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1 Introduction

1.1 Problems
Let us study a 2 x 2 system

Lu = 0yu — A(t,z)0yu + B(t, x)u

where ¢, x € R and A(t, z), B(t,z) are 2 x 2 matrices which are real analytic
near the origin in R2. Moreover we assume that A(t, ) is real valued. We study
the following Cauchy problem:

(C.P.) { Lu =1

u(T, z) = up(x).
We start with:

Definition 1.1.1 We say that the Cauchy problem (C.P.) is well posed near
the origin if one can find a neighborhood U C W of the origin and € > 0 such
that for any ug(x) € CX(W N {t =71}), |7| < € and for any f € C°(W) there
is a solution uw € C>°(U) to (C.P.).

REMARK: From the Holmgren’s uniqueness theorem, the uniqueness of solutions
to (C.P.) is garanteed.

Definition 1.1.2 We say that 0; — A(t,x)0, is strongly hyperbolic near the
origin if for any B(t,z) the Cauchy problem (C.P.) is C* well posed near the
origin.

Our main concerns are the next two questions: (A) Characterize L for which
the Cauchy problem (C.P.) is C* well posed. (B) Characterize strongly hyper-
bolic systems.

EXAMPLE 1.1.1. Let us consider

Pv = 02v — a(t, x)0*v + b(t,z)v = f.

If we set u; = Oyv, us = Oyv, u = *(u1,us), then the equation is reduced to the
following system:

Luz@tu—<2 é)@xu—k(g 8)u:<?>

If the Cauchy problem (C.P.) for P is C* well posed then so is for L and vice
versa. An interesting case is that a(0,0) = 0 and hence rankA(0,0) = 1.

ExXAMPLE 1.1.2: Let us consider

o 22 —tt)2 2?4 at?
At,r) = < —22 4 gt2 —($2—t4/2) .



Then we will see that for any B(¢,z), the Cauchy problem (C.P.) is not C*
well posed. On the other hand note that the eigenvalues of A(t,x) are +t*/2
which implies that L is strictly hyperbolic apart from ¢ = 0.

EXAMPLE 1.1.3: Let

At ) = ( an(t,z) st z) )

a1 (t, QL‘) a9292 (t, I)

be symmetric, that is a12(t, ) = a21(t, ). Then L is strongly hyperbolic. Note
that the eigenvalues are not necessarily smooth.

ExXAMPLE 1.1.4: Let us consider

Alt,z) = ( a1 (t,x)  aia(t,x) )

azl(t,l‘) —an(t,x)

where a?, (t,7) +a12a21(t,2) = 0. That is the eigenvalue 0 is folded. If we factor
out the common factor K (t,x) among a;;(t, ) one can write

Ko Ko?
A(tax)< _K,0p2 —Kop)

where p and o are relatively prime. Let us write
bir b2
B(t,x) = .
(t,z) ( bar b
Then a necesary and sufficinet condition for the Cauchy problem (C.P.) to be
well posed is:
patO' - oc?tp + b120'2 — b21p2 + (bll — bQQ)O'p =0

( Levi condition).
ExXAMPLE 1.1.5: Let us consider

A =vn) (g ).

In this case 0; — A(t, )0, is strongly hyperbolic for any ¥ (¢, x).
EXAMPLE 1.1.6: Let us consider

Ao = v (g )

bi1 b2
B= .
( ba1  bao )
Then a necessary and sufficient condition for (C.P.) to be well posed is given by
b21(0,2) = 0. Note that the condition is independent of ¢ (#£ 0). In this lecture

Let us write

we shall provide a necessary and sufficient condition for C*° well posedness of
(C.P.). We also give a necessary and sufficient condition in order that 0p —
A(t,x)0, is strongly hyperbolic.

Before closing this subsection we recall the Lax-Mizohata theorem:



Theorem 1.1.1 If (C.P.) is C* well posed near the origin then all eigenvalues
of A(t,x) are real when (t,x) varies near the origin.

We next remark that one can assume always the trace of A(t, z) is zero.

Lemma 1.1.1 In a new system of local coordinates:

s=t, y=9¢tz), ¢02)=x
one can assume that trA(t,z) = 0, where ¢(t,x) verifies

op 1
— = —trd =z.
5t 2tr (t,z), ¢0,z)==x
Proof: Easy.
In what follows we assume that trA(¢,z) = 0 and hence

A@@(a“ MQ>.

21 —a11

Let us denote h(t,z) = —detA(t,z) = a2, + a12a21. Note that if all eigenvalues
of A(t,z) are real then
h(t,x) >0

and vice versa.
1.2 Reduction to second order 2 x 2 quasi diagonal system

(1)

Note that if the Cauchy problem for L is C* well posed then so is for T~'LT
and vice versa. Thus it is enough to study T 'LT:

Let us take

L¥ =T LT = 8, — A*(t,x)0, + B*(t,x)
where Af(t,x) = T~YA(t,z)T and B(t,2) = T~'B(t,2)T. More precisely

i(a12—a21) ajatas; : # LA
# B +a11 - ay;  ajpa5;
A (t’l‘> - ( a12+a212 21—(04270421 - f :
2 2

— iall

It is clear that

ey
ESS
£

(1.2.1) aj, = —ajy, ajy =as.

Lemma 1.2.1 We have

laly] = laby| > |aly], 4la}y)? > tr(AA)

Il
S
<
=
5
S~—
s
=
ety
S
o
IV
&

In particular we have ab,(t,2) = 0 < A(t,z) = O.



Proof: Note that
h = (a§1)2 + a%Q“él = |a§2\2 - |aji1|2

by (1.2.1). Since h > 0 it follows that |a®,|2 > |a%,|2 and |a},|? > h. Observing
that
AR(ARY =T 1AL AT

we have tr(A'A) = tr(A#(A)*) = 2(|a}, |2 + |a},|2) < 4]a?,|2. q.e.d.

Lemma 1.2.2 Assume that A(t,x) is uniformly diagonalizable, that is for any
(t, ) there is a 2 x 2 matriz U(t, x) such that U(t,z) L A(t, z)U(t,z) is diagonal,
where ||U(t,z)7 Y|, |U(t,z)|| < C, with C independent of (t,x). Then there is

a C >0 such that ,

Ch(t,z) > §:<%j@,$y'

i,j=1
Proof: By assumption there is a U such that

UTAU = ( “(to“” _a(om) )

Hence A = Udiag(ca, —a)U ~! which shows [|A|? < ||U||?|U]|2(2a2) < 2C*a2.
On the other hand, since o> = h = —detA, we have

2
Z aij(t,x)Q < 204/7,
ij=1
q.e.d.

Let us put
M = 0; + A9, + C +“B* — AL

where ©B¥ stands for the cofactor matrix of B* A% = 9,4 and C will be
determined later. Actually this is the object we use in order to rduce Lf to
second order 2 x 2 “quasi” diagonal system.

Note that

LEM = 0} — hd? + (A} — A'C + t2(AB))d,
+(B¥ 4B + C — A%)d, + L} (C +°B* — A%)

because, for instance, we have
BP AP — Afcopt — (BPA®) + «°(B*A%) = tr(A*B¥) = tr(AB).
We now want to choose C' so that we have

Af — A'C + tr(AB) = diagonal.



Let us examine A? — A*C + tr(AB) which is
< Ayl — d¥ c11 — alyear + tr(AB) daty, — al 1y — afyean )
Orasy + ajjco1 — azicn1 —0rai, + aj caz — aglcm + tr(AB)
We want to choose C so that

8ta§2 — aqlclg — a§2022 =0,
dab, 4+ at oy —dbc =0

that is
Btatj a ataﬁ a
(1.2.2) C11 = ﬁ21 + %021, Co2 = ﬁ12 - %01%
azy agy aio P

Lemma 1.2.3 Assume that C = (c;;) verifies (1.2.2). Then with
Y = dj 01}, — df 0yaf, + b, tr(AB),
Z = —d,0,d% | + ab 0,d}, + db,tr(AB)
we have
L*M = (02 — hd>)I + QO + RO, + S

where

Q- ( Y/aﬁ21 - hczl/agl 0 >
0 Z/ozg1 — h021/a§2

and R=C — A% + Bf 4B S = L#(«Bf — A%).
Proof: We study (2,2)-entry of A? — A'C' + tr(AB):

—d.a! # 815“5‘2 _ ﬂ ot AB
tayy +aq | —3 5 C12 | —ayciz +tr(AB)

G12 G12
1
= &T{*a%ata% +afy 00l — ((ah)? + afyafy)ers + tr(AB)
12
1
= T{Z — hClQ}.
a12
We can examine the other entries similary. q.e.d.

In what follows we take c12 = ¢a1 = 0 (just for simplicity, because the term
h/a?, is harmless by Lemma 1.2.1). Recall again

a;l;’gl 0
P— 21
¢= 0 6ta§2
ajo
Then we see that
8, al 9,at 9, af

: (T2 0 af10(%F) 0l (%)
L (C): 0 a(af,agz) + f ) dras, f ) 8150«?2
ek, a1 0 ( o, ) —a;0:( o, )



Lemma 1.2.4 Let us define
D = a},0,a%, — afy04dd,.
Then we have Z = D + a’,tr(AB), Y = Dt + d%,tr(AB).
Proof: It is clear since aTll = fagl, @ = agl. q.e.d.

Lemma 1.2.5 Let us put
M =0, + A*9, + A} 4+ <°BF 4 C

where
Btagz 0
~ ‘1§2
C - 0 é)tagl
T

a1

Then we have
ML} = (82 — hd*) — hy0, + QOy + RO, + S

where

) ﬂ o )
G=( %"z O ) R_cGiaty Bty §= M(BY.
0 Y/a3,

Proof: Noting A% A + A*A% = h,, the proof is similar to that of Lemma 1.2.3.
q.e.d.

Remark that in Lemma 1.2.3, (97 — hd2)I + Q0,. is diagonal:

T T

8152 _ hag + (Dn+a(112§t2r(AB) )81
ot

97 — ho2 + (ZrentAB,

a2

and in Lemma 1.2.5, (92 — hd2)I + Qd, is also diagonal:

t i
02 — ho? + (2tentriB) _ p g,

19
: =
0F — h2 + (PR — )0,
Essentially our system is reduced to a second order 2x2 “quasi” diagonal system,
with singular coefficients in front of 0,.
In section 2, we define a finite number of pseudo-characteristic curves t =

o(z) of A. We define fy(t,x) for any real analytic function f(¢,z) defined near
the origin by (see Definition 2.2.1)

f¢(t7x) = f(t + (b(x),x)

We also denote by I'(f) the Newton polygon of f, the precise definition will be
given in section 2. Then we have



Theorem 1.2.1 In order the Cauchy problem (C.P.) for L is C* well posed
near the origin it is necessary and sufficient that

D(HD! + aytx(AB)],) C ST ([Alatsl%))

DUHD! + aytx(AB)],) C ST ([hlatal)o)

for any pseudo-characteristic curve t = ¢(x) of A (see Definition 2.2.1).

Theorem 1.2.2 For 9, — A(t,x)0, to be strongly hyperbolic near the origin it
18 mecessary and sufficient that

D(D%) © ST([Alatsl]a),  T(tlaisle) © 5T(hy)

for any pseudo-characteristic curves t = ¢(x) of A.

2 Pseudo-characteristic curves

2.1 Zeros of non negative real analytic functions

Let F(t,xz) be a non negative real analytic function defined near the origin.

Lemma 2.1.1 Let F(t,x) be as above. Then there is a real valued f(t,x) de-
fined in V' (a neighborhood of the origin) such that f(t,x) is real analytic in
V'\ (0,0) continuous in V, unique up to a non zero factor such that f(t,x)? =
F(t,x) and

l m
(2.1.1) ft0) =2 [~ 1) T 1= ti()le@

j=l+1

where ®(0,0) # 0 and t;(z) is obtained as the restriction to R of

tj(Z) = ZCjk‘Zk/pj, (pj S N)

k>0

Here Im t;(x) # 0 for 0 < |z| < § with some 6 >0 for j >1+1 (for1 <j <l
it may happen Im t;(x) =0 in 0 < |z| < 4).

