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Tatsuo Nishitani*

Abstract

In this note we give a proof of composition formula of pseuodif-
ferential operators with symbols of type exp (Sp’fé) acting on Gevrey
spaces without of use of almost analytic extension.

1 A lemma

Definition 1.1. We say that f(x) € C*(R") belongs to G*(R"), the
(global) Gevrey class of order s, if there exist C' > 0, A > 0 such that

D f(z)| < CAMalt®, zeR", aeN"
Let us denote (€)y = (M2 +|¢]?)'/2 where M > 1 is a positive parameter.

Definition 1.2. Let m = m(z,&; M) > 0 be a positive function. We define

Sp(;)(m) to be the set of all a(x,&; M) € C°(R™ x R™) such that we have

(1.1) |8§8§‘a(x7§;M)| < CA|a+5|’a + m!sm(x’g’ng)J(\Zlﬁ\*MM

for any o, 8 € N" with some C' > 0, A > 0 independent of M > 1 and
Sp.5(m) to be the set of all a(x, &, M) satisfying (IT) with C,p instead of
CAlothl| o 4+ B|1° which may depend on «, 8 but not on M. We often write
just a(x, &) or m(z,§) dropping M.

Lemma 1.1. Let m = m(z,§; M) > 0 be a positive function and f €

Sp(? (m). Denote w§ = e—faffagef then there exist A > 0,C > 0 such that
the following holds.

\a;agwg\ < g Alvtptats <§>J‘\54|»3+V\fp|a+ul

(1.2) la+B] A
x Yl (v ).
§=0
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Corollary 1.1. There are A > 0,C > 0 such that
050ge!| < Cell Al Bl PP (o 4o+ B9)°FF, 0, 8 € N™.

In particular (@8 ¢ S;V%)(elflJrsml/s)'

Proof. Taking p=v =0 in (I2) gives

lo+]
‘658?@“ < Ce|f\A\a+5|<§>;\5/|[5\—P|a| Z m|a+ﬁ|_jj!s
7=0

which proves the first inequality. Noting that m’¥ < N [ssm!/* (s > 0) for
any N € N one can find C' > 0 independent of s > 1 such that

a5 , i /s
> mletAigis < e N (la+ B — )11 < Cet™ o+ B)1*
j=0 7=0

which proves the second assertion. O
1.1 Pseudodifferential operators of type S,; in the Gevrey
classes

We introduce a symbol class for which we define oscillatory integral.

Definition 1.3. Let m = m(x,&, M) be a positive function and 0 < § < 1,

1 < s. We say that a(z,£,y) € C°(R3") belongs to A((;S) (m) if there are
C > 0,A > 0 such that

(L.3)  107,08a(z,& y)| < CAla+ (16700 4 (€} lm (x, €)

for all o, 8 € N™. By abuse of notation we denote by the same Ags) (m) the
set of all a(x, &) € C°(R?*™) satisfying (I3).
Assume that

(1.4) a(z,&,y) € Ags) (e“Chn) (¢>0), 1—6> sk.

Let x(t) € Gj(R™) be such that x(¢) = 1 in some neighborhood of 0 and

set xe(y) = x(ey), xe(n) = x(en). Let p(t) € G*(R) be such that p(t) =0
for |t| < 1/2 and p(t) = 1 for |t| > 1 and set ppr(n) = p(M~1n), pS;(n) =



1—pnm(n). Fora(z,&,y) € Ags)(m) we define Op(a)u(z) for u € Gs/(1=9) (R™)
by the oscillatory integral

(2m) " lim [ ey (2 — y)xe(malz, n. y)uly)dyds
= (2m) " lm [ e Yy (y)xe(n)a(z,n,y + x)u(y + x)dydn.

Noting that (n) =2V (D, )?Ne=W" = ¢~ and (y)~2(D,,)?>’e~"%" = e~W" after
integration by parts Op(pyra)u(x) yields

/ e=(Dy)*N () 72N (D) () "> xe(y) xe (M) parale, n, y + )uly + =) dydn.

Since s + s6/(1 —0) = s/(1 =) and (n)ar < 3(n) if par # 0 the integrand
is bounded uniformly in € > 0 by (C, A may change line by line but not
depend on N)

CAPN @N)I#((2N)/ 00 1 ()3, 2N ()~ g) 2N e

K

< CAZNNQNS(Nsé/(lfJ) + <n>(]5v[)2N<y>72f<n>72Nec<17)M

ANS\2N , Ns§/(1=6) 36\ 2N .
< —2(T 9 c(n)
<) ((77>1—5> ( r(n)o + r ) e

with 7 > 0. Choose r such that (1/rA)%(1=9 4 3%/r <1 and the maximal
N = N(n) € N such that N* < (n)179/(4e2A) one can find ¢ > 0 so that

(1.6)

rAN®\2N  N0/(1=0) 1 2N ey (1=8)/s
(=) (G +7) s

Since k < (1—4)/s the integrand is bounded by C'(y)~2¢e—¢" . Noting
that 0, xe — 0 as € = 0 if |a] > 1 we conclude that Op(prra)u(z) is

(1-8)/s

(1.7) /e_iy”<Dy>2N<77>_2N(Dn)%(yV%PM(n)a(f& 0,y + x)uly + x)dydn

On the other hand, it is clear that

lm [ e e (y)xe(n)pSralz, n,y + z)u(y + z)dydn

e—0

- / (D) ()N (DY () 2 Syl + 2)uly + x)dydy



and hence (CH) is equal to
[ D, ) (D) )Moy + a)uly + a)dydy
which is independent of the choice of y. Next, consider ol Op(a)u(x);

/ e~ (DY) N () 2N (D) (1) Xe (W) Xe (WS (al, m, y + 2)uly + 2) ) dydn.

