Applications of pseudodifferential operators of
symbol exp 575 to the Cauchy problem

Tatsuo Nishitani*

Abstract

In this note we apply the calculus of pseuodifferential operators
with symbols of type exp (S;5) given in [8], slightly less precise but
much easier to apply than that of [[7], to the Cauchy problem for non-
effectively hyperbolic operators recovering the results obtained in [2, B].

1 Preliminaries

Denote the metric defining the class S, 5 by g,.s

(905)x(Y) = (OB + (P X = (@,),Y = (y,m) € R™.
where () = (M2 + [¢[)1/2.

Definition 1.1. A positive function m(z, &) is called g, s admissible weight
if there are positive constants C, N independent of M such that with g = g, 5

(1.1) m(X) < Cm(Y)(1+max {gx(X = V), v (X =)DV, X, Y e R™™
For simplicity denote g1/21/2 by g1/2:
(91/2)x (V) = (Ourlyl’ + (' In, - X = (2,€),Y = (y.m)
and write Sy /5(m) = S1/91/2(m). In what follows we assume
0<0<1/2<p<1 (= gps < 9g12) and ¢ <p.

Let m > 0 be g,s admissible and m € S, 5(m). Since m~t € S, 5(m) and

m~1 is g, 5 admissible we have m#m ™' =1 —r with r € Sp75(<§>]\}2(p76)) C
Sl/Q(M*Z(p*‘S)) hence there is My > 0 such that > 22, r#J converges to

k € Sy/2(1) satisfying (1 —r)#(1 + k) = (1 + k)#(1 —r) = 1 for M > M.
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Lemma 1.1. Assume that wa, o € N>" are g1/2 admissible weights which
satisfy waws S Woyp for all a, B € N, Assume that OSr € S1/2(wa) for
la] < N then we have 0%k € Sy /a(wa) for [al < N.

Proof. Note that k satisfies k = r + r4k. Since 74tk € Si/5(wo) it is clear
that k& € S1/5(wo). Suppose that O%k € Si/o(wa) for |af < 1 < N. Let
|B] =1+ 1 then we have

2k =05r+ S Cpn(05r)#(05 k) + %k
B'+8"=p,8"|<l

Where Z N SI/Q(Z U)B/’U)/B//) C Sl/g(wﬁ) ThUS it fOHOWS that
(1 —r)#(0xk) € Syya(wp)
from which we have 8)’8(142 = (14 k)#S1 2(wg) C Sy /2(wp). O

Corollary 1.1. If m is g, 5 admissible weight such that m € S, s(m) there
exist Mo > 0 and k € S, 5(M~20=9)) (M > M) such that

m#M I HA+k) =1, (L+k)#Fm#n =1, m 1 H# A +k)#m=1.
Proof. Since r € S, 5(M~2(P=9)) hence
%1 € G (M2 (e)D) € Sy o (M2~ (e)f)), o e N7

where €(a) = |ay| — plag| with o = (ag, a¢) € N?". Thanks to Lemma
[0 we have 0%k € Sl/Q(M_Z(p_é) <§>;/([a)) for all @ € N?" which implies that
k€ 8,5 (M-20-), N

Lemma 1.2. Let m; (i = 1,2) be g,5 admissible weights such that m; €
Sp5(mi). If a € Syjo(mimz) or a € Syja(my) there are C > 0, Mo > 0 such
that the followings hold for M > My

|(op(a)u, v)| < Cllop(m1)ullllop(ma2)v]],
lop(a)ul| < Cllop(ma)ul.

Proof. Note that mi_1 are g, s admissible. Write

a = mo#t (L + ko) #my ' #a#tm T #(1 + ki) #mi = mo#trdm

where r = (1+ko)#my  #a#m " #(1+k) € S1/2(1) then the proof is clear.
For the second assertion it is enough to write a = a#tmy ' #(1 + k1) #my =
r#tmy with r = a#(1 + k1) #mi " € Sy /o(1). O
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Lemma 1.3. Let m € Sy 5(m) be g2 admissible weight. If a is g, 5 admis-
sible weight satisfying a € S,5(a) and a > cm with some ¢ > 0 then there
exist C' > 0, My > 0 such that

Cllop(a)ul = Jop(m)ull, M = M.

Let m € S, 5(m) be g,s5 admissible weight. If a € S, 5(m) satisfies a > cm
with some ¢ > 0 then there exist C > 0, My > 0 such that

C(op(a)u,u) > [lop(vm)ull*, M > M.

Proof. Write m = m#ta"'#(1 + k)#a where m#a '#(1 + k) € S1/2(1)
for a=! is ¢ /2 admissible. This proves the first assertion. Turn to the
next assertion. Since cm < a < Cm it is clear that a is g, s admissible
weight hence so is /a. Since a = va#+/a +r with r € S, 5(M~2(=%)q)
one can write r = a'/2#(1 + k)#a V2 #r4a V241 + k)#a'/? where (1 +
k)#ta= V2 4rdta P41+ k) € S, 5(M~2(=9). Thus

[(op(r)u, u)| < CM~**~jop(Va)ul|*.
Since (op(a)u,u) = |lop(v/a)u|* + (op(r)u,u) it follows that
(op(a)u,u) > (1= CM~**)|lop(va)ul[* > [lop(vm)ul[*/C, M > My

where the last inequality follows from the first assertion. O

2 Applications to the Cauchy problem
2.1 Some special weights
Let ¢1(z,§) € S}‘?())(l) and define w(x,&) by

w(z,§&) = ( (g, €) + <§>A}l)1/2l, I,meN, | <m.

Let ¢2(z) € G*(R™) and define

r(z.6) = \/é3(x) + wi(x.8).
Introduce two more metrics. Let

ax(¥) =0 Iyl +w ™ P o =T T,
95 (Y) = w2y w2 P, Y = (y,m) € RP
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Lemma 2.1. There exist C > 0, A > 0 such that

(2.1) 0508 w| < CAlHA|o 4 B|1swa=tletBl/m gy 1o

that is w € S (w, g). In particular we have w € S/(Jfg (w) with
(2.2) p=1—=1/2m, §=1/2m (hence p+d=1).
Moreover w is g, s admissible.

