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Abstract

1 Tangent bicharacteristics

Let p be of normal form

p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j

and recall that θ|Σ is conformally invariant. Let θ̃ be an extension of θ|Σ then
we say dθ, dϕj are linearly independent (resp. dependent) at ρ̄ if dθ̃, dϕj are
linearly independent (resp. dependent) at ρ̄. This is independent of the choice
of extensions of θ|Σ. Denote

ν = {ξ0 − ϕ1, {ξ0 − ϕ1, θ}}(ρ̄), κ = {{ξ0 − ϕ1, ϕ2}, ϕ2}(ρ̄)/{ϕ1, ϕ2}(ρ̄).

Then we have

Proposition 1.1. Assume that p is of normal form up to a term O4(Σ′) with
θ(ρ̄) = 0 and

(1.1) {ξ0 − ϕ1, θ}(ρ̄) = 0, {ϕj , θ}(ρ̄) = 0, r + 1 ≤ j ≤ d.

If κ2 − 4ν > 0 there exists a bicharacteristic γ of p tangent to Σ at ρ̄. More
precisely, parametrizing γ by x0 with γ(0) = ρ̄ we have θ(γ) = O(x20) and
ϕj(γ) = O(x20) for j = 0, . . . , d where limx0→0 ϕj(γ)/x

1+j
0 ̸= 0, j = 1, 2.

Corollary 1.1. Assume that p is of normal form up to a term O4(Σ′) with
θ(ρ̄) = 0. If dθ, dϕj are linearly dependent at ρ̄ and κ2 − 4ν > 0 there exists a
bicharacteristic of p tangent to Σ at ρ̄.
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Proof. If dθ, dϕj are linearly dependent at ρ̄ it is clear that (1.1) holds.

Corollary 1.2. Assume that p is of normal form up to a term O4(Σ′) with
θ(ρ̄) = 0 and that θ|Σ ≥ 0 or θ|Σ ≤ 0 near ρ̄. If {ξ0 − ϕ1, {ξ0 − ϕ1, θ}}(ρ̄) = 0
and {{ξ0 − ϕ1, ϕ2}, ϕ2}(ρ̄) ̸= 0 there exists a bicharacteristic of p tangent to Σ
at ρ̄.

Proof. By extension Lemma we may assume θ ≥ 0 or θ ≤ 0 in a neighborhood
of ρ̄ hence we have ∇θ(ρ̄) = 0 showing that dθ, dϕj are linearly dependent at ρ̄.
Thus one can apply Corollary 1.1 with ν = 0 and κ ̸= 0.

Corollary 1.3. Assume that p is of normal form up to a term O4(Σ′) with
θ(ρ̄) = 0 and θ|Σ ≤ 0 near ρ̄. Then there exists a bicharacteristic of p tangent
to Σ at ρ̄ unless {ξ0 − ϕ1, {ξ0 − ϕ1, θ}}(ρ̄) = 0 and {{ξ0 − ϕ1, ϕ2}, ϕ2}(ρ̄) = 0.

Proof. Note that (1.1) holds and ν ≤ 0. If {ξ0 − ϕ1, {ξ0 − ϕ1, θ}}