Here we remark the following easy lemma.

Lemma 1.2. Let A, B > 0. Then there exists C > 0 independent of n,m €
N, A, B such that

(A+(n+m)*B)"T™ < C"™ (A +n°*B)"(A+m*B)™.
Taking Lemma I into account the integrand is bounded by

K

CAPNHI N + BN + [B)*/ 07 4 () 3)* N1 () =2 () 72N e
< CAPNTEI (181200 - ()i )]
XN2NS(N85/(1_6) + <7]>§\/1)2N<y>_2€<77>_2Nec<n>7w'

Noting that for any € > 0 there are C' > 0, A > 0 such that
(1-6)/s
(1.8) <n>j\fl < cAld |m!85/(1*5)66<n>1\}

and applying (ICA) we obtain the following

Lemma 1.3. We have Op(a) (Gs/(l_5)(R”)) C GO (R") if a(x,&,y) €
A((;s)(ed@l@) and 1 — 0 > Ks.

For a(z,§) € Sp(s(;) (m) and 0 < t < 1 we define op’(a) by

(1.9) op'(a)u(z) = Op(@)u(x), a(z,&y) = alty + (1 - t)z,&) € A (m).

Definition 1.4. op'/?(a) is called the Wyle quantization of a and denoted
by op(a) dropping 1/2.

Let a;(z,&,y) € A((;S)(ed@sz) with 1 — & > ks and consider op(ay)op(as).
Suppose that

(2m)" / @D (5 )y (1)Xen (4 — 2)Xen ()

xa1(z,n,y)as(y, ¢, z)u(z)dydidzdn



is equal to
(2m) " / GO0 (24 2)/2,0)u(2)dzdd, €= (e1,e)

for any u € Gs/(1 6)(R”). This implies that [ =2, ((z + 2)/2,0)df is
equal to
() [ I (o= g ()X~ 2 )
xay(z,n,y)az(y, ¢, z)dydndc.

Making the change of variables © + 2z = 27, z —x = 2z, y = g, n + ( = 21,
n — ¢ = 2C the integral [ e 2%%,(%,0)d0 = (Fb.)(2Z) (where Fb, denotes
the Fourier transform of b.) yields

wn [ HEDEEN @ 2 e (1 DX 7~ 7 D)
xa1 (& — 2,7+ (, §)a2 (5,7 — C, & + 2)djdCdi.
From the Fourier inversion formula one has
bu(3,6) = 77 [ HEDERGDy (G~ 2 P 7+ Ona(i — 5 2)
XXea (71— Qan (& — 2,71 + (, §)as(§, 71 — (, & + 2)djdCdijdz.

After the translation 7 — 7+ 6, § — y + T the right-hand is

o [ e-%ﬂf—mﬁxex— DX 7+ €+ )X — 2)xea 1= C+6)
Xay (% — 2,74 C+ 0,7+ &)ag(§ + 7,7 — C + 0,F + 2)djdldnd?.

Making the change of variables 7 + f =n,N—C=(y—2=2y,9+2=2z
one concludes

be(d,6) = w2 [ € HE N (<2200 (1 )X (20X €+
xa (Z+y—z,0+nT+y+z)af+y+2,0+(T—y+ z)dydCdndz.
Here we note that if a;(z,&,y) = a;((x + y)/2,&) this shows that

be(7,60) = 72" / e~V (222) e, (1 + 0) Yer (20) Xen (C + )

xa1(Z +y,0 +n)az(Z + 2,0 + ()dyd(dndz.

(1.10)

b}



Letting €¢; — 0 it follows from the definition of the oscillatory integral we
have op(ay)op(az) = op(b) where (x(z+6) = 1 near z = 0 can be assumed)

b(w,&) =7 " / e M)y (@ + y, £ + n)as(z + 2, + ()dydCdndz.

Return to @;. Denoting b(z,0,%) = b((z + 7)/2,0) and letting ¢; — 0 we
conclude Op(b) = Op(a1)Op(az) where b(z, 0, z) is given by the oscillatory
integral

wn [ W+ /2 4y - 2,040, (0 + 324y + 2)
xag((z +2)/2+y+2,0+( (x+2)/2 —y+ 2z)dyd(dndz.

In what follows we write X = (z,£), Y = (y,n), Z = (2,() and o(Y, Z) =
0z —yC = (Y, 2).

Proposition 1.1. If a;(x,&,y) € A((;s) (e“{€R1) with ¢; > 0, 1 — & > ks there
exists b € A((;s)(ec?’@ﬁf) (c3 > 0) such that Op(b) = Op(a1)Op(az).

Proof. Tt remains to show b(x, £, %) € A((;S)(ec?)(ﬁ)z\'}), Denoting
F(X7Y7Z) :C~L1(Q7+y—Z,g-{—?],l’—{—y—FZ)CNLQ(ZE—Fy—FZ,£+C,IE—y+Z)

we estimate

05 og / e 2V p(X Y, Z)dY dZ.
Let x(z) € G°(R) be 1 in |z| < 1/5 and 0 outside || < 1/4 and denote

(1.11) X(1,0) = x((M € XU ), X =1-x
Write

/ e 2 VA P(X)Y, Z)xdY dZ + / e 2V (XY, Z)xdYdZ = I +I1.
Since [9¢, (X, X°)| < Al*l|a]1*(€), and (€ +n)ur ~ (Er, (€ + QO ~ (e
if x # 0 it is easy to see

|8§,y,28?,77,(F| < CA\&+BI|Q + 5“8(|5|5S/(1—5) + <5>;\54)\B\60<£>1€1, X # 0.