Proof. We only show that w is g,s admissible. Thanks to (ZJ) we have
8782w/ < C(€),/* for |a + B = 1. Then

[ (X +Y) = w!™(X)] < Cllyl + (€ +m)yflnl) 6] < 1.

Write g = g,5. If |n] < (§)ar/2 so that (€ +0n)y ~ ()i the right-hand
side is bounded by C(Jy| + (€)' 1)) < C(E°9x°(V) < Cul/™(X)gi*(Y).
If [n] > (€)ar/2 then gx(Y) > (£)#2/4. Therefore w!/™(X +Y) < C <
C”(§>A_/[ég¥2(Y) < C’wl/m(X)g;/Q(Y) hence w!/™ is g, s admissible and so is
w = (wl/m)m/l O

Since w V™ < (§>Zl\//[2m = (&) and w=/m™(g) !t < <§>1(\54_1 = (&) and
wlm <ot <t < (5}%2 it is clear that

99, 9=<9ps: 9= Gp1yo-
Lemma 2.2. We have

000gr| < CAIHlq 4 1y g Pleliel/m (g) le!
that is r € S®)(r,g), hence r € S,(j%/z
Proof. We only show that r is g,/ admissible. It suffices to show that
r? = ¢3(x) +w? is g, /2 admissible. Since w? is g, s admissible by Lemma
270 hence g, 1 /2 admissible because g, 5 < g,,1/2. With g = g, 1/, note that

62(X +Y) — ¢o(X)| < Cly| < C()a, "9 (V) < Cw(X)g¥*(Y) thus

(1). Moreover 1 is g, 1o admissible.

$(X +Y) < C(5(X) + w(X) (1 +gx(Y)) < Cr¥(X) (1 + gx(Y))

from which we conclude the assertion. O



Let us define
¢(x,€) = i{ log (d2(x) — tw(z,£)) — log (¢2(z) + iw(x, &)}
= 2arg (¢2(z) + iw(z,§)).
Lemma 2.3. We have ¢ € S®)(¢,§) hence ¢ € Sf(jl)/Q(qzﬁ) and ¢ is g,1/2
admissible. In particular 858?¢ € SE) (wr—1o~Blyw=tel/m gy for |a+ 6] = 1.
Proof. For |o+ ] =1 one has
(2.3) 00 = —2r (2, &) [w(x, )00 pa(x) — ()05 Ofw(w,&)]

where ¢ (x)@f@?w € Se (rwlf”o‘ﬂLﬁ'/m(Q]\}‘al , §) in view of Lemma P11, thus
the last assertion is clear from Lemma PZA. Since there is ¢ > 0 such that

(2.4) ¢ = 2arg (¢2 + iw) = 2arctan v > L
r r

thanks to Lemmas 2711 and P2 it follows that
w/r? € S (w/r?, g) c S (e, ),
$20008w/r? € SO (willetdl/mg) el gy ¢ 56 (et Blmig) Tl g)

which together with (233) shows ¢ € S()(¢, 7). Next, we show that ¢ is
9p,1/2 admissible. In view of (E23) we have

w wl—l/m

BX +Y) —o(X)] < C(5 +

1-1/m
)

Denoting g = g,.1/2, if [1n| < (§)ar/2 so that gx =~ gx ¢y then recalling that
w and r are g admissible one can find N such that

)‘ 1yl

r (X+6Y)

+c (2

)<£+ On)arlnl, 16] < L.

r (X+0Y

w(X +60Y)/r*(X 4+ 6Y) < C(w(X)/r*(X))(1 + gx (Y)Y,
w X +0Y) /(X 4+ 60Y) < C(w X)) /r(X)) (1 + gx (V)N

from which together with (E4) it follows that

(X +Y) = ¢(X)| < CHX)UEN Iyl + (€™ ) (1 + gx (V)N
< C'G(X)(1+ gx (V)N H1/2



since r(X) 2 w(X) 2 (&% Tl 2 (/2 so that gx(V) 2 (€)}f" /4
noting that ¢(X) > c<§>1\7[1/2 in view of (Z4) we have
X +Y) <2r <o), Y™ < c¢(X)(1 Y))ym™/2
PX +Y) <2r <Oy (1 +gx(Y)™™ < CH(X)(1 + gx(Y))
thus the proof is complete. O
Lemma 2.4. One can write
0J0¢¢ = Aap + $2Bag, o+ B> 1,
Anp € SO (wr 2o Iy lel/m g Tlel, gy,
Bag € SO (7= 2wl Bim g Llel )
Proof. Let |o/+p'| =1and a =o' +a”, B = '+ " then from (E23) we see
050gp = —200"0¢" (wr=20 0 ¢2) + 20" 0" (¢or 205 0 w).
Since wr=2 € S®)(wr~2 g) the first term is A,5. Consider the second

term. Note that 0(¢or=2) € SG)(r=2,g) for |e] = 1 and af’ag’w €

S(S)(wl_l/m<£>1\7[‘a/|,g) then if at least one derivative with respect to z falls
on ¢or—? which yields Anp otherwise this term will be ¢2B,3. O

2.2 Operators to be considered; non-effectively hyperbolic
operators

Consider

P=-Dj+2BDy+Q, B=op(¢1(&u), Q=op(d3()ir)

where ¢; € ng(l) are real valued and ¢y = ¢2(x) is independent of &.
Assume that there exist ¢ > 0 and ¢;; € ng(l) such that

2
(2.5) {Co. i} =D ciydj  (Qu{dr, 2} = e >0.
j=1

This is the general form for the case that Ker F2NIm F? # {0} on the double
characteristic manifold which is assumed to be smooth and of codimension



3 where F' denotes the Hamilton map of P. If there exists no bicharacteris-
tics falling on the double characteristic manifold tangentially then the first
condition in (ZZ3) can be strengthened to

2
(2.6) {Co. 01} =D cidj,  {&, b2} = 2107 + cazgho.

