11, a
]
12 = a]21. q.e.d.

Lemma 1.2.5 Let us put

M = ∂t +A]∂x +A]x + coB] + C̃

where

C̃ = −

 ∂ta
]
12

a]
12

0

0 ∂ta
]
21

a]
21

 .

Then we have

ML] = (∂2
t − h∂2

x)I − hx∂x + Q̃∂x + R̃∂t + S̃

where

Q̃ =
(
Z/a]12 0

0 Y/a]21

)
, R̃ = C̃ +A]x +B] + coB], S̃ = M(B]).

Proof: Noting A]xA
] + A]A]x = hx, the proof is similar to that of Lemma 1.2.3.

q.e.d.

Remark that in Lemma 1.2.3, (∂2
t − h∂2

x)I +Q∂x is diagonal:∂
2
t − h∂2

x + (D
]+a]

12tr(AB̄)

a]
12

)∂x

∂2
t − h∂2

x + (D
]+a]

12tr(AB)

a]
12

)∂x

and in Lemma 1.2.5, (∂2
t − h∂2

x)I + Q̃∂x is also diagonal:
∂2
t − h∂2

x + (D
]+a]

12tr(AB)

a]
12

− hx)∂x

∂2
t − h∂2

x + (D
]+a]

12tr(AB̄)

a]
12

− hx)∂x.

Essentially our system is reduced to a second order 2×2 “quasi” diagonal system,
with singular coefficients in front of ∂x.

In section 2, we define a finite number of pseudo-characteristic curves t =
φ(x) of A. We define fφ(t, x) for any real analytic function f(t, x) defined near
the origin by (see Definition 2.2.1)

fφ(t, x) = f(t+ φ(x), x).

We also denote by Γ(f) the Newton polygon of f , the precise definition will be
given in section 2. Then we have
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Theorem 1.2.1 In order the Cauchy problem (C.P.) for L is C∞ well posed
near the origin it is necessary and sufficient that

Γ(t[D] + a]12tr(AB)]φ) ⊂
1
2
Γ([h|a]12|2]φ),

Γ(t[D] + a]12tr(AB̄)]φ) ⊂
1
2
Γ([h|a]12|2]φ)

for any pseudo-characteristic curve t = φ(x) of A (see Definition 2.2.1).

Theorem 1.2.2 For ∂t − A(t, x)∂x to be strongly hyperbolic near the origin it
is necessary and sufficient that

Γ(tD]
φ) ⊂

1
2
Γ([h|a]12|2]φ), Γ(t[aij ]φ) ⊂

1
2
Γ(hφ)

for any pseudo-characteristic curves t = φ(x) of A.

2 Pseudo-characteristic curves

2.1 Zeros of non negative real analytic functions

Let F (t, x) be a non negative real analytic function defined near the origin.

Lemma 2.1.1 Let F (t, x) be as above. Then there is a real valued f(t, x) de-
fined in V (a neighborhood of the origin) such that f(t, x) is real analytic in
V \ (0, 0) continuous in V , unique up to a non zero factor such that f(t, x)2 =
F (t, x) and

(2.1.1) f(t, x) = xn
l∏

j=1

(t− tj(x))
m∏

j=l+1

|t− tj(x)|Φ(x)

where Φ(0, 0) 6= 0 and tj(x) is obtained as the restriction to R of

tj(z) =
∑
k≥0

Cjkz
k/pj , (pj ∈ N).

Here Im tj(x) 6= 0 for 0 < |x| < δ with some δ > 0 for j ≥ l + 1 (for 1 ≤ j ≤ l
it may happen Im tj(x) = 0 in 0 < |x| < δ).

Proof: Note that one can write

F (t, x) = x2ngl11 · · · glνν h
m1
1 · · ·hmµ

µ h̄m1
1 · · · h̄mµ

µ Φ

where gi are real, that is ḡi = gi and h̄i 6= hi. Here we denoted h̄(t, x) = h(t̄, x̄).
To see this let us factorize F (t, x) as the product of irreducible factors:

F = x2ngl11 · · · glνν k
m1
1 · · · kmp

p
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with k̄i 6= ki. Since F̄ = F we have

F̄ = x2ngl11 · · · glνν k̄
m1
1 · · · k̄mp

p = x2ngl11 · · · glνν k
m1
1 · · · kmp

p .

On the other hand from the uniqueness of the factorization k̄mj

j coincides with
some k̄mi

i . This proves the assertion. Taking δ > 0 small enough, we may
suppose that the resultant of any pair among gi, hj , h̄k is different from zero in
0 < |x| < δ. We also may assume that the discriminant of every gi, hj , h̄k is
different from zero in 0 < |x| < δ. Factorize

hi =
n(i)∏
k=1

(t− tk(x))

then we have Im tj(x) 6= 0 for x ∈ R, 0 < |x| < δ since otherwise we would have
h̄i(tk(x̂), x̂) = hi(tk(x̂), x̂) = 0 with some x̂ ∈ R, 0 < |x̂| < δ where Im tk(x̂) = 0
which contradicts the assumption that the resultant of hi and h̄i is different from
zero in x ∈ R, 0 < |x| < δ. Thus one can write

hih̄i =
n(i)∏
k=1

|t− tk(x)|2 =

n(i)∏
k=1

|t− tk(x)|

2

.

We turn to gi. Let us write

gi =
n(i)∏
k=1

(t− tk(x)).

If There is a x ∈ R, 0 < |x| < δ such that Im tk(x) = 0 with some k then
li is even (recall that the discriminant of gi is different from zero) because
F (t, x) ≥ 0. Hence one can write

glii =

n(i)∏
k=1

(t− tk(x))li/2

2

.

Finally if Im tk(x) 6= 0 for all x ∈ R, 0 < |x| < δ and k then, since gi is real,
tk(x) is also a root of gi = 0 so that tk(x) coincides with some ti(x) and

gi =
∏

(t− tk(x))(t− tk(x)) =
(∏

|t− tk(x)|
)2

.

This proves the assertion. q.e.d.

Remark: One can express for x ∈ R, 0 < ±x < δ

tj(x) =
∑
k≥0

C±jk(±x)
k/pj .
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Definition 2.1.1 We introduce several notations:

t∗f (x) =
(∑

|tj(x)|2
)1/2

where the sum is taken over all tj(x) appearing in (2.1.1). We call a curve
t = Re tj(x) pseudo-characteristic curve of F (t, x) = 0 and set

C±(F ) = {Re tj(x) | ±x > 0}

which is the set of all functions defining pseudo characteristic curves of F .

We may assume, after shrinking δ if necessary, that

Re tµ1(x) ≤ Re tµ2(x) ≤ · · · ≤ Re tµm(x), 0 < x < δ,
Re tν1(x) ≤ Re tν2(x) ≤ · · · ≤ Re tνm(x), −δ < x < 0.

Then we put

σj(x) =

{
Re tµj

(x), x > 0
Re tνj

(x), x < 0

and define

sj(x) =
1
2
{σj(x) + σj+1(x)}, j = 1, 2, ...,m− 1,

s0(x) = 3t∗f (x), sm(x) = 3t∗f (x).

We also define

ω̃j = {(t, x) | |x| < δ, sj−1(x) ≤ t ≤ sj(x)}, j = 1, ...,m
ω̃(T ) = {(t, x) | |x| < δ, sm(x) ≤ t ≤ T}.

Note that ωj contains a pseudo characteristic curve t = σj(x).

Lemma 2.1.2 Let F (t, x) be as above and f(t, x) be as in Lemma 2.1.1. Then
there are ci > 0 such that

c1
t− t∗f (x)

≤ c1
t− 2t∗f (x)

≤ ft
f
≤ c2
t− t∗f (x)

in ω̃(T ).

Proof: Recall that

ft
f

=
l∑

j=1

1
t− tj(x)

+
m∑

j=l+1

t− Re tj(x)
|t− tj(x)|2

+
Φt
Φ
.

Since

l∑
j=1

1
t− tj(x)

=
l∑

j=1

t− Re tj(x) + iIm tj(x)
|t− tj(x)|2

=
l∑

j=1

t− Re tj(x)
|t− tj(x)|2
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because the left-hand side is real we get

(2.1.2)
ft
f

=
m∑
j=1

t− Re tj(x)
|t− tj(x)|2

+
Φt
Φ
.

Hence we get
ft
f
≥

m∑
j=1

t− Re tj(x)
|t− tj(x)|2

− C.

On the other hand noting that

t− 2t∗f (x) ≥
t

3
≥ 1

4
(t+ |tj(x)|) ≥

1
4
|t− tj(x)|

in ω̃(T ) we have
1

|t− tj(x)|
≥ 1

4(t− 2t∗f (x))
.

Since t− Re tj(x) ≥ t− 2t∗f (x) it follows that

ft
f
≥ 1

4

m∑
j=1

1
t− 2t∗f (x)

− C ≥ c1
t− 2t∗f (x)

because 0 ≤ t− 2t∗f (x) ≤ T in ω̃(T ) implies

− TC

t− 2t∗f (x)
≤ −C.

We turn to the right-hand inequality. Note

|t− tj(x)| ≥ t− |tj(x)| ≥ t− t∗f (x)

and hence by (2.1.2) one has

ft
f
≤

m∑
j=1

1
|t− tj(x)|

+ C ≤ 1
t− t∗f (x)

+ C.

Using C ≤ CT/(t− t∗f (x)) we have the desired assertion. q.e.d.

Lemma 2.1.3 Let F (t, x) be as above and f(t, x) be given by Lemma 2.1.1.
Then there is a C > 0 such that

∂t

(
ft
f

)
≤ C

in ω̃(T ).
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Proof: From (2.1.2) one has

∂t

(
ft
f

)
= −

l∑
j=1

1
(t− tj(x))2

−
m∑

j=l+1

(t− Re tj(x))2 − (Im tj(x))2

|t− tj(x)|4
+ ∂t

(
Φt
Φ

)
.

Here we note that

Re
1

(t− tj(x))2
=

(t− Re tj(x))2 − (Im tj(x))2

|t− tj(x)|4
.

This shows that

∂t

(
ft
f

)
= −

m∑
j=1

(t− Re tj(x))2 − (Im tj(x))2

|t− tj(x)|4
+ ∂t

(
Φt
Φ

)
.

In ω̃(T ) we see that

t− Re tj(x) ≥ 3|tj(x)| − Re tj(x) ≥ 2|tj(x)| ≥ |Im tj(x)|

and hence (t− Re tj(x))2 − (Im tj(x))2 ≥ 0. This gives

∂t

(
ft
f

)
≤ ∂t

(
Φt
Φ

)
≤ C

and hence the result. q.e.d.

Definition 2.1.2 Let φ(x) ∈ C±(F ). Then we define Bφ(t, x) for any real
analytic B(t, x) defined near the origin by

Bφ(t, x) = B(t+ φ(x), x).

Precisely if φ ∈ C±(F ) then Bφ(t, x) is defined for ±x > 0. Then one can
express Bφ(t, x) by the Puiseux series expansion:

Bφ(t, x) =
∑
i,k≥0

B±
ikt

i(±x)k/p

with some p ∈ N. We define the Newton polygon Γ(Bφ) by

Γ(Bφ) = convex hull of {
⋃

B±ik 6=0

((i,
k

p
) + R2

+))}.

We say Γ(Bφ) = ∅ if B ≡ 0.

Proposition 2.1.1 Assume that

Γ(tBφ) ⊂
1
2
Γ(Fφ), ∀φ ∈ C±(F ).

Then there is C > 0 such that (taking T small enough)

|(t− σj(x))B(t, x)| ≤ C|f(t, x)| for (t, x) ∈ ω̃j , j = 1, ...,m,
|(t− sm(x))B(t, x)| ≤ C|f(t, x)| for (t, x) ∈ ω̃(T ), if n ≥ 1,

|B(t, x)| ≤ C|∂tf(t, x)| for (t, x) ∈ ω̃(T ), if n = 0.

12



Proof: We give the proof in subsection 2.3. q.e.d.

Lemma 2.1.4 Let n = 0. Then there is a C > 0 such that

sup
0≤t≤t∗f (x)

|f(t, x)| ≤ C|x|.

Proof: It is enough to show that |F (t, x)| ≤ C|x|2 for 0 ≤ t ≤ t∗f (x). By
definition there is j such that

F (tj(x), x) = 0, tj(x) ∼ t∗f (x).

If gi(tj(x), x) = 0 with li ≥ 2 for some i then one gets

|gi(tj(x), x)|li ≤ C|x|2, 0 ≤ t ≤ t∗f (x).

To see this note that gi(tj(x), x) = tj(x)n(i) + O(|x|) = 0 and hence we have
tj(x)n(i) = O(|x|). This gives gi(tj(x), x) = O(|x|) for 0 ≤ t ≤ t∗f (x). If
hi(tj(x), x) = 0 then it is easy to see that

|hi(t, x)| ≤ C|x| for 0 ≤ t ≤ t∗f (x)

and hence |hi(t, x)h̄i(t, x)| ≤ C|x|2 for 0 ≤ t ≤ t∗f (x). If gi(tj(x), x) = 0 with
li = 1. Since gi(t, x) ≥ 0 then gi(t, x) = t2m̄ + d1(x)t2m̄−1 + · · ·+ d2m̄(x) where
d2m̄(x) = O(|x|2). On the other hand every root of gi(t, x) = 0 is a branch of∑

j≥1

Ci(z1/2m̄)i.

Then it follows that C1 = 0 and hence every root is O(|x|1/m̄). This shows that
dj(x)(|x|1/m̄)2m̄−j = O(|x|2) and hence gi(tj(x), x) = O(|x|2). q.e.d.

Lemma 2.1.5 Let F (t, x) and f(t, x) be as above. Then we have

sup
|t|≤T,0<|x|<δ

|fx(t, x)| ≤ C

with some C > 0.

Proof: Recall that f(t, x) is real analytic in V \(0, 0) satisfying f(t, x)2 = F (t, x).
If g(t, x)2 = F (t, x) then we have f(t, x) = g(t, x) or f(t, x) = −g(t, x) in
V \ (0, 0). That is f(t, x) is unique up to the sign. We can argue exchanging t
and x to conclude that

f(t, x) = tk
l̃∏

j=1

(x− sj(t))
m̃∏

j=l̃+1

|x− sj(t)|Ψ(t, x)

where Im sj(t) 6= 0 if j ≥ l̃+1. Then it is clear that fx(t, x) is bounded because

∂

∂x
|x− sj(t)| =

x− Re sj(t)
|x− sj(t)|

is bounded. q.e.d.
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Lemma 2.1.6 Let F (t, x) and f(t, x) be as above. Let n = 0. Then for any
K > 0, there is TK such that we have

either ft(t, x) ≥ Kf(t, x) > 0 or − ft(t, x) ≥ −Kf(t, x) > 0

in ω̃(T ) for 0 < T ≤ TK .

Proof: Recall that

f(t, x) =
l∏

j=1

(t− tj(x))
m∏

j=l+1

|t− tj(x)|e(t, x).

Then it is easy to see

f̄tf + ftf̄ = 2
m∑
p=1

(t− Re tp(x))
∏
j 6=p

|t− tj(x)|2e2 +
m∏
j=1

|t− tj(x)|2(e2)t.

On the other hand, by definition we see for (t, x) ∈ ω̃(T )

t− Re tk(x) ≥ t− t∗f (x) ≥
2
3
t ≥ 1

2
|t− tj(x)|, k = 1, ...,m.