Proof: Note that one can write
F(t,z) = z?"glt ... glvpm -~-hZ‘"7L§”1 ...}}Zlu@

where g; are real, that is g; = g; and h; # h;. Here we denoted h(t,z) = h(t, T).
To see this let us factorize F'(¢,x) as the product of irreducible factors:

_.2n l,1.m1 m
F_'r gl...gykl ...kpp



with k; # k;. Since F' = F we have
F = l‘2ngl11 . gll/V];;;nl . ];;;np = J;Z"glll .. 'gll,”k?lm R k;np

On the other hand from the uniqueness of the factorization E;nj coincides with
some k. This proves the assertion. Taking § > 0 small enough, we may
suppose that the resultant of any pair among g;, h;, hy, is different from zero in
0 < |z| < 6. We also may assume that the discriminant of every g¢;, h;, hy is
different from zero in 0 < |z| < §. Factorize

2

i)
hi = [Tt - tu(z))

=~
Il

then we have Im ¢;(z) # 0 for € R, 0 < |z| < J since otherwise we would have
hi(ty(2),2) = hi(tx(2),#) = 0 with some & € R, 0 < |#| < § where Im #,(%) =0
which contradicts the assumption that the resultant of h; and h; is different from

zero in © € R, 0 < |z| < 6. Thus one can write

n

—~

i) n(i)
hihi = [T 1t = te(@)® = [ J] It — ta(2)|
1 k=1

>
Il

We turn to g;. Let us write

gi = H(t — tg(z)).

k=1

If There is a ¢ € R, 0 < |z] < ¢ such that Im ¢x(xz) = 0 with some k then
l; is even (recall that the discriminant of g; is different from zero) because
F(t,z) > 0. Hence one can write

n(i) 2

g = | 11— ta(a))"/?

k=1

Finally if Im ¢, (z) # 0 for all z € R, 0 < |z| < § and k then, since g; is real,
tr(z) is also a root of g; = 0 so that tx(x) coincides with some ¢;(z) and

g =TIt~ tu(@) — @) = (L1t~ o))
This proves the assertion. q.e.d.

REMARK: One can express forz € R, 0 < £z < §

ti(x) = 3 O (£a)t/P.

k>0



Definition 2.1.1 We introduce several notations:

) = (L)

where the sum is taken over all t;(x) appearing in (2.1.1). We call a curve
t = Re t;(x) pseudo-characteristic curve of F(t,x) =0 and set

CE(F) = {Ret;(z) | +z > 0}
which is the set of all functions defining pseudo characteristic curves of F.
We may assume, after shrinking § if necessary, that

Ret,, (z) <Rety,(x) <--- <Rety,(z), 0<x<d,
Re ty,, () < Rety,(z) <---<Ret,, (), —6<z<0.

Then we put

and define
1 .
sj(x) = i{aj(x) +oj(x)}, j=1,2,..m—1,
so(z) = 3th(x), sm(z)=3t}(z).
We also define
(:)j = {(t,l’) | |I’| < 5, Sj_l(fE) S t < Sj(l’)}, j = 1, e,
O(T)={,z) | |x] <, sm(z) <t <T}.
Note that w; contains a pseudo characteristic curve t = o;(x).

Lemma 2.1.2 Let F(t,z) be as above and f(t,z) be as in Lemma 2.1.1. Then
there are ¢; > 0 such that

@ . a o _h_ o
t—t3(x) ~ t=2t3(z) © f T t—t3(z)
ino(T).
Proof: Recall that
l m
It 1 t—Retj(z) O
Sy Y I
T Sy rves AP S e

Since

1 ~t—Retj(@)+ilmt;(z) ~t—Ret;()
Zt—%—(nc) _; |t —t;(x)]? _; |t —t;(x)]?

10



because the left-hand side is real we get

" t—Retj(z)
2.1.2 L A R AT
212 2 Ty

|5

Hence we get
i _~~t—Retj()
= > —— —C.
f 2 1)

On the other hand noting that

>

E-263() > £ > 1+ (@) 2 7t~ )

Wl
> =

in ©(T) we have
1 1

> .
[t —t;(x)] — 4t - 2t53(2))
Since t — Re t;(x) >t — 2t}(z) it follows that

ft 1 & 1 C1
D e T
f 4;75— th(z) t—2t3(z)
because 0 <t —2t}(z) < T in ©(T') implies

TC
—— < -C.
t—2t3(x)

We turn to the right-hand inequality. Note
t=ty(@)] 2 ¢~ |t;(@)] 2t~ t}(2)

and hence by (2.1.2) one has

|

- 1 1
t
< ——+ < ———— +C.
2w Tt T
Using C < CT/(t — t}(x)) we have the desired assertion. q.e.d.

Lemma 2.1.3 Let F(t,x) be as above and f(t,xz) be given by Lemma 2.1.1.
Then there is a C > 0 such that
()=

in o(T).

11



Proof: From (2.1.2) one has

N\~ 1 & (t-Ret;(@)’ — (Imt())? [
3t<f)— Z(t—tj(sc))2 Z (@) +at<(1)).

j=1 j=l+1

Here we note that

Re L _ (t=Ret;j(@)® ~ (mt;(x))”
(t —t;(x))? |t —t;(x)[* '
This shows that
Jr) _ N~ (t=Ret;(2))® — (Im t(x))? P,
8t(f>— 2 = +6t< )

t()|*

j
In ©(T) we see that

t = Ret;(z) > 3|t;(z)] — Re t;(x) > 2[t;(x)] > [Im ¢;(x)|
and hence (t — Re t;(z))? — (Im ¢;(z))? > 0. This gives

ft P,
() oa(3) =0

and hence the result. q.e.d.
Definition 2.1.2 Let ¢(x) € CE(F). Then we define By(t,z) for any real
analytic B(t,x) defined near the origin by

By(t,2) = B(t + 0(x), 7).

Precisely if ¢ € CE(F) then By(t,x) is defined for £x > 0. Then one can
express Bgy(t,x) by the Puiseuz series expansion:

By(t,x) = Y Bit'(£a)"?
i,k>0

with some p € N. We define the Newton polygon I'(By) by
k
['(By) = convez hull of { U ((1,~) + R%))}.
B0
We say I'(Bg) = 0 if B = 0.
Proposition 2.1.1 Assume that

[(tBy) C %F(F¢), Yo € CE(F).

Then there is C > 0 such that (taking T small enough)

|(t —oj(2))B(t,x)| < C|f(t, )| for (t,x) € @j, j=1,...,m,
[(t = sm(x))B(t,x)| < C|f(t,z)| for (t,z) € ©(T), if n > 1,
‘B(tax” < C‘atf(ta CU)| for (tax) € ‘D(T)a if n=0.

12



Proof: We give the proof in subsection 2.3. q.e.d.

Lemma 2.1.4 Let n = 0. Then there is a C > 0 such that

sup |f(t,z)| < Clx|.
0<t<t% ()

Proof: Tt is enough to show that |F(t,z)| < C|z|* for 0 < t < t}(x). By
definition there is j such that

F(tj(x)’ z) =0, tj(x) ~ t}(.’];)
If g;(t;(x), z) = 0 with I; > 2 for some ¢ then one gets
l9i(t; (), 2)|" < Claf?, 0<t < tj(a).
To see this note that g;(t;(z),x) = t;(z)"® + O(|z|) = 0 and hence we have

ti(x)"® = O(|z|). This gives gi(t;(x),z) = O(|z|) for 0 < ¢ < ti(z). If
hi(t;(z),z) = 0 then it is easy to see that

|hi(t, )| < Clz| for 0 <t < t}(x)
and hence |h;(t,z)h;(t,z)] < C|z|? for 0 < ¢ < ti(z). I gi(tj(z),x) = 0 with
x

l; = 1. Since g;(t,x) > 0 then g;(t,z) = t>™ + dq (2)t*™ "1 + - + dosm (x) where
dom (z) = O(]z|?). On the other hand every root of g;(t,x) = 0 is a branch of

Zci(ZI/Zm)i'

Jj=1
Then it follows that C; = 0 and hence every root is O(|z|'/™). This shows that
dj(z)(|z[*/™)?™=3 = O(|z|?) and hence g;(t;(x), ) = O(|z|?). q.e.d.

Lemma 2.1.5 Let F(t,x) and f(t,z) be as above. Then we have

sup  |fa(t,z)| < C
[t|<T,0<|z|<d

with some C > 0.

Proof: Recall that f(t,z) is real analytic in V'\ (0, 0) satisfying f(t,2)? = F(t,z).
If g(t,z)?> = F(t,z) then we have f(t,x) = g(t,x) or f(t,x) = —g(t,z) in
V'\ (0,0). That is f(¢,x) is unique up to the sign. We can argue exchanging ¢
and z to conclude that

! m
fto) =t TG —s;0) I lo— s )
Jj=1 j=l+1
where Tm s;(t) # 0 if j >[4 1. Then it is clear that f,(t,z) is bounded because

9 s = Lo Resi(®)

is bounded. q.e.d.

13



Lemma 2.1.6 Let F(t,z) and f(t,z) be as above. Let n = 0. Then for any
K >0, there is Tk such that we have

either fi(t,z) > Kf(t,z) >0 or — fi(t,x)>—-Kf(t,z) >0
in@o(T) for0<T < Tk.
Proof: Recall that
!
=[Jt -t H It —t(x)|e(t, z).
J=1 j=l+1
Then it is easy to see

Fef + fif =23 (t=Rety(@) [ 1t —t;@)e + [T It — t;(2)*(€*)s.
p=1 J#p j=1

On the other hand, by definition we see for (¢,2) € @(T')

t—Rety(z) > t—thw) > =t > [t —t;()], k=1,...m.

W\l\?
l\D\’—‘

Then one has

(f2)e— Kf2 > (1 CKlt — tu()))[t — tr (@) [T It - t;(2)2e2
F itk

Since supg 7y [t — ti(x)| — 0 as T'— 0 we get the desired result. q.e.d.

2.2 Pseudo-characteristic curves for systems

Recall that
h(t,z) = 2™ (2™ 4 hy(2)t*™ 7 4o hopy, (2))e(t, 2)?

where e(0,0) # 0, h;(0) = 0. We apply Lemma 2.1.1 to h and we get

11 mi1
b(t,x) = 2™ [t —ti(2) [[ It—ti@)et )
=1 i=l1+1

which verifies b?(t,z) = h(t,xz). We turn to study agz(t,x). By Weierstrass
preparation theorem one can write

alo(t, ) = 2™ (1™ + ay ()™ 4 - Ay (2)) U (¢, )
with a;(0) = 0, ¥(0,0) # 0. Here we note that one can express

aly(t, @) = a"gi - ghr it - oW

14



where §; = ¢g; and h; # h;. By the same argument as before we conclude that

if we write
n(i)

hi =[] (¢ —t(2))

k=1

then we have Im t5(z) # 0 for x € R, 0 < |z| < § with some § > 0. This gives

Lo m2
jafo)? =2 [Tt —t;()* ] It —t;(@)e(t,2)?
J=1 J=la+1
and define b(t, z) by
5 l2 mo N
b(t,x) =a™ [[(t—t;x) [ [t-ti()t )
Jj=1 j=la+1

which is the same one given by Lemma 2.1.1 applied to |a‘,|2. ~
We now study all {t;(z)} and {t;(z)} appearing in the definition of b and b.
Let us take t1(2), ..., t;n(2) which are differnt ones among {¢;(z)} and {t;(2)}.

Definition 2.2.1 We call the curves t = Re t;(z) pseudo characteristic curves
of the reference system. Just as before one can define o;(x), s;(x), wj, w(T)
etc.

REMARK: Let F(t,z) = h|a§2|2. Then o, s, wj, w(T) are the same ones given
by Definition 2.1.1.

REMARK: Note that n; = 0 implies m; > 1.
Proof: Let n; = 0. Note \a§2|2 > h implies no = 0. On the other hand ny = 0

means mgy > 1 because a,(0,0) = 0. Hence |a®,|2 > h again shows that m; > 1.
q.e.d.

REMARK: Since one can write
(@) = [21°(Cy + ollal)),  E(@) = [217(Cy +o(Jal),  Ch, C; >0
taking § > 0 so small one may suppose that
either 2t7(z) > t;(x) or 2ty(z) >t;(v)
in |z <.

Lemma 2.2.1 Let ny = 0 and 2t;(z) > t;(x) (resp. 2t;(z) > t3(x)). Then
there is a C' > 0 such that

o S
—
3
S
q
AN
i
<
N
&
—~
3

by
— <
b_C’
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Proof: Suppose 2t7(z) > t;(z). Clearly we have ¢t —2t7(z) <t —t;(z) and hence
by Lemma 2.1.2

by c’ c’

- =< T S ”

b~ t—ty(x) ~ t—2t:(z)

b
< C“Zt in &(T)
because &(T") C @;(T") N@yp(T). The proof for the other case is similar. q.e.d.

Lemma 2.2.2 Let ny = 0. Then there is a C > 0 such that

- SN2
G P P e <bt>
aiq b alsy b
in &y (T).
Proof: Recall that
mo
ahy =" [t t;(x)®
j=1
and note that i
Orais 1 Uy
=) ——+—.
al, Z t—tij(x) @

Since [t —t;(z)| > t — t7(2) in &(T") we have

3ta§2

)

o S

< C1 < C3 <
C C
- t - t*~ (Jj) 2= t — t*~ (Z‘) =™

in @;(T), taking T' small enough. Similarly we have

81504?_2 _ 1 &
a’f( 2, ) ) +8t<\P>

it is easy to see that
2
< “ < ( )
= =62
e 2
(t—t@)

in @;(T). q.e.d.