=1

Prod = —DE + 2D1Dy + 22D3 is the model operator for the case (Z8),
which is one of three normal forms of quadratic hyperbolic operators ([B,
Section 21.5]). The fundamental solution for P,,.q is constructed in [G] (see
also [4, Chapter 7, p.211]) and proved solvability of the Cauchy problem
for Pod + SD2, S € C in the Gevrey class 4 using the explicit formulas
(although energy estimates giving Gevrey class 4 result was not obtained,
see [B, p.159]).
Let

we= (G EDYE, = /@) + (e, €)

be given in Section Pl where w € Sp(;) (w) with p=1—1/2m and 6 =1/2m

is g, s admissible by Lemma 21 and r € /)(‘91)/2(7“) is g,1/2 admissible by
Lemma 2. In what follows we consider two cases;

(2.7) (m,l) = (3,2) in case (1), (m,l)=(2,1) in case (Z8).
Note that

p=2/3,6=1/3 if (m,1)=(3,2), p=3/4,5=1/4if (m,l)=(2,1).
Take k71 such that
(2.8) I <K <1/2

and consider
K1

oD w0 py(Dhyf 2o
where v > 0 is a positive parameter and will be fixed eventually such that
(2.9) y=M", &>0, vi+e <1/2.

Since Y(&)FF < ()T one can regard y(€) € Sf())((§>fj+5*). Since
€\, € S}SO)((Q}W) (I € R) and ¢; € ng(l) and it is easy to see that



(00x) (9% 900 (O3 - 08 () € SN, Jal = k.
thanks to [8, Theorem 2.1] we have

—EnF P04 (¢ (E)n )#e7 M0 — ¢ (Ear + iyao{ (), 1 HEM
+555)(1) + S5 (e M) = ¢ (€ + ivzoby + by + 1

with by = {(&)5, é1 HE)r, ba € SU)(1) and rb € S5 (e~ and

O 20 (92(6)2) ke ENT PO — G2(6)2 4 imao{(E)5E, do} ()3
+5 () + Sé,&(e*“@if ) = G2(E)Y + 2ivzoq + g2 + 1
with g1 = {(€)fF, $2}da ()2, a2 € S ((Ear) and ¥4 € S5 (eEn"). There-

fore it follows that

=Pt w0 perPhieo — _ (D — (D))
+20p(¢1 (& + ivzoby + ba + 1) (Do — iv(D)5})
+op($3(E)ir + 2ivz0q1 + g2 + 19).

Let us denote
(2.10) v=2=-2l/m, ¢:=1-V1-w =w"/(1+V1-uw")

where w is assumed to be |w| < ¢ < 1 without loss of generality. From
Lemma 271 it follows that

(2.11) 0202| < CAIH o 4 1ot~ HetBl/m g) tlel
In particular 1 € Sp(,? (w¥). Noting that 1% — 21 + w” = 0 it is clear that
=& + 201 (ko + B3 = — (S0 + dr1v{E) (S0 — d1¥(E)mr)
+201(E)nr (€0 — d19{Er) + B3O + FTw” ()

here we note that ¢3w” > ¢7|é1|"™/! = |¢1|*™* = |$1)'/°. Replacing & by
& — iv(§)y; we have
Lemma 2.5. One can write

(fo — iy ()7 + 201 (Enr (o — V() + 5(E)%

— (&0 — (€t + P19 (E)m) (S0 — v (E)nf — d1Y(E)mr)
+2¢1<£>M<£o — iy (€t — P19(Em) + G + STw” ()i
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Since |¢1| < w'/™ it is clear from Lemma 21

Lemma 2.6. We have ¢11) € Sp(j;) (wH/m).

In view of Lemma P8 and ¢; € S/()Sg (w'/™) into account, an application
of [8, Theorem 2.3] proves

(o — iv(Ept + dr19(E)#(Eo — iv(Ept — P19 (E)m)
= (o — iv(E)nf + P19(€ >M)(£0 - W( > — P1(§mr)

(¢1<5>M)#(§0—i7<5> ¢1¢< M ) b1 <§> ( o — iv(En — P1v(Emr)
5))
(

59 (Emr) + S el

where (2Z9) is taken into account.

Lemma 2.7. One can write e~V Eaf ©04pteEnf 70 g5

—(&o — (&t + Pr(En)# (&0 — v (E)ns — Pr1v{E)m)
+2(1 (€ + iyzobr)#(§o — iv(E)n — P1¥{(E)m)
+O3(E)ir + dTw (€ + 2iyzoQr + 11 + 7
+2(bg + ") # (&0 — V(O — d19(Enr) + 2(ba + ) #($19(E)m)

where Q1 = q1+bi¢1(€hr and 1 € S5 (), 7 € SE e,
Proof. From [8, Theorem 2.3] it follows that b1 #(p190(E)ar) = Yb1d1Y{(E)m+

Sp(js)(<§> ) + S(f/(l 5))( —c(en ™ 6>) since by € S(S)((@fj). Then it suffices

to apply Lemma P3. ]

Let us denote

A =& — &)y — nv(&m, M =& —iv(€)f + dr1v(m,
Q = 65(E)ir + PTw” (O3 + 2ivw0Q1,
R=ry+7+2(by + ") #(d19(Enr)

such that one has

=)t zo #p#e’ﬂ@ff 20 — _ MH#A
+2(p1 (Enr + iyob)H#A + Q 4+ R+ 2(by + 70)#A.



Take ko > 0 such that

(2.12) K1+ Ko =1/2

and define ¢ by

(213) ¢ = —i(&)7 {log (¢2(z) — iw(x,§)) — log (¢2() + iw(w, &)}

Here we remark that ko =1/2—k1 <1/2—6=p—1/2and ¢ € Sﬁfsl)/Q((@]ff)
by Lemma 23 so that one can apply the calculus prepared in [8] if s > 1 is
enough close to 1. Consider e®#p#e~?. In what follows

€, €, € denote positive constants which may change line by line.