Then one has

(f2)t −Kf2 ≥
∑
k

(1− CK|t− tk(x)|)|t− tk(x)|
∏
j 6=k

|t− tj(x)|2e2.

Since supω̃(T ) |t− tk(x)| → 0 as T → 0 we get the desired result. q.e.d.

2.2 Pseudo-characteristic curves for systems

Recall that

h(t, x) = x2n1(t2m1 + h1(x)t2m1−1 + · · ·+ h2m1(x))e(t, x)
2

where e(0, 0) 6= 0, hi(0) = 0. We apply Lemma 2.1.1 to h and we get

b(t, x) = xn1

l1∏
i=1

(t− ti(x))
m1∏

i=l1+1

|t− ti(x)|e(t, x)

which verifies b2(t, x) = h(t, x). We turn to study a]12(t, x). By Weierstrass
preparation theorem one can write

a]12(t, x) = xn2(tm2 + a1(x)tm2−1 + · · ·+ am2(x))Ψ(t, x)

with ai(0) = 0, Ψ(0, 0) 6= 0. Here we note that one can express

a]12(t, x) = xn2gµ1
1 · · · gµp

p hν11 · · ·hνq
q Ψ
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where ḡi = gi and h̄i 6= hi. By the same argument as before we conclude that
if we write

hi =
n(i)∏
k=1

(t− tk(z))

then we have Im tk(x) 6= 0 for x ∈ R, 0 < |x| < δ with some δ > 0. This gives

|a]12|2 = x2n2

l2∏
j=1

(t− tj(x))2
m2∏

j=l2+1

|t− tj(x)|2ẽ(t, x)2

and define b̃(t, x) by

b̃(t, x) = xn2

l2∏
j=1

(t− tj(x))
m2∏

j=l2+1

|t− tj(x)|̃(t, x)

which is the same one given by Lemma 2.1.1 applied to |a]12|2.
We now study all {ti(z)} and {tj(z)} appearing in the definition of b and b̃.

Let us take t1(z), ..., tm(z) which are differnt ones among {ti(z)} and {tj(z)}.

Definition 2.2.1 We call the curves t = Re tj(x) pseudo characteristic curves
of the reference system. Just as before one can define σj(x), sj(x), ωj, ω(T )
etc.

Remark: Let F (t, x) = h|a]12|2. Then σj , sj , ωj , ω(T ) are the same ones given
by Definition 2.1.1.

Remark: Note that n1 = 0 implies m1 ≥ 1.
Proof: Let n1 = 0. Note |a]12|2 ≥ h implies n2 = 0. On the other hand n2 = 0
means m2 ≥ 1 because a]12(0, 0) = 0. Hence |a]12|2 ≥ h again shows that m1 ≥ 1.
q.e.d.

Remark: Since one can write

t∗b(x) = |x|α(Cb + o(|x|)), t∗
b̃
(x) = |x|β(Cb̃ + o(|x|), Cb, Cb̃ > 0

taking δ > 0 so small one may suppose that

either 2t∗
b̃
(x) ≥ t∗b(x) or 2t∗b(x) ≥ t∗

b̃
(x)

in |x| ≤ δ.

Lemma 2.2.1 Let n1 = 0 and 2t∗
b̃
(x) ≥ t∗b(x) (resp. 2t∗b(x) ≥ t∗

b̃
(x)). Then

there is a C > 0 such that

bt
b
≤ C

b̃t

b̃
(resp.

b̃t

b̃
≤ C

bt
b

) in ω̃(T ).
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Proof: Suppose 2t∗
b̃
(x) ≥ t∗b(x). Clearly we have t−2t∗

b̃
(x) ≤ t− t∗b(x) and hence

by Lemma 2.1.2

bt
b
≤ C ′

t− t∗b(x)
≤ C ′

t− 2t∗
b̃
(x)

≤ C ′′
b̃t

b̃
in ω̃(T )

because ω̃(T ) ⊂ ω̃b̃(T ) ∩ ω̃b(T ). The proof for the other case is similar. q.e.d.

Lemma 2.2.2 Let n1 = 0. Then there is a C > 0 such that∣∣∣∣∣∂ta]12a]12

∣∣∣∣∣ ≤ C
b̃t

b̃
,

∣∣∣∣∣∂t(∂ta]12a]12
)

∣∣∣∣∣ ≤ C

(
b̃t

b̃

)2

in ω̃b̃(T ).

Proof: Recall that

a]12 = xn2

m2∏
j=1

(t− tj(x))Ψ

and note that
∂ta

]
12

a]12
=
∑ 1

t− tj(x)
+

Ψt

Ψ
.

Since |t− tj(x)| ≥ t− t∗
b̃
(x) in ω̃b̃(T ) we have∣∣∣∣∣∂ta]12a]12

∣∣∣∣∣ ≤ c1
t− t∗

b̃
(x)

+ c2 ≤
c3

t− t∗
b̃
(x)

≤ c4

(
b̃t

b̃

)

in ω̃b̃(T ), taking T small enough. Similarly we have

∂t

(
∂ta

]
12

a]12

)
= −

∑ 1
(t− tj(x))2

+ ∂t

(
Ψt

Ψ

)
it is easy to see that∣∣∣∣∣∂t(∂ta]12a]12

)

∣∣∣∣∣ ≤ c1
(t− t∗

b̃
(x))2

≤ c2

(
b̃t

b̃

)2

in ω̃b̃(T ). q.e.d.

Lemma 2.2.3 There is a C > 0 such that

sup
0≤t≤t∗(x)

|b(t, x)| ≤ C|x|.
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Proof: If n1 ≥ 1 then the assertion is trivial. Let n1 = 0 and hence m1, m2 ≥ 1.
When t∗(x) ∼ t∗b(x) then Lemma 2.1.4(or rather its proof) proves the lemma.
Then we now assume that there is no j such that

h(tj(x), x) = 0, tj(x) ∼ t∗(x).

We observe the Newton polygons Γ(a]12) and Γ(h). Our assumption implies that
the line with the slowest steep of Γ(h) is steeper than that of Γ(a]12). This shows
that

hk(x)t∗(x)2m1−k = o(t∗(x)2m1), 1 ≤ k ≤ 2m1.

On the other hand since a]12a
]
21 ≥ h, ā]12 = a]21 we see that m1 ≥ m2. From

a]12(t(x), x) = 0 it follows that

tj(x)m2 = O(|x|).

This shows that t∗(x)2m1 = O(|x|2) and then

sup
0≤t≤t∗(x)

|h(t, x)| ≤ C|x|2

from which we have the desired assertion. q.e.d.

Definition 2.2.2 Let us put

ρj(t, x) = t− σj(x), j = 1, ...,m, ρm+1(x) = t− sm(x).

Lemma 2.2.4 We have the following.

(i) Let n1 ≥ 1. Then for j = 1, ...,m+ 1 we have

sup
0≤t≤T,|x|<ε

|b(t, x)ρjx(t, x)| → 0, ε→ 0

(ii) Let n1 = 0. Then for j = 1, ...,m+ 1 we have

sup
0≤t≤t∗(x),|x|<ε

|b(t, x)ρjx(t, x)| → 0, ε→ 0

(iii) Let n1 = 0 and 2t∗
b̃
(x) ≥ t∗b(x). Then for j = 1, ...,m+ 1 we have

sup
0≤t≤t∗(x),|x|<ε

|b̃(t, x)ρjx(t, x)| → 0, ε→ 0.

Proof: Remarking that ρjx(x) = O(|x|σ−1) with some σ > 0 the assertions follow
from Lemmas 2.2.3 and 2.1.4. q.e.d.
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Lemma 2.2.5 There is a C > 0 such that

|ρj(t, x)bt(t, x)| ≤ C|b(t, x)|

in ω̃j ∩ {t ≥ 0}, j = 1, ...,m and

|ρm+1(t, x)bt(t, x)| ≤ C|b(t, x)|

in ω̃(T ) ∩ {t ≥ 0}.

Proof: Recall that

bt
b

=
l1∑
i=1

1
t− ti(x)

+
m1∑

i=l1+1

t− Re ti(x)
|t− ti(x)|2

+
et
e
.

Let (t, x) ∈ ωj . Then it is clear that

|t− σj(x)| ≤ |t− Re tµ(x)| ≤ |t− tµ(x)|

for all µ. This shows that∣∣∣∣btb
∣∣∣∣ ≤∑ 1

|t− ti(x)|
+ c ≤ c′

|t− σj(x)|
+ c

in ω̃j . Taking T small so that

c ≤ c′′

|t− σj(x)|

in ω̃j we have the assertion. If (t, x) ∈ ω̃(T ), then we see

|t− sm(x)| ≤ |t− Re tµ(x)| ≤ |t− tµ(x)|

for all µ and hence the assertion follows from the same arguments as before.
q.e.d.

2.3 Proof of Proposition 2.1.4

In this subsection we give a proof of Proposition 2.1.1. We may assume that
µj = j renumbering the indices if necessary. We fix 1 ≤ j0 ≤ m. Assume that

Re tj0−k−1(x) < Re tj0−k(x) = · · · = Re tj0(x) = · · · = Re tj0+l(x) < Re tj0+l+1(x)

in 0 < x < δ. Put λj0(x) = Re tj0(x) and

φ+ =
1
2
(Re tj0+l+1(x)− λ(x)), φ−(x) =

1
2
(λ(x)− Re tj0−k−1(x)).

When Re tj0(x) = Re tm(x) (resp. Re tj0 = Re t1(x)) we set

φ+ =
1
2
(3t∗(x)− λ(x)), (resp. φ− =

1
2
(λ(x) + 3t∗(x))).
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Lemma 2.3.1 For any 1 ≤ ν ≤ m

|λ(x)− tν(x)|+ δ|φ±(x)| ∼ |λ(x) + δφ±(x)− tν(x)|

holds uniformly in 0 ≤ δ ≤ 1.

Proof: Let Re tj0(x) < Re tm(x). Note

|λ(x)− tν(x) + δφ+(x)|2 = (λ(x)− Re tν(x) + δφ+(x))2 + (Im tν(x))2.

If Re tν(x) ≥ Re tj0+l+1(x) then

|λ(x)− Re tν(x) + δφ+(x)|

≥ |Re tν(x)− λ(x)| − δ|φ+(x)| ≥ 1
2
|Re tν(x)− λ(x)|.

Since Re tν(x)− λ(x) ≥ 2φ+(x) ≥ 0 it follows that

|λ(x)− Re tν(x) + δφ+(x)| ∼ |λ(x)− Re tν(x)|+ δ|φ+(x)|

which proves the assertion for φ+. We next assume Re tν(x) ≤ Re tj0(x). In
this case we have

|λ(x)− Re tν(x) + δφ+(x)| = |λ(x)− Re tν(x)|+ δφ+(x)

then one gets the assertion. The proof of the other cases are similar. q.e.d.

Write
B(t, x) = xn̄B̃(t, x)Ẽ(t, x)

where Ẽ(0, 0) 6= 0. Recall that our assumption is

Γ(txn̄B̃(t+ φ(x), x) ⊂ Γ(xn
m∏
ν=1

Λν(t+ φ(x), x))

where Λν(t, x) = t− tν(x). Let us define ε(ν), 1 ≤ ν ≤ m and ε by

|λ(x)− tν(x)| ∼ xε(ν), φ+(x) ∼ xε.

Assume that

ε(ν1) ≥ · · · ≥ ε(νl) > ε ≥ ε(νl+1) ≥ · · · ≥ ε(νm).

From Lemma 2.3.1 it follows that
m∏

j=l+1

|Λj(λ(x) + δφ+(x), x)| ≥ c
m∏

j=l+1

xε(νj)

with some c > 0 uniformly in 0 ≤ δ ≤ 1. Lemma 2.3.1 again shows

l∏
j=1

|Λνj (λ(x) + δφ+(x), x)| ∼
l∏

j=1

(xε(νj) + δxε) ≥ cδpxεp+ε(νp+1)+···+ε(νl)
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with c > 0 for p = 0, 1, ..., l. Hence, writing

txn̄B̃(t+ λ(x), x) =
∑

bj(x)tj , bj+1(x) =
1
j!
xn̄∂jt B̃(λ(x), x)

the assumption implies that

(2.3.1) Order{xn̄∂jt B̃(λ(x), x)} ≥ n+
m∑

i=j+2

ε(νi).

Lemma 2.3.2 For 0 ≤ δ ≤ 1 we have

|δφ±(x)xn̄B̃(λ(x) + δφ±(x), x)| ≤ C|xn
m∏
ν=1

Λν(λ(x) + δφ±(x), x)|

with C independent of δ.

Proof: Let us write

B̃(λ(x) + δφ+(x), x) =
m̄∑
j=0

Bj(x)δj , Bj(x) =
1
j!
φ+(x)j∂jt B̃(λ(x), x).

From (2.3.1) it follows that

|xn̄∂jt B̃(λ(x), x)| ≤ Cxn+
Pm

i=j+2 ε(νi)

and hence

(2.3.2) δ|φ+||δjφ+(x)jxn̄∂jt B̃(λ(x), x)| ≤ Cδj+1xε(νj+2)+···+ε(νm)+(j+1)ε+n.

Let j + 2 ≤ l then the right-hand side of (2.3.2) is bounded by

Cδj+1xn+(j+1)ε+ε(νj+2)+···+ε(νl)
m∏

i=l+1

xε(νi) ≤ C|xn
m∏
ν=1

Λν(λ(x) + δφ+(x), x)|.

If j + 2 > l then noting

(j + 1)ε+ ε(νj+2) + · · ·+ ε(νm) ≥ lε+ ε(νl+1) + · · ·+ ε(νm)

the right-hand side of (2.3.2) is estimated by

Cδlxn+lε

(
m∏

i=l+1

xε(νi)

)
δj+1−l ≤ C|xn

m∏
ν−1

Λν(λ(x) + δφ+(x), x)|

which ends the proof of the assertion for φ+. The proof for φ− is similar.q.e.d.

Proof of Proposition 2.1.1. Recall that

ω̃j0 = {(t, x) | |x| < δ, λ(x)− φ−1(x) ≤ t ≤ λ(x) + φ+(x)}.
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Let (t, x) ∈ ω̃j0 ∩ {t ≥ λ(x)}. Then there is a 0 ≤ δ ≤ 1 such that t =
λ(x) + δφ+(x). From Lemma 2.3.2 it follows

|(t− λ(x))B(t, x)| ≤ C|f(t, x)|.

In the case (t, x) ∈ ω̃j0 ∩ {t ≤ λ(x)} the proof is similar. q.e.d.

Lemma 2.3.3 In ω(T ) with small T we have

|B(t, x)| ≤ C
m∑
q=1

|xn
∏
ν 6=q

Λν(t, x)|,

|(t− Re tm(x))B(t, x)| ≤ C|xn
m∏
ν=1

Λν(t, x)|.

Proof: Repeating the same proof of Lemma 2.3.2 we see with λ(x) = Re tm(x)
that

|δφ+(x)xn̄B̃(λ(x) + δφ+(x), x)| ≤ C|xn
m∏
ν=1

Λν(λ(x) + δφ+(x), x)|

holds for all 0 ≤ δ. For any (t, x) ∈ ω(T ), taking δ > 0 so that t = λ(x)+δφ+(x)
the second inequality follows. Since

t− Re tm(x) ≥ t− |tm(x)| ≥ 2
3
t ≥ 1

3
|t− tν(x)|,

|t− tν(x)| ≥ t− |tν(x)| ≥
2
3
t ≥ 1

3
(t− Re tm(x))

the first inequality follows from the second one. q.e.d.