Making integration by parts we see
858?[ _ / efQia(Y,Z) (Dy>2€<g>72ﬁ (Dz>2£ <n> —2¢

x(D¢)*(2)"*(Dy)*(¢) "> 0708 (FR)dY dZ



and here the integrand is bounded by
CAPH a4 1 (181°/ 07 4+ () PHC ™ ()~ (2) Q) (g et

Since <§)J‘\L/}% can be absorbed in i1 changing ¢ we have I € A((Ss)(ed@fff ).
Next, consider I1. Write

XE(1:.) = x“Um € XU E) + X (€ () (E)ar)
HXUHEN IXUM{E) = 1 + 92 + 3

and consider [ e 20(Y2)9%(Fyp;)dYdZ. Let xo(t) € G*(R) be 1 in |t| < 1
and 0 outside |t| < 2 and study

(1.12)

/ efzia(Y,Z) <n>f2N2 <C>72N1 <DZ>2N2 <Dy>2N1

()~ (=) De)* (D) (97 0¢ For) (xs + X5)AY dZ

(1.13)

where . = xo({()(n)~!) and x¢ =1 — x.. Consider
(1.14)

[(m) =22 Q)72 MDD 2 (D) M y) T2 2) T2 D) D) * (0% Fipr) x|

Choosing N1 = ¢, No = N and noting (§)nr < C(n), ({+mm < C(n),

(€4 Om < C(n) if 1x« # 0 it is not difficult to see that this is bounded by

O APN B () =N () =22 (4) =2 () =2 (1) P (NPl + |1

(115) X(N(gs/(l_g) + <T/>5)2N(|B|s§/(l—5) + <n>5)|5|ec<77>~

where C; A may depend on ¢ but not on N, «, . Here writing

- - ANS/(1=9) ANS \ 2N
AQNN2SN<T]> 2N(N55/(1 J) + <,'7>5)2N — ( )

e

we choose the maximal N € N such that AN® < ¢; (77)(1*5) with small ¢; > 0
so that the right-hand side is bounded by Ce=em " Wwith some ¢ > 0.
Recalling (IR) and 1 — 6 > ks one sees that (ICIH) is estimated by

(116)  CAP* ()2 4y) 2 (z) ¥+ BI1°| |01 1) mel 40

which proves [ e 20YV2F (XY, Z)p1x.dY dZ € .A((ss)(l). Similarly for the
case x§ choosing N1 = N, Ny =/ it is proved that (ITH) is bounded by

_ _ _ sl ols —§) —olcy(1=8)/s
CeAR™ ()™ ()™ ()~ 4 BI1°| 8|V Dol



which together with (IT3) shows [ e 274 F(X,Y, Z)p1dYdZ € A((;S)(l).
Turn to fe‘Qio(Y’Z)Bfﬁg‘(Fgoz)deZ. Consider
/ 672i0(Y,Z) <77>72N<C>72€<Dz>2N <Dy>2£
X (5)~2(2) 2D} Dy 0208 PipadY dZ.

Since (€ +n)ar < Cl), €+ Onr ~ (Enr < Cln) if @2 # 0 this is bounded
by (IIH). The rest of the argument is the same as for the case @x.. The

case (3 is similar to the case ¢1x$. Thus we obtain I € A((;S)(l) which
completes the proof. O

The next lemma is a special case of Proposition [l

Lemma 1.4. Let a;(z,§) € A((;S)(eci@z'\}) with 1 — 9§ > ks. If we set
b(X)=n"2" / e 202 0 (X +Y)ag(X + 2)dY dZ = (a1 #a2)(X)

then b(X) € Ags)(ed@WI) (¢ > 0) and verifies op(a1)op(az) = op(b).
Let a;(z,§) € Ags) (e%{€)1) with 1 — § > ks. Consider a;#as#as. Recall
(ao#ta3)(Y) = 72" / e 295 4o (X + S)asg(X + T)dSdT
and then
a1 #agtias = = n / o 2i0(Y.2)~2i0(S.T)

><a1(X + Y)GQ(X + Z + S)ag(X + Z 4+ T)deZdeT.

It is easily seen from the definition of the oscillatory integral that linear
change of variables can be done freely. Making the change of variables
Z —7Z-T,5— S+Y and after that S — S+ T again, the above integral
turns to be

—in / o 2i0(Y.Z)~2i0 (5,T)
xa1(X +Y)az(X +Y + Z + S)as(X + Z)dY dZdSdT,
Noting that [ e=2@(ST)gT = 72n§(S) we have
a1#az#as

1.17 .
10 _ r2n / e 2V (X +Y)as(X + Y + Z)as(X + Z)dY dZ.

8



2 Composition formula
Let ¢(z,€) € S’p(js)(@}]’f/[) and in what follows we assume

(2.1) 0<do<p<l, p—>6>k>0, s>1,

p—20 s —
= — K —

(2.2) €: ! max {6,1 — p} > 0.

s

Since p—0 > k by (E00) the assumption (P22) is always satisfied for any s > 1
sufficiently close to 1. If s = 1 (E2) reduces to p—9 > k with € = p— 0 — k.
If p=1, § =0 (E2) reduces to sk < 1. Denote the metric defining the class

Sp.s by g;
ax (V) = (OB + (€7, X = (2,6), Y = (y,1) € R".