#
P

p) #
at( tc;‘lZ)

aja

o S

Lemma 2.2.3 There is a C' > 0 such that

sup [b(t,z)| < Clal.
0<t<t*(x)

16



Proof: If n; > 1 then the assertion is trivial. Let n; = 0 and hence my, ms > 1.
When t*(z) ~ ¢;(z) then Lemma 2.1.4(or rather its proof) proves the lemma.
Then we now assume that there is no j such that

h(tj(z),z) =0, t;(x) ~t"(z).

We observe the Newton polygons F(agz) and I'(h). Our assumption implies that

the line with the slowest steep of I'(h) is steeper than that of I'(a?,). This shows
that

hi(x)t* (2)2™ % = o(t* (x)?>™), 1<k <2m,.

On the other hand since a%agl > h, a% = agl we see that my > mo. From
a%z(t(x), x) = 0 it follows that

tj(z)™* = O(lz]).
This shows that t*(2)?™ = O(|z|?) and then

sup |h(t,z)| < Clz|?
0<t<t™ (x)

from which we have the desired assertion. q.e.d.

Definition 2.2.2 Let us put

pit,x)=t—oj(x), j=1,....m, pmi1(x) =1t— sm(x).
Lemma 2.2.4 We have the following.

(i) Let ny > 1. Then for j =1,....,m+ 1 we have

sup  |b(t,x)pjz(t,x) — 0, €—0
0<t<T,|z|<e

(ii) Let ny = 0. Then for j =1,....,m + 1 we have

sup |b(t, z)pjs(t,x)] = 0, €—0
0<t<t*(z),|z|<e

(iii) Let ny = 0 and 2¢3(x) > t;(x). Then for j =1,..,m+1 we have

sup |l~7(t,9:)pn(t,x)| —0, €—0.
0<t<t*(z),|z|<e

Proof: Remarking that p;.(z) = O(|z|°~!) with some o > 0 the assertions follow
from Lemmas 2.2.3 and 2.1.4. q.e.d.

17



Lemma 2.2.5 There is a C > 0 such that
p; (£, 2)bi(t, )| < Clb(t, )|
inw; N{t>0},j=1,...,m and
lpmr1 (8, )be(t, )| < Clb(t, x)

in &(T) N {t > 0}.
Proof: Recall that

by h 1 <L t—Ret;(x et

b ; t—ti(x) +i:§1 |t — ti(xgg e
Let (t,z) € wj. Then it is clear that

[t —oj(@)] < |t = Rety(z)| <[t —tu(z)l

for all p. This shows that

be
b

1 c
< +c< +c
2 |t —ti(z)] [t — ()]

in @;. Taking 7" small so that

C//

< —
|t = oj(2)|
in @; we have the assertion. If (¢,z) € ©(T), then we see
£ = 5 (@)] < [t~ Re t,(2)] < It — tu(a)

for all p and hence the assertion follows from the same arguments as before.
q.e.d.

2.3 Proof of Proposition 2.1.4

In this subsection we give a proof of Proposition 2.1.1. We may assume that
p; = j renumbering the indices if necessary. We fix 1 < jo < m. Assume that

Re tj,—k—1(z) < Retjy_p(xz) =--- =Retj,(z) = = Re tjp(zr) < Retjyti+1(x)
in 0 <z < 4. Put \j,(z) =Ret;,(r) and

6+ = 5(Re tjpi1(@) ~ A@)), 67 () = 5(A@) ~ Re 15, 1(2)).

When Re tj,(z) = Re t,,,(x) (resp. Re t;, = Re t1(x)) we set

ot = %(3t*(x) — Az)), (resp. ¢~ = %()\(SU) + 3t*(2))).

18



Lemma 2.3.1 Forany 1 <v<m
@) — tul@)] + 816% (@)] ~ [A(2) + 665 (@) — b ()]
holds uniformly in 0 < 6§ < 1.
Proof: Let Re t;,(x) < Re t,,(z). Note
IA() — tu(2) + 6% (@) = (A(z) — Re t, (&) + 86* (2))? + (Im t, (x))".
If Re £, (z) > Re t;,141(z) then
IA(z) = Re t, (x) + 86* (z)|

> [Re t,(x) ~ A(e)] — 816" ()| 2 5[Re by () — A(x)].
Since Re t,(z) — A\(z) > 26T (z) > 0 it follows that

(@) — Re 1, (a) + 06* (2)] ~ |A(z) - Re b, (2)| + 6]+ ()

which proves the assertion for ¢*. We next assume Re t,(z) < Ret;,(z). In
this case we have

[AM@) = Re ty(2) + 697 (2)] = M) — Re t,, ()| + 6™ (2)
then one gets the assertion. The proof of the other cases are similar. q.e.d.

Write L ~
B(t,z) = z"B(t,z)E(t, x)

where E(0,0) # 0. Recall that our assumption is

m

D(ta"B(t+ ¢(z),2) CT(a" [[ Ault + ¢(x), z))

v=1
where A, (t,z) =t —t,(z). Let us define e(v), 1 <v < m and € by
@) =t (@) ~ 2, ¢F(2) ~ .
Assume that
() > >e(v) >e>eWp1) =+ > €(Vm).
From Lemma 2.3.1 it follows that
IT 18O @) + 60 (2),2)| = ¢ [T o
j=l+1 j=l+1
with some ¢ > 0 uniformly in 0 < § < 1. Lemma 2.3.1 again shows

l l
[T140, (M) + 067 (@), 2)| ~ [ (@) + 62) = earar o) tset
j=1

j=1

19



with ¢ > 0 for p=0,1,...,1. Hence, writing

np L oaais
ta" Bt + Mx),x) = Y bj(@)t!, bja(r) = i & B(\(x), x)
the assumption implies that
(2.3.1) Order{z"8/ B(A(z),z)} > n + Z e(v,
i=j+2
Lemma 2.3.2 For 0 <6 <1 we have
6% (2)2" B(A(2) + 6¢™ (z), )| < Cla" H Ay(N(@) + 6¢% (), )|
with C independent of 6.
Proof: Let us write
B(A(x) +6¢* (2),2) = Y Bj(x) () = *¢+( )0 B(\(x), ).

§=0
From (2.3.1) it follows that
270! B(\(z), z)| < Ca™F2izi+e €0
and hence
(2.3.2)  8]oT||07 0T (2)72"0] B(A(x), x)| < CoIH gelvira)ttelvm)+(+Detn,
Let j 4+ 2 < then the right-hand side of (2.3.2) is bounded by

O g ety )i T 250 < Cla HA () + 66" (), )]
1=l+1

If 5 + 2 > [ then noting
(J+De+eWjpe) +-- +elvm) > le+ e(vigr) + -+ e(vm)
the right-hand side of (2.3.2) is estimated by
6l n+le < H LL‘G(W > 6J+1 l < C|.’L' HA +6¢+( ) )|
i=l+1 v—1

which ends the proof of the assertion for ¢. The proof for ¢~ is similar.q.e.d.

Proof of Proposition 2.1.1. Recall that

Do = {(t,2) [ 2] <8, A(z) = 67 (2) <t < Az) + ¢ (2)}.
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Let (t,z) € @j, N {t > Ax)}. Then there is a 0 < 6 < 1 such that t =
Az) + 6¢™ (x). From Lemma 2.3.2 it follows

|t = A@))B(t,2)| < C|f (¢, z)|.

In the case (t,z) € @;, N {t < A(z)} the proof is similar. q.e.d.

Lemma 2.3.3 In w(T) with small T we have
B(t,z)| <CY_ 2" [[ Au(t,2)l,
q=1 v#£q

|(t = Re tyn () B(t, )| < Cla™ [ ] Au(t, ).

v=1

Proof: Repeating the same proof of Lemma 2.3.2 we see with A\(z) = Re t,,(x)
that

|66* (2)a" B(A(z) + 6¢* (z), )| < Cla" HA z) + 007" (2), )|

holds for all 0 < §. For any (t,z) € w(T), taking § > 0 so that t = A\(x)+d¢T (z)
the second inequality follows. Since

2 1
t—Retn(z) >t— |tm(z)] > §t > §|t t,(2)],
2 1
[t —t,(x)] >t —|t,(z)| > §t > §(t — Re tim(x))
the first inequality follows from the second one. q.e.d.

Lemma 2.3.4 In w(T) with small T we have

Z |x™ H A (t,x)| ~ [0:f(t, ).

q=1 v#q

Proof: Since it is clear that

0cf (8, 2)] < C Yl [T Ault )]

q=1 v#q

it is enough to show the converse. Note that

f@tf:xQ”it—Ret ) [T 1t = tu(@) e
v=1

pFV

422" H [t —t.(z)|%ed;e.
p=1
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On the other hand, in w(T') we have t — Re t,(x) > c|t — t,(x)] for 1 <v <m

because 1 1
+ (@) = [t =t (2)].

t—Ret,(z) >
ety(z) 2 3 3

t>

[SCR )
Wl =+

Thus we see

fouf = ea® 3 |t = t(@)| [T 1t = tu(@)P?
v=1 E=%
with ¢ > 0. Hence dividing |f(t, z)| we get the desired assertion. q.e.d.

3 A priori estimate

3.1 Estimate in a domain bounded by pseudo-characteristic
curves

Let D C W be an open set and p(t,z) € C*(D) where p; > 0 in D. Put
p =0} — h(t,z)0? and note that

P — hpOp = 07 — 0, h0,.
We study the energy form:

(pu — hyOpu)Opu + (pu — ﬁxamu)&gu
== 3tG1(u) + (%«GQ(U) — R(u)

where

G1(u) = [Opul* + h(t, 2)|0pul?,

G (u) = —h(0sudu + Oyud,u),
R(u) = hy|0pul?.

Multiply e~ p*N to the energy form and integrate over D:

2/ e % o N |pu — h,0,ul|0pu|drdt
D
> / 0u(e= =N G (u)) + 0y (e pEN G ()] dadlt
D
$N/ e pEN (0, G (1) + ppGa(u))dadt
D
+9/ e O pEN G (u)dadt — / e 9 pEN R(u)dxdt
D D
where § > 0 and N is even. Note that

N
N/ le= 9 pEN =1y Go(u)|dadt < Z/ le= % pEN 1o, |0y u| 2 dzdt
D D

—|—4N/ le % pEN 1022 o1 (D, u| 2 dadt
D

22



by the Cauchy-Schwarz inequality. Similarly we have
2/ e % N |pu — hp0,ul|Opu|dedt
D
4
< —/ e~ pENHL o7 [pu — h,O,puldadt
N Jp
N —0t +N-1 2
+Z le™"p pe||Opu|“dxdt.
D

We choose + so that FpTN~1p, > 0in D, that is if p > 0 in D we take p~V
and if p < 0 in D then we take pV. Using these inequalities we get

4
—/ le =0t pENTL o1 |pu — hy Oyl dadt
N Jp
> /D [0n(e=% =N G (1)) + Bale=" =N G (u))dadt
N
+Z/D|e_9tpiN_1pt|(2|8tu|2+h(t,x)\8$u|2)dxdt
—I—/ a(t,x)\e_etpiN_lﬂﬁqudxdt+9/ e 0N G (u)dadt
D D

where
3N -
(3.1.1) o(t,x) = Thpt —ANR2p2p;t — C|phy.

We turn to dyu-u+0,u-u = 0y|ul|?. Multiply e~ pEN=2p2 we get C;N ! [, |e= p*N 1 p,||0yu|?dadt >
f 8 —0t iN 2 2|u| )dxdt
NfD 70:: pEN T3 pdlulPdadt + 6 [ e pEN T2 p2lul?dxdt Let us put

(3.1.1) E(u) = |0sul* + h(t,z)|0,ul® + cN?p2p2ul* (c = (4C1)™Y)
and

(3.1.2) T(u) = —(e " p™N E(u))dz + (e pN Gy (u))dt

and summarize:

Proposition 3.1.1 Assume p € C>*°(D), p #0, pt > 0 in D and N is even.
Choose £ so that Fp™N"1p, > 0 in D. Then we have

4
—/ le= % =N 1oL |pu — heOpul?dzdt
N Jp
> / D) + / o(t, 2) e~ =N 1|9, ul2dadt
oD D
N _ _ _
7 [ 1 e B ) - ONp o
D

—|—9/ e 9 pEN E(u)dadt
D
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where aN
o(t,x) = Thpt — 4NR2pip; = Clphy|

Definition 3.1.1 We define pa p(t,z) by
(1) pa,p(t,x)
(2) pap(t,z) =
(3) pa,p(t,x)

(4) pap(t,z) =b(t,x) if D=w(T)N{t >0}, ny =0 and 2t3(x) > tj(x)

=t—oj(z)if D=w;N{t >0}, j=1,2,...m

Pj
mt1 =t — Sm(z) if D=w(T)N{t >0} andny >1
b

(t,2) if D=w(T)N{t =0}, ny =0 and 2t} (z) > t;(z)

where we have set

wp = {(t,2) | 2] < (T~ t),5;1(2) <t < s52)}, G=1,eeim
W(T) = {(t,2) | [e] < 5(T = ), s.u(x) < t}.