/

From [8, Corollary 2.1] it follows that e?#e~? = 1—r with r € Sp71/2(<§>]\*42€ ).
Since r € Sl/g(M_%) there exists k € Sy /2(1) such that (1 +k)#(1 —1r) =
(1 —7r)#(1 + k) = 1 hence e®#e ?#(1 + k) = (1 + k)#e®#e ¢ = 1. Since

there is k € S /5(1) such that (1 + k)#e ?4e® =1 it follows that
(2.14) e P41 + k) #e® = 1.
Thanks to Corollary T we have k € Sp,1/2(M_26/)

2.3 Conjugation by op(e*?)
Consider J; = e®#(by + r°)#A#e ?#(1 + k) with k in (ZId). Then one

can write

Ji = P4 (by + 10)#e (1 + k) #eP#AHe H#(1 + k)
= P4 (by + rO)#e PH (1 + k)#A, A = ePH#AHe PH(1 + k)

Choosing s > 1 suitably close to 1 it can be assumed that 1/2 > p—1/2 > sko
then [8, Proposition 2.1] and [8, Corollary 2.2] show that

Py = e®#(ba + ") #e P H#(1+ k) € S,1/2(1).
Similarly Fy = e®# (g1 () #e *#(1 + k) € S, 1/2((€)ar) and hence

OH (b2 + ) (G10()nn) ) e “H (L + k) = Fi#Fy € S,1((E)m)-

Let § = s/(1 —0) and £ = (1 — §)/s. Noting 8ke = ska/(1 —9) < (p —
1/2)/(1=0) =(1/2—-6)/(1 —=90) <1/2and k = (1 —0)/s = p/s > Kka one

10



can apply [8, Proposition 2.1] to obtain e?#7#e ?#(1+k) € Sp,1/2(<§>]\_/[N).
Thus

R = e"#R#te #(1+k) € S,1/0((E)u).

We summarize what we have proved as follows:

eOgke VN P pppr VO o= O Y (1 1 k) = —M#A
+2P4 (1 (Ear + iyaobr ) #e PH#(1 + k)#A
+eP#(D5(E)7 + dTw” (E)ir + 2ivzoQr)

#e P#(1+ k) + Sp/2({Er) + Sp,l/z(l)#]\-

(2.15)

Lemma 2.8. Assume q € S (w, g) with g, 5 admissible w. Then we have
(00x)* (9% q(X)0% (X)) € S a(ww/2r=2()y 727
5 1w/ 2y 2R 0 g (e g )
fora=a’+al, |a| > 2 and || > 1.
Proof. Thanks to Lemma P one can write
(00x)°(0% 405 6) = Aa+ 62Ba, @ =0+ 0

where A, which is in S) (wr=2g~lel+ 1yl =lalt/m gy 52 la‘ g) and ¢2 B, which
belongs to S(wr™lw!2lall/m¢) =™ |a| g). Note that

al—1
T_29_|a|+1w1_\a|l/m 5 wl//2,r—2w—(|a|—1)l/m lzlz T_jw_(‘O"_l_j)l/m
7=0
-1 o1
< w2 Z w I 2ol =1=g /2 m g0 /2,2 Z 26 (la]—1—35/2)+35/2
Jj=0 =0

and ry — |af +20(|la] =1 =7/2) +5/2 = k2 =1 = (|a] = j/2 = 1)(p = 9)
which is less than or equal to kg — 1 — (p — 8)/2 for |a| > 2. This proves
that A, € Sp’l/g(ww”/zr”<£>J\’}27176l). Turn to ¢2B,. Note that

T—1w1—2|a\l/m < w1/2—l/mr—lwl/?—(2|o¢\—l)l/m

< w1/2fl/m7ﬂ71 <€>J\r;1[ax{6(2|a|71)71/4,0}

and ko —|a|+d(2]a|—1)—1/4 = —1—(Ja|-1)(p—90)+d+r2—1/4 < —14+(5+
k2)/2 for 6+ko < 1/2 thus ¢2B, € S 1/2(ww1/2 Lym *1<§>A}1+(6+52)/2_6 ). It
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is also easy to see that r—tw!=2lell/m < w‘l/mr_l(§>Zr\'4lax{6(2|a|71)71/2’0} and

ko —la|+02la)l—1)—1/2=—-1—(Ja|=1)(p—0)+d—1/24+ ke < =1+ ko
so that ¢po B, € Sp71/2(ww*l/m7~*1<§>A—/[1+R2—e ) i

Lemma 2.9. If g € S® (wtH/™(&)P  g) with > 0 one can write
€¢#Q#€_¢ =q+ Z{Q7 ¢} + le + an

~ — —1 —€
q1 € Sp,1/2(wl+ur 2<€>]]\)/[ e )7

62 € S 71/2 (wﬂ‘f'l/gr—l<£>]}\74—1+(6+H2)/2—E ) N Sp71/2(wur—1<£>ﬁfl+f£27e )

Proof. Since q € Sﬁfi)/ (wHH/m(e)P ) and ¢ € st 1/2((@}\7) one can apply [R,
Theorem 2.1]. It leads us to study

(2.16) (00x)* (0% a(X)0% 6(X) - 0% 6(X))
where o +al +---+af = a, [0/ > 1 (1 < j < k). Write

a=a+a, a=a+a'+---+af & =(ada) & =1
and €(3) = 1/2|8.| — p|Be| for B = (Bs, Be). It follows from Lemma 223 that
8§(Oq8§§1¢ . a;v(’“qs c S (wu+l/m+kf(l/m)ldg\ Q*|d1|fr*k<§>ZZ\7/[+I€&2—\&€|+5(&) 9)
and hence

(cDx)“ (8)( qax¢ 3X o) € S(S (wﬂ+l/m+k (1/m)|a| _kQ &
X<§>Jz\7/[+km2 |G| —(p— 1/2)|O4’g).

We assume k > 2. If r < w'™ hence 0! < 2r~! one has (recall rol < wil)
_ 0
w—|a0|l/mg—\a0\<£>]\}|ao| < <£>A}(1/2 6)|a”] and

wH U mA k= m)k =k =k < Ly =2y =T meth— (U m) ke —2k+2

< (wy+lr—2)w—(k—1)(1+l/m) < (wu+lr—2)<§>](\l4€fl)(l/2+6)‘

Since (k—1)(1/24+96) — (k — 1)+ kka = —(k — 1)(1/2 — 6 — Ka2) + K2 < K2
for ko + 9 < 1/2 we have

(217) (0Dx)*(0% 0% 6+ 0% ¢) € Sy (w2 ), k> 2,
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If r > w!’/™ and hence ¢! < 2w™"/™ we have w“aD”/mg_'ao‘(@z\}laol <
<§>A}(1/276)‘a0| and that

wh M k= m)ky =k =k <l =2, —14k=3(k=1)(1/m)

(2.18) < (w#+1r_2)<£>Jr\2ax{f(kfl)/2+3(k71)5,0}‘

Note that —(k —1)/2 +3(k—1)6 +1 —k+ kko = ko —3(k—1)(p— 9 —
k2)/2 — (k — 1)ka/2 < Ko then one has (2I7) again.