Lemma 2.3.4 In ω(T ) with small T we have

m∑
q=1

|xn
m∏
ν 6=q

Λν(t, x)| ∼ |∂tf(t, x)|.

Proof: Since it is clear that

|∂tf(t, x)| ≤ C
m∑
q=1

|xn
∏
ν 6=q

Λν(t, x)|

it is enough to show the converse. Note that

f∂tf = x2n
m∑
ν=1

(t− Re tν(x))
∏
µ6=ν

|t− tµ(x)|2|e|2

+x2n
m∏
µ=1

|t− tµ(x)|2e∂te.
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On the other hand, in ω(T ) we have t − Re tν(x) ≥ c|t − tν(x)| for 1 ≤ ν ≤ m
because

t− Re tν(x) ≥
2
3
t ≥ t

3
+

1
3
|tν(x)| ≥

1
3
|t− tν(x)|.

Thus we see

f∂tf ≥ cx2n
m∑
ν=1

|t− tν(x)|
∏
µ6=ν

|t− tµ(x)|2

with c > 0. Hence dividing |f(t, x)| we get the desired assertion. q.e.d.

3 A priori estimate

3.1 Estimate in a domain bounded by pseudo-characteristic
curves

Let D ⊂ W be an open set and ρ(t, x) ∈ C∞(D) where ρt > 0 in D. Put
p = ∂2

t − h(t, x)∂2
x and note that

p− hx∂x = ∂2
t − ∂xh∂x.

We study the energy form:

(pu− hx∂xu) ¯∂tu+ ¯(pu− hx∂xu)∂tu
= ∂tG1(u) + ∂xG2(u)−R(u)

where

G1(u) = |∂tu|2 + h(t, x)|∂xu|2,
G2(u) = −h(∂tu ¯∂xu+ ¯∂tu∂xu),

R(u) = ht|∂xu|2.

Multiply e−θtρ±N to the energy form and integrate over D:

2
∫
D

e−θtρ±N |pu− hx∂xu||∂tu|dxdt

≥
∫
D

[∂t(e−θtρ±NG1(u)) + ∂x(e−θtρ±NG2(u))]dxdt

∓N
∫
D

e−θtρ±N−1(ρtG1(u) + ρxG2(u))dxdt

+θ
∫
D

e−θtρ±NG1(u)dxdt−
∫
D

e−θtρ±NR(u)dxdt

where θ > 0 and N is even. Note that

N

∫
D

|e−θtρ±N−1ρxG2(u)|dxdt ≤
N

4

∫
D

|e−θtρ±N−1ρt||∂tu|2dxdt

+4N
∫
D

|e−θtρ±N−1h2ρ2
xρ

−1
t ||∂xu|2dxdt
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by the Cauchy-Schwarz inequality. Similarly we have

2
∫
D

e−θtρ±N |pu− hx∂xu||∂tu|dxdt

≤ 4
N

∫
D

|e−θtρ±N+1ρ−1
t ||pu− hx∂xu|2dxdt

+
N

4

∫
D

|e−θtρ±N−1ρt||∂tu|2dxdt.

We choose ± so that ∓ρ±N−1ρt > 0 in D, that is if ρ > 0 in D we take ρ−N

and if ρ < 0 in D then we take ρN . Using these inequalities we get

4
N

∫
D

|e−θtρ±N+1ρ−1
t ||pu− hx∂xu|2dxdt

≥
∫
D

[∂t(e−θtρ±NG1(u)) + ∂x(e−θtρ±NG2(u))]dxdt

+
N

4

∫
D

|e−θtρ±N−1ρt|(2|∂tu|2 + h(t, x)|∂xu|2)dxdt

+
∫
D

σ(t, x)|e−θtρ±N−1||∂xu|2dxdt+ θ

∫
D

e−θtρ±NG1(u)dxdt

where

(3.1.1) σ(t, x) =
3N
4
hρt − 4Nh2ρ2

xρ
−1
t − C|ρht|.

We turn to ∂tu·ū+ ¯∂tu·u = ∂t|u|2. Multiply e−θtρ±N−2ρ2
t we get C1N

−1
∫
D
|e−θtρ±N−1ρt||∂tu|2dxdt ≥∫

D
∂t(e−θtρ±N−2ρ2

t |u|2)dxdt
+ N

4

∫
D
e−θtρ±N−3ρ3

t |u|2dxdt+ θ
∫
D
e−θtρ±N−2ρ2

t |u|2dxdt.Let us put

(3.1.1) E(u) = |∂tu|2 + h(t, x)|∂xu|2 + cN2ρ−2ρ2
t |u|2 (c = (4C1)−1)

and

(3.1.2) Γ(u) = −(e−θtρ±NE(u))dx+ (e−θtρ±NG2(u))dt

and summarize:

Proposition 3.1.1 Assume ρ ∈ C∞(D), ρ 6= 0, ρt > 0 in D and N is even.
Choose ± so that ∓ρ±N−1ρt > 0 in D. Then we have

4
N

∫
D

|e−θtρ±N−1ρ−1
t ||pu− hx∂xu|2dxdt

≥
∫
∂D

Γ(u) +
∫
D

σ(t, x)|e−θtρ±N−1||∂xu|2dxdt

+
N

4

∫
D

|e−θtρ±N−1ρt|[E(u)− C ′Nρ−1ρtt|u|2]dxdt

+θ
∫
D

e−θtρ±NE(u)dxdt
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where
σ(t, x) =

3N
4
hρt − 4Nh2ρ2

xρ
−1
t − C|ρht|

Definition 3.1.1 We define ρA,D(t, x) by

(1) ρA,D(t, x) = ρj = t− σj(x) if D = ωj ∩ {t ≥ 0}, j = 1, 2, ...,m

(2) ρA,D(t, x) = ρm+1 = t− sm(x) if D = ω(T ) ∩ {t ≥ 0} and n1 ≥ 1

(3) ρA,D(t, x) = b(t, x) if D = ω(T ) ∩ {t ≥ 0}, n1 = 0 and 2t∗b(x) ≥ t∗
b̃
(x)

(4) ρA,D(t, x) = b̃(t, x) if D = ω(T ) ∩ {t ≥ 0}, n1 = 0 and 2t∗
b̃
(x) ≥ t∗b(x)

where we have set

ωj = {(t, x) | |x| < δ(T − t), sj−1(x) ≤ t ≤ sj(x)}, j = 1, ...,m
ω(T ) = {(t, x) | |x| < δ(T − t), sm(x) ≤ t}.

Remark: We may suppose that b > 0, b̃ > 0 in ω(T ).

Lemma 3.1.1 Let D = ωj ∩ {t ≥ 0} or D = ω(T ) ∩ {t ≥ 0} and ρ = ρA,D.
Then there are c > 0, C > 0 such that, taking T small, we have

σ(t, x) ≥ cNb(t, x)2ρt, Cρ−2ρ2
t ≥ ρ−1ρtt in D

for N ≥ N0.

Proof: We first study the case n1 ≥ 1. In this case, by definition, ρA,D = t− σj
or t− sm. Note

ρht = 2ρbbt.

From Lemma 2.2.5 we have |ρbt| ≤ Cb in D and hence |ρht| ≤ Cb2 in D. On
the other hand, from Lemma 2.2.4 we see that

sup
0≤t≤t∗(x),|x|<ε

|b(t, x)ρx| → 0 as ε→ 0 if D = ωj ∩ {t ≥ 0}, j ≤ m

sup
0≤t≤T,|x|<ε

|b(t, x)ρx| → 0 as ε→ 0 if D = ω(T ) ∩ {t ≥ 0}.

Noticing ρt = 1 it is clear that, taking T small,

σ(t, x) ≥ CNb2

with some C > 0. Since ρtt = 0 the second inequality is trivial.
We turn to the case n1 = 0. Let 2t∗b(x) ≥ t∗

b̃
(x). Recall that

btσ(t, x) = b2
[
3N
4
b2t − 4Nb2b2x − Cb2t

]
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because ρ = b. By Lemma 2.1.7 we have bt ≥ Kb > 0 for any given K if taking
T small in ω̃b(T ). Since bx is bounded we get (Lemma 2.1.6)

btσ(t, x) ≥ CNb2b2t in ω̃b(T ).

Since ω(T ) ⊂ ω̃b(T ) it is clear that σ(t, x) ≥ CNb2bt in D. We turn to the
second inequality. By Lemma 2.1.1 we see

∂t

(
bt
b

)
≤ C in ω̃b(T ).

This shows that bttb−1 ≤ C+ b2t b
−2 in ω̃b(T ). From Lemma 2.1.7 again we have

b−2b2t ≥ b−1bt ≥ C in ω̃b(T )

taking T small and hence we get

bttb
−1 ≤ 2b2t b

−2 in ω̃b(T ).

Since ω(T ) ⊂ ω̃b(T ), we have the second inequality. Finally we study the case
n1 = 0 and 2t∗

b̃
(x) ≥ t∗b(x). Recall

b̃tσ(t, x) = b2
[
3N
4
b̃2t − 4Nb2b̃2x − Cb̃b̃tb

−1bt

]
because ρ = b̃. Since b̃x is bounded (Lemma 2.1.6) and b̃ ≥ b it follows from
Lemma 2.1.7 that

b2b̃2x ≤ Cb̃2 ≤ K−1b̃2t in ω̃b̃(T )

for any K taking T small. This shows that the second term can be cancelled
against the first term. On the other hand, since 2t∗

b̃
≥ t∗b , from Lemma 2.2.1 we

see that
btb

−1 ≤ Cb̃tb̃
−1 in ω̃(T )

and hence btb−1b̃b̃t ≤ Cb̃2t in ω̃(T ). This shows that

σ(t, x) ≥ cNb2b̃2t = cNb2ρt in ω(T ).

By Lemma 2.1.1 we see

∂t

(
b̃t

b̃

)
≤ C in ω̃b̃(T )

and hence b̃ttb̃−1 ≤ C + b̃2t b̃
−2 in ω̃b̃(T ). From Lemma 2.1.7 we get

b̃−2b̃2t ≥ b̃−1b̃t ≥ c in ω̃b̃(T )

with T small. Then one has

b̃ttb̃
−1 ≤ 2b̃2t b̃

−2 in ω̃b̃(T ).
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Noting ρ = b̃ and ω(T ) ⊂ ω̃b̃(T ), this gives the desired assertion. q.e.d.

We summarize:let us denote

ωuj = {(t, x) ∈ ωj | t ≥ σj(x)}, ωdj = {(t, x) ∈ ω | t ≤ σj(x)}.

Proposition 3.1.2 We take ρ−N with ρ = ρA,D if D = ω(T ), ρN with ρ =
ρA,D if D = ωdj ∩ {t ≥ 0} and ρ−N with ρ = ρA,D if D = ωuj ∩ {t ≥ 0}. Then
there is C1 > 0 such that

4
N

∫
D

|e−θtρ±N+1ρ−1
t ||pu− hx∂xu|2dxdt ≥

∫
∂D

Γ(u)

+c1N
∫
D

|e−θtρ±N−1ρt|E(u)dxdt+ θ

∫
D

e−θtρ±NE(u)dxdt.

Lemma 3.1.2 Assume that

Γ(tYφ) ⊂
1
2
Γ([h|a]12|2]φ), Γ(tZφ) ⊂

1
2
Γ([h|a]12|2]φ), ∀φ ∈ C±(A).

Let ρ = ρA,D and D = ωj ∩ {t ≥ 0} or D = ω(T ) ∩ {t ≥ 0}. Then taking T
small we have ∣∣∣∣∣ρ(t, x)Y (t, x)

a]21

∣∣∣∣∣ ,
∣∣∣∣∣ρ(t, x)Z(t, x)

a]12

∣∣∣∣∣ ≤ Cb(t, x)ρt(t, x)

in D.

Proof: We prove the asertion for Z because the proof for Y is a repetition. From
Proposition 2.1.4 with F = h|a]12|2, B = Z we have if D = ωj ∩ {t ≥ 0}

|ρ(t, x)Z(t, x) ≤ C|b(t, x)b̃(t, x)| in D.

On the other hand, since |b̃(t, x)| = |a]12(t, x)|, ρt = 1 we get the desired as-
sertion. Let D = ω(T ) ∩ {t ≥ 0} and n1 ≥ 1. Then the proof is same. Let
D = ω(T ) ∩ {t ≥ 0} and n1 = 0. Proposition 2.1.4 gives

|Z(t, x)| ≤ C|∂t(bb̃)|.

This shows that ∣∣∣∣∣ Z(t, x)

a]12(t, x)

∣∣∣∣∣ ≤ C

∣∣∣∣∣∂t(bb̃)b̃

∣∣∣∣∣ = C

(
bt +

bb̃t

b̃

)
.

When 2t∗b(x) ≥ t∗
b̃
(x) from Lemma 2.2.1 it follows that

b̃t

b̃
≤ c

bt
b

in ω(T )
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and hence we have
| Z
a]12

| ≤ c′(bt + bt) ≤ 2c′bt.

Remarking that ρ = b we get

|ρ Z
a]12

| ≤ c′′bρt in ω(T ).

We turn to the case 2t∗
b̃
(x) ≥ t∗b(x). By lemma 2.2.1 we have

bt
b
≤ c

b̃t

b̃
in ω(T ).

Hence we get

| Z
a]12

| ≤ C ′(
b̃+ b

b̃
+
bb̃t

b̃
).

Since ρ = b̃ we see that

|ρ Z
a]12

| ≤ C ′′bρt in ω(T ).

q.e.d.

Lemma 3.1.3 Let D = ωj ∩ {t ≥ 0} or D = ω(T ) ∩ {t ≥ 0} and ρ = ρA,D.
Then we have ∣∣∣∣∣∂ta]12a]12

∣∣∣∣∣ ≤ C
ρt
ρ
,

∣∣∣∣∣∂t(∂ta]12a]12
)

∣∣∣∣∣ ≤ C(
ρt
ρ

)2 in D.

Proof: Let D = ωj ∩ {t ≥ 0}. Since

∂ta
]
12

a]12
=
∑ 1

t− tj(x)
+

Ψt

Ψ

and for (t, x) ∈ ωj we have

|t− σj(x)| ≤ |t− Re tµ(x)| ≤ |t− tµ(x)|

for all µ. It is clear that

|ρ(t, x)∂ta
]
12

a]12
| ≤ C in ωj

taking T small. This proves the assertion because ρt = 1. Similar arguments
prove the second inequality when D = ωj ∩ {t ≥ 0} or D = ω(T ), n1 ≥ 1. Let
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D = ω(T ) and n1 = 0. Assume that 2t∗
b̃
(x) ≥ t∗b(x). Then from Lemma 2.2.2 it

follows that

|∂ta
]
12

a]12
| ≤ C

b̃t

b̃
, |∂t(

∂ta
]
12

a]12
)| ≤ C(

b̃t

b̃
)2 in ω̃b̃(T )

and this proves the assertion because b̃ = ρ. When 2t∗b(x) ≥ t∗
b̃
(x) then using

b̃t

b̃
≤ C

bt
b

in ω̃(T )

(Lemma 2.2.1) we get the desired assertion. q.e.d.