Definition 2.1. ([2]) A positive function m(x,&; M) is called S, 5 admissible
weight if there are positive constants C', N such that

(2.3) m(X) < Cm(Y)(1 4+ max {gx(X = V), v (X =)DV, X, Y e R™™

Theorem 2.1. Let p(z,€) € Sp(,? (w) and w be S, 5 admissible weight. Then

there exists ¢ > 0 such that for any l,m € N we have

N (—1)F 1
] —-¢ _ —
vt =D 2 alatl okl T PY/2)"
k=0 atal 4 takb=a
la®|<I-1,1<]a? [<1,1<j<k
(O P(X +2Y)0% (X +Y) -+ 0% 6(X +Y))|,_,
(1-8)/s

833wl ™) 4+5,3 (w€hyY) 455 (weelon

where € = p — 6 — k and oDy = (D,, —D,).

Corollary 2.1. Let p(z,§) € Sp(’?(w) and w be S, 5 admissible. Then for
any N € N one can find I, m € N such that

bt - N~ (D ! o
CHpHed =Y > it i 7 Pv/2)
k=0 aP4al+-takf=a
|a®|<i—1,1<]a |<1,1<5<k

(O P(X +2Y)0F (X +Y) - 9% d(X +Y))|y_g + Spa(w(€)if).



In particular, for any N € N there are [,m € N such that

m k
1) - __ <_1) 1 «
cre s g k! 2 (2i)lelall- o 79x)

041{---+ak:a
1<|ad |<1,1<5<k

(0% §(X) -+ 0% (X)) + S ((E)a™)-

. /s
Proof. Tt suffices to note that for any « there is C, such that e—En ,

el < Co(€)y/1 and Y1y (00x)* (9x9) /el =0 for 1 > 1. O

Corollary 2.2. Let p(x,§) € Sp(? (w) and w be S, 5 admissible weight. Then
for any m, N € N we have

—1)le
e = 3 o (00 (X + 2V (Vo (X V)]

laj<m

+89 (€ ™) + 8 (wiE)y ) + S5 (w(€)3)

where Vx¢ = (9,0,0:¢). In particular, e*#p#e ? =p+ Sps (W& )
Proof. We choose | =1 in Theorem 2. O

Assume that s > 1 satisfies € > 2¢/3 which is possible if s is enough
close to 1. Choosing m = 2 in Corollary EZ2 and compute

3 (Qi)lw(aay)a (P(X +2Y)(Vxo(X + )|y,
laf<2 '

explicitly. Then we see that there is ¢ > 0 such that for any N € N

e’ #pte=? = p(1 — BE(9)) + i{p, ¢} — (Hessp)Hy, Hy) + ((Hess ¢) Hy, Hy)
+5 (w(€)3) + S w0 ") + 85 (w©)

where Hessp and H,, are the Hessian and the Hamilton vector field of p
respectively and

} n 32¢ 82(;5 B 82¢ 82¢
22,3,:1 8331853 851830] 8:7518:5] 8&853 .

),

E(¢) =

Note that one can write

i{p, ¢} — (Hessp)Hy, Hy) + ((Hess ) Hp, Hy)
= —io(Hp, Hy) + 20 (FpHy, Hy) — 20 (FyHy, Hy)

10



where F), is the fundamental matrix of p;

o _ L ( Oploxde 0°p/oco
P o \—0%/0x0x 0°%p/otdx) "

Theorem 2.2. Let a;(z,§) € Sp(?(wi) and w; be S,s admissible weights.
Then there exists ¢ > 0 such that for any l,m € N we have

m k
1) -\ __ (_1) 1 o
(me)#(ae™) =3 " 2 i) Tatall - o 7 O%)
k=0 aP4+al++ak=a
la®]<l-1,1<a? |<1,1<j<k
X (a1(X)0% az(X)% 9(X) -+ 0% $(X)) + S5 (wrwa(€)y/ )

s —e—€é(m s/(1— oy (1=0)/s
5 (wrwal) ) 4+ 880 (wywge ).

Theorem 2.3. Let a;(z,§) € Sﬁf?(wi) and w; be S,s admissible weights.
Then there is ¢ > 0 such that for any | € N we have

e = 3 L {(00x) (X)) 0 az(X)

lal<l-1 (21')‘0"0[!

y —l(p— s/(1- (e (1=9)/s
5 wrwa (€317 + S5 (wywge <O,

Sp,s admissible weight w. Assume 1 —§ > &k then for any N € N we have
eoHpHe € G 5(w(€)y).

When 3 = s/(1—0) we have 1 —§ > 3k if (1—8)%? > p—J which is always
verified if § =1 — p.

Proposition 2.1. Let K > k and p € S(()Sg(we_d@z\_'}) with some ¢ > 0 and

2.1 Proof of Theorem Z1

Let p € Sp(sé) (w) where w is S, 5 admissible weight and consider
ePHpte™? = 70 / e_%(’(y’z)p(X +Y + Z)e¢(X+Y)_¢(X+Z)deZ.