Let k = 1 and consider (U@X)a(8§0q8§1¢). Since 3|, =1 (00x)*0% ¢ = 0
the sum over |a| = 1 yields i{q, ¢}. Therefore it remains to study the sum
over |a| > 2 to which one can apply Lemma 28 with w = wtH/™(€)P to
end the proof. O

Lemma 2.10. One can write
e_d’#ed) =1—-7r, rc Sp71/2(w”/2r_2<§>1\7[1+”27€ ).

Proof. Since } -, (cDx)*0%¢ = 0 for [ > 1 it is enough to consider the
terms corresponding to k£ > 2. Then we obtain the assertion from (217). [

Corollary 2.1. We have k € Sp71/2(w”/2r*2<§)]\}1+“276l) N Spjl/Q(M*%'),
Proof. The assertion follows immediately from k = r 4 r#k. O

Lemma 2.11. We have 0,,¢2 € Sp(i)/Q(w”—l—r) and Oy, w € Sp(i;) (w +rw'/?).

Moreover we have Oy, ¢ € S;7j>/2(r—1wy/2<g>f;) N S,O(i)/2(<§>]‘\5/[).

Proof. Recall that Oy,¢2 = {&o, P2} = 2167 + c22¢2 where 091 = 1 or

2 according to the case (m,l) = (3,2) or (2,1). Since ¢2 € Sp(i)/z(r) and
¢ € S;S,Sl)ﬂ(wl/m) it is clear that {&y, 2} € S (w” + ) because o91l/m =

2 —2l/m = v. Noting that {{,w} = (m/l)(¢fm_1/w2l*1){§g,qﬁl} and

{€0, 01} = c11¢1 + c12¢2 it is clear that {£, w} € Sp(sl)/Q(w + rw”/2). Recall
that

006 = i, 0) = 2 (g ) 122280 (g, )

where it is clear

wr{€0, 2 HEN € 8 ((r 2™ +r ) (€)f7) € 81, (r T (€)5)
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for v <1 which is also in S(Sl)/2(<§)j\s/[) because w” 1 (¢)? < <§)§j+“2*1/2 =

<§>1%45 m < <£>M. On the other hand, one has
bor 2(E)i{€0, w} € ) (M + w? ) (E)5F)

which is also in Sp(i)/z (r~tw/2(€)r?) ﬁS(sl)/2((§>]‘\54) because ko < ¢ (it is clear

since § = 1/4 or 1/3) from which we conclude the proof. O

Lemma 2.12. Assume q € S©) (w?(€)3,,9) and 0yyq € S©) (w>=H™ ()2, g).
Then one can write

e’ =q+3d,  GE SupwHON™)
where Oz,q € S, 71/2(7“2(5)]%]676/).

Proof. The fact ¢ € S, 1/2(w” / 2(5&]’”) follows from Lemma P9 with p =
—[/m and Lemma P=3. Consider

(2.19) (00x)* (1 (0 9(X)DF (X) -~ 0% H(X))).

Note that 8x08£8§‘q5 €8 (w”/Qw_V"“/mr_l(@ff*la'Q"ﬁ‘,g) by Lemma 2711
it is clear that (ZZ19) belongs to

S(s) (w2+k—(|&|+1)(l/m),r—kg—|d\ <£>]%/[+kn2—|&| : g)

If r < w'/™ hence p=' < 2r~! it follows that w?tk—(k+DU/m)p—k,—k <
p2y k= (kDM < 2 REFRED0 gin o /g (k4 1)6 —k — kkg = 6 — k(1 —
20—2k3)/2 < 6. This proves that (Z19) belongs to Sp’l/Q(r2<§>fj‘5*6/). Ifr >
w'™ hence p~! < 2w™H™ we have w2 th— kDU m) =k p=k < p29k=Ek+1)l/m <

r2(g)mAGRNR/20} " gince (3k + 1)8 — k/2 — k + kg = 6 — 3k(1 — 26 —
2k2/3)/2 < § we have the same result in this case. O

Lemma 2.13. Assume q € S®)(r2(€)2,,9) and that q satisfies afagq €
S(s)(r1+|a‘<§>2 ‘al,g) for|a+ 8| = 1. Then one can write

e Htqtte’ = q+ G, GE€ 1w HENT).

Moreover if 950q € S (r' ¥ (€)31,9) then 90 € Sy1/2(r*(E)3").
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Proof. From a repetition of the proof of Lemma P it follows that (ZIG)
is in S(S)(r2wk_(l/m)|5‘|r_kg_|5“({ﬁjk@*'dl?g). If r < w™ hence o' <
211 one has r2wh—k1/m) =2k < 4 ~k+2-kl/m < wu/2<£>](v1[€—1)6+(k—1)/2_ Since
(k—1)5+(l€—1)/2—k+1+k/€2 :HQ—(k—l)(l/Q—(s—K,Q) S K9 We
see that (EZZI8) belongs to Sp71/2(wy/2<£>]b+n2). If » > w'™ hence p~! <
2w™ and k > 2 we have r2wk=—FU/m)p—ko=k < oyv/2pk—1=3(k=Dl/m <
w”/2<§>Eax{3(kil)5*(kfl)/Q’O}. The same arguments as before shows that
3(k—1)0—(k—1)/2+1—k+kra < k2 then this belongs to Sp,l/Q(w”ﬂ(g)jj@).
Assume k = 1 and consider (E18). Since }_,,|;(00x)*0%¢/al = 0for I > 1
0
|

it suffices to consider the case either || # 0 or [a"| = 0 and at least one

derivative falls on ¢. This shows that for 8§O+a/q8§1+a”¢ we can obtain
a better by w!/™ estimate if ag + o/5 # 0 and we obtain a better by r~!p

estimate if a0 + o/, # 0. This proves, taking rw!/™ < p into account, that
(00x)* (95 q0% ¢) € S (w!lel/mgloltt gy faterlel g)