We pass to ML]u = f . Assume that u verifies ML]u = f . Recall that

ML] =
(
p+ (Z/a]12 − hx)∂x 0

0 p+ (Y/a]21 − hx)∂x

)
+ R̃∂t + S̃

= (p− hx∂x)I + Q̃∂x + R̃∂t + S̃

where

Q̃ =
(
Z/a]12 0

0 Y/a]21

)
, R̃ = C̃ +A]x +B] + coB], S̃ = M(B])

C̃ = −diag

(
∂ta

]
12

a]12
,
∂ta

]
21

a]21

)
.

We assume that the hypothesis in Lemma 3.1.2 holds.

Lemma 3.1.4 Let D = ωj ∩ {t ≥ 0} or D = ω(T ) and ρ = ρA,D. Then we
have

ρ2ρ−1
t |Q̃|2 ≤ C(Q̃)ρtb(t, x)2 in D

with some C(Q̃).

Proof: It is clear from Lemma 3.1.2. q.e.d.

Lemma 3.1.5 Let D = ωj ∩ {t ≥ 0} or D = ω(T ) and ρ = ρA,D. Then we
have

ρ2ρ−1
t |R̃|2 ≤ C(R̃)ρt, ρ2ρ−1

t |S̃|2 ≤ C(S̃)ρt

with some C(R̃) > 0, C(S̃) > 0.

Proof: It is clear from Lemma 3.1.3. q.e.d.

Note that

ρ±N+1ρ−1
t |pu− hx∂xu|2 ≤ 2ρ±N+1ρ−1

t |ML]u|2

+ρ±N+1ρ−1
t {C|Q̃|2|∂xu|2 + C|R̃|2|∂tu|2 + C|S̃|2|u|2}

≤ 2ρ±N+1ρ−1
t |ML]u|2 + ρ±N−1ρt{C(Q̃)b2|∂xu|2 + C(R̃)|∂tu|2 + C(S̃)|u|2}
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by Lemmas 3.1.4 and 3.1.5. Taking N2 ≥ c1C(Q̃), c1C(C̃) and θ ≥ c2C(S̃), it
follows from Proposition 3.1.2 that

8
N

∫
D

e−θtρ±N+1ρ−1
t |ML]u|2dxdt ≥

∫
∂D

Γ(u)

+
c1
2

∫
D

e−θtρ±N−1ρtE(u)dxdt+
θ

2

∫
D

e−θtρ±NE(u)dxdt

where D = ωuj ∩ {t ≥ 0} or D = ωdj ∩ {t ≥ 0} or D = ω(T ).

3.2 Estimates of higher order derivatives

We start with

Lemma 3.2.1 Let D = ωj ∩ {t ≥ 0} or D = ω(T ) and ρ = ρA,D. Then we
make ρρ−1

t as small as we please in D taking T small.

Proof: Clear. q.e.d.

Lemma 3.2.2 Let D = ωuj ∩ {t ≥ 0} or D = ωdj ∩ {t ≥ 0} or D = ω(T ) and
ρ = ρA,D. Then we have

c3N
−1

∫
D

e−θtρ±N+1ρ−1
t |(M + nA]x)(L

] − nA]x)u|2dxdt

≥
∫
∂D

Γ(u) + c2

∫
D

e−θtρ±N−1ρtE(u)dxdt+ c2θ

∫
D

e−θtρ±NE(u)dxdt

for any N ≥ N0(Q̃, R̃) + n, θ ≥ θ0(S̃, n), n ∈ N.

Proof: Note that

(M + nA]x)(L
] − nA]x) = p− hx∂x + Q̂∂x + R̃∂t + Ŝ

where Q̂ = Q̃−nhxI, Ŝ = S̃+nA]xB
]−nM(A]x)−n2(A]x)

2 since A]A]x+A]xA
] =

hx. Let ε > 0 be given. Taking T small one may suppose that

ρ2ρ−1
t |nhx|2 ≤ εn2ρtb

2

since hx = 2bbx and bx is bounded by Lemma 3.2.1.
It is clear that C(Q̂) ≤ 2(C(Q̃)+ εn2) and C(Ŝ) ≤ 2(C(S̃)+ cn4) with some

c > 0. Then taking ε > 0, N0(Q̃), θ0(S̃, n) suitably so that

N ≥ N0(Q̃) + n, θ ≥ θ0(S̃, n) =⇒ N2 ≥ c1C(Q̂), c1C(R̃), θ ≥ c2C(Ŝ)

(note that c1C(Q̂) ≤ 2c1C(Q̃) + 2c1εn2 ≤ (
√

2c1C(Q̃) + n)2 if 2c1ε ≤ 1). Then
we get the assertion applying the previous inequality. q.e.d.
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Proposition 3.2.1 One can find N0 > 0 such that for any n ∈ N there is θ1(n)
such that with D = ωuj ∩ {t ≥ 0}, D = ωdj ∩ {t ≥ 0}, D = ω(T ) we have

∑
k+l≤n

∫
D

|e−θtρ±N ||∂kt ∂lxu|2dxdt+
∑
l≤n

∫
∂D

Γ(∂lxu)

≤ C
∑

k+l≤n+1

∫
D

|e−θtρ±N ||∂kt ∂lxL]u|2dxdt

+C
∑
k+l≤n

∫
D

|e−θtρ±N−1||∂kt ∂lxL]u|2dxdt

for any N ≥ N0 + n, θ ≥ θ1(n) where ρ = ρA,D.

Proof: Take N0 = N(Q̃, R̃). Then from Lemma 3.2.2 it follows

c2θ

∫
D

|e−θtρ±N |E(∂qxu)dxdt+
∫
∂D

Γ(∂qxu)

is estimated by

c3N
−1

∫
D

|e−θtρ±N+1ρ−1
t |(M + qA]x)(L

] − qA]x)∂
q
xu|2dxdt.

Since |C̃| ≤ c(ρt/ρ) in D and

(L] − qA]x)∂
q
xu = ∂qxL

]u−
q−1∑
j=0

Bj∂
j
xu

this is bounded by constant (depend on q) times∫
D

|e−θtρ±N+1ρ−1
t |(|∂t∂qxL]u|2 + |∂q+1

x L]u|2)dxdt

+
∫
D

|e−θtρ±N−1ρt||∂qxL]u|2dxdt

+
∑

i+j≤q,i≤1

∫
D

|e−θtρ±N+1ρ−1
t ||∂it∂jxu|2dxdt

+
∑
j≤q−1

∫
D

|e−θtρ±N−1ρt||∂jxu|2dxdt.

The third and fourth terms are estimated by

C

q∑
j=0

∫
D

|e−θtρ±N |E(∂jxu)dxdt.
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Hence, taking θ large and summing up over q = 0, 1, ..., n we get

c2
2
θ

n∑
j=0

∫
D

|e−θtρ±N ||∂jxu|2dxdt+
n∑
j=0

∫
∂D

Γ(∂jxu)

≤ C
n∑
j=0

∫
D

|e−θtρ±N |(|∂t∂jxL]u|2 + |∂j+1
x L]u|2)dxdt

+C
n∑
j=0

∫
D

|e−θtρ±N−1||∂jxL]u|2dxdt

where we have used E(u) ≥ c|u|2 with some c > 0. Note that

∂kt ∂
l
xu = ∂k−1

t ∂lxL
]u+

∑
i≤k−1,j≤l+1

cij∂
i
t∂
j
xu.

We consider ∑
k+l≤n,k≥1

λkµl|∂kt ∂lxu|2

with λ > 0, µ > 0 small and
∑
l µ

l < +∞. Since∑
k+l≤n,k≥1

λkµl
∑

i≤k−1,j≤l+1

|∂it∂jxu|2

≤ C
n∑
j=0

|∂jxu|2 + Cλµ−1
∑

i+j≤n,i≥1

λiµj |∂it∂jxu|2

taking λµ−1 small enough so that the second term in the right-hand side cancells
against to the left-hand side we get∑

k+l≤n,k≥1

λkµl|∂kt ∂lxu|2 ≤ C
∑

k+l≤n,k≥1

λkµl|∂k−1
t ∂lxL

]u|2

+C
n∑
j=0

|∂jxu|2.

Now multiplying |e−θtρ±N | and integrating over D we have∑
k+l≤n,k≥1

∫
D

|e−θtρ±N ||∂kt ∂lxu|2dxdt

≤ C
∑

k+l≤n,k≥1

∫
D

|e−θtρ±N ||∂k−1
t ∂lxL

]u|2dxdt

+C
n∑
j=0

∫
D

|e−θtρ±N ||∂jxu|2dxdt.
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Since we have already estimated

θ
n∑
j=0

∫
D

|e−θtρ±N ||∂jxu|2dxdt

plugging this estimate into above inequality, we get the desired estimate. q.e.d.

3.3 A priori estimate

Recall that A](0, 0) = 0 because a]12(0, 0) = 0.

Proposition 3.3.1 Let r(t, x) = t− θ(x), L]u = f . Assume that

(1) |A](t, x)| ≤ C|x| in 0 ≤ t ≤ t∗(x),

(2) |θ(α)(x)| ≤ Cα|x|δ−α with some δ > 0 for α = 0, 1, ..., Q,

(3) ∂αt u(0, x) = 0, ∂αt f(0, x) = 0 for α = 0, 1, ..., Q.

Then for any q ∈ N with 2q+1 ≤ Q there is a wq(t, x) verifying the followings:

L](u− wq) = rqF, u− wq = rq+1V

where

|∂kt ∂lx(u− wq)|2 ≤ C|x|−2l|r|2(q+1−k−l)t∗(x)2(Q−q−k−l−1)+1

×
l∑

β=0

∫ t∗(x)

0

|∂Q+1
t ∂βxu|2dt

for 0 ≤ t ≤ t∗(x), k + l + q + 1 ≤ Q, k + l ≤ q + 1,

|∂kt ∂lx(L]u− L]wq)|2 ≤ C|x|−2(l+1)|r|2(q−k−l)

×t∗(x)2(Q−q−l−1)+1
l+1∑
β=0

∫ |θ(x)|

0

|∂Q+1
t ∂βxu|2dt

+C|x|−2lt∗(x)2(Q−q−l−1)+1
l∑

β=0

∫ |θ(x)|

0

|∂Q+1
t ∂βxf |2dxdt

+C|t|2(Q−k)
∫ t

0

|∂Q+1
t ∂lxf |2dxdt

for q + l + 1 ≤ Q, k + l ≤ q and

|∂kt ∂lxwq|2 ≤ C|x|−2lt∗(x)2(Q−q−l−1)+1
l∑

β=0

∫ |θ(x)|

0

|∂Q+1
t ∂βxu|2dt

for q + l ≤ Q.
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We first show the following lemma.

Lemma 3.3.1 Let ψ(t, x) ∈ C∞. Then one can write

ψ(t, x) =
q∑
j=0

ψj(x)rj + rq+1ψq(t, x)

where ψj(x), ψq(t, x) verifies

|∂lxψj(x)| ≤ Cjl|x|−l, l = 0, 1, ....,
|∂kt ∂lxψq(t, x)| ≤ Cqkl|x|−l, l = 0, 1, ....

Moreover if ∂αt ψ(0, x) = 0, α = 0, 1, ..., Q then we have

|∂lxψj |2 ≤ C
l∑

β=0

|x|−2l|θ(x)|2(Q−j−l)+1

∫ |θ(x)|

0

|∂Q+1
t ∂βxψ(τ, x)|2dτ

for j + l ≤ Q and

|∂kt ∂lxψq|2 ≤ C
l∑

β=0

|x|−2lt∗(x)2(Q−l−q−k−1)+1

∫ t∗(x)

0

|∂Q+1
t ∂βxψ|2dτ

for 0 ≤ t ≤ t∗(x), k + l + q + 1 ≤ Q.

Proof: Since

ψj(x) =
1
j!
∂jtψ(θ(x), x), ψq(t, x) =

1
q!

∫ 1

0

(∂q+1
t ψ)(θ(x) + τ(t− θ(x)), x)dτ

the first two inequalities are clear. Assume that ∂αt ψ(0, x) = 0, α = 0, 1, ..., Q,
then

∂αt (∂jtψ)(0, x) = 0, α = 0, 1, ..., Q− j

and hence we see

∂jtψ(t, x) =
tQ−j+1

(Q− j)!

∫ 1

0

(1− s)Q−j∂Q+1
t ψ(st, x)ds.

This shows that

ψj(x) =
θ(x)Q−j+1

(Q− j)!j!

∫ 1

0

(1− s)Q−j∂Q+1
t ψ(sθ(x), x)ds.

Noting that∣∣∣∣∫ 1

0

∂Q+1
t ∂βxψ(sθ(x), x)ds

∣∣∣∣2 ≤ C

∫ 1

0

|∂Q+1
t ∂βxψ(sθ(x), x)|2ds

= C|θ(x)|−1

∫ |θ(x)|

0

|∂Q+1
t ∂βxψ(τ, x)|2dτ
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we get the third inequality. Remarking that

∂kt ψq(t, x) =
1
q!

∫ 1

0

τk(∂q+k+1
t ψ)(θ(x) + τ(t− θ(x)), x)dτ,

∂q+k+1
t ψ(t, x) = c

∫ t

0

(t− u)Q−k−q−1∂Q+1
t ψ(u, x)du

we see

∂kt ψq(t, x) = c′
∫ 1

0

τk[τt+ (1− τ)θ(x)− u]Q−q−k−1dτ

×
∫ θ(x)+τ(t−θ(x))

0

∂Q+1
t ψ(u, x)du.

By the same arguments we get ∫ 1

0

(∂q+k+1
t ∂lxψ)(θ(x) + τ(t− θ(x)), x)

= c′
∫ 1

0

τk[τt+ (1− τ)θ(x)− u]Q−q−k−1dτ

∫ θ(x)+τ(t−θ(x))

0

∂Q+1
t ∂lxψ(u, x)du.

Since |τt+ (1− τ)θ(x)| ≤ τt∗(x) + (1− τ)t∗(x) = t∗(x) for 0 ≤ t ≤ t∗(x) then

|∂kt ∂lxψq| ≤
∑

l1+l2=l

∫ 1

0

dτ

∫ t∗(x)

0

t∗(x)Q−q−k−l1−1|x|−2l1 |∂Q+1
t ∂l2x ψ(u, x)|du

and hence

|∂kt ∂lxψq|2 ≤ t∗(x)[t∗(x)Q−q−k−l−1]2
∫ t∗(x)

0

|∂Q+1
t ∂lxψ(u, x)|2du

= t∗(x)2(Q−q−k−l−1)+1

∫ t∗(x)

0

|∂Q+1
t ∂lxψ(u, x)|2du

which is the desired inequality. q.e.d.

Proof of Proposition 3.3.1 From Lemma 3.3.1 one can write

u(t, x) =
q∑
j=0

uj(x)rj + rq+1V (t, x), f(t, x) =
q−1∑
j=0

fj(x)rj + rqFq−1(t, x).

Let us put

wq(t, x) =
q∑
j=0

uj(x)r(t, x)j .