In the same way as () we define

11



and write, disregarding the factor 72"

/em(Y,Z)p(X +Y + 2)ef X0 D)y vy dz
(24)  + / e 2O Dp(X +Y + Z2)e? XDy exdy dz

4+ / e—Qio’(Y,Z)p(X + Y + Z)e¢(X+Y)_¢(X+Z))ZCdeZ.
After the change of variables : Z — Z + Y, the first integral turns to be
(2.5) / e 2V 2) (X 4 9Y 4 Z)e? XYV =0XYH2) (XY, Z)dY dZ

where ©(X,Y, Z) = x(y,y + 2)X(n,7 + (). Since
(2.6) X(m.n+¢) # 0= (§+mum ~ &, (§+n+00u = (Eu, 0] <1
it is clear that
(2.7) 108,08, (X, Y, 2)] < CAIHl a4 Bl1o (€)1
Let us denote
VXY, Z)=p(X+Y)—o(X+Y + 2).

To simplify notation we denote
(2.8) e(a) = Slag| — plag|, oca=(ag,—ay), a= (o a¢) € N"
so that (o) + e(ca) = —(p — 9)|a].
Lemma 2.1. On the support of x(n,n+ ¢) one has

0%y (XY, 2)| < CAM o (€5 (€)fiax (2),

0%, eV YA < AR (€10 *(2) + [af?) el XA,

Proof. Write

1
Rxyv(X,Y, Z) =2 / Vx0%yd(X +Y +07Z)df
0

which together with (E8) proves

0%y 0(X,Y, Z)| < CA a1 ()8 (€05 (1210 + 1C1E))
< ARl ek g2 (2), xnn+Q) #0.

Applying Corollary I with m = (§);; g;(/Q(Z ) we conclude the assertion. []

12



By the Taylor formula, one can write

1, N _
p=— ) —ORO(X +Y) 2%+ > XY, 2)Z",
(2.9) 1<]al < |p|=l+1
1
F.(X,Y, Z) = l:'l (1-0)'0d(X +Y +07)do
. 0
where one has
(2.10) 105 v 27| < CA1BIEE)T TP ) #£0
Write
TNk gl 0
(2.11) Zkf — 0( - d&—Z—JrR .
k=0

Corollary 2.3. On the support of x(n,n+ ¢) we have

(€)370:) ((510)° 0% y Rl < Cr Al ()55

m—+1
< S ORI ()9 (Z) + )l
7=0

Proof. Note that one can write

m+1

(0a0:)7 ((€)310)° (W H1e™) = e 37 g1

7=0
where qj(.ﬁ 2l (X,Y, Z) satisfies
0%y a7 < CAPlal €)Y k(. + Q) #0
Then the assertion follows from Lemma P11

Lemma 2.2. One can write

o =0 $8§(¢(X+Y)Za>k+r;i(X,Y,Z)

1<[o|<I

where r;g = 0. In particular when [ =1 we have

djk (—].)k arza (0
L= 3 T (Vxe(X +Y)Z% + 1] (XY, 2)
la|=k

13



where rﬁf = Zl+k§|u|§k(l+1) (X, Y, 2)ZF and ry,, satisfy

al

10% v 271k < Ci AN |12 (€ EF @) (i, + ) # 0.

Proof. Since [8% y (9% (X +Y))| < CAll |af1s ()57 W i x5, 94¢) # 0
the assertion follows from (P29) and (211). O

Lemma 2.3. If w is S, 5 admissible there are C > 0, N > 0 such that
w(X +2Y + 2) < Cu(X)(1+gx (V)N (1 +9x(2)™,  X(n,n+¢) #0.

Proof. Note that gx+y =~ gx and gxiov+z =~ gx if x(n,n7+ ¢) # 0. From
definition one has

wX +2Y + 7)< Cw(X +Y)

X(1+max{gx+yv (Y + 2), gx+ov+z(Y + Z)})Nl
< Crw(X +Y)(1+gx(Y + 2)™M < Cow(X)(1 + gx (V)"
x(1+gx (Y + 2))™.

Since gx (Y + Z) < 2(gx(Y) + gx(Z)) the proof is complete. O
Denote ¢(X,Y,Z) = p(X 4+ 2Y + Z)p and write

1 (63 « q
4(X.Y,2) g ; Y02 llel (XY, 2)2",
a|<[— =

(2.12) .
i, = i /O (1—0)"10%q)(X,Y,02)d6.
Lemma 2.4. There is N such that
0% vzl < CAlalfw(X) (1 + gx (V) + gx (2) N ()57

when x(n,n+¢) # 0.

Proof. In view of Lemma P33 it suffices to note (EZ4) and (£ + 2n + 60¢) ~
(€ i X(1,m+¢) # 0. O

Recalling that

m -1 k 1 m .
e“’=2( k.) (2 58§¢(X+Y)Za)k+zgrﬁc+}gm’

k=0 7 i<fal<t k=1
1
9= > aagq(X,Y,o)ZC“ + Yz
la|<1-1 |u|=t
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we first consider

/e2ia(Y,Z)q(X, Y, Z)Rn(X,Y,Z)dY dZ,
(2.13) |
/ ) ewrfu()@ Y, Z)Z"dY dZ

where R, and quu are given in () and (ZT12). Introduce the following
differential operators and symbols

L =1+4"YOw|Dyl? + 47HE 2 IDy > = 1+ g% (e Dy) /4,
M =1+ 4"YOHID|? + 471 P ID:I* = 1 + gx (0Dz) /4,
O =1+ (€712 + (€211 = 1+ 9% (2),
U =1+ (R + (€ In> =1+ gx(V)
so that @ NNe—2i0(Y.2) _ —2i0(Y,Z) qand WL Mle20(Y.2) — —2i0(Y,Z)

Using these relations we make integration by parts in (EH). Let F =
q(X,Y,Z)Rn(X,Y,Z) and consider

(2.14) / e VD) =N NG MY (oY F)dY dZ.