Then we conclude the assertion by repeating similar arguments in the proof
of Lemma PZ8. The proof of the last assertion is just a repetition of that of
Lemma T2 ]

Thanks to [8, Corollary 2.1] we see that 0,7 = Oy, (e?#e~?) € Sp(i)/Q((ﬁ)]‘b)
from Lemma P11 then applying Corollary I we have

(2.20) Dnoh € 5, ((E)00).
Lemma 2.14. One can choose € > 0 in (Z9) such that one has
A= — i€ + Sp172((En1 )-

Proof. Recall A = e®# (& —iy(E)F — d190(E)nr) F#e?#(1+k). First consider
e®#Eo#e?#(1 + k) which is

€+ e (i(Drgd)e V(L + k) + O fte P4 (—iDn k).

Thanks to Lemma 2711 an application of [8, Theorem 2.2] proves that the last
two terms belong to S, 1/2((€)3;). Since ¢ € Sp(sl)/Z(qb) in view of Lemma 23 it
follows from [R, Corollary 2.2] that e‘z’#(f)ﬂ He ¢ = Y +Sp,1/2(<£)]\’}1_€”).
If € > 0 is chosen such that 0 < €* < €’ then

Ay (Ent#e P H (LA k) = 1(E5F + Sp2((E)17)-
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Next, we apply Lemma E9 with ¢ = ¢19(E)y € S (w? /™ (€)1, g) to ob-
tain e”# (o1 )#te = = g1y (€ +5,1/2(w”H(€)57). Since w’ N (E)F7 <
<§)§j_1/2+'€2 = ()27 < (€)1 we conclude the proof. O

Lemma 2.15. We have
e H(d1(E)nr + iyzobr) e H#(L + k) = ¢1(E + i{d1(E)ur, ¢} + ivzoby
+8512(M ™ wr™HE)R2) + S, 1 ja (w2 HEW) + 1 2 (M (E)5).

Proof. Applying Lemma 279 with ¢ = ¢1 (&) € S©) (w!/™(€)ar, g) we obtain
that e?#(d1(E))#e? = d1(Onr +i{d1(E), &} + S 1/0(M < wr=2(€)12) +

Sp’l/Q(wl/QT‘_l(ij) Since by € S ()11, g) it is clear that ye®#tbi#e™® =
b1 + S,1/2((€)p7 )- From Corollary P21 we conclude that

($1(E0r + i{d1(Enr, D)) #K € 8,1 /o (M~ wr™2(£)52)
48,1 o (M w2 ()]

for {¢1(&)ar, ¢} € Sp,l/?(w?ﬂ72<§>1\f}2)+Sp,1/2(w1/27a71<£>1/4) and (¢1(&)nr) #Ek €

Sy o (w2 1€ ) where w”/2r~ 1 < wl/2r= (e T2 and 6 — 1/4 +
ko < 1/4. This proves the assertion O

Lemma 2.16. There is C' > 0 such that

r?/C < ¢3 + piw” + (£);; < Cr’.

Proof. Tt suffices to show w? /C' < |¢1 2w +(¢),} < Cw?!. Since |¢1|? (€ )_ly/2
C(|¢1|*/2=) 4 (€);)) and 41/(2 — v) = 2m and 2] +mv = 2m the assertion
follows. u

Lemma 2.17. One can write
eP# (03O + dTw” ()ir + 2iywoQr)#e *#(1 + k)
= $5()ir + Prw” (€)3r + 2ivzoQ1 + Q' + Q'
Q' € 8,1 2w (E0r]") N Sy (M r2(E)F)),
Q" € 8,1 /oM~ T (€)1 ™) N Sy 12 (M~ r2(E)3))

where Q1 = {{E)s}, d1}010 ()i + {(E)rF, D2} d2(E)Fy € Spﬁ(r@&jm) s real
and 0,,Q’, 02,Q" € Sp,1/2(7"2<5>1%/[+6)'
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Proof. Applying Lemma I3 with ¢ = ¢3(¢)2, € S®)(r2(¢)3,,9) and [8,
Corollary 2.2] with p = ¢3(¢)2, we obtain e¢#(¢%< )2, )#6 = ¢2<§>]%4 +qQ
with Q' € S, 1/2(w”/2(€)3, )N, 1 /2 (M~ r2(£)3)) where 0., Q" € S, 1/2(r*(€)77°)
in view of Lemma ZT3. One can write e®#(¢3(€)2,)#e %#(1 + k) in the
same form thanks to Corollary B0 With ¢ = ¢w”(€)Z, € S©(w?(€)Z,, g)
we apply Lemma 212 and [R, Corollary 2.2] with p = ¢3w”(£)Z, hence

(T (€)fPHe " = Gfur(€)f; + Q' with Q' € &1 (w/A(E)y") N

Sp1/2(M~¢r2(€)2)) where 05,Q" € S,1/2(r?(€)3/°). From this it follows

that e®#(p3w” (€)2,)#e ?#(1 + k) has the same form as discussed above.
Note that Oy, (Q'# (1 +k)) € S,1/2(r?(€)3°) thanks to (2Z20).

Turn to e?#Q1#e~?. Since Q € S&i)ﬂ( ™y n 515(1)/2( (5)1%/[_6/) for

r~1 < <5>1/2 then [8, Corollary 2.2] proves that e?#Q1#e % = Q1 + QY
where Q7 € S, 1 /2(M ™ NS ,1/2(M =<r2(¢)2,). On the other hand

from Lemma PZTT we see that 0,,Q1 € S(Sl)/Q((w +r) ()3 ") for v+l /m > 1.