From Lemma 3.3.1 it follows that

|∂kt ∂lxV |2 ≤ C
l∑

β=0

|x|−2lt∗(x)2(Q−l−q−k−1)+1

∫ t∗(x)

0

|∂Q+1
t ∂βxu|2dτ
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for 0 ≤ t ≤ t∗(x), k + l + q + 1 ≤ Q. Hence we get

|∂kt ∂lx(rq+1V )|2 ≤ C|x|−2l|r|2(q+1−k−l)t∗(x)2(Q−q−k−l−1)+1

×
l∑

β=0

∫ t∗(x)

0

|∂Q+1
t ∂βxu|2dt

for 0 ≤ t ≤ t∗(x), k+ l+ q+ 1 ≤ Q, k+ l ≤ q+ 1. It is clear that one can write
L](u− wq) = rqF . We show the third estimate. From Lemma 3.3.1 we see

|u(l)
j |

2 ≤ C|x|−2l|θ(x)|2(Q−j−l)+1
l∑

β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt

for j + l ≤ Q where u(l)
j = ∂lxuj . Since

|∂kt ∂lxwq| ≤ C
∑

0≤j≤q,l1+l2=l

|u(l1)
j ||x|−l2

then noting |θ(x)| ≤ t∗(x) we have

|∂kt ∂lxwq|2 ≤ C|x|−2l|θ(x)|2(Q−q−l)+1
l∑

β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt

≤ C|x|−2lt∗(x)2(Q−l−q)+1
l∑

β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dτ.

This is the third assertion. Finally we prove the second estimate. From L]u = f
and L](u− wq) = rqF we see L]wq = f − rqF . Hence we have

L]wq =
q−1∑
j=0

fj(x)rj mod O(rq).

We now study L]wq.

L]wq =
q−1∑
j=0

fjr
j +

∑
µ≥q

 ∑
i+j=µ,i,j≤q

−A]iu
′
j +B]iuj +

∑
i+j=µ+1,i,j≤q

jA]iujθ
′

 rµ

+rq+1Aq

 q∑
j=0

−u′jrj + jujr
j−1θ′

+ rq+1Bq(
q∑
j=0

ujr
j).

Note that ∣∣∣∣∣∣∂kt ∂lx
∑

i+j=µ,i,j≤q

−A]iu
′
jr
µ +B]iujr

µ

∣∣∣∣∣∣
2
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is bounded by

∑
l1+l2=l,k1≤k

r2(µ−k1−l1)|x|−2(l+1)|θ(x)|2(Q−j−l2−1)+1
l2+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt

and hence by

(3.3.1) r2(µ−k−l)|x|−2(l+1)t∗(x)2(Q−q−l−1)+1
l+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt.

Similary the term ∣∣∣∣∣∣∂kt ∂lx
∑

i+j=µ+1,i,j≤q

A]iujθ
′rµ

∣∣∣∣∣∣
2

is estimated by

r2(µ−k−l)|x|−2(l+1)t∗(x)2(Q−q−l−1)+1
l+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt

and
|∂kt ∂

Pq
j=0

x rq+1Aq(u′jr
j − jujθ

′rj−1)|2

is bounded by

∑
l1+l2=l,k1≤k

r2(q+1−k1−l1)|x|−2(l+1)|θ|2(Q−q−l2−1)+1
l2+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt

and again by

(3.3.2) r2(q+1−k−l)|x|−2(l+1)t∗(x)2(Q−q−l−1)+1
l+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt.

One can estimate the term

|∂kt ∂lx
q∑
j=0

rq+1Bqujr
j |2

by the same argument. We summarize:

|∂kt ∂lx(L]wq −
q−1∑
j=0

fjr
j)|2 ≤ Cr2(q−k−l)|x|−2(l+1)t∗(x)2(Q−q−l−1)+1

×
l+1∑
β=0

∫ |θ|

0

|∂Q+1
t ∂βxu|2dt.
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Since

L]u− L]wq = −(L]wq −
q−1∑
j=0

fjr
j) + rqFq−1

it remains to estimate |∂kt ∂lxrqFq−1|. From Lemma 3.3.1 it follows that

|∂kt ∂lxrqFq−1|2 ≤ C|∂kt ∂lxf |2 + C|∂kt ∂lx
q−1∑
j=0

fjr
j |2

≤ C|∂kt ∂lxf |2 + C|x|−2lt∗(x)2(Q−q−l)+1
l∑

β=0

∫ |θ|

0

|∂Q+1
t ∂βxf |2dt.

Noting

|∂kt ∂lxf |2 ≤ C|t|2(Q−k)
∫ t

0

|∂Q+1
t ∂lxf |2dt

we conclude the proof. q.e.d.

We prepare some notations:

Ων = {(t, x) | |x| ≤ δ̄(T − t), 0 ≤ t ≤ sν(x)}, ν = 0, ...,m,
Ω̃ν+1 = {(t, x) | |x| ≤ δ̄(T − t), 0 ≤ t ≤ σν+1(x)}, ν = 0, ...,m− 1.

Similarly

ω−ν = {(t, x) | |x| ≤ δ̄(T − t), sν−1(x) ≤ t ≤ σν(x)}, ν = 1, ...,m,
ω+
ν = {(t, x) | |x| ≤ δ̄(T − t), σν(x) ≤ t ≤ sν(x)}, ν = 1, ...,m.

Now we introduce the inductive hypothesis: Inductive hypothesis: For any

n ∈ N there are Qν = Qν(n) ≥ n and qν = qν(n) ≥ n such that

L]u = f, ∂αt u(0, x) = 0, ∂αt f(0, x) = 0, α = 0, 1, ..., Qν

=⇒
∑
k+l≤n

∫
Ων

|∂kt ∂lxu|2dxdt ≤ C
∑

k+l≤qν(n)

∫
Ωm

|∂kt ∂lxf |2dxdt.(Hν)

Let κ > 0 be so that t∗(x) = O(|x|κ). In Proposition 3.3.1 we take θ = sν and

construct wq and study the eqaution

L](u− wq) = f − L]wq

in Ω = ω−ν+1 ∩ {t ≥ 0} = ω̃−ν+1.In Proposition 3.2.3, taking N = 2(N0 + n),
θ = θ1(n+N/2) we get∑
l≤n+N/2

∫
∂ω̃−ν+1

Γ(∂lx(u− wq)) +
∑

k+l≤n+N/2

∫
ω̃−ν+1

e−θt|ρNν+1||∂kt ∂lx(u− wq)|2dxdt

≤ C
∑

k+l≤n+1+N/2

∫
ω̃−ν+1

e−θt|ρNν+1||∂kt ∂lxL](u− wq)|2dxdt

+C
∑

k+l≤n+N/2

∫
ω̃−ν+1

e−θt|ρN−1
ν+1 ||∂kt ∂lxL](u− wq)|2dxdt.
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Taking q, Q so that

(3.3.3) 2(q − n) ≥ N + 1, 2κ(Q− q − n− 1−N/2) ≥ 2n

Proposition 3.3.1 shows

∂αt ∂
k
t ∂

l
x(u− wq)(sν(x), x) = 0, k + l ≤ n, α ≤ N/2 + 1

because we have q+1− (k+α)− l ≥ q+1− (N/2+n+1) = q− (N/2+n) > 0
and 2κ(Q− q−k−α− l− 1)− 2l ≥ 2κ(Q− q−n−N/2− 2)− 2l ≥ 2n− 2l ≥ 0.

Lemma 3.3.2 Assume that (∂αt u)(sν(x), x) = 0, α = 0, 1, ..., p+N/2+1. Then
there is C(N) > 0 such that∫

ω−ν+1

e−θt|ρν+1|N |∂p+N/2t u|2dxdt ≥ C(N)
∫
ω−ν+1

e−θt|∂pt u|2dxdt.

Proof: Note that

∂t|∂pt u|2 = ∂p+1
t u · ¯∂pt u+ ¯

∂p+1
t u · ∂pt u.

Multiply −ρ2p+1 to the equation get

−∂t(ρ2p+1|∂pt u|2) + (2p+ 1)ρ2p|∂pt u|2

= −ρ2p+1(∂p+1
t u · ¯∂pt u+ ¯

∂p+1
t u · ∂pt u).

Integrating over ω−ν+1 we get

−
∫
ω−ν+1

∂t(ρ2p+1|∂pt u|2)dxdt+ (2p+ 1)
∫
ω−ν+1

ρ2p|∂pt u|2dxdt

≤ 2
∫
ω−ν+1

ρ2p+2|∂p+1
t u|2dxdt+

1
2

∫
ω−ν+1

ρ2p|∂pt u|2dxdt

so that

(2p+
1
2
)
∫
ω−ν+1

ρ2p|∂pt u|2dxdt+
∫
∂ω−ν+1

(ρ2p+1|∂pt u|2)dx

≤ 2
∫
ω−ν+1

ρ2p+2|∂p+1
t u|2dxdt.

Since ∂pt u = 0 on t = sν(x) we get∫
∂ω−ν+1

(ρ2p+1|∂pt u|2)dx ≥ 0.

Hence we have

(2p+
1
2
)
∫
ω−ν+1

ρ2p|∂pt u|2dxdt ≤ 2
∫
ω−ν+1

ρ2p+2|∂p+1
t u|2dxdt.
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Inductively we get the assertion. q.e.d.

Since |x| = δ̄(T − t) is space-like, Lemma 3.3.2 gives∑
k+l≤n

∫
ω̃−ν+1

e−θt|∂kt ∂lx(u− wq)|2dxdt

≤ C
∑

k+l≤n+1+N/2

∫
ω̃−ν+1

e−θt|ρNν+1||∂kt ∂lxL](u− wq)|2dxdt

+C
∑

k+l≤n+N/2

∫
ω̃−ν+1

e−θt|ρN−1
ν+1 ||∂kt ∂lxL](u− wq)|2dxdt

and hence assuming that q, Q verify

(3.3.4) 2κ(Q− q − l − 1) ≥ 2(n+ 2 +
N

2
)

we have from Prposition 3.3.1 that∑
k+l≤n+1+N/2

∫
ω̃−ν+1

e−θt|ρNν+1||∂kt ∂lxL](u− wq)|2dxdt

≤ C
∑

k+l≤Q+n+N/2+3

∫
Ων

e−θt|∂kt ∂lxu|2dxdt

+C
∑

k+l≤Q+3+n+N/2

∫
Ωm

e−θt|∂kt ∂lxf |2dxdt.

We choose q, Q so that (recall N = 2(N0 + n))

(3.3.5) q ≥ N0 + 2n+ 1, κQ ≥ (κ+ 1)(N0 + 2n+ q + 2)

then it is easy to check that these q, Q verify (3.3.3) and (3.3.4). We summarize:
if ∂αt u(0, x) = 0, ∂αt f(0, x) = 0 for α = 0, 1, ..., Q̃ν(n) then we have

∑
k+l≤n

∫
Ω̃ν+1

|∂kt ∂lxu|2dxdt ≤ C
∑

k+l≤q̃ν(n)

∫
Ωm

|∂kt ∂lxf |2dxdt

where q̃ν(n) = qν(Q+ 2n+N0 + 3), Q̃ν(n) = Qν(Q+ 2n+N0 + 3). We go to

the next step. Let θ = σν+1 we consider L](u − wq) = f − L]wq in the region
ω̃+
ν+1 = ω+

ν+1 ∩ {t ≥ 0}. From Proposition 3.3.1 it follows∑
l≤n

∫
∂ω̃+

ν+1

Γ(∂lx(u− wq)) +
∑
k+l≤n

∫
ω̃+

ν+1

e−θt|ρ−Nν+1||∂kt ∂lx(u− wq)|2dxdt

≤ C
∑

k+l≤n+1

∫
ω̃+

ν+1

e−θt|ρ−Nν+1||∂kt ∂lxL](u− wq)|2dxdt

+C
∑
k+l≤n

∫
ω̃+

ν+1

e−θt|ρ−N−1
ν+1 ||∂kt ∂lxL](u− wq)|2dxdt.
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From Proposition 3.3.1 we have

(ρ−Nν+1∂
l
x(u− wq))(σν+1(x), x) = 0, l ≤ n

if
(q − n) ≥ N + 1, 2κ(Q− q − n− 1) ≥ 2(n+ 1).

Since ∂ω̃+
ν+1 is space-like, thanks to Proposition 3.3.1, the above inequality

yields ∑
k+l≤n

∫
ω̃+

ν+1

|∂kt ∂lx(u− wq)|2dxdt

≤ C
∑

k+l≤Q+n+2

(∫
Ω̃ν+1

|∂kt ∂lxu|2dxdt+
∫

Ωm

|∂kt ∂lxf |2dxdt

)
.

Then by induction hypothesis one has:∑
k+l≤n

∫
Ων+1

|∂kt ∂lxu|2dxdt ≤ C
∑

k+l≤qν+1(n)

∫
Ωm

|∂kt ∂lxf |2dxdt

for any u, f with

∂αt u(0, x) = 0, ∂αt f(0, x) = 0, α = 0, 1, ..., Qν+1(n)

where qν+1(n) = q̃ν(Q+n+2), Qν+1(n) = Q̃ν(Q+n+2). This proves (Hν+1).
Finally we derive an energy inequality in ω(T ). We remark that

Cρ ≥ (|x|c1 + |t|c2) in ω(T )

with some ci > 0 when n1 = 0 because we have

Cρ ≥
∏

|t− tj(x)| ≥
∏

(t− |tj(x)|) ≥
∏ 2

3
t

≥
∏ 1

3
(t+ t∗(x)) ≥

∏ 1
3
(|t|+ |x|κ).

When n1 ≥ 1 we see

ρ = ρm+1 = t− sm(x) ≥ 2
3
t+

t

3
− sm ≥ 1

2
(t+ t∗(x)) ≥ 1

2
(|t|+ |x|κ).

Take θ = sm(x) and q, Q are large in Proposition 3.3.1, then one gets∑
k+l≤n+1

∫
ω(T )

e−θtρ−N |∂kt ∂lxL](u− wq)|2dxdt

≤ C
∑

k+l≤Q+n+3

(∫
Ωm

|∂kt ∂lxu|2dxdt+
∫
S

|∂kt ∂lxf |2dxdt
)
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where S = {(t, x) | |x| ≤ δ̄(T − t), 0 ≤ t ≤ T}. Hence we have∑
k+l≤n

∫
ω(T )

|∂kt ∂lxu|2dxdt

≤ C
∑

k+l≤Q+n+3

(∫
Ωm

|∂kt ∂lxu|2dxdt+
∫
S

|∂kt ∂lxf |2dxdt
)
.

Thus we have proved

Proposition 3.3.2 Let W be an open neighborhood of the origin and assume
that (C±) are verified. Then there are δ̄, T such that for any n ∈ N one can
find q(n), Q(n) so that we have∑

k+l≤n

∫
S

|∂kt ∂lxu|2dxdt ≤ Cn
∑

k+l≤q(n)

∫
S

|∂kt ∂lxL]u|2dxdt

for any u ∈ C∞(W ) with ∂αt u(0, x) = 0, α = 0, 1, ..., Q(n).

Now we prove

Theorem 3.3.1 Assume that (C±) are verified. Then the Cauchy problem
(C.P.) is C∞ well posed.

Proof: We first rewrite the energy inequality in Propposition 3.3.2. Let u0(x)
be given and assume that L]u = f . We define uj(x), j ≥ 1 so that

UN (t, x) =
N∑
j=0

1
j!
uj(x)tj

verifies with L](u− UN ) = FN that

u− UN = O(tN ), FN = O(tN−1).

From Proposition 3.3.2 we get∑
k+l≤n

∫
S

|∂kt ∂lx(u− UN )|2dxdt ≤ C
∑

k+l≤q(n)

∫
S

|∂kt ∂lxFN |2dxdt

if N ≥ Q(n) + 1. This shows that∑
k+l≤n

|∂kt ∂lxu|2dxdt ≤ C
∑
k+l≤n

∫
S

|∂kt ∂lxUN |2dxdt

+C
∑

k+l≤q(n)

∫
S

|∂kt ∂lxFN |2dxdt.
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Note that ∑
k+l≤n

∫
S

|∂kt ∂lxUN |2dxdt ≤ C
∑

l≤n+N

∫
S∩{t=0}

|∂lxu0|2dx

+C
∑

k+l≤n+N

∫
S

|∂kt ∂lxf |2dxdt.