REMARK: We may suppose that b> 0, b > 0 in w(T).

Lemma 3.1.1 Let D = w; N{t > 0} or D = w(T)N{t > 0} and p = pa,p.
Then there are ¢ > 0, C > 0 such that, taking T small, we have

o(t,x) > eNb(t,x)?p;, Cp 2p7 >p tpy in D
for N > Nj.

Proof: We first study the case ny > 1. In this case, by definition, pa.p =t — 0}
ort — s,,. Note
pht = 2pbb;.

From Lemma 2.2.5 we have |pb;| < Cb in D and hence |ph;| < Cb? in D. On
the other hand, from Lemma 2.2.4 we see that

sup |b(t,z)py| =0 as e€—0 if D=w;Nn{t>0}, j<m
0<t<t*(z),|z|<e

sup  |b(t,x)ps| =0 as e€e—0 if D=w(T)n{t>0}.
0<t<T,|z|<e
Noticing p; = 1 it is clear that, taking T" small,
o(t,x) > CNb?

with some C > 0. Since p;; = 0 the second inequality is trivial.
We turn to the case ny = 0. Let 2¢;(2) > ¢7(2). Recall that

N
bo(t, z) = b2 %bf _ ANV — OB
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because p = b. By Lemma 2.1.7 we have b, > Kb > 0 for any given K if taking
T small in @, (7). Since b, is bounded we get (Lemma 2.1.6)

bio(t,x) > CNO*b? in  @p(T).

Since w(T) C @,(T) it is clear that o(t,z) > CNb*b, in D. We turn to the
second inequality. By Lemma 2.1.1 we see

oy (bbt><c in @(T).

This shows that byb~! < C +b2b=2 in @y(T). From Lemma 2.1.7 again we have
b2 > b by > C in @(T)
taking 7" small and hence we get
bisb™t < 202072 in @p(T).
Since w(T') C wp(T), we have the second inequality. Finally we study the case
ni =0 and 2t7(z) > t;(z). Recall

- N - - -
bio(t, ) = b %bf — 4AND*b2 — Cbbib™ b,

because p = b. Since b, is bounded (Lemma 2.1.6) and b > b it follows from
Lemma 2.1.7 that ~ ~ ~
Vb2 < COb* < K~'b} in &(T)
for any K taking T small. This shows that the second term can be cancelled
against the first term. On the other hand, since 2¢¥ > ¢}, from Lemma 2.2.1 we
see that o
bib™ P < Chb™' in &(T)
and hence bb~1bb, < Cb? in &(T'). This shows that
o(t,x) > eNb*b? = cNb?p; in w(T).

By Lemma 2.1.1 we see
by -
O <C in @(7)

and hence byb~! < C + b7b=2 in &(T). From Lemma 2.1.7 we get

SH

b2 > by > ¢ in w;(T)
with T small. Then one has

Bttl;il S 2[32572 mn L:J‘(T)
t b
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Noting p = b and w(T) C @3(T), this gives the desired assertion. q.e.d.

We summarize:let us denote

Wi ={(t,2) €wj [t = 0;(2)}, wf={(t,2) ew[t<o;(a)}.

Proposition 3.1.2 We take p= with p = pap if D = w(T), p" with p =
pap if D=win{t >0} and p~N with p = pap if D =w! N {t >0}. Then
there is Cy > 0 such that

4
—/ |e*9tpiN+1pt_1||pufh$8zu|2d:cdt2/ I'(u)
N Jp oD

+01N/ |e*9tpiN*1pt|E(u)dxdt+0/ e 9 pEN B(u)dxdt.
D D
Lemma 3.1.2 Assume that
1 1
L(tYy) © 5T([hlalslle), T(tZ) € ST([hlalslle), Yo € CH(A).

Let p = pap and D = w; N{t > 0} or D = w(T) N {t > 0}. Then taking T
small we have

Y(t,x Z(t,x
ot ) 22| ot ) 20 < o,y )
s Ay

mn D.

Proof: We prove the asertion for Z because the proof for Y is a repetition. From
Proposition 2.1.4 with F = hla®,|?, B = Z we have if D = w; N{t >0}

lp(t, x)Z(t,x) < C|b(t, z)b(t,z)] in D.

On the other hand, since |b(t,z)| = |af,(t,z)|, pr = 1 we get the desired as-
sertion. Let D = w(T) N {¢t > 0} and n; > 1. Then the proof is same. Let
D =w(T)N{t >0} and n; = 0. Proposition 2.1.4 gives

1Z(t,2)] < Clou(ob)].

C(bt+b~bt>.
b

When 2tj () > t7 () from Lemma 2.2.1 it follows that

This shows that

Z(t, )

a%Q(tv .’L’)

8, (bb)

<C

t

by
b

o S

<c i w(T)
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and hence we have

Z
|T‘ S C/(bt + bt) S QC/bt.
iP)

Remarking that p = b we get

Z
\pT\gc”bpt in w(T).
a12

We turn to the case 2¢7(z) > t;(z). By lemma 2.2.1 we have

be b
zt < czt in w(T)
Hence we get ~
Z b+b bb
| <C'(——+ =)
ajqy b

Since p = b we see that

Z
lp—-| < C"py in w(T).
ai2

q.e.d.

Lemma 3.1.3 Let D = w; N{t > 0} or D =w(T)N{t > 0} and p = pa,p.
Then we have

dyal d;al
t;hz Scﬁ, By t?u) SC(&)Q in D.
aiy P ajy P
Proof: Let D = w; N {t > 0}. Since
ata§2 _ 1 + &
a, t—tij(z) W@

and for (¢, z) € w; we have
[t = 0y(@)] < |t~ Re t,(2)] < |t — t(a)
for all p. It is clear that

o,a’

a .
712|§C n W

B J
aio

lp(t, )

taking 7" small. This proves the assertion because p, = 1. Similar arguments
prove the second inequality when D = w; N {t > 0} or D = w(T'), ny > 1. Let
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D = w(T) and ny = 0. Assume that 2¢;(z) > ¢;(z). Then from Lemma 2.2.2 it
follows that

e b dyal b
1ZE2 <O, a2 < o(F

=)? in @(T)
aiq b als b

and this proves the assertion because b = p. When 2t} (z) > t#(x) then using

b b
zt < Czt in @o(T)
(Lemma 2.2.1) we get the desired assertion. q.e.d.
We pass to M Lfu = f. Assume that u verifies M Lfu = f. Recall that
+(Z/dky — hy)O, 0 ) - -
mrt= (" 12 + RO, + S
( 0 P+ (V/ah = he)O t

= (p— ha02) I+ Q0, + RO, + S

where

. g .. .
Q(Z/a12 0 ) R=C+ AL+ B' 4B §=M(B"

0 Y/d,
A 8ta§2 5}(151
C = —diag ( T 1 .

aja as

We assume that the hypothesis in Lemma 3.1.2 holds.

Lemma 3.1.4 Let D = w; N{t > 0} or D = w(T') and p = pa,p. Then we
have

P2t QP < C(Q)pib(t,x)? in D

with some C(Q).

Proof: It is clear from Lemma 3.1.2. q.e.d.

Lemma 3.1.5 Let D = w; N{t > 0} or D = w(T) and p = pa,p. Then we
have B ~ 5 5
P2 HRIP < C(R)pe, pPpy ISP < C(S)pe

with some C(R) > 0, C(S) > 0.
Proof: It is clear from Lemma 3.1.3. q.e.d.

Note that

pENF oy — hpOyul? < 20N oY M LEu)?
+pEN L CIQPR IOl + CLRI0,u]? + €151 uf?}
< 2pENH MR 4 pEN 7 p {O(Q)W0,ul? + C(R) Dyl + C(3)ul}
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by Lemmas 3.1.4 and 3.1.5. Taking N2 > ¢,C(Q),c1C(C) and 6 > ¢,C(8), it
follows from Proposition 3.1.2 that

8
—/ e_etpiN+1p;1|MLﬁu\2dxdt2/ (u)
N oD

0
Jr%1/ 70tp:|:N 1 E(u )dzdt+2/ efetpiNE(u)dzdt
D D

where D = w¥ N{t >0} or D =wiN{t >0} or D=w(T).
3.2 Estimates of higher order derivatives
We start with

Lemma 3.2.1 Let D = w; N{t > 0} or D = w(T') and p = pa,p. Then we
make pp;1 as small as we please in D taking T small.

Proof: Clear. q.e.d.

Lemma 3.2.2 Let D = wj N {t > 0} orD:w?ﬂ{tEO} or D = w(T) and
p=pap. Then we have

csN~ / “OENFL LN (M nAR)(LF — n AR u|>dedt
2/ I‘(u)+62/ e Ot N1 B (u )dxdt+c29/ ~0pEN B(u)dxdt
oD D

for any N > NO(Q,I:B) +n, 0> 90(5,71), n € N.
Proof: Note that
(M +nAL)(LF — nAb) = p — hy0y + Q0, + RO, + S

where Q = Q—nh,I, S = S+nAl Bt —nM(AL)—n?(AL)? since ATAL + AL At =
hy. Let € > 0 be given. Taking T small one may suppose that

PPy nha|* < en®pib?
since h, = 2bb, and bﬂf is boundgd by Lemma 3.2;1. ~
It is clear that C(Q) < 2(C(Q)+en?) and C(S5) < 2(C(S) +cn*) with some
¢ > 0. Then taking € > 0, No(Q), 00(S, n) suitably so that

N > No(Q) +n, 0> 0o(5,n) = N? > ¢,0(Q), 1C(R), 6> c2C(S)

(note that ¢;C(Q) < 2¢:C(Q) + 2c1en? < (1/2¢1C(Q) 4 n)? if 2¢1e < 1). Then
we get the assertion applying the previous inequality. q.e.d.
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Proposition 3.2.1 One can find Ng > 0 such that for anyn € N there is 61(n)
such that with D = w¥ N {t > 0}, D = w? N {t >0}, D = w(T) we have

Z / |679tpiN||8f(9§cu|2dzz:dt+Z/ T'(0Lu)
D aD

k+I1<n I<n

<Cc Y / le=0 p=N |0k AL Lou|*dadt
k+i<nt1”D

+C Z /|679tpiN71||8f@iLﬂu\2da:dt
D

k+I<n
for any N > Ny +n, 0 > 01(n) where p=pa.p.

Proof: Take Ny = N(Q, R). Then from Lemma 3.2.2 it follows

20 / e~ pEN | E(0%u)dxdt + / ['(0%u)
D oD

is estimated by
N [ 7P M g2 — gAb) kPt
D

Since |C| < ¢(p;/p) in D and
qg—1
(L* — qA%)0%u = 01L*u — Y~ B;dlu

=0

this is bounded by constant (depend on ¢) times
/ =0 =N+ (9,00 L + |00+ Louf?)dudt
D
+/ le= % pEN =1 p,] |09 Liu|? dadt
D

DI R e T

i+j<q,i<1

+ Z /|e_9tpiN_1ptH8g{u|2dxdt.
D

Jj<q-1

The third and fourth terms are estimated by

q
CZ/ e =N | B (09 u)ddt.
j=0"P
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Hence, taking 6 large and summing up over ¢ = 0,1, ...,n we get

¢, —6t N9, |2 - j
=0 / le™ 7 p= |02 u|*dadt + / TI'(0u)
2 ]go D j;() oD

<O [ e o (00IL? + 02 Lhul ot
j=0"P

+CZ/ e~ pEN =109 Lo ddt
j=0"P

where we have used E(u) > c|u|? with some ¢ > 0. Note that
Ofbu=0f oL Lu+ Y c;;0[00u.
i<k—1,j<i+1

‘We consider
S klofalup

k+1<n,k>1
with A > 0, g > 0 small and Y, u! < +oo. Since

S Y jooi

k-+l<n,k>1 i<k—15<i+1
n

<O PP+ ot S N 0jolul?
3=0 i+j<n,i>1

taking Az ~! small enough so that the second term in the right-hand side cancells

against to the left-hand side we get

Z MNeuhorotul? < C Z e pt|oF =1l Liu)?

k+1<n,k>1 k+1<n,k>1

—|—C’Zn: |09 ul?.

§=0
Now multiplying |e~% p*V| and integrating over D we have

Z / le = pEN| |0k 0L u|? dadt
D

k+i<n,k>1

<C e etpij OF=1ol Liu)?dadt
t T
D

k+1<n,k>1

—|—C’Z/ le =% =N (|02 u|? dadt.
j=0"P
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Since we have already estimated

92/ le =0 pEN| |00 u | dadt
j=07P

plugging this estimate into above inequality, we get the desired estimate. q.e.d.