Since w” ()" < (&) S ey and ELFRL < p2()27¢ we
M M M

have 0., QY € /)(1)/2( <§)2+5) thanks to Lemma PT3. O

We summarize what we have proved in

Proposition 2.1. We have

e¥ e M S0 Ed Poe =0 (1 1 k) = —NI#A
+2(91(r + {1 (€, 8} + ivaoby
5512 (M wr(€)2) + Sy o (w27 H ) #A
+3(E)3r + 1w’ ()i + ivro@Qa
+85,1 /2 (M PN ) N G120 (M (€3
+ 812w €N 0 G2 (M 2 (E)F))
+(Sp1/2(M =) + Sy 2()) FA + 8,1/2((E)r)

)

where A, M are given by Lemma ZI3.

2.4 Energy estimates
Recall

(221) A =& —in{€)yf — A M =& —iv(Ef —m,  Am € S,15((O1F)
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and denote
B = ¢1(&m + i{p1(En, 0} + Z'7330171
+85,1/2(wW 2T HENY) + Gy 12 (M~ wr(€)52)

where by = {(§)y}, o1 1w € S,1/2((€)y7) and adding (§)as to the result in
Proposition 21 we set

Q = $3(O)f + PTw” (E)Fr + (Omr + ivzo@n
+8,1 /(M (€ ™) N 8,1 /2 (M~ 12(E)3)
8,12 (W 2(E)12) N 8,1 (M r2(6)3)

where Q1 € S, 5(r(€)1; ") is real. We also write

R=1S8,,(M 6,<§>f41) +8,,1/2(1)
such that
op(e?)op(e €11 %0 )op(p)op(e7 O3 ©)op(e~?) + (D) s
= —op(M)op(A) + 20p(B)op(A) + op(Q)
+op(R)op(A) + op({£)nr).-
Denoting op(P) = —op(M)op(A) + 20p(B)op(A) + op(Q) we have

Proposition 2.2. ([l]) We have

2Im(op(P)v, opA)v) = C§O<|rop<ﬁ>v||2 + (op(Re Q)v,v)

+29(D)5; *op(A)ol]” + 27Re((D)1op(Re @), v)
+2(op(ImB)op(A)v, op(A)v) + 2(op(Imm)op(A)v, op(A)v)
+2Re(op(A)v, 0p(Im Q)v) + Im([Dy — op(Re A), op(Re @), v)
+2Re(op(Re Q)v, op(Im A\)v).

v

Since m € S, 5((§))7 ) we have by Lemma [2 that

|2(op(Im m)op(R)v, op(R)v)| < C(D)3i *op(A)v].

Noting that
ReQ = ¢3()% + 3w’ ()3 + (Er + Sp1 /o (M~ r2(E)3))
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and Lemma P18 it is clear that there is ¢ > 0 and My such that
ReQ > cr?(€)3,, M > M.

We have (€)yf #Re Q = ()17 (63 ()3, +8Tw” ()R {En)+Sp1 ;2 (M~ r2E)H™)
hence there are ¢ > 0 and My > 0 such that

Re((O)yf #Re Q) > (&)} r®, M > My.
Thanks to Lemma 3 one has
Lemma 2.18. There exist ¢ > 0, My > 0 such that
(2.22) (OpEReQ)v,v) > C||Op(f<£>M)U|’27 M = Mo,
Re((D)op(Re Q)v,v) = clop(r(€)y ™ *)vl*, M = Mo.

Consider
Im B = {¢1(E)ar, ¢} +yxobr + Sp,1/2(w1/27’_1<§>1}/f/4) + Sp,l/z(M_elwrz<f>A?)'
Note that, taking Lemma P into account
{61(E)ar, 0} = 2wr™2{d1(Enr, S HENE — 200r 2 {pr, wHE) ™
+8,1/2(r w(€)r?) = 2wr™ {1, g2 HE T + Sp,1/2(wy/27”_1<§>f42)
= 20~ {p1, L HEW™ + 12 (Vor 1Y)

for wl/2-Um(eym < ()B=V/D/Zm gyt 14 e g o

Sy /2(\/@1"*1(5)]%4/4) then from Lemma 2 it follows that

|(op(g)w, w)| < CAY2|(DY5 *w||> + Cy~2||op(vVar= (€)% w2

and if g € Sp’l/g(M_elwr_2<§>fj) then

[(op(g)w, w)| < CM~||op(rvw )y wl|?, M > My.
It is also clear that

[(op(vaoba)w,w)| < CATI(D)3 w]?,  fool < T.
From the assumption we have {¢1, d2 (€)™ > c(€)r? with some ¢ > 0

hence Lemma 3 proves that

(op(wr {1, da HEVT* Jw,w) > cllop(v/awr (€)' w])?

which will be applied with w = op(A)v. Summarizing we have proved
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Proposition 2.3. There exist ¢ > 0,C > 0, My > 0 such that
2(op(Im B)op(A)v, 0p(A)v) > cllop(v/wr~H(€)52 *op(A)v|?
—Cy(y 24+ ) |[(DY5 Pop(R)ulf2, M > M.
Recall that
Im Q = y20Q1 + S1/2(M ™ (ENF) + S0 /2 (w2 (E)]2).
Let f € Spvl/z(r(@]ﬁr”l) then Lemma 2 gives
[(op(R)v, 0p(£)v)| < C(llop(r(€)y ™ ul* + (D)3 *op(A)v]?).
Let f € Sp71/2(w”/2(§>]%/[+”2) then Lemma 2 shows (v/2=1—1/m)
A —e’/2 —1/p\K2/2 A\, 012
[(op(A)v,0p(f)v)] < C(M ™ "Z[lop(v/wr™ (&) )op(A)v|
+M P Jop(rew 2T ) )o 2)
< CM=(Jop(vVar =€)z Yop(R)v]® + [lop(r(€)y ™/ *)v]?)
because w'/2=/m < <§>fjfl/4*€, and kg + K1 = 1/2. We summarize
Lemma 2.19. There exist C > 0, € > 0, Ty > 0 such that
[(op(A)v, 0p(Im Q)v)| < C(M ™ +~T)|lop(r(€)y; ™/ )v|?
+CM~[lop(var e *)op(R)v|? + C(M ™+ 4T)[|(D)3 *op(A)]?
for |xo| < T.
Since ImA € S, 1 /2((§)y7) and ReQ € S,1/2(r*(€)3;) Lemma 2 shows
|(op(Re Q)v, op(Im A\)v)| < Cllop(r(€)y /)]
Consider [Dy — op(Re A), op(Re Q)] = —iop(dz,Re Q) — op((Re \)#(Re Q) —
(ReQ)#(ReN)). Since d5ReQ € 8,1/2(r*(€)y7°) and ReA € 8,1/((6)5})
and ReQ € S, 1/2(r*(€)3;) it results from Lemma 2 that