Thus we get∑
k+l≤n

∫
S

|∂kt ∂lxu|2dxdt ≤ C
∑
l≤q̃(n)

∫
S∩{t=0}

|∂lxu0|2dx

+C
∑

k+l≤q̃(n)

∫
S

|∂kt ∂lxf |2dxdt.(3.3.6)

Let us choose polynomials {pk(x)} and {qk(t, x)} so that

sup
l≤q̃(n),x∈S∩{t=0}

|∂lx(u0(x)− pk(x))| → 0 k →∞,

sup
l≤q̃(n),(t,x)∈S

|∂lx(f(t, x)− qk(t, x))| → 0 k →∞.

By the Cauchy-Kowalevsky theorem the Cauchy problem{
L]uk = f

uk(0, x) = pk

has a solution uk in a fixed domain W ( independent of k ). Let us take S so
that S ⊂W . Then∑

k+l≤n

∫
S

|∂kt ∂lxui|2dxdt ≤ C
∑
l≤q̃(n)

∫
S∩{t=0}

|∂lxpi|2dx

+C
∑

k+l≤q̃(n)

∫
S

|∂kt ∂lxqi|2dxdt.

Thus {ui} is a Cauchy sequence and hence there exists u ∈ Cn(S) such that∑
k+l≤n

∫
S

|∂kt ∂lx(ui − u)|2dxdt→ 0, i→∞.

This is a desired solution to our Cauchy problem. q.e.d.
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4 Necessary condition

4.1 Dilation

Definition 4.1.1 Let γ ∈+. We say φ(x) ∈ G±(γ) if φ(x) is defined in 0 <
±x < γ(φ) with some γ(φ) > 0 and expressed by convergent Puiseux series

φ(x) =
∑
j=0

Cj(±x)j/p, Cj ∈ R, 0 < ±x < γ(φ)

with some p ∈ N. We also define σ(φ) for φ ∈ G±(γ) by

C−1(±x)σ(φ) ≤ |φ(x)| ≤ C(±x)σ(φ)

with a C > 0.

Definition 4.1.2 Let f(t, x) be real analytic near the origin and f(0, 0) = 0.
Let p, q ∈+ and φ ∈ G±(γ). We define µ(fφ; p, q) by

fφ(spt, sqx) = sµ(f0(t, x) + o(s)), s→ 0

where f0(t, x) does not vanish identically. Let f(t, x), g(t, x) be real analytic
near the origin. Then we define

µ([
f

g
]φ; p, q) = µ(fφ; p, q)− µ(gφ; p, q).

Remark: µ(fφ; p, q) is uniquely determined by Γ(fφ): Write

fφ(spt, sqx) =
∑

Cij(spt)i(sqx)j/α =
∑

Cijs
pi+qj/αtixj/α

then we see
µ = min

Cij 6=0
{pi+ qj

α
}.

This means that the line pt+ qx/α = µ is tangent to Γ(fφ). It is obvious that
µ([fg]φ; p, q) = µ(fφ; p, q) + µ(gφ; p, q). We introduce the following condition.
Let γ be so that t∗(x) ∼ |x|γ . For any p, q ∈+ and φ ∈ G±(γ) with

p ≥ σ(φ)q, µ(hφ; p, q) > 2q(1− σ(φ))

(C±) we have

2p+ 2µ([
Y

a]21
]φ; p, q) ≥ µ(hφ; p, q), 2p+ 2µ([

Z

a]12
]φ; p, q) ≥ µ(hφ; p, q).

Here σ(φ)q should be read as q if φ ≡ 0.
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Lemma 4.1.1 Let f(t, x) be real analytic near the origin and f(0, 0) = 0. Then

µ([
∂tf

f
]φ; p, q) ≥ −p, µ([

∂2
t f

f
]φ; p, q) ≥ −2p.

Moreover
µ([∂t(

∂tf

f
)]φ; p, q) ≥ −2p.

Proof: Let fφ(spt, sqx) = sµ(fφ;p,q)(f0(t, x) + o(1)). On the other hand, writing

fφ(t, x) = xñ(tm̃ + f1(x)tm̃−1 + · · ·+ fm̃(x))

we have

t∂tfφ(t, x) = xñ(m̃tm̃ + (m̃− 1)f1(x)tm̃−1 + · · ·+ fm̃−1(x)t)Φφ(t, x)
+xñ(tm̃ + · · ·+ fm̃(x))t(∂tΦ)φ(t, x).

It is clear that Γ(t∂tfφ) ⊂ Γ(fφ) by definition. This gives

(t∂tfφ)(spt, sqx) = sµ
∗
(c0(t, x) + o(1)), µ∗ ≥ µ(fφ; p, q).

Since ∂tfφ = (∂tf)φ we see

spt(∂tf)φ(spt, sqx) = sµ
∗
(c0(t, x) + o(1))

and hence (∂tf)φ(spt, sqx) = sµ
∗−p(c0(t, x)/t+ o(1)). This proves that

µ([∂tf ]φ; p, q) = µ∗ − p

and hence µ([∂tf ]φ; p, q)− µ(fφ; p, q) = µ∗ − µ− p ≥ −p.
The second inequality is proved similary because Γ(t2∂2

t fφ) ⊂ Γ(fφ). We
turn to the final inequality. Note that

∂t(
∂tf

f
) =

∂2
t f

f
− (

∂tf

f
)2, µ([(

∂tf

f
)2]φ; p, q) = 2µ([

∂tf

f
]φ; p, q).

Then we conclude that

µ([∂t(
∂tf

f
)]φ; p, q) ≥ min {µ([

∂2
t f

f
]φ; p, q), µ([(

∂tf

f
)2]φ; p, q)} ≥ −2p

which is the desired asserion. q.e.d.Recall that L]M = p+Q∂x +R∂t + S and

Q = diag(
Y

a]21
,
Z

a]21
), R = C −A]x +B] + coB],

S = L](C) + L](coB] −A]x), C = diag(
∂ta

]
21

a]21
,
∂ta

]
12

a]12
).
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Lemma 4.1.2 Let S = (sij), R = (rij). Then we have

µ([sij ]φ; p, q) ≥ −2p, µ([rij ]φ; p, q) ≥ −p.

Proof: It suffies to study L](C) = ∂tC −A]∂xC. Since

∂tC = diag(∂t(
∂ta

]
21

a]21
), ∂t(

∂ta
]
12

a]12
))

the assertion µ([∂tC]φ; p, q) ≥ −2p follows from Lemma 4.1.1. Note

A]∂xC =
(
a]11∂x(∂ta

]
21/a

]
21) a]12∂x(∂ta

]
12/a

]
12)

a]21∂x(∂ta
]
21/a

]
21) −a]11∂x(∂ta

]
12/a

]
12)

)
.

We study the (1,1)-th entry:

a]11∂x(
∂ta

]
21

a]21
) =

a]11

a]21
∂x∂ta

]
21 − ∂xa

]
21

a]11

a]21

∂ta
]
21

a]21
.

Since |a]11/a
]
21| ≤ 1 we see that

µ([a]11∂x(
∂ta

]
21

a]21
)]φ; p, q) ≥ −2p.

Similarly we get µ([A]∂xC]φ; p, q) ≥ −p. We turn to R. From Lemma 4.1.1 it
follows immediately that

µ([R]φ; p, q) ≥ −p.

q.e.d.

Lemma 4.1.3 We have

µ([
Y

a]21
]φ; p, q) ≥ 0, µ([

Z

a]12
]φ; p, q) ≥ 0.

Proof: We consider Y/a]21. The argument for Z/a]12 is same. Note that

Y

a]21
= ∂ta

]
11 − (

a]11

a]21
)∂ta

]
21 + tr(AB).

Then the assertion follows because µ([a]11/a
]
21]φ; p, q) ≥ 0. q.e.d.

In what follows we assume that (C+) does not hold, that is: There are p,
q ∈+, φ ∈ G+(γ) with p ≥ σ(φ)q, µ(hφ; p, q) > 2q(1− σ(φ)) such that

(4.1.1) 2p+ 2µ([
Y

a]21
]φ; p, q) < µ(hφ; p, q), µ([

Y

a]21
]φ; p, q) ≤ µ([

Z

a]12
]φ; p, q).
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Proposition 4.1.1 Assume that (C+) does not hold. Then there are p, q ∈+,
φ ∈ G+(γ) with p ≥ σ(φ)q, 1 > q(1− σ(φ)), µ(hφ; p, q) ≥ 2 such that

µ([
Y

a]21
]φ; p, q) + p < 1, 2q(1− σ(φ))− 1− p− µ([

Y

a]21
]φ; p, q) < 0

where qσ(φ) should read as p if φ ≡ 0.

Proof: Let φ 6= 0. Then we replace p, q in (4.1.1) by

2p
µ(hφ; p, q)

,
2q

µ(hφ; p, q)
.

Then remarking that µ(hφ;κp, κq) = κµ(hφ; p, q) we may suppose that in (4.1.1)

p ≥ σ(φ)q, 1 > q(1− σ(φ)), µ(hφ; p, q) = 2,

p+ µ([
Y

a]21
]φ; p, q) < 1.

In the case φ ≡ 0 we make the same replacement.
Let us put

f(p) = 1− p− µ([
Y

a]12
]φ; p, q),

g(p) = 2q(1− σ(φ))− 1− p− µ([
Y

a]12
]φ; p, q).

Suppose that g(p) ≥ 0. Otherwise nothing to be proved. We note that p < 1
because

p+ µ([
Y

a]21
]φ; p, q) < 1, µ([

Y

a]21
]φ; p, q) ≥ 0.

Remark that
f(p)− g(p) = 2(1− q(1− σ(φ))) > 0.

On the other hand we see f(1) ≤ 0 and g(1) < 0 since µ([Y/a]12]φ; p, q) ≥ 0.
Write

µ([
Y

a]12
]φ; p, q) = µ(Yφ; p, q)− µ([a]12]φ; p, q)

then we see that µ([Y/a]12]φ; p, q) is continuous with respect to p. Then there
exists p ≤ p∗ < 1 such that

g(p∗) = 0, g(p) < 0, p∗ < p < 1.

Since f(p∗) > g(p∗) = 0 one can take p̂ so close to p∗ (p∗ < p̂) so that f(p̂) > 0
and g(p̂) < 0. This p̂ is a desired one. q.e.d.

Remark: Since p ≥ σq, 1 > q(1− σ) this shows that 1 + p > q.
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Lemma 4.1.4 Assume that p ≥ σ(p)q, µ+ p < 1, 2q(1−σ(φ))− 1− p−µ < 0.
Set δ = (1 + p− q)−1 and 2σ1 = 1− δµ+ δq − 2δp. Then we have

σ1 − δqσ(φ)− 1 + δp < 0.

In particular σ1 < 1− δ(p− σ(φ)q) ≤ 1.

Proof: We plug 1 = δ(1 + p− q) into 1− δµ+ δq − 2δp then we get

2σ1 = δ(1 + p− q)− δµ+ δq − 2δp = δ − δµ− δp = δ(1− µ− p).

We compute δ(2q(1− σ)− 1− p− µ) < 0 which is

2qδ − 2qδσ − δ − δp− δµ = δ(1− p− µ)− 2qδσ − 2δ(1− q)
= 2σ1 − 2qδσ − 2 + 2δp

because δ(1 − q) = 1 − δp = 2(σ1 − δqσ − 1 + δp). This proves the assertion.
q.e.d.

4.2 Construction of an asymptotic solution

From Proposition 4.1.1 we may suppose that p, q ∈+ and µ = µ([Y/a]21]φ; p, q)
verifies

µ ≥ 2, p ≥ σq, 1 > q(1− σ),
µ+ p < 1, 2q(1− σ)− 1− p− µ < 0(4.2.1)

where if φ ≡ 0 then qσ should be read as p. Let φ ∈ G+(γ). Take local
coordinates x = (x1, x2) so that

x1 = t− φ(x), x2 = x.

Let P be a differential operator defined near the origin which is expressed as
P (t, x, ∂t, ∂x) in the local coordinates (t, x). Let Pφ be the representation of P
in the coordinates (x1, x2). Let

(L]M)φ =
2∑

i,j=1

h(ij)(x)ij +
2∑
i=1

B(i)(x)i + F (x)

where i = /xi and h(ij) has the form

h(11)(x) = 1− hφ(x)φ′(x2)2, h(12)(x) = 2hφ(x)φ′(x2), h(22)(x) = −hφ(x),
B(2)(x) = Qφ(x), B(1)(x) = hφ(x)φ′′(x2)− φ′(x2)Qφ(x) +Rφ(x),

F (x) = Sφ(x).

Recall that L]M = ∂2
t − h∂2

x +Q∂x +R∂t + S and

hφ(t, x) = x2n1(t2m1 + h1(x)t2m1−1 + · · ·+ h2m1(x))e(t, x)
2 = h̃e(t, x)2.
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One can write

h̃(x) =
2m1∑
j=0

h̃j(x2)x
j
1, h̃j(x2) = h̄jx

σj

2 (1 +O(x1/θ
2 ))

where θ = θ(φ). This shows that

hφ(x) =
2m1∑
j=0

e2φ(x)h̄jx
j
1x
σj

2 (1 +O(x1/θ
2 ))

=
∑

(α,β)∈M(φ)

hαβ(x)xα1 x
β
2 (1 +O(x1/θ

2 )).

It is clear that

lim
x1→0,x2↓0

hαβ(x) = h∗αβ 6= 0 for (α, β) ∈M(φ)

and the Newton polygon Γ(φ) is given by {(α, β) | (α, β) ∈M(φ)}. Note that

µ(hφ; p, q) ≥ 2 =⇒ αp+ βq ≥ 2, ∀(α, β) ∈M(φ).

Then we get

h(22)(x) = −
∑

(α,β)∈M(φ)

hαβ(x)xα1 x
β
2 (1 +O(x1/θ

2 )),

h(12)(x) = 2
∑

(α,β)∈M(φ)

chαβ(x)xα1x
β+(σ−1)
2 (1 +O(x1/θ

2 )),

h(11)(x) = 1−
∑

(α,β)∈M(φ)

c2hαβx
α
1x

β+2(σ−1)
2 (1 +O(x1/θ

2 )).

We make a dilation: x1 = λ−δpy1, x2 = λ−δqy2. Let Pλ be the reprezentation
of P in the coordinates y = (y1, y2)

λ−2δp(L]M)φ,λ = h
(11)
λ (y)21 + h

(12)
λ (y)λδq−δp1 2

+h(22)
λ (y)λ2δq−2δp

2
2 +B

(1)
λ (y)λ−δp1

+B(2)
λ (y)λδq−2δp

2 + Fλ(y)λ−2δp

where fλ(y) = f(λ−δpy1, λ−δqy2). Let us take τ as the least common denomi-
nator of δ, p, q, σ, σ1, 1/θ.

Lemma 4.2.1 We have

λ2σ1h
(11)
λ (y) = λ2σ1(1 +O(λ−1/τ )),

λδq−δp+σ1+1h
(12)
λ (y) = O(λ−1/τ ),

λ2δq−2δp+2h
(22)
λ (y) = O(1).
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Proof: Note that −δαp − δβq − 2δq(σ − 1) = −δ(αp + βq − 2q(1 − σ)). From
µ(hφ; p, q) ≥ 2 we see αp + βq ≥ 2 if (α, β) ∈ M(φ) and hence it follows that
αp+ βq − 2q(1− σ) > 2q(1− σ). That is

λ2σ1h
(11)
λ (y) = λ2σ1(1 +O(λ−1/τ )).