3.3 A priori estimate
Recall that A%(0,0) = 0 because a?,(0,0) = 0.
Proposition 3.3.1 Let r(t,z) =t — 0(x), L*u = f. Assume that
(1) |A¥(t,z)| < Clz| in 0 <t < t*(z),
(2) 10 (z)| < Culz|®= with some § >0 for a =0,1,...,Q,
(3) 02u(0,2) =0, 92 f(0,z) =0 fora=0,1,...,Q.
Then for any ¢ € N with 2¢+1 < Q there is a wq(t, ) verifying the followings:
L¥(u—wy) = r9F, u—w,=riTV
where

|0F 0L (u = wy)[* < Cla| 7 r |40 (g)2(@ gkt
Lt ()
X Z/ 07 9l dt
p=0"0
forO<t<t*(z), k+1l+q+1<Q, k+1<qg+1,

|8tkai(Lﬁu — Lﬁwq)|2 < C|£L’|_2(l+1)|7"|2(q_k_l)
1 0(a)]

RN o) ST
p=0"0

16(2)] |

1
+C|z| 72" () Qa7 Im D+ Z/O L8 f12dwdt
B=0

t
IGTECRD / 1091 0L f2dwdt
0
forq+1l+1<Q, k+1<q and
! [6(2)] )
0F 0L, |2 < Cla| 24 ()2 Qa1 =0H1 Z/ 02 00 |dt
p=0"0
forq+1<Q.
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We first show the following lemma.

Lemma 3.3.1 Let ¢(t,x) € C*°. Then one can write

q
Y(t,x) = Z¢j(x)rj + r?t e, (t, @)
3=0
where Y;(x), 1q(t, ) verifies
|05 ()| < Calae| ™, 1=0,1,..,
|0F 0L by (t, )] < Copala ™', 1=10,1,....
Moreover if 024(0,2) =0, « =0,1,...,Q then we have

! ) [6(z)]
DL < O fa] 72O (a) OO /0 0P oy (r,x) Pdr
B=0
forj+1<Q and
! t*(2) .
k0L, < Y faf 2 @@tk vst [ 0@ g0y
B=0 0

foro<t<t*(z), k+l4+q¢+1<Q.
Proof: Since
L L[ q+1
() = LU0, 0). v(te) = = / (@) (0(x) + 7(t — B(x)), 2)dr

the first two inequalities are clear. Assume that 08¢ (0,2) =0, a = 0,1, ..., Q,
then _
97 (0{¢)(0,2) =0, a=0,1,..,Q—j

and hence we see

—7 1
o) = (t;”;'/ (1= ) 70P ) (st, 2)ds.
5/,

This shows that

g L | (1L 99908 y(50(e), )ds.

Uil = =i,

Noting that

1 2 1
/ O 00y (s6(x), 2)ds| < C / 0T 0w (s0(x), )| ds
0

0

[0(x)]
=0|9(x)|*1/ 109 08y, ) 2dr
0
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we get the third inequality. Remarking that

1
Ohun(t.) = % [P 0) + 7t~ 0(0), )
q' Jo
t
OITE Ly (t, ) = c/ (t —u) F17 199y (u, z)du
0
we see

1
8wa<t7x) = C// Tk[Tt + (1 - T)9<3;‘) - u]Q—fI—k—ldT
0

O(z)+7(t=0(x)) L
x/ P (u, ) du.
0

By the same arguments we get
1
| @0 6w) + 7t~ () 2)
0
1 0(z)+7(t—0(x)) L
= c’/ *rt+ (1 —7)0(z) — u]Q_q_k_ldT/ 875Q+ Lo (u, z)du.
0 0

Since |1t + (1 — 7)0(x)| < 7t*(x) + (1 — 7)t*(x) = t*(x) for 0 < ¢ < t*(z) then

1 t*(x)
|atkai;1/}q|§ Z / dT/ t*(m)Q_q_k_l1_1|x\_2h|5?+18i2¢(u,$)|du
0

li+lo=1"0

and hence
b < e @l @R [ 100 o)
0
t*(z)
=t (@@ [T 0Ly, ) P
0

which is the desired inequality. q.e.d.

Proof of Proposition 3.3.1 From Lemma 3.3.1 one can write

q q—1
u(t,z) = Zuj(x)rj + MV (tx), f(t,x) = Z fi(@)r? +1rIF, 1 (t,z).
§=0 3=0

Let us put
q

wy(t,x) = Z wj(z)r(t,z).

§=0
From Lemma 3.3.1 it follows that

*

! ()
OOV < €3 Ja] e @k [T R oupar

B=0 0
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for 0 <t <t*(z), k+1+q+1<Q. Hence we get

‘aécaglc(rq+lv)|2 < C|x|—2l|r|2(q+1—k—l)t*(w)2(Q—q—k—l—l)+l
! t*(2)
XZ/ 09T 0P w2t
=070

for0<t<t*(z), k+1+qg+1<Q, k+1<qg+1. Itis clear that one can write
L*(u — w,) = r9F. We show the third estimate. From Lemma 3.3.1 we see

! 6]
P < Clal (@)@ S [ o ozupar
#=0"0

for j +1 < @ where uy) = 0Lu;. Since

Folwgl < > a7
0<j<q,li+l2=1

then noting |6(z)| < t*(x) we have

l 0|
ko, < Clal o) @0 S " o ogupar
8=0"0
! 6]
< Cla| 2 ()2 @m0+ 3 / 109+ 9P 2dr.
B=0"0

This is the third assertion. Finally we prove the second estimate. From Lfu = f
and L¥(u — wy) = r7F we see L*w, = f — r?F. Hence we have

q—1
Liw, = ij(x)rj mod O(r?).
7=0

We now study anq.

Liw, = Z fird + Z Z —Agu; + Bguj + Z jAgujG' rH
Jj=0 n>q \i+j=m,1,5<q i+j=p+1,1,5<q
+rittA, Z—u;rj + jur! ¢’ —|—7“‘1+1Bq(z u;r?).
7=0 =0
Note that )
oral > —Alufrt + Bl
i+j=p,i,5<q
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is bounded by

lo+1

6]
Z TQ(u—kl—ll)|$|—2(l+1)|9(x)|2(Q—j—12—1)+1Z/ 109+ 9B 2dt
l1+l2=l,k1§k B_O 0

and hence by

+1 16]
(3.3.1) rz(”_k_l)|a:|_2(l+1)t*(x)Z(Q_q_l_l)'HZ/ |8?+18,fu\2dt.
p=0"0

Similary the term

koL Z Al 0'rr
i+j=p+1,1,j<q

is estimated by

1 6]
T2(;¢—k—l)|z|—2(l+1)t*(x)2(Q*q*l*1)+1 Z/ |8tQ+13£u\2dt
=00

and .
oFE401 4 st
is bounded by

41 o]
7»2(11+1*/€1*11)‘x|*2(l+1)‘9|2(Q*Q*12*1)+1 Z / |atQ+1agu|2dt
li+la=l,k1 <k =070

and again by

+1 16|
(3.3.2) p2lat1—k=0) |x|f2(l+1)t*(@2(@7«;7171)“ Z /0 |8f2+185u|2dt.
B=0

One can estimate the term

q
kol q+1 g2
|0 0, E r?T Byugr? |

=0
by the same argument. We summarize:

q—1
|8tkalm (Lﬁwq _ Z f],r,])|2 S CTZ(q_k_l) ‘(El_2(l+1)t* (x)Q(Q—q—l—1)+1
7=0
+1 16]

XZ/ 109+ 9Py 2dt.
B=0"0

36



Since

q—1
LAy — LPw, = —(LPw, — ijrj) +7r1F,_q
§=0

it remains to estimate |9F9Lr9F,_1|. From Lemma 3.3.1 it follows that

q—1
0F 0L F, 1> < ClOFOLfI2 + ClofaL Y frd P

=0
! 10l
< CIOFOLF + Clal e @)@ 04 S [0+ 107 e,
p=0"0

Noting
koL 12 < e [ 1o8 ol P
we conclude the proof. ’ q.e.d.
We prepare some notations:
Q, ={(t,z) ||z <dT —1t),0<t<s,(x)}, v=0,..,m,
Qi1 ={t,2) | |z| <T —1),0<t<o,41(x)},v=0,....,m—1.
Similarly
w, ={t,z) | |z] <6(T —1t),s,_1(z) <t <o, (x)}, v=1,...,m,
wh={t,2) | |z] <6(T —t),0,(x) <t <s,(x)}, v=1,...m.
Now we introduce the inductive hypothesis: INDUCTIVE HYPOTHESIS: For any
n € N there are Q, = Q,(n) > n and ¢, = ¢,(n) > n such that
Liu=f, 0%u(0,2) =0, d°f(0,2)=0, a=0,1,..,Q,
= > / OFObul*dadt <C > / |OFOL f|?dxdt.(H,)
ki<n v k+1<q, (n) ” S¥m
Let k > 0 be so that t*(z) = O(|z|*). In Proposition 3.3.1 we take 6§ = s, and
construct w, and study the eqaution
L¥(u —w,) = f — L*w,
in Q =w, ,N{t >0} =&, In Proposition 3.2.3, taking N = 2(Ng + n),
0 =061(n+ N/2) we get

JARRACATET™ I EaD SR B VoM L AU
v+1

1<n+N/27 99011 kHl<nt+N/27 %

<c S [ ekl )P o
kti<n+1+N/2 Y ¥4

RIS / e o I0FOLLE (u — w,) Pdudt.
k+l<n+N/2 7 %v+1
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Taking ¢, @ so that
(3.3.3) 2¢—n)>N+1, 2k(Q—q—n—1-N/2)>2n
Proposition 3.3.1 shows

X0 (u —wy)(s,(x),2) =0, k+1<n, a <N/2+1

because we have ¢g+1— (k+a)—1>q¢+1—(N/24n+1)=q¢—(N/2+n) >0
and 2k(Q—q¢—k—a—-1—-1)—20>2k(Q—q—n—N/2—-2)—2] >2n—2] > 0.

Lemma 3.3.2 Assume that (0fu)(sy(z),z) =0, a=0,1,...,p+N/2+1. Then
there is C(N) > 0 such that

/

Proof: Note that

e O pygr | NP TN w2 dwdt > C(N)/ e 0P u|*dzdt.

v41 Wyt

80P ul? = 0 - OPu + 0P - 9P
Multiply —p?P*! to the equation get

=0, (PP 0P u)?) + (2p + 1)p*?| 0P ul?

= — PP - OPu + 3f;1u -OFu).

Integrating over w,,. 11 we get

g

O (p*P Y0P ul?)dxdt + (2p + 1) / PP |OPu|?dxdt

vl Wyt
1
< 2/ p?P 2|97 2 dedt + 5/ p°P|OPu|?dxdt
Wyt Wyt
so that

1
(p+3) / P70l derdt + / (2|0 ul?)de
w. Ow_

v+1 v+1
< 2/ p?P 2|00y dadt.
Wy

Since dYu =0 on t = s, (z) we get

/ (21100 uf?)d > 0.
Ow.

v+1
Hence we have

1
(2p + 5)/ PP OFulPdrdt <2 [ p* 0P ulPdadt.

w

v+41 v+41

38



Inductively we get the assertion. q.e.d.
Since |z| = §(T — t) is space-like, Lemma 3.3.2 gives

> e~0F 0L (u — wg)|2dxdt

k+i<n’@ui1

=C Z [7 e pN 11107 0L LH (u — wy)|*dwdt
1

E+Hl<n+14+N/2 7 Yv+
+C Y / e~ pN |08 OL LF (u — wy)|2dadt
k+1<n+N/2 Yyt
and hence assuming that g, Q verify

ol

(3.3.4) 26(Q—q—-1-1)>2(n+2+ 5

we have from Prposition 3.3.1 that

[ e eliokh i~ )P o

k+l<n+1+N/2 Wyt

<C Z / e 90k ul2dadt

k+H<Q+n+N/2+3
+C > / e~ oF oL f|2dadt.
k+<Q+3+n+N/2
We choose ¢, @ so that (recall N = 2(Ng + n))
(3.3.5) q>No+2n+1, kQ>(k+1)(Ng+2n+q+2)

then it is easy to check that these ¢, @ verify (3.3.3) and (3.3.4). We summarize:
if 0fu(0,2) =0, 98 f(0,2) =0 for « =0,1,...,Q,(n) then we have

Z/ OFolulfdudt <C Y / 1080 F2dadt
k+1<n Q41 k+1<G, (n)

where ¢,(n) = ¢,(Q + 2n + Ny + 3), Ql,(n) =Q.,(Q +2n+ Ny + 3). We go to

the next step. Let § = 7,1 we consider L*(u — w,) = f — L*w, in the region
@}, =w}, N{t>0}. From Proposition 3.3.1 it follows

) /8 Lu—w)+ Y / e 10F 0L (u — w,) 2dadt

I<n k+Ii<n u.)
<Cc > *9t| o MIOFOLLE (u — wg) [Pdadt
k+1<n+1 “J
oY / O N0FOL L (u — wy) Pdde,
k+I<n “J
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From Proposition 3.3.1 we have

(pu+1al( —wq))(opy1(x),2) =0, [<n

if
(g—n)>N+1, 2(Q—-q—n—-1)>2(n+1).