Here note that
(€)320,) P ((€)8,0,)° 0| < CoAY a4+ g0, a,8 e N",
0%y 74(X,Y, Z)| < CAa|Pw(X + 2V + Z)(€)5.

Applying Corollary P23 and Lemma P=3 one can estimate the integrand of
the right-hand side of (E14) such as

1N LN O MY (9% F)| < CpATN Tl ey ) N gt

m+1
(215) X Y_{(©frgx (2} (€ (©fr9x*(2) + (2N + Jal)*)>N 1
j=0

k12

xw(X)(1+ gx (V)" (1 + gx (2))Nec®inax (4,
The right-hand side of (2I3) can be bounded by

m+1
CAPN Tl Nyt N ) S () (2)Y T €y
=0

()19 (2) + NN (©)5r0¥ (Z) + o)
xw(X) (1 + gx (2)) Ve "),

15



Writing

N _ <A<§>ﬁ9¥2(2) AN5>2N

AN O=N ((e)5, g4 (2) + N*)? o2 i

we choose the maximal N = N(Z,¢) € N such that AN® < ¢®'/2 with a
suitably chosen ¢ > 0. Then noting that ®'/2 = (£)7~ 6g;(/2(Z) and hence
(703 (2)®71/2 = (€)77 < M~* we have

k 1/2 s
(A<£>Mg)(/ (Z) AN )2N < Ce_clcbl/Qs :C _Cl<f>(p 6)/s 1/25(Z)

(2'16) PHl/2 + PHl/2

choosing ¢ small and M > My large. Since |z| < C and |n| < C(&)ar on the
support of ¢ one sees

59 (2) = @5 O TIP 2y (0 g (2))
< C<§>Jf\€4—(p—5)/8<§>ﬂnjax{571—0}(8—1)/8(<£>§5—5)/89;(/25(Z)) < <§>A_4€‘I’1/2S-

Noting (®1/2%)lel < ¢ IO‘||oz|‘e€¢’ for any € > 0 it follows that (recall £ > €)

R A (@Y™ (1 + gx(2)M (€059 (2) + |af)e!

1/2 _ 1/2 _ e _dl/2:
x eI (Z)gmer @ < Cm,eAch,lAa’Sla‘(@M(er Jegmcret/z

Therefore choosing ¢ such that £ — N > n/2 we have

(2.17)
1o~ NING M (0% F)| < CA ool (@) o) Aty (x) ot o

where ¢/ > n /2. Since f@*y@%/deZ = C we conclude

Lemma 2.5. We have

‘8?( / e—QiU(Y,Z)qudeZ‘ < CA|a\ |a’|s<£>;}a) <€>A7[€(m+1)w(X)
Since Z%~20(V:2) = (—g Dy /2)*e27(Y:2) the second integral in (213)

is

/e2io(Y,Z) (0Dy/2)”{T?M(X, Y, Z)ew}deZ.
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With F = r?#(X .Y, Z)e?, after integration by parts, one obtains

0% / e~ 22 (5 Dy )2V F(X,Y, Z)dY dZ
— / e 20D SN NG MY (0 Dy /2)10% FdY dZ.

Since M produce no positive power of (£)ys because k+ 6 — p < 0, it follows
from Lemma P4 and Corollary I that

@~ NIV O M (0 Dy /21 0% F| < CyuAgy TN g e e
X NU (19 (2) + (2N + fa])?) Pl
xw(X)(1+ gx (V)M (1 + g (2))Mec@inod (@),
Since €(p) + €(opu) = —(p — 0)|p| and || = I the right-hand is bounded by

O A2N+lelg—N =N <f>;/([a)_l(p_6)(<§>ﬂg;(/2(2) + ’a‘s)|a|

(195 (Z) + NN (L + (5,94 (2))!

1/2

xw(X)(1 + gx(Z2))N1ecOnax"(2),

Repeating the same arguments as before one has (271G) and hence

(1 + (59 (D) A+ gx (2)NM ((©)519% 7 (2) + |of?) e

Xec<§>]’cjg;(/2(Z)€—cl PL/2s < CA\a||a|s\a|e—c’<I>1/25

with ¢/ > 0. Therefore we have

Lemma 2.6. For |u| =1 we have
/ e MV D) il (XY, Z)Z4dY dZ € S5 (€03 w).
We consider

J=Y / e VD) (XY, Z)rdYdZ
k=1

I
NE

/e2ia(Y,Z)q(X7KZ)rlku(X7 Y, Z)Z¢dY dZ.
k=11+k<|u|<k(l+1)

17



Denoting Ry, = q(X,Y, Z)lep the right-hand is
>y / e~ 202 (6 Dy /2)" Ry, (X, Y, Z)dY dZ.
k=1 14+k<|pu|<(+1)k

Consider

% / e~ 202 (6 Dy J2)" Ry, (X, Y, Z)dY dZ
(2.18) |
— / e 20V D=t g~ M (0 Dy /2)10% Ryp,dY dZ.

It follows from Lemmas P2 and 223 that
0% vz Bl < CAalw(X) (1 + gx (V)M (14 gx (2)V (™ .
and hence the integrand is bounded as
| @~ LU~ M (0 Dy /2)*0% Rix,| < C Al w(X)|at®
% <£>;§Q)+k”+€(ﬂ)+€(0#)(I)—E—i-Nl g—HNL
Since €(u) + e€(op) = —(p — 6)|u| and |p| > k + I which is bounded by
O Alel laft® <§>;}a)—6k—l(p—6)¢—£+N1 g—+N
Choosing ¢ such that £ — Ny > n/2 we conclude that

(2.19) J € 59wy ).