We next study λδq−δp+σ1+1h
(12)
λ (y). Recall that

−αδp− βδq − δq(σ − 1) + δq − δp+ σ1 + 1
= δ(−αp− βq)− δqσ + 2δq − δp+ σ1 + 1

= δ(−αp− βq)− δqσ − 2 + 2δ(1 + p)− δp+ σ1 + 1
= δ(2− αp− βq) + (σ1 − δqσ − 1 + δp) < 0

by Lemma 4.1.4 and the fact αp+ βq ≥ 2 for (α, β) ∈M(φ). This proves that

λδq−δp+σ1+1h
(12)
λ (y) = O(λ−1/τ ).

Finally we study λ2δq−2δp+2h
(22)
λ (y). Then we see

2δq − 2δp+ 2− αδp− βδq

= 2δq − 2δp+ 2δ(1 + p− q)− αδp− βδq = δ(2− αp− βq) ≤ 0

because (α, β) ∈M(φ) and hence the assertion. q.e.d.

Lemma 4.2.2 We have

λδq−2δp+1B
(2)
λ (y) = λδq−2δp+1Qφ,λ(y) = λ2σ1 [Q0

φ(y) +O(λ−1/τ )]

diadonal of λ−δp+σ1B
(1)
λ = O(λ2σ1−1/τ ),

off diadonal of λ−δp+σ1B
(1)
λ = O(λ−δp+σ1), λ−2δpFλ = O(1)

where Qφ,λ(y) = λµ([Y/a]
21]φ;−δp,−δq)[Q0

φ(y) +O(λ−1/τ )].

Proof: By definition δq − 2δp + 1 = 2σ1 + δµ([Y/a]21]φ; p, q). Noting that the
fact µ([Y/a]21]φ;−δp,−δq) = −δµ([Y/a]21]φ; p, q) we get the first assertion. We
next study λ−δp+σ1B

(1)
λ (y). Recall

B(1)(x) = hφ(x)φ′′(x2)− φ′(x2)Qφ(x) +Rφ(x).

Note that λ−δp+σ1(hφφ′′)λ yields the power −δp+ σ1 − δαp− δβq − δq(σ − 2).
We plug 2δq = 2δ(1 + p)− 2 and hence this gives the power

−δ(αp+ βq − 2) + (σ1 − δqσ − 1 + δp)− 1 < −1
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by Lemma 4.1.4. This shows λ−δp+σ1(hφφ′′)λ = O(λ−1). We turn to the term
λ−δp+σ1(φ′Qφ)λ:

−δp+ σ1 − δq(σ − 1) + µ([Y/a]21]φ;−δp,−δq)
= −δµ+ δ(1 + p)− 1− δqσ − δp+ σ1

= δ(1− p− µ)− 1− δqσ + δp+ σ1

= 2σ1 + (σ1 − δqσ − 1 + δp) < 2σ1

by Lemma 2.1.5. This gives λ−δp+σ1(φ′Qφ)λ = O(λ2σ1−1/τ ). Recall R = C+G
with smooth G. From Lemma 4.1.1 it follows that Cφ,λ = O(λδp) and hence
λ−δp+σ1Rφ,λ(y) = O(λσ1). Finally we consider λ−2δpFλ. Since S = L](C)+
smooth term and F = Sφ it is enough to consider L](C). From Lemma 4.1.2 it
follows that

Sφ,λ = O(λ2δp)

and hence the desired result. q.e.d.

Let us define ν by ν = σ1τ .

Proposition 4.2.1 Assume that there are φ ∈ G+(γ), p, q ∈+ with p ≥ σ(φ)q,
µ(hφ; p, q) > 2q(1− σ(φ)) (qσ(φ) = p if φ ≡ 0) such that we have either

2p+ 2µ([
Y

a]21
]φ; p, q) < µ(hφ; p, q)

or
2p+ 2µ([

Z

a]12
]φ; p, q) < µ(hφ; p, q).

Then there is ŷ = (ŷ1, ŷ2), ŷ2 > 0 such that for any neighborhood U(ŷ) of ŷ and
any N ∈ N there is ȳ ∈ U(ŷ), a neighborhood W of ȳ and lj(y), 1 ≤ j ≤ ν and
un(y), 0 ≤ n ≤ N defined in W such that

E(y, λ)−1λ−2δpL]φ,λUλ = O(λ2σ1−(ν+N+1)/τ )

where

E(y, λ) = exp {i(µy2λ+
ν∑
j=1

lj(y)λσj )},

Uλ = E(y, λ)λκ
N∑
n=0

λ−n/τun(y), σj =
ν + 1− j

τ
, κ = κ(p, q).

and Im l1(y) ≥ (y2 − ȳ2)2 + δ0(ȳ1 − y1) in W ∩ {y1 ≤ ȳ1} with some δ0 > 0 and
u0(ȳ) 6= 0.
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Proof: Recall that

λδq−2δp+1B
(2)
λ (y) = λδq−2δp+1Qφ,λ(y)

= λδq−2δp+1

(
[Y/a]21]φ,λ 0

0 [Z/a]12]φ,λ

)
= λ2σ1

( ∑
j=0 C

1
j (y)λ

−j/τ 0
0

∑
j=0 C

2
j (y)λ

−j/τ

)
where Cij(y) are defined in a neighborhood of ŷ and we may suppose C1

0 (ŷ) 6= 0.
We look for Uλ in the form

Uλ = Mφ,λuλ, uλ = E(y, λ)
N∑
n=0

λ−n/τvn(y).

We study

E(y, λ)−1(L]M)φ,λE(y, λ)
N∑
n=0

vn(y)λ−n/τ .

This turns out to be

λ2σ1+2δp{
ν∑
j=1

Lj(l1, ..., lj)λ−(j−1)/τ
∑
n=1

vnλ
−n/τ

+
N∑
n=0

(2
√
−1l1y1 y1

vn +Rn(l1, ..., lν , v0, ..., vn−1))λ−(n+ν)/τ}(4.2.2)

+O(λ2σ1+2δp−(ν+N+1)/τ )

where

Lj =
(
L1
j 0

0 L2
j

)
, Li1(l1) = −(l1y1)

2 +
√
−1Ci0(y), vn =

(
vIn
vIIn

)
Lij(l1, ..., lj) = −2l1y1 l

j
y1 +Ki

j(l
1, ..., lj−1), j ≥ 2

and Ki
j , Rn are non linear differential operators with real analytic coefficients.

More precisely

Lij = Φj(Ci0, ..., C
i
j−2, l

1, ..., lj) +
√
−1Cij−1(y), 1 ≤ j ≤ ν

where Φj is independent of i. To see this it is enough to note that non diagonal
part of the coefficients does not enter to the determination.

Let U(ŷ) be given. We devide the cases into two:

(1) C1
j (y) = C2

j (y) in U for 0 ≤ j ≤ ν − 1,

(2) there exists k ≤ ν − 1 and ȳ ∈ U such that

C1
j (y) = C2

j (y) in U, 0 ≤ j ≤ k − 1, C1
k(ȳ) 6= C2

k(ȳ).
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In case (2) we choose W1 = W1(ȳ) ⊂ U so taht

|C1
k(y)− C2

k(y)| ≥ c > 0 in W1.

We first define lj(y). Take µ ∈ R and W2 ⊂W1 so taht

−ζ2 +
√
−1µC1

0 (y) = 0

has a root F (y) with Im F (y) < −δ0 < 0 in W2. Note that |F (y)| ∼
√
|µ|. We

next solve the Cauchy problem

l1y1 = F (y), l1|y1=ȳ1 =
√
−1(y2 − ȳ2)2.

This gives that |l1y1 | ∼
√
|µ|. We define lj(y) succesively by solving{

L1
j (l

1, ..., lj) = −2l1y1 l
j
y1 +K1

j (l
1, ..., lj−1) = 0

lj |y1=ȳ1 = 0

for 2 ≤ j ≤ ν. In the case (1) we have clearly that

L2
j (l

1, ..., lj) = 0 in W2 for j = 1, ..., ν

and in the case (2) we have

L2
j (l

1, ..., lj) = 0 in W2 for j = 1, ..., k, |L2
k+1(l

1, ..., lk+1)| ≥ c′ > 0 in W2.

We observe the second component of (4.2.3) which is equal to, up to the factor
λ2σ1+2δp

N+ν−k−1∑
n=0

{L2
k+1(l

1, ..., lk+1)vIIn + R̃2
n(l

1, ..., lν , v0, ..., vn−1)}λ−(n+k)/τ

+O(λ−(ν+N−k)/τ ).

We remark that

R̃2
n(l

1, ..., lν , v0, ..., vn−1)|vII
0 =···=vII

n−1
= 0 for n ≤ ν − k − 1.

Hence this second component is reduced to

L2
k+1(l

1, ..., lk+1)vIIn + R̃2
n(l

1, ..., lν , v0, ..., vn−1) = 0.

On the other hand the first component is

N∑
n=0

(2
√
−1l1y1

∂

∂y1
vIn +R1

n(l
0, ..., lν , v1, ..., vn−1))λ−(n+ν))/τ

+O(λ−(ν+N+1)/τ )
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and hence we are led to the equation

2
√
−1l1y1

∂

∂y1
vIn +R1

n(l
1, ..., lν , v0, ..., vn−1) = 0.

We summarize:{
L2
k+1(l

1, ..., lk+1)vIIn + R̃2
n(l

1, ..., lν , v0, ..., vn−1) = 0
2
√
−1l1y1

∂
∂y1

vIn +R1
n(l

1, ..., lν , v0, ..., vn−1) = 0.

We solve this system with initial conditions

vI0 |y1=ȳ1 6= 0, vIn|y1=ȳ1 = 0, n = 1, 2, ..., N, vII0 = 0.

Since vII0 verifies the first equation, then one can solve the system successively.
We turn to the case (1). Up to the factor λ2σ1+2p we see

N∑
n=0

{2
√
−1l1y1

∂

∂y1
vn +Rn(l1, ..., lν , v0, ..., vn−1)}λ−(n+ν)/τ

+O(λ−(N+ν+1)/τ ).

Hence we are led to
2
√
−1l1y1

∂
∂y1

vn +Rn(l1, ..., lν , v0, ..., vn−1) = 0

v0|y1=ȳ1 =

 6= 0

0

 , vn|y1=ȳ1 = 0, n = 1, 2, ..., N.

Lemma 4.2.3 Let vn be as above. Let us write

Uλ = Mφ,λE(y, λ)
∑
n=0

vnλ
−n/τ = E(y, λ)λκ̃

∑
n=0

unλ
−n/τ .

Then Uλ is non trivial, that is there is a κ̃ ∈+ independent of N such that
u0(ȳ) 6= 0.

Proof: Recall M = ∂t +A]∂x where(
λ−α(a(y) +O(λ−1/τ ) λ−β(b(y) +O(λ−1/τ )
λ−β( ¯b(y) +O(λ−1/τ ) −λ−α(a(y) +O(λ−1/τ )

)
where β ≤ α and b(ȳ) 6= 0. Recall also

λ−2δpMφ,λ = λ−δp(I − φ′(λ−δqy2)A
]
φ,λ)1 + λδq−2δpA]φ,λ2 + λ−2δpC̃φ,λ.

We observe

−δq(σ − 1)− δp+ σ1 = −δqσ + δq − δp+ σ1 = −δqσ + δ − 1 + σ1

= δ(1− p− µ) + δp+ δµ− δqσ − 1 + σ1

< δ(1− p− µ) + δµ = 1 + δq − 2δq
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by Lemma dafive. This proves that

λ−δp+σ1φ′(λ−δqy2) = o(λ1+δq−2δp).

Since C̃φ,λ = O(λδp) we get λ−2δpC̃φ,λ = O(λ−δp) and hence

λ−2δpC̃φ,λ = λδp
[(

c(y) 0
0 ¯c(y)

)
+O(λ−1/τ )

]
= λδp(c0(y) +O(λ−1/τ ).

We note that δq − 2δp+ 1 = 2σ1 + δµ by Lemma 4.1.4. Let us set

κ = max {2σ1 + δµ− β,−δp}.

Then we conclude that

λ−2δpE(y, λ)−1Mφ,λE(y, λ) = λκ{µ
(
λβ−αa(y) b(y)
b̄(y) −λβ−αa(y)

)
+O(λ−1/τ )}

when κ = 2σ1 + δµ− β > −δp. Since

v0(ȳ) =
(
vI0(ȳ)

0

)
(case (2)) or v0(ȳ) =

(
vI0(ȳ)
vII0 (ȳ)

)
choosing vII0 (y) suitably we get the assertion. If κ = 2σ1 + δµ− β = −δp then
we see

λ−2δpE(y, λ)−1Mφ,λE(y, λ)

= λκ{µ
(
λβ−αa(y) b(y)
b̄(y) −λβ−αa(y)

)
+
(
l1y1 + c(y) 0

0 l1y1 + c̄(y)

)
+O(λ−1/τ )}.

Then choosing

v0(ȳ) =
(
vI0(y)

0

)
the assertion follows clearly. Finally if κ = −δp > 2σ1 + δµ− β then

λ−2δpE(y, λ)−1Mφ,λE(y, λ)

= λκ{
(
l1y1 + c(y) 0

0 l1y1 + ¯c(y)

)
+O(λ−1/τ )}.

Since l1y1 = F (y) = {
√
−1µC1

0 (y)}1/2, it is clear that one can choose µ so that
l1y1 + c(y) 6= 0 and hence the result. q.e.d.
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4.3 Proof of necessity

Theorem 4.3.1 Assume that the Cauchy problem (C.P.) is C∞ well posed near
the origin. Then (C±) are verified.

Let us fix γ > 0. Denote

D(r,M) = {(t, x) | 0 < x < r, 0 < t < Mxγ},
∆(t̂, x̂; c) = {(t, x) | (t− t̂) + c−1|x− x̂| ≤ 0, 0 ≤ t ≤ t̂}.

Assume that γ ∈+ verifies

|h(t, x)| ≤ C(M)2r2 in (t, x) ∈ D(r,M).

Let us put

µ =

{
C(M)−1(2M)−1 if γ ≥ 1
C(M)−1(2M)−1x̂1−γ if γ < 1.

Then we have

Lemma 4.3.1 There is a T = T (M,γ) such that

(t̂, x̂) ∈ D(µM), 0 < x̂ < T =⇒ ∆(t̂, x̂;C(M)µ) ⊂ D(µ,M).

Proof: Let γ ≥ 1 and choose T so that

0 < x̂ < T =⇒ γx̂γ−1 < 2.

With this choice of T we have

γMx̂γ−1 < [C(M)µ]−1 =

{
2M if γ ≥ 1
2Mx̂γ−1 if γ < 1

if 0 < x̂ < T and hence the assertion is clear. q.e.d.

Remark: Since |h(t, x)| ≤ C(M)2r2 for (t, x) ∈ D(r,M) we see that the de-
pendence domain of (t̂, x̂) is ∆(t̂, x̂;C(M)µ) if (t̂, x̂) ∈ D(µ,M), 0 < x̂ < T .
Thus we have

Lu = 0 in ∆(t̂, x̂;C(M)µ), u(t, x) = 0 in t ≤ 0 =⇒ u(t̂, x̂) = 0.