Since &Dj 1 is space-like, thanks to Proposition 3.3.1, the above inequality
yields

Z /~+ 070 (u — wy) [Pdadt

k+i<n /%04

<C > (/ |8faiu|2dxdt+/ |afa;_f|2dxdt>.
Qut1 Q

k+I1<Q+n+2 m
Then by induction hypothesis one has:
> / ofdbulPdzdt <C Y / |0F 0L, f P dadt
k+1<n Qu41 k+l<q,41(n) Qm

for any u, f with
Ofu(0,2) =0, 07f(0,2) =0, a=0,1,..,Q,+1(n)
where ¢y41(n) = G, (Q+n+2), Qui1(n) = Q,(Q+mn+2). This proves (H,,1).
Finally we derive an energy inequality in w(7T'). We remark that
Cp = (lz|* +[t*) in w(T)

with some ¢; > 0 when nq = 0 because we have

Cp=[]It—ti(= |>Ht7|t >Ht
>H (t 4+ *( H (|t] + |z|)

When ny > 1 we see

2 t 1
p:pm+1:tfsm(x)27t+§75m2§(t+t*(a€))

. (1 +1al").

M\H

Take 6 = s,,,(z) and ¢, @ are large in Proposition 3.3.1, then one gets

/ e Y p™N0FOL LF (u — wy)|Pdxdt
kti<nt1’/w(T)

<Cc > (/Q |afa;u|2dxdt+/s|afa;f|2dxdt>

E+1<Q+n+3
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where S = {(t,) | |z| < (T —t),0 <t < T}. Hence we have

Z / |0F 0L u|*dadt

k+i<n

<Cc > (/ |oF oL |2d:vdt+/\8k8lf\ datdt)
Qm

k+1<Q+n+3

Thus we have proved

Proposition 3.3.2 Let W be an open neighborhood of the origin and assume
that (C%) are verified. Then there are &, T such that for any n € N one can
find q(n), Q(n) so that we have

3 / koL ulfdudt < Cy Y / 108 0L Liu|2dadt
k+I1<n k+1<q(n
for any uw € C®(W) with 0fu(0,2) =0, a =0,1,...,Q(n).

Now we prove

Theorem 3.3.1 Assume that (CT) are verified. Then the Cauchy problem
(C.P.) is C*° well posed.

Proof: We first rewrite the energy inequality in Propposition 3.3.2. Let wug(x)
be given and assume that Lfu = f. We define u;(x), 7 > 1 so that

verifies with Lf(u — Uy) = Fy that
u—Uy=0tY), Fy=0@"").

From Proposition 3.3.2 we get

> / 0F 0L (u— Un)[Pdadt <C Y / |0F L Fy|2dxdt
k+i<n k+I<q(n
if N > Q(n)+ 1. This shows that

> |oFoluldadt < C Y / |0F 0L Un |2 dadt

k+i<n k+i<n

+C Y /|akalFN\ dzdt.

k+1<q(n)
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Note that

> /\afa;UNdedtgc > / 0L wo|?da
S S

k+i<n 1<n+N Y SN{t=0}
o Y / 080! F[2dadt.
k+l<ntN 7S
Thus we get
Z /|8fﬁiu|2dxdt§0 Z / 0% uo|?da:
ki<n”S 1<q(n) 7 SN{t=0}
(3.3.6) +C Y 088 | dadt.
k+1<q(n)

Let us choose polynomials {p(z)} and {qx(t,z)} so that

sup 105 (uo () — pi())] = 0 k — oo,
1<g(n),xeSN{t=0}

sup  |OL(f(t,x) — qr(t,2)) = 0 k — oo.
1<q(n),(t,x)eS

By the Cauchy-Kowalevsky theorem the Cauchy problem

Liup = f

uy(0, ) = py
has a solution uy, in a fixed domain W ( independent of k ). Let us take S so
that S C W. Then

3 /|8f@fcui|2da:dt§0 > / |04 pil*da
S S

k+i<n 1<q(n) n{¢t=0}
v [ oelafsar
k+1<g(n) 7S

Thus {u;} is a Cauchy sequence and hence there exists u € C™(S) such that

Z / |0F O (u; — ) |>dzdt — 0, i — oo.
k+I1<n S

This is a desired solution to our Cauchy problem. q.e.d.
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4 Necessary condition

4.1 Dilation

Definition 4.1.1 Let v €. We say ¢(z) € GE(v) if ¢(x) is defined in 0 <
+ < v(¢) with some v(¢) > 0 and expressed by convergent Puiseux series

¢(z) =Y Cj(#a)’/?, Cj€R, 0<+x<7(9)
j=0

with some p € N. We also define o(¢) for ¢ € GE(v) by
CH(#2)7?) < |g(w)| < C(£)7@
with a C' > 0.

Definition 4.1.2 Let f(t,x) be real analytic near the origin and f(0,0) = 0.
Let p,q €1 and ¢ € G*(v). We define p(fs3p,q) by

fols7t,572) = #(fO(t,) + o(s), 5= 0

where fO(t,x) does not vanish identically. Let f(t,x), g(t,x) be real analytic
near the origin. Then we define

M([§]¢§pv Q) = pfoip, @) — 1(9¢; P, @)
REMARK: 1(fs;p,q) is uniquely determined by I'(f4): Write
fo(sPt, s%x) = Z:Cij(spt)i(sqgc)j/‘l = ZCZ-jsp”qj/o‘tixj/a
then we see

qj

= min {pt + —=1}.
Iz Cij¢0{p o

This means that the line pt + gz/a = p is tangent to I'(fy). It is obvious that

w((falespsa) = u(fs;pq9) + 11(g¢;p,q). We introduce the following condition.
Let 7 be so that t*(z) ~ |x|7. For any p, ¢ €4 and ¢ € G¥(v) with

p>0(d)g,  ulhe;p.q) > 2q(1 —o(9))
(C*)  we have
Y Z
2p + 2u([aT]¢;p, q) > p(he;p,q), 2p+ QM([GTMH% q) > u(hg;p, q)-
21 12

Here o(¢)q should be read as ¢ if ¢ = 0.
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Lemma 4.1.1 Let f(¢, ) be real analytic near the origin and f(0,0) = 0. Then

2
u([%b;p, q) > —p, u([atTf]mp, q) > —2p.

Moreover

M([at(%)]aﬁ;p’ q) > —2p.

Proof: Let f4(sPt, s1x) = s#(foP-a)(fO(¢,2) + o(1)). On the other hand, writing
folt,) = (™ + f@)t™ T+ fin(@)
we have

10 fs(t, ) = 2™ (t™ + (7 — 1) (@) 4+ fa (2)D) Dyt )
I+ (@) HOD) ot 7).

It is clear that T'(td,fs) C T'(f,) by definition. This gives
(10,) (71, $12) = 5" ({8, 2) + 0(1)), 1* > plfyipr ).
Since 0y fp = (O1f )4 We see
sPH(O: f)(sPt, s%2) = 5" (°(t, x) 4 o(1))
and hence (9;f)4(sPt, s%x) = s* ~P(°(t,x)/t + o(1)). This proves that
1[0 flosp.q) = " = p
and hence p([0:f]p; P, q) — p(foipiq) = 1" —p—p= —p.

The second inequality is proved similary because I'(t207 fs) C T'(f,). We
turn to the final inequality. Note that

ofy _0f _0ufs Ofvoy v Oy
Au( 7 )= 7 ( 7 )% n([( 7 ) leipsq) = 2u(] 7 l¢; 2, Q)
Then we conclude that
o R onf

1 ([0x( 7 oD, q) > min{u([7]¢;p7 q),u([(7)2}¢;p7 q)} > —2p

which is the desired asserion. q.e.d.Recall that LM = p 4+ Q9, + RO, + S and

Y 7
Q = diag(—, 5), R=0C— AL+ B +“B,
a1 G21
# li
S = LHC) + LB} — A1), C = diag(202, 902,

i
agy P
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Lemma 4.1.2 Let S = (s;;), R = (ri;). Then we have

wlsiflospa) = =2p, ullrijleip,a) = —p-
Proof: It suffies to study L*(C) = 9,C — A*9,C. Since

i f
0.0 = ding(d,( 2021, 5, 212))
a21 a2

the assertion p([0;C]g;p,q) > —2p follows from Lemma 4.1.1. Note

Ato,C = ( a§11az(3ta%1/a§1) a%ax(ata%/a%) ) '
. a218@(ata’21/a21) _allax(atalg/alg)

We study the (1,1)-th entry:

yal al at, Opal
0510, (Z52) = S0, 000, — Opal, LT
21 21 a1 Goq
Since |a, /a5,| < 1 we see that
f Deab,y
a0 (== )los P 0) 2 =2p.
21

Similarly we get u([4%0,C)y;p,q) > —p. We turn to R. From Lemma 4.1.1 it
follows immediately that

1([R]g;p,q) > —p.

q.e.d.
Lemma 4.1.3 We have
Y Z
w(l—=loip ) 20, p(l—-leip,q) 20
21 A12
Proof: We consider Y/a%,. The argument for Z/a’, is same. Note that
Y a
— = 0y, — (51)9haf, + tx(AB).
@21 @21
Then the assertion follows because u([a, /ak]s;p, q) > 0. g.e.d.

In what follows we assume that (CT) does not hold, that is: There are p,
q €4, ¢ €GT(y) with p > a(¢)q, u(he;p,q) > 2q(1 — o ($)) such that

Y Y Z
(4.1.1)  2p+2u([—-lesp.a) < plheip.a), 1l leip, @) < pl[=-losp, @)
a2 a3y Ao
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Proposition 4.1.1 Assume that (C1) does not hold. Then there are p, q €,
¢ € G (y) withp > a(p)q, 1 > q(1 —a(9)), plhe;p,q) > 2 such that

Y Y
wl=lsipa) +p <1, 2¢(1 = 0a(¢)) =1 —p— ul[5-ls;p,q) <O
Az (a1
where qo(¢p) should read as p if ¢ = 0.
Proof: Let ¢ # 0. Then we replace p, ¢ in (4.1.1) by

2p 2q
whe;p,q)’  plheip,q)

Then remarking that p(he; kp, £q) = ku(hg; p, ¢) we may suppose that in (4.1.1)

p>o(d)g, 1>q(l-0(), ulheip,q) =2,

Y
p+ul—lsipa) < 1.
a21

In the case ¢ = 0 we make the same replacement.

Let us put
flp)=1-p— u([g]qs;p, q)
9(p) =2¢(1 —o(¢)) —1—-p— u([%]w% Q).
ajs

Suppose that g(p) > 0. Otherwise nothing to be proved. We note that p < 1
because

Y Y
p+ull—lsipa) <1, pll—loip, @) > 0.
a2, s
Remark that
fp) —9(p) = 2(1 = q(1 - 0(¢))) > 0.
On the other hand we see f(1) < 0 and g(1) < 0 since p([Y/a§2]¢;p, q) > 0.

Write
Y

u([aT]aa;p, q) = (Yo p,q) — plas) s Py @)
12
then we see that u([Y/ aﬁz]@p, q) is continuous with respect to p. Then there
exists p < p* < 1 such that

gp*) =0, g(p)<0, p"<p<l

Since f(p*) > g(p*) = 0 one can take p so close to p* (p* < p) so that f(p) >0
and g(p) < 0. This p is a desired one. q.e.d.

REMARK: Since p > oq, 1 > ¢(1 — o) this shows that 1 4+ p > q.
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Lemma 4.1.4 Assume that p > o(p)q, p+p<1,2¢q(1—0c(¢))—1—p—pn <O0.
Setd=(1+p—q)~! and 201 =1 — S+ 5q — 26p. Then we have

o1 —dqo(¢) — 1+ dp < 0.
In particular o1 <1 —0(p — o(¢)q) < 1.
Proof: We plug 1 = §(1 4+ p —¢q) into 1 — du + dg — 20p then we get
201 =0(14+p—q)—0u+3dg—20p=356—956u—op=956(1—p—p).
We compute §(2¢(1 — o) — 1 —p — p) < 0 which is

2q0 — 2qéc —§ —op — S =0(1 — p — pu) — 2qdo — 26(1 — q)
= 201 — 2qdc — 2 + 20p

because 6(1 — q) = 1 — ép = 2(01 — 0go — 1 + ép). This proves the assertion.
q.e.d.

4.2 Construction of an asymptotic solution

From Proposition 4.1.1 we may suppose that p, ¢ €, and p = u([Y/agl]d,;p, q)
verifies

/1'227 PZUCI,1>Q(1_U)>
(4.2.1) w+p<l, 2¢1—0)—1—p—p<0

where if ¢ = 0 then go should be read as p. Let ¢ € G (7). Take local
coordinates & = (x1,x3) so that

1 =1t—¢(x), z2=u.