It remains to consider

1 (_1)k —2i0(Y,Z) o o
> JZT e “0%q(X,Y,0)Z

la<l—1 k=0

x ( 3 ;!aigb(x + Y)Zﬁ)dedZ

<8<t

which is

N DL Y = 1 0 ol
( kl) /e 2002 (3 0 a(X, Y, 0008 6(X +Y)
2 ladl ok

O (X + Y)) Z°dY dZ

18



where the sum 2 is taken over all ¥ +al +--- +af =, % <1-1,1<
lod| < 1,1 < j < k. Recalling Z%20:2) = (—gDy /2)e%7(V2%) and
noting that

/e—QiJ(Y,Z)dZ _ 7T2n(5<Y)

and ¢(X,0,0) =1, 0% p(X,Y, Z)|y=z=0 = 0 for |a| > 1 it yields

Ui —1)k = 1 0 1
> ( k') (¢ Dy /2)“(Zm33”< p(X +2Y)0% (X +Y)
i lall !

Oék
T 8X ¢(X + Y)) ‘y:()'
Combining Lemmas P73, 28 and (219) we have

Lemma 2.7. The following holds.

/ e~ 20V D) (X 1Y 4 Z)eb X)X 4Dy vy dz

m k
— a2y (1) 3 1 a
i i Olatl - okl 7 PY/2)

=0 a¥+alttak=a
la®|<1-1,1<]a? [<1,1<j<k

< (OF P(X +2Y)0% ¢(X +Y) - 0% ¢(X +Y))|y_,
+859 (w(€)/ ) + 85 (wie)y, ).

Choosing [ = 1 we have

Corollary 2.4. The following holds.

/ e 2V Dp(X 1Y + Z)edEV~6X+2) 3 vdy dZ

—1)lel
=2 3 EU oDy 2 (o + 27)(Txox + V),

laf<m

+85 (w(€)y 70 + 85 (w(e)y ).

Turn to the second term of (24). After integration by parts we have

/ e HIOD) (Y12 4 |2) N (IDJ? + |Dy )N FdY dZ
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where F = p(X + Y + Z)e*3(X, Y, Z) and & = x°(y, 2)X(1,C). Since || <
Cl&ny and (E+mu =~ (Eu, €+ Oum = G, (E+n+Ou =~ (G if
@ # 0, thanks to Corollary I it is not difficult to show

(D + 1Dy 1yl + 1212 N0 P| < CAPNHolw(X +Y + 2)(€)5
X ((Ofr + 1) U™ ()5 + N*)N (|yl? + |2[?) N e,
Choose the maximal N € N such that AN® < ¢;(£)y, with small ¢; > 0 and
repeating similar arguments as before one obtains (recall p > k)

p/s

A2N<€>]\—/[20N(<§>Jf\g/[+Ns)2N < Ce_c<£>M .

Since gx =~ gx+y+z if X(n,¢) # 0 a repetition of the proof of Lemma P23
shows w(X +Y + Z) < Cw(X)(1 + gx(Y) + gx(Z))2. Note that
9x (V) +9x(2) < (B 1y + 2%) + 203
max {§,1—
< O T A Ty 4 1=

and for any € > 0 there are C, A > 0 such that (recall k < p)
(©)el < cAll|aflele@is”.

Since <§>A_42(n+1) J(lyl? + |21*) ™ 1@dYdZ < C and p/s > k we obtain
Lemma 2.8. There is ¢ > 0 such that

p/s

/e_QiU(Y’Z)p(X +Y + 2)e?EHV)=0X4D) eqydZ e Sp(j;) (we™Ehr )

hence clearly belongs to Sp(i;) (w<§>&€7€(m+1)),

To estimate the third term of (E4) it suffices to repeat the same ar-
guments that estimate (IT3). Write x%(n,() as (1) and study (L3).
Since ({+n+Cm < C(n) and (E+mm < C), (E€+Ou < Cln) if
01X+ # 0 it is not difficult to see that (IId) with F' = p(X +Y + Z)eY,
P=¢(X+Y)— (X + Z) is bounded by

CAPNHL ) 72V =2 y) 2 ) (X + Y+ Z) () ()

2.20
( ) X(<’r]>’% + NS)2N<,’7>26N(<77>I£ + |a|5)|a\<n>5|a|e|w|‘

Here writing

A2N<7]>72N+25N(<n>n —|—NS)2N — (*’4<77>fi +

AN \2N
(m1-0 )

(m1-0
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we choose the maximal N € N such that AN® < ¢;(n)'~% with small ¢; > 0
so that the right-hand side is bounded by Ce=¢m " Wwith some ¢ > 0.
Noting that (n)(1=ON/s < =N NNeeln Y0797 it s clear that for any e > 0
there are A > 0, C' > 0 such that (recall k + < p < 1)

<n>(n+5)|a| < CA\a|‘a‘s|a|/(175)e€<n>(1—é)/s

Y

a1l () 8lel < o Aled || sled/(=8) gelm =07,
Consider w(X +Y + Z). Since gy (Y + Z) < C((?°(ly|® + |2]?) + |n]?) <
C(n)*(y)*(2)* and (Ear, (€ +n+ Qur < Cn) if 1) # 0 it follows that
wX +Y +2) < Cu(X) (1 +max {gx (Y + 2), gx1v+2(Y + Z2)H™
< Cw(X) ()™ (y)?M (2)*M.
Recalling that 1 —§ > p — § > ks one sees that (2220) is bounded by

CA|0¢\ <<>—2€<y>—2ﬁ+2Nl <Z>—2€+2N1W(X)|a|s|cx|/(1—§)e—c(n)(lf‘s)/s.