Now let φ(x) be a C∞ function in (0, r(φ)) and let

Tφ : U ∩ {x > 0} 3 (t, x) 7→ (x1, x2) = (t− φ(x), x) ∈W ∩ {x2 > 0}

be a diffeomorphism. Let Lφ be a representation of L in the coordinates (x1, x2).
Put

E = E(M,γ, φ) = {(x1, x2) | 0 < x2 < δ0, 0 < x1 < Mxγ2 − φ(x2)}

then we have the following lemma with a suitable δ0.
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Proposition 4.3.1 Assume that the Cauchy problem (C.P.) is C∞ well posed
near the origin. Then for any T there are M(> M0), a neighborhood W̃ of the
origin, C > 0 and l ∈ N such that

sup
0≤x1≤T

|u| ≤ C sup
0≤x1≤T,|α|≤l

|DαL]φu|

for any u ∈ C∞0 (W̃ ∩ E).

We now admit this proposition. Let

y1 = λδpx1, y2 = λδqx2, δ, p, q ∈+

be a dilation such that p ≥ γq. Let Lφ,λ be the representation of Lφ in the
coordinates (y1, y2):

Lφ,λ(y,D) = Lφ(λ−δpy1, λ−δqy2, λδpDy1 , λ
δqDy2).

Then we have

Proposition 4.3.2 Let B > 0 be given and let p ≥ γq, φ ∈ C+(A) and 1+p > q.
Assume that the Cauchy problem for L is C∞ well posed near the origin. Then
there are C > 0, l ∈ N, λ0 = λ0(B, σ, φ) such that

sup
0≤y1≤ȳ1

|u| ≤ Cλδkl sup
0≤y1≤ȳ1,|β|≤l

|Dβ
y (L]φ,λu)|

for any u ∈ C∞0 ({0 < y1, y2 < B}), k = max (p, q), δ = (1 + p− q)−1, λ ≥ λ0.

Proof: Let u ∈ C∞0 ({0 < yi < B}) and uλ(y) = u(λδpy1, λδqy2). Then there are
λ0 and M0 so that uλ ∈ C∞0 (W̃ ∩E) if λ ≥ λ0, M ≥M0 and u ∈ C∞0 ({yi < B}).
Applying Proposition 4.3.1 we get

sup
0≤y1≤T

|uλ| ≤ C sup
0≤y1≤T,|α|≤l

|Dα(Lφuλ)|.

Taking T = λ−δpȳ1 we get the desired inequality. q.e.d.

Proof of necessity: From Proposition 4.3.1 we can construct an asymptotic
solution Uλ. Take χ(y) ∈ C∞0 (W ) so that χ(y) = 1 on a neighborhood of ȳ. Set
uλ = χ(y)Uλ(y) then we have

sup
0≤y1≤ȳ1,|α|≤l

|Dα(L]φ,λuλ)| ≤ Clλ
2σ1+2δp+l−(ν+N+1)/τ .

On the other hand since uλ(ȳ) ≥ cλκ with some c > 0, taking N large we get a
contradiction. q.e.d.
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5 Equivalence of conditions

5.1 Equivalence of conditions

The aim of this section is to prove

Proposition 5.1.1 The condition (C±) is equivalent to

Γ(tZφ) ⊂
1
2
Γ([h|a]12|2]φ), Γ(tYφ) ⊂

1
2
Γ([h|a]12|2]φ), ∀φ ∈ G±(γ).

Remark: Actually we prove that the condition (C+;Y ), the condition obtained
from (C+) dropping the requirements on Z, is equivalent to

Γ(tYφ) ⊂
1
2
Γ([h|a]12|2]φ), ∀φ ∈ G+(γ).

Proof: Let p, q ∈+, φ ∈ G±(γ), p ≥ σ(φ)q, µ(hφ; p, q) > 2q(1− σ(φ)). Note that

Γ(tYφ) ⊂
1
2
Γ([h|a]12|2]φ)

implies that

p+ µ([Y ]φ; p, q) ≥
1
2
µ([h|a]12|2]φ; p, q)

=
1
2
µ(hφ; p, q) +

1
2
µ([|a]12|2]φ; p, q)

=
1
2
µ(hφ; p, q) + µ(a]12,φ; p, q).

By definition, this shows that

p+ µ

[ Y
a]12

]
φ

; p, q

 ≥ 1
2
µ(hφ; p, q).

We show that (C±) implies Γ(tZφ) ⊂ Γ([h|a]12|2]φ). Note that

(tZφ)(spx1, s
qx2) = (a]12)φ(s

px1, s
qx2){t(

Z

a]12
)φ}(spx1, s

qx2)

= sν(c0(x) + o(1))

with ν = µ([a]12]φ; p, q) + µ([Z/a]12]φ; p, q) + p. Let

[h|a]12|2]φ(spx1, s
qx2) = sκ(d0(x) + o(1))

with κ = 2µ([a]12]φ; p, q) + µ(hφ; p, q). Thus

2ν − κ = 2p+ 2µ([
Z

a]12
]φ; p, q)− µ(hφ; p, q).
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Hence (C+) implies that 2ν ≥ κ, that is

(5.1.1) 2µ(tZφ; p, q) ≥ µ([h|a]12|2]φ; p, q)

for any p, q ∈+ and for any φ ∈ G±(γ) which is verifying p ≥ σ(φ)q and
µ(hφ; p, q) > 2q(1 − σ(φ)) (if φ = 0 then qσ(φ) should read as p). Take φ ∈
G+(γ). Denote by

{(j, βj(φ))}rj=0, {(j, γj(φ))}r̃j=0

the points which consists in the boundary of 1
2Γ([h|a]12|2]φ) and Γ(Zφ) respec-

tively where βr(φ) = n, γr̃(φ) = ñ, n = n1 + n2 and r = m1 +m2. Set

εj(φ) = βj−1(φ)− βj(φ), 1 ≤ j ≤ r

δj(φ) = γj−1(φ)− γj(φ), 1 ≤ j ≤ r̃.

Note that the boundary points of Γ(tZφ) consists of {(j + 1, γj(φ))}r̃j=0. Then
it is enough to show that

γj(φ) ≥ βj+1(φ), ∀j ≥ 0.

Let
ε1(φ) ≥ · · · ≥ ε`(φ) ≥ σ(φ) > ε`+1(φ) ≥ · · · ≥ εr(φ).

Let αpj + βqj = 1 be the line which is tangent to 1
2Γ((h|a]12|2)φ) along the

segment joining (j − 1, βj−1(φ)) and (j, βj(φ)). That is

pj
qj

= εj(φ).

Hence we have
pj
qj

= εj(φ) ≥ σ(φ) for 1 ≤ j ≤ `

that is pj ≥ εj(φ)qj for 1 ≤ j ≤ `.

Lemma 5.1.1 We have

1
2
Γ((h|a]12|2)φ) ⊂ convex hull of{((r, n) + R2

+) ∪ ((0, n+ 1) + R2
+)}.

Proof: Let us write

h|a]12|2 = x2(n1+n2)

2(m1+m2)∏
(t− tν(x))ê(t, x).

It is clear that

Γ((h|a]12|2)φ) = Γ(x2n
2m∏

(t+ φ(x)− tν(x))).

Recall that there is ν0 such that tν0(x) ∼ t∗(x) and this implies that

C|tν0(x)| ≥ |φ(x)− tν(x)| for any 1 ≤ ν ≤ 2m.
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Hence we have

Γ(x2n
2m∏
ν=1

(t+ φ(x)− tν(x))) ⊂ Γ(x2n
2m∏
ν=1

(t− tν0(x))).

On the other hand, from the proof of Lemma 2.1.5 we see that

tν0(x)
2m = O(|x|2)

(note that r = m1 +m2 = m). Since

Γ(x2n
2m∏
ν=1

(t− tν0(x))) ⊂ convex hull of{((r, n) + R2
+) ∪ ((0, n+ 1)) + R2

+)}

this proves the assertion. q.e.d.

Lemma 5.1.1 shows that
1
qj
≥ n+ 1

and hence qj ≤ 1. Since σ(φ) > 0 we get 1 > qj(1− σ(φ)). Then the condition
(C+) is verified for p = pj , q = qj . Thus we get from (5.1.1) that

Γ(Zφ) lies right side of the line (α+ 1)pj + βqj = 1, 1 ≤ j ≤ `.

This proves that

(5.1.2) γj(φ) ≥ βj+1(φ), 0 ≤ j ≤ `− 1.

We now show that ñ ≥ n. If n = 0 nothing to be proved. If n ≥ 1 then with
φ = 0, q = s/n, p = (1− s)/r one can apply (5.1.1) because

1 + p =
1− s+ r

r
>
s

n
.

Thus one gets
ñ ≥ n

s
.

Letting s ↑ 1 we conclude that ñ ≥ n. Then we have

γj(φ) ≥ ñ ≥ n = βj+1(φ) for r − 1 ≤ j.

Then it remains to prove

γj(φ) ≥ βj+1(φ) for ` ≤ j ≤ r − 2.

Assume now that there were j with ` ≤ j ≤ r − 2 such that

γj(φ) < βj+1(φ).
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Let us define j∗ = max{j | γj(φ) < βj+1(φ)}. By definition we have

γj∗+1(φ) ≥ βj∗+2(φ) and γj∗(φ) < βj∗+1(φ).

This implies that

δj∗+1(φ) = γj∗(φ)− γj∗+1(φ) < βj∗+1(φ)− βj∗+2(φ) = εj∗+2(φ) < σ(φ).

Take ψ ∈ G+(γ) so that
σ(ψ) = εj∗+2(φ).

Since σ(ψ − φ) = σ(φ), δj∗+1(φ) < σ(ψ), we can apply the following lemma to
get

δj+1(ψ) = δj+1(φ) for j ≥ j∗.

Lemma 5.1.2 Let f(t, x) = xn
∏m(t−tν(x)) and {(j, βj(φ))} be on the bound-

ary of Γ(fφ). Assume that σ(ψ − φ) = σ(ψ). Let εj(φ) = βj−1(φ)− βj(φ).

(1) Assume σ(ψ) > εk+1(φ) then we have

εj(ψ) = εj(φ) for j ≥ k + 1.

(2) Assume σ(ψ) ≥ εk+1(φ) then we have

εj(ψ) ≥ εj(φ) for j ≥ k + 1.

Proof: (1) Take ` ≤ k so that ε`(φ) > ε`+1(φ) = · · · = εk+1(φ). Then it is clear
by definition of εj(φ) that (`, β`(φ)) is a vertex of Γ(fφ). Recall that

fφ(t, x) = xn
m∏

(t+ φ(x)− tν(x)) =
m∑
j=1

Cφj (x)tj .

By definition we get

Cφj (x) = O(|x|βm(φ)+
Pj+1

i=m εi(φ)).

When j = `, since (`, β`(φ)) is a vertex of Γ(fφ) we see

(5.1.3) |Cφ` (x)| = |x|βm(φ)+
P`+1

i=m εi(φ)(c+ o(1))

with c 6= 0. We observe that

1
`!

(
t

)`
fφ(t, x)|t=ψ−φ =

1
`!

(
t

)`
fψ(t, x)|t=0 = Cψ` (x).

Then we see that

Cψ` (x) =
∑
j≥`

j!
(j − `)!

Cφj (x)(ψ − φ)j−`.
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On the other hand, we have

Cψj (x) = O(|x|βm(φ)+
Pj+1

i=m εi(φ)) for j ≥ `+ 1

in general, and hence this shows that

(5.1.4) Γ(fφ) ∩ {x ≤ β`(φ)} = Γ(fψ) ∩ {x ≤ β`(φ)}

and hence the assertion.
(2) Take ` ≥ k + 1 so that εk+1(φ) = · · · = ε`(φ) > ε`+1(φ) if exists. Since

σ(ψ) ≥ εk+1(φ) > ε`+1(φ) the same assertion proving (1) shows . We turn to
εj(φ), εj(ψ) for j < `+ 1. Since

Cψj (x) = O(|x|βm(φ)+
Pj+1

i=m εi(φ)) for j ≥ `

and Γ(fφ) is convex, this proves that

εj(ψ) ≥ εj(φ) for j = k + 1, ..., `+ 1

and the assertion. Thus we have

γj∗(ψ) =
r∑

j=j∗+1

δj(ψ) + ñ =
r∑

j=j∗+1

δj(φ) + ñ = γj∗(φ).

Since σ(ψ) ≥ εj∗+2(φ), applying Lemma 5.1.2 again, we get

εj(ψ) ≥ εj(φ) for j ≥ j∗ + 2.

Thus we conclude that

εi(ψ) ≥ εj∗+2(ψ) ≥ εj∗+2(φ) = σ(ψ) for 0 ≤ i ≤ j∗ + 2.

We now apply the same argument to prove (5.1.2) (note that we do not use
σ(φ) > ε`+1(φ) to prove (5.1.2)). We conclude that

γj(ψ) ≥ βj+1(ψ) for 0 ≤ j ≤ j∗ + 1.

On the other hand one has

γj∗(φ) = γj∗(ψ) ≥ βj∗+1(ψ) ≥ βj∗+1(φ)

where the last inequality follows from

βj∗+1(ψ) =
r∑

j=j∗+2

εj(ψ) + n ≥
r∑

j=j∗+2

εj(φ) + n = βj∗+1(φ).

Thus we have a contradiction. q.e.d.
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When σ(φ) > ε1(φ) we repeat the same arguments. We show γj(φ) ≥
βj+1(φ) for 0 ≤ j ≤ r − 2. Suppose that there were 0 ≤ j ≤ r − 2 such that
γj(φ) < βj+1(φ). Set

j∗ = max {j | γj(φ) < βj+2(φ)}.

Then by definition we have σ(φ) > εj∗+2(φ) > δj∗+2(φ). Take ψ ∈ G+(γ) such
that σ(ψ) = εj∗+2(φ) and hence

σ(ψ − φ) = σ(ψ), σ(ψ) > δj∗+1(φ).

Then by Lemma 5.1.1 we see that δj+1(φ) = δj+1(ψ) for j ≥ j∗. Hence one has

γj∗(ψ) =
r∑

j=j∗+1

δj(ψ) + ñ =
r∑

j=j∗+1

δj(φ) + ñ = γj∗(φ).

Note that σ(ψ) = εj∗+2(φ) ≥ · · · , we apply Lemma 5.1.1 to get

εj(ψ) ≥ εj(φ) for j∗ + 2 ≤ j ≤ r

and then

βj∗+1(ψ) =
r∑

j=j∗+2

εj(ψ) + n ≥
r∑

j=j∗+2

εj(φ) + n = βj∗+1(φ).

Since εi(ψ) ≥ εj∗+2(ψ) ≥ εj∗+2(φ) = σ(ψ) for 0 ≤ i ≤ j∗ + 2, the same
arguments as before give that

γj(ψ) ≥ βj+1(ψ) for 0 ≤ j ≤ j∗ + 1.

This clearly gives a contradiction because

γj∗(φ) = γj∗(ψ) ≥ βj∗+1(ψ) ≥ βj∗+1(φ).

When εr(φ) ≥ σ(φ) taking the line given by

tpj + xqj = 1 with
pj
qj

= σj(φ) ≥ σ(φ) (0 ≤ j ≤ r − 2)

one can conclude that

γj(φ) ≥ βj+1(φ) for 0 ≤ j ≤ r − 2

and hence the result. q.e.d.
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