Let P be a differential operator defined near the origin which is expressed as
P(t,x,0,0;) in the local coordinates (¢,z). Let P4 be the representation of P
in the coordinates (z1,x2). Let

2 2
(L*M)y = Z WD ()55 + ZB(” (z)i + F(x)
ij=1 i=1
where ; = /z; and h(¥) has the form
hID () =1 = hy(2)d (x2)?, K12 (2) = 2hy(2)¢' (22), B (2) = —hy(),
BP(z) = Qy(x), B (2) = hy(2)¢" (x2) — ¢/ (22)Qp() + Ry (),

Recall that LFM = 02 — h02 + Q0. + RO, + S and

hg(t, @) = 2™ (2™ 4 hy (@)™ 7L 4o+ hop, (2))e(t, )2 = he(t, z)2.
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One can write

2m1
h(z) =3 hj(ws)al, hj(r) = hjay’ (1+ O(x?))
j=0

where 0 = 0(¢). This shows that

2m1

ho(z) = > € (x)hjaizg’ (1+ O(xy"))
j=0

a 1/60
= Y hapl@)afad(1+0(xy7)).
(a,8)EM (9)

It is clear that

lm  hap(x) =hiz #0 for (a,B) € M(¢)

z1—0,22]0

and the Newton polygon I'(¢) is given by {(a, ) | (a, ) € M(¢)}. Note that

pwlhe;p,q) > 2= ap+0q>2, Y(afB)ec M(d).

Then we get
W (@)=~ 3 hag(@)afal (1+0(xy")),
(a,B)EM ()
W)y =2 3 chag(a)afay V(1 +0(y")),
(a,8)EM ()
M@ =1- 3 Ghagate; 2701+ 0(y)).
(a,8)EM ()

We make a dilation: z; = )f‘spyl, To = /\’5qy2. Let Py be the reprezentation
of P in the coordinates y = (y1,y2)

ATEP(LEM)g 0 = 15 ()3 + AP ()X}
F AR 4+ B ()A
+BY ()N + Fa(y)A >

where fi(y) = f(A%Py;, A\™%y,). Let us take 7 as the least common denomi-
nator of d, p, ¢, o, o1, 1/6.

Lemma 4.2.1 We have
N7 (y) = X271+ O(ATT)),
Nty {8 () = (),
)\26q_26p+2h§\22) (y) = O(1).
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Proof: Note that —dap — 68q — 26q(c — 1) = —d(ap + Bq — 2¢(1 — 0)). From
w(hg;p,q) > 2 we see ap + g > 2 if (a, B) € M(¢) and hence it follows that
ap+ Bq —2q(1 — o) > 2g(1 — o). That is

A2 (y) = A2 (1 + O(AYT)).
We next study /\54_51’+"1+1h5\12) (y). Recall that

—adp — Béq— g0 —1)+0g—dp+ o1+ 1
=d(—ap — Bq) —0go +25q —dp+ 01 + 1
=d(—ap—0q) —0go —2+20(1+p)—dp+o01+1
=06(2—ap—pq)+ (01 —d0gqo —1+dp) <0

by Lemma 4.1.4 and the fact ap + 8q > 2 for (o, ) € M(¢). This proves that
/\5q75p+01+1h&12)(y) — O()\*l/f)_
Finally we study )\2‘5‘1_25?+2hg\22)(y). Then we see

26q — 20p + 2 — adp — [dq
=25q—20p+25(1+p—q)—adp—Fog=06(2—ap—LFq) <0

because (a, 3) € M(¢) and hence the assertion. q.e.d.

Lemma 4.2.2 We have

Na=20r41 B® () = N2 () = A7 QY () + O(A7)]
diadonal of A~0P+e1 BV = O(A2e1=1/7),
off diadonal of A%*t71 B{") — O(A=%PFo1) AP E, — O(1)

# .
where Qp(y) = (Y ozle=0n.=00(Q0 (y) + O(ATVT)].

Proof: By definition g — 26p + 1 = 207 + 5u([Y/agl]¢;p, q). Noting that the
fact u([Y/ab,]g; —0p, —0q) = —du([Y/auzl]dg;p, q) we get the first assertion. We
next study A~oP+o1 Bg\l)(y). Recall

BW (2) = hy(2)¢" (x2) — ¢ (22)Qp(x) + Ry ().

Note that A=9P+71(h,¢"), yields the power —dp + oy — dap — 63q — dq(o — 2).
We plug 26q = 25(1 + p) — 2 and hence this gives the power

—6(ap+ Bq—2)+ (01 —0go —1+0p) — 1 < —1
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by Lemma 4.1.4. This shows A~7%91(h¢")y = O(A™1). We turn to the term
A~ 0ptou (¢'Qp)x:

—0p + 01 — dq(o — 1) + p([Y/ah,]4; —0p, —q)
=—0u+06(1+p)—1—0qo —dp+ o1
=6(l—p—p)—1—68qc+dép+ o1

=201 + (01 — dqo — 1+ dp) < 20

by Lemma 2.1.5. This gives A=%PT71(¢/Q4)x = O(A\271~1/7). Recall R = C +G
with smooth G. From Lemma 4.1.1 it follows that Cy x = O(\°?) and hence
AP R A(y) = O(A\°Y). Finally we consider A™2PF). Since S = L*(C)+
smooth term and F' = Sy it is enough to consider L*(C). From Lemma 4.1.2 it
follows that

Ssx = O(N*P)

and hence the desired result. q.e.d.

Let us define v by v = o17.

Proposition 4.2.1 Assume that there are ¢ € G (v), p, q €1 with p > o(d)q,
w(hg;p,q) > 2q(1 —o(4)) (qo(¢p) =p if $ =0) such that we have either

Y
2p + 2u([aT]¢;p, q) < u(hg;p,q)
21

or

7
2p + 2u([—-los P, @) < pi(hes;p, @)
a1
Then there is § = (41, G2), g2 > 0 such that for any neighborhood U(§) of § and
any N € N there is ij € U(3)), a neighborhood W of § and I (y), 1 < j < v and
un(y), 0 <n < N defined in W such that

E(y, )\)71)\7251)1/257/\17)\ _ O(}\QUl*(V+N+1)/T)

where
E(y,\) = exp {i(uyaX + > _ 1 (y)A7)},
j=1
N .
K —n/T v+1-—
U = B, ON Y A" (), o= =2, n=x(p,0).

n=0

and Im 11 (y) > (y2 — 92) + S0 (g1 — y1) in W N {y1 < 41} with some &y > 0 and
uo(y) # 0.

50



Proof: Recall that
)\5q—25p+lB§\2) (y) _ )\5q—25p+1Q¢7>\(y)

— \%a—26p+1 [Y/agl]cﬁ,% 0
0 Z/al,)
1216,A
— \2o ( Zj:() C;(?J))‘_jﬁ 0 ' >
0 Zj:O C?(?J))‘_J/T

where C%(y) are defined in a neighborhood of § and we may suppose C§(§) # 0.
We look for Uy in the form

N
Ux=Mgrux, ux=E@y,\) Y A" v.(y)

We study
E(y, \)"HL*M) g 2 E(y, A Zvn AT

This turns out to be

AZUH»Z(?p{Z [,j(ll, s lj))\*(jfl)/‘r Z Un)\*n/r
n=1

j=1
(4.2.2) 2(2\/ z;l vn—l—R(l e 1V 00, ey U1 ))AT (/T

+O()\201+2§p—(U+N+1)/T)

L 0 i v
.cj<oj £2>, Li(1") = —(1y,)* + V=1Ci(y), U”(v”)
Lo, . ) = =2 1+ KUY, .. 07Y),

Y1'y1

<
IV
I\

and K;, R,, are non linear differential operators with real analytic coefficients.
More precisely

Ly =®;(Ch, ..y C) g, 11, )+ V=10 1 (y), 1<j<v

where @; is independent of ¢. To see this it is enough to note that non diagonal
part of the coefficients does not enter to the determination.
Let U(g) be given. We devide the cases into two:

1 _ 2 . .
(1) Ci(y) =C5(y) in U for 0 < j <v—1,
(2) there exists k <v —1 and § € U such that

Clly)=C3y) in U, 0<j<k-1 CLG) #Ci{).

J
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In case (2) we choose W1 = W1(§) C U so taht
Ciy) = CE@) 2 >0 in Wi,
We first define I7(y). Take p € R and Wy C Wy so taht
—¢* +V=1uCs (y) =

has a root F(y) with Im F(y) < —do < 0 in Wa. Note that |F(y)| ~ /|p|- We
next solve the Cauchy problem

111;1 =F(y), y—g = V-1 —12)

This gives that |l | ~ \/|u]. We define I7(y) succesively by solving

Y1 Y1

{c;.(zl,...,zj) =20 1+ KNI, ) =0
lj|y1=§1 =0
for 2 < j <w. In the case (1) we have clearly that

EQ( P)y=0 in Wy for j=1,..,v
and in the case (2) we have

L2, ., 0)=0in Wy for j=1,...k |Ci (" ...0"")[>c >0 in Wa.

We observe the second component of (4.2.3) which is equal to, up to the factor
)\201 +26p

N+v—k—1 ~
Z (L3 (1 Yl R2(1Y, 1Y v, ey v ) JAT (VR

LOA-WHN=R)/T),
We remark that
R2(IY,...,1", o, s V1) |ppi—mpir =0 for n<v—k—1.
Hence this second component is reduced to
L3 (1 Yl R2(Y 1Y g, ey vpg) = 0.

On the other hand the first component is

N

ZQWZLTU F RO, 1 vg, ey U g) )N (/T

n=0

+O()\7(V+N+1)/T)
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and hence we are led to the equation
2v— l;l v P RY(IY, .1 vg, o) = 0.

We summarize:

VoS (Y L P + R2(IM, .. 17 vg, ey V1) = 0
QFlyl ay1”n+R1 (ll 17500, ey 1) = 0.

We solve this system with initial conditions
I I IT
Volyi=gn 0, Vplyi=g, =0, n=1,2,...,N, vy’ =0.

Since v{! verifies the first equation, then one can solve the system successively.

We turn to the case (1). Up to the factor \271 2P we see

2{2\/ 1, anrR(l o 1V 00, ey Uy ) JAT (/T

_|_O()\7(N+u+1)/'r).
Hence we are led to

2' ly1 8y1v”+R (l luaUOwnyvnfl) =0
£0
U0|y1:y1 = ) U’n'yl:qjl =0, n= 1,2,...,N.
0

Lemma 4.2.3 Let v,, be as above. Let us write

Uxn = My E(y, A Z’U AT = (y,)\))\RZunx\fn/T.

Then Uy is non trivial, that is there is a k €4 independent of N such that

uo(y) # 0.
Proof: Recall M = 8, + At9, where

(/\ “(aly) + ONVT) AP (b(y) + OA~YT) )
AP (b(y) +ONYT) A~ (aly) + O(AH7)

where 8 < « and b(y) # 0. Recall also
ATZPMy 5 = NP — ¢ (A 00y) AL )y + AOTTPAR 5 4 AT2PC
We observe

—0q(c —1)—dp+01=—-06qo +0q—0p+01=—-06qgc +5—1+ 01
=0(1—p—p)+0p+du—0go —1+ 0,
<6(l—p—p)+dpu=1+0dq— 20q
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by Lemma dafive. This proves that
)\76P+01 (ZS/()\i(quQ) — 0()\1+6q726p).

Since Cyx = O(AP) we get A=20PC, \ = O(A~%?) and hence

ATPCy = NP [( c(é/) C(—Oy) ) + O(Al/T)} = \P(L(y) + OV,

We note that dq¢ — 2dp + 1 = 207 + dp by Lemma 4.1.4. Let us set
k =max {201 + du — B, —dp}.

Then we conclude that

AN M B ) =3 (Va2 ) ooy

when k = 201 + dp — 3 > —dp. Since

w = () (e @) o wim=( )

vy ()

choosing vl!(y) suitably we get the assertion. If k = 207 + o — 3 = —Jp then
we see

A"2PE(y, )T My xE(y, \)
_ X‘{u< N %a(y)  bly) )

by)  —A"%a(y)
Ly, +c(y) 0 —1/r
+( ) y lél+5(y)>+ou /).

Then choosing
i) = ()
the assertion follows clearly. Finally if K = —dp > 207 + dp — (8 then
ATPPE(y, \) T M B(y, A)

_\kK Zgl/1+c(y) 0 _ —1/7
=) {< 0 1+ ofy) )+O()\ /™.

Since I, = F(y) = {V/=1puC}(y)}1/2, it is clear that one can choose y so that
l;, +c(y) # 0 and hence the result. q.e.d.
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4.3 Proof of necessity

Theorem 4.3.1 Assume that the Cauchy problem (C.P.) is C*° well posed near
the origin. Then (CF) are verified.

Let us fix 7 > 0. Denote

D(r,M)={(t,z) | 0<z<r,0<t< Mz},
At zy¢) ={(t,x) | (t =) +c Mo — 2] <0,0 <t <1}

Assume that v €, verifies
|h(t,z)| < C(M)*r* in (t,x) € D(r,M).