—em =5 < —er(@) ™ gmea(m =0/

Noting e with some ¢; > 0 we conclude

/ e 2D p(X 4V + 2)e! XY Dy dvdz € ST (we e ),

Similarly if the case x§ is chosen, choosing Ny = N, No = £ it is proved that
(2220) is estimated by

CA2N <n>—28<y>—2€+2N1 <Z>—2E+2N1w(X) |a’s|a\/(1—6)6—cl<§)]§41_5)/36—02 (¢ya=9)/s '

Thus one can find ¢ > 0 such that

(1-6)/

/ e 2D (X Y 4 Z)e VD) pidydz e S50 (we et
Turn to fe_%”(y’z)ag‘((Fgag)deZ. Consider
/ 6—2ia(Y,Z) <7’>—2N <<>—2€ <Dz>2N <Dy>2£
x (y) "2 (2) D)D) 0% FpadY dZ.

Since (€ 41+ ¢)nr < C(n) and (€ +n)ar < C(n), €+ Qum = (v < Cn)
if 2 # 0 this is bounded by (220). The rest of the argument is the same as
the case that ¢y, is chosen. The case of (3 is similar to the case that ¢ x¢
is chosen. We summarize what we have proved in
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Lemma 2.9. There is ¢ > 0 such that
/G—Zia'(Y,Z)p(X + Y + Z)e¢(X+Y)_¢(X+Z)XCdeZ
e S8 (e,

Combining Lemmas P74, 8 and 279 we end the proof of Theorem 2.

2.2 Proof of Theorems 22, and Proposition 21

In view of Lemma [, disregarding the factor 7—2" and denoting 1 = ¢(X +
Y) — ¢(X + Z), we write (a1e®)#(aze™?) as

/ e 272 a) (X +Y)az(X + 2)e? XV xydYdz
+ / e 20D ay (X +Y)az(X + 2)e? NPy xdY dZ
+ / P00 Day (X +Y)ap(X + Z2)e! NV xedydz.
To study the first term, after the change of variables : Z — Z +Y denoting

qX,Y,Z) = a1(X + Y)aa(X +Y + Z), it suffices to repeat the proof of
Theorem P Since B%Oq(X, Y,0) =a1(X + Y)@?‘(Oag(X +Y) we have

Lemma 2.10. The following holds.

/ e 20D ay (X +Y)az(X + 2)e" TP xxdY dz

mo_1\k
:7T2n ( 1) ( Z %(O’DX/2)Q

aO!alg el QU
k=0 a®+al++af=a
|af|<1-1,1<]0d | <11 <5<k

x (a1(X)O% as(X)O% (X)--- 0% &(X))
+8 (wrwa (€03 ™) + 8 (wrwa (€)™ HY).

The rest of the proof is the same as for Theorem Pl except for obvious
modifications for estimation about w1 (X +Y) and wa(X + Z). O

Turn to the proof of Theorem E3. Using Lemma 4 we write
a1 #ay = / e 2V (X +Y)ao(X + Z)xdY dZ

+/e—2io'(Y,Z)a1(X +Y)(12(X + Z)XchdZ = Jl + J2.
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Write ax(X+2) = 37, <1 0% a2(X)Z%/al+37 - 717 (X, Z) Z* and repeat

the same argument that estimates (ZI8) with Ry, = r?}f (X,Z). Then we
have

J1 = Z 5{(01))(/2)@‘11 (X)}0%az(X) + S’p(fs) (w1w2<§>]\_/[l(f)—5))
laj<i—1
where we have used
> D) (@)% ax(X)) = 3 S{(rDx/2)%a1 (X)) Ras(X),
laj=1 o &

As for Jy it is enough to repeat the same arguments that estimate the third
term of (24).

We proceed to the proof of Proposition . Suppose that N € N is
given. We first note that for any «, 8 € N" there is Cy3 such that

10808 p(2, €)] < CaplE)y *1oem (/2R
Write

/e2ia(Y,Z)p(X +Y + 2)e? XY ydy dz
+/€—2iU(Y,Z)p(X + Y + Z)ew(X7}/’Z)XCdeZ

Denoting F' = p(X + Y + Z)e?XY2)5 it is easy to see

0%y F| < Cal&p (" w(X)
X (14 gx (Y)N (1 + gx(2))Nr e /D@ +CE;

Thus the integrand of [ =27V 2)o=f LA~ N4 (9% F)dY dZ is bounded by

Ca,éq)_e—i_Nl \II—E+N1 <§>A_4N+E(a)w(X) <§>]Ej[1€+|a|)me_(6/2)@)]@[.’_0(@1\'}.

Since & > K, choosing ¢ such that £ — N3 > n/2 we conclude that the first
integral belongs to S, s(w(€);," ). To estimate the second integral it suffices
to repeat the same arguments for estimating (I"T3). Without restrictions

we may assume that 1 — 3§ > 5k and ¢ € S;:?((@j&). Then a repetition of

the same arguments as before proves that

(1-6)/5
M

/ema(y’z)p(X +Y 4+ Z)ew(X’Y’Z)XCdeZ € S(fg/(l_d))(we*d@
with some ¢ > 0 which clearly belongs to Sp75(w<§>A}N) for any N € N.
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