[([Do — op(Re \), op(Re Q)]v, v)| < CM~ [lop(r(€)y,™/*)v] .
It remains to estimate the terms

|(op(R)op(A)v,0p(A)v)l,  |(op(a)v,0p(A)v)], a € S, 1/2({E)mr)-
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If £ € Sy1/2(M~ (€)5) then | (op(f)w, w)| < CM~|lop((€)5/*wl]|? is clear
by Lemma [2. Let a € S, 1/2({¢)ar). Write

ra <§>fj/2\/w
a(a:,f) = ’
Ol e T

where (ra)/((€)37/* V) € S, /0(r{€a ™) for (572 vaw) 71 < (€27
and k1 + k2 = 1/2. Thanks to Lemma 2 we have

|(op(a)v, op(A)v)| < Ce™op(r(€)y) ™/ *)v]|?
+ellop(vVarHe) 2 op(A)v|?.

Therefore we have proved that here exist ¢ > 0, C' > 0 such that

2|(op(P)v, op(A)v)| > diwop( Jol|? + (op(Re Q)v, v)

(2.23) > 2y(1—CT — CM ™ = Cy~ 1/2>|rop<< n/)op(A)v?
+2y(c— OT — CM~ — v~ Le™1O)[lop(r{€)y; /%) |?

e M= Cy 2 - e)\\opwr-% 2 )op(A)o||?

for |zg| < T and any € > 0. Since v = M€ as mentioned in (Z9) one can
take My, € > 0 and T' > 0 such that the right-hand side is bounded from
below by
* 2 1+4+k1/2
M lop((€)37"*)op(A)o]” (r{€ ™)l
+(e/2)llop(vwr ()5 *)op(R)o?,  [xo| < T, M > M.

(2.24)

Denote

A = Do —iv(D)y;

Since \/@r*1<§)j\'}2/2+m = \/Er*1<§>j/[/4+m/2 < r(ﬁ)}jmp Lemma I3 and
(222T) proves that there is C' > 0 such that

llop(var=HE)x2"*)op(R)v|| = [lop(var—(€)52") Av||
~Cllop(r{€)ar ™ol

Since M*2 <£>]%/';1/2 < <£>]t[/2+m/2 < r({)]{;mﬂ we have similarly

lop((€)5"*)op(A)v]| = lop((€)5/ ) Av]| — CM "2 Jop(r(€)a ™/ *)0]).

21



Then there is My > M; such that (2224) is bounded from below by

M [Jop((€)537%) Av||? + el|op(vwr—(€)52?) Av|?

(2.25) . /o
M€ lop(r(&)y, " Ivll%s fwol ST, M > My

From similar arguments one has

1Av]| + CM "2 |op(r(E)ar)vll > [lop(A)vl|

(2.26) > || Av|| = CM~"2|jop(r{&)ar)v].

Integrating (2223) from 0 to ¢ it follows that
20/ lop(P)o|l[lop(A)v]|dt + C([lop(A)v(0)| + [lop(r(€)r)v(0)])*
> (lop(M)o(B)[| + [lop(r{ar)v(t)[1)*.
With E2(t) = supg<y, <;([lop(A)v(t1) || + [lop(r(€)ar)v(t1)]))? we have
(8= [ lon(Puldn)* < ClopRw )]+ [op(rEhnv0)]
from which it follows that

E < O(lop(A)w(0) + [lop(r(€)ar)v(0) ) +C/ lop(P)wldt.

Therefore taking (E228) into account we conclude

Proposition 2.4. There exist M > 0,C > 0,7 > 0 such that

C{/ lop(P)ol|dt + [| Av(0)|| + [lop(r O}
= [[Av(@)[| + llop(r{&)ar)v (D) |
for0<t<T.

Corollary 2.2. There exist M > 0,C > 0,T > 0 such that

C{/ lop(P)vl|dt + || Av(0)]| + (Do (0) |} > [[Av(®)]| + [(D)*o(®)]

for0<t<T.
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Proof. From <§>11\4/2 < r&m < C(&)n the proof is clear from Lemmas T2
and 3. O

‘We now start with
2op((€)3**)op(P)ollllop ()5 *)op(A)u]
dd (lop(R)v]| + (op(Re Q)v, v) > cllop((&)xt’*)op(A)v]?
202 + elop(r Va (€)5 *Yop(A)ul 2

Then integrating (2=23) in ¢ and taking (Z25) into account one has

+cllop(r (&),

Proposition 2.5. There exist M > 0,C > 0,T > 0 such that

C{/ (D)3 op(P)v|[?dt + || Av(0)|2 + [lop(r 0)[*}
t
> IIAv(t)||2+IIOP(T<€>M)v(t)H2+/ (D) Av] Pt

/ lop(var1(€)52/%) Av||?dt + / lop(r(€) /)|t

for0<t<T.

Corollary 2.3. There exist M > 0,C > 0,7 > 0 such that

O [ D Pop Pl + A0 + IDho O} > [40(0)]?
DM@ + / ol [ o)
0 0

for0<t<T.

Remark 2.1. Here we remark that one can choose k1 (> §) arbitrarily close
to d = 1/3 for the case (233) and § = 1/4 for the case (28). This proves that
the Cauchy problem for P is solvable in the Gevrey class less than 3 for the
case (ZH) and the Gevrey class less than 4 for the case (EZ8) for arbitrary
lower order terms ([2, 8]).

Remark 2.2. Since ko tends to p — 1/2 as k1 | 0 for kg = 1/2 — k1 <
1/2 =6 = p—1/2 the constraint p — 1/2 > kgs on s ([, (2.1)]) implies that
s must be enough close to 1 in our arguments. Note that Remark P is
available if the coefficients are real analytic for example.
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