Let us put

C(M)~teM)™t if y>1
H= {C(M)—1(2M)‘1i;1‘7 ity < 1.
Then we have
Lemma 4.3.1 There is a T =T(M,~) such that
(t,2) € D(uM), 0 < & < T = A(t,#;C(M)p) C D(u, M).
Proof: Let v > 1 and choose T so that
0<i<T=—~i""1<2

With this choice of T" we have

oM if 4 >1
Mt < [C(M)p] ™" = N
! M) oML iy <1
if 0 < & < T and hence the assertion is clear. q.e.d.

REMARK: Since |h(t,z)| < C(M ) 2 for (t, ) € D(r,M) we see that the de-
pendence domain of (£,7) is A(f,;C(M)p) if (£,#) € D(u, M), 0 < & < T.
Thus we have

Lu=0 in A(t,#;C(M)p), u(t,z) =0 in t <0 = u(t,#) = 0.
Now let ¢(x) be a C*° function in (0,7(¢)) and let
Ty :UN{z >0} > (t,x) — (z1,22) = (t — ¢(z),z) € WnN{xs >0}

be a diffeomorphism. Let Ly be a representation of L in the coordinates (z1, z2).
Put

E = E(M,’y,d)) = {($1,J}2) | 0<x2<6p,0< 1 < Ma?g —¢($2)}

then we have the following lemma with a suitable dg.

99



Proposition 4.3.1 Assume that the Cauchy problem (C.P.) is C* well posed
near the origin. Then for any T there are M (> My), a neighborhood W of the
origin, C' >0 and | € N such that

sup |u] < C sup |DO‘Lﬁ¢u|
0<z1 <T 0<z1<T,|a|<I

for any u € C*(W N E).
We now admit this proposition. Let
__\op __\dq
y1 = APr1, yo = A29, O,p,q €4

be a dilation such that p > ~vq. Let Ly » be the representation of Ly in the
coordinates (y1,y2):

Ly (y, D) = Lo(A\Py1, A%y, AP D, , A% D, ).
Then we have

Proposition 4.3.2 Let B > 0 be given and let p > vq, ¢ € CT(A) and 1+p > q.
Assume that the Cauchy problem for L is C*° well posed near the origin. Then
there are C > 0,1 € N, A\g = \o(B, 0,9) such that

sup  |u| < OAK sup |D5(L(ﬁl5 X0l
0<y1 <71 0<y1<71,|8I<1 '

Jor any u € C°({0 < y1,y2 < B}), k=max (p,q), 6 = (1+p—q)~", A > Xo.

Proof: Let u € C§°({0 < y; < B}) and ux(y) = w(XPy1, N%%,). Then there are
Ao and My so that uy € CP(WNE)if A > Ao, M > My and u € C§°({y; < B}).
Applying Proposition 4.3.1 we get

sup Juy| < C sup |D*(Lpun)|-
0<y1 <T 0<y1 <T,| | <1

Taking T' = A\~%P7; we get the desired inequality. q.e.d.

Proof of necessity: From Proposition 4.3.1 we can construct an asymptotic
solution Uy. Take x(y) € C5°(W) so that x(y) = 1 on a neighborhood of §. Set
ux = X(y)Ux(y) then we have

sup |DQ(L55’)\’U,)\)| < Cl)\201+26p+l—(V+N+1)/T.
0<y1<71,|al<1

On the other hand since uy(g) > cA”™ with some ¢ > 0, taking N large we get a
contradiction. q.e.d.
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5 Equivalence of conditions

5.1 Equivalence of conditions

The aim of this section is to prove

Proposition 5.1.1 The condition (C*) is equivalent to
1 1
D(17,) C ST(lakall), DY) € ST ([blata)o), V6 € G5().

REMARK: Actually we prove that the condition (CT;Y), the condition obtained
from (C) dropping the requirements on Z, is equivalent to

DY) C ST ([hlads o), Vo € 67 ().

Proof: Let p, ¢ €4, ¢ € GF(7), p > a(d)q, u(he;p,q) > 2q(1 — o(¢)). Note that
DY) € ST([hla o)
implies that
p+u([Ygsp,q) > %u([h\a’izf]mn q)
= %u(’w;p, Q)+ %u([\a’izlz]wn q)
= %M(hqﬁ»;p» q) + plaly i p. q).

By definition, this shows that

P+ p w(he: v, q).

N |

Y
| g >
12 ] 4

We show that (CF) implies I'(tZ,) C F([h\a§2|2]¢). Note that
Z

(tZs)(sP 21, s%22) = (a}y) g (P21, $122){H(5)s} (521, 5722)

= 5"(c"(x) + o(1))
with v = p([alyle;p, @) + p([Z/d}5) e p. @) + p. Let
[hla}y 2] s(sP a1, s%22) = s"(d°(x) + o(1))

with & = 2u([al,]s:p, ¢) + p(he; p, ). Thus

Z
2v — k= 2p + 2u([—-lgi P, @) — wlheip, @)
a1

o7



Hence (CT) implies that 2v > &, that is

(5.1.1) 2u(tZs;p.q) > p([hlaly)?le; p, @)
for any p, ¢ €4 and for any ¢ € G*(y) which is verifying p > o(¢)q and
w(hg;p,q) > 2q(1 — o(@)) (if ¢ = 0 then go(¢) should read as p). Take ¢ €
GT (). Denote by i

{(G:8i (@) }j=o,  {(,75(8)) Y=o

the points which consists in the boundary of %F([h|a§2\2}¢) and I'(Z,) respec-
tively where §,.(¢) = n, v7:(¢) =i, n = nq + ng and r = my + mg. Set

(@) = Bi—1(9) — Bi(¢), 1<j<r
6j(0) =vi-1(9) —vi(¢), 1<j<T

Note that the boundary points of I'(tZ4) consists of {(j + 1,7;(¢))};—. Then
it is enough to show that

v (@) > Bjy1(d), Vi >0.

Let
€1(¢) = -+ 2 €(d) =2 0(¢) > €r41(9) = -+ = &)

Let ap; + 8¢; = 1 be the line which is tangent to %F((h|a§2|2)¢) along the
segment joining (j — 1, 5,-1(¢)) and (j, B;(¢)). That is

pj
5 — e,
s i(9)
Hence we have _
L=a(@)20) for 1<j<t
j

that is p; > €;(¢)g; for 1 < j < (.
Lemma 5.1.1 We have

%F((h|a’i2|2)¢) C convex hull of{((r,n) + RY) U ((0,n+1)+R3)}.

Proof: Let us write

2(m1+mz)

hlafy? = 22t T (E =t (@)ét, 2).

It is clear that

2m

P((hlai,[*)s) = T [ (¢ + é(2) — b, (2))).
Recall that there is vy such that ¢,,(z) ~ t*(z) and this implies that

Clty, ()] > |d(x) =ty (z)] for any 1<wv <2m.
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Hence we have

P T+ éw) — tu (@) € D T =ty (@),

On the other hand, from the proof of Lemma 2.1.5 we see that
tuy (2)*™ = O(|z?)

(note that r = my + mg = m). Since

2m
I(z?" H(t —tyo(2))) C convex hull of{((r,n) + RZ) U ((0,n + 1)) + R%)}
v=1
this proves the assertion. qed.

Lemma 5.1.1 shows that

—>n+1
q;

and hence ¢; < 1. Since o(¢) > 0 we get 1 > ¢;(1 — o(¢)). Then the condition
(C) is verified for p = p;, ¢ = ¢;. Thus we get from (5.1.1) that

I'(Zy) lies right side of the line (a+1)p; + Bg; =1, 1< <L
This proves that

(5.1.2) 7%(®) = Bja1(d), 0<j<l-1.

We now show that 7 > n. If n = 0 nothing to be proved. If n > 1 then with
¢=0,q=s/n,p=(1—s)/r one can apply (5.1.1) because

1l—s+r S
I+p=———"->—.
r n
Thus one gets
a2
s

Letting s T 1 we conclude that n > n. Then we have

v (¢) >n>n=PF1(p) for r—1<j.

Then it remains to prove

vi(@) > Bjp1(p) for £<j<r—2.

Assume now that there were j with ¢ < j <r — 2 such that

Y5 (#) < Bjr1(9).
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Let us define j* = max{j | v;(¢) < Bj41(¢)}. By definition we have
Vi=+1(@) 2 Bj=42(¢) and  7;+(8) < Bj=41(9).
This implies that
Gjxt1(9) = 75+ (9) = V= +1(8) < Bj=41(8) — Bj=+2(8) = €5+42(9) < ().

Take 1) € GF () so that
o (V) = €j=42(0).

Since o () — ¢) = 0(¢), d;++1(¢) < o(¢), we can apply the following lemma to
get
0j+1(¥) = j41(¢) for j=>j*.

Lemma 5.1.2 Let f(t,z) = 2" [["(t—t,(x)) and {(j, B;(¢))} be on the bound-
ary of I'(fy). Assume that o(vp — ¢) = o(v). Let €;(¢) = Bj—1(¢) — B;(9).

(1) Assume o(¢) > €x+1(¢) then we have
() =€(9) for j=k+1.
(2) Assume () > ex+1(@) then we have

&) > (@) for j>k+1L.

Proof: (1) Take ¢ < k so that e(¢) > €p41(¢p) = -+ = €x41(¢). Then it is clear
by definition of €;(¢) that (¢, Be(¢)) is a vertex of I'(fs). Recall that
folt.x) = 2" [J(t + d(a) —tu(2)) = Y CF ()t

By definition we get
¢ (r) — B ($) 43272, € ()
C9 () = Ofal e O+ L (0,
When j = ¢, since (¢, 5¢(4)) is a vertex of I'(fy) we see
(5.13) CF (@) = [z @+ 2 49 (e 4 o(1)
with ¢ # 0. We observe that

7 () Fott@lemvmo = 5 (5) fult o = G @)

Then we see that




On the other hand, we have

() = OaPr@HEL @) for > 041

in general, and hence this shows that

(5.1.4) L(fe) N{z < Be(@)} =T (fy) N{z < Be(¢)}
and hence the assertion.
(2) Take £ > k + 1 so that ex11(d) = -+ = €o(P) > €r11(¢) if exists. Since

o(¥) > €x+1(d) > €ry1(¢) the same assertion proving (1) shows . We turn to
€;(¢), €j(v) for j < £+ 1. Since

V() — Bm (9)+ 1L, i (@) ;
¥ (@) = O(lal ) for >
and I'(fy) is convex, this proves that
€;(Y) >¢€i(p) for j=k+1,..,0+1

and the assertion. Thus we have

v (W) = > 6() + i = 6j(9) + 71 = ;- ().
J= 41 =1

Since () > €j+42(¢), applying Lemma 5.1.2 again, we get
¢j() = ¢j(9) for j=j"+2.
Thus we conclude that
(V) 2 €j-42(¥) 2 €0 42(0) = o(¢p) for 0<i<j"+2.

We now apply the same argument to prove (5.1.2) (note that we do not use
o(¢) > €ry1(¢) to prove (5.1.2)). We conclude that

v () = Bij41(¢) for 0<j<j"+1
On the other hand one has

Vi (@) = v+ (V) = Bj41(¥) = Bjy1(¢)

where the last inequality follows from

Br)= > @) +n= > (d)+n=7p4(0).
J=j+2 J=i*+2
Thus we have a contradiction. q.e.d.
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When o(¢) > €1(¢) we repeat the same arguments. We show ~;(¢) >
Bj+1(¢) for 0 < j < r —2. Suppose that there were 0 < j < r — 2 such that

75 (@) < Bijr1(h). Set
§* =max {j | v;(¢) < Bj+2()}-

Then by definition we have o(¢) > €;+42(¢) > dj«12(¢). Take ¢ € G (v) such
that o(¢) = €j+42(¢) and hence

o —¢)=0(), o¥)>j4+1(e)
Then by Lemma 5.1.1 we see that 6;41(¢) = d,41(¢) for j > j*. Hence one has
ve@) = > W) +i= Y 6;(¢)+ i =-(0).
j=i =i+
Note that o (1)) = €;+42(¢) > - -, we apply Lemma 5.1.1 to get

(V) > €i(p) for j*+2<j<r

and then
Bia@) = Y @) +n> D €(d)+n=0-11(9).
J=i*+2 =i+

Since €(¢) > €+42(¥) > €j42(¢) = o(¢p) for 0 < i < j* + 2, the same
arguments as before give that

v () = Bjp1(¥) for 0<j<j*+1.

This clearly gives a contradiction because

V= (@) = 7= (V) = Bjr41(¥) = Bjr41(0).
When €,.(¢) > o(¢) taking the line given by

tp; +2q; =1 with %wj(aé)zaw) 0<j<r—2)
J

one can conclude that

vi(¢) > Bjp1(¢) for 0<j<r—2

and hence the result. q.e.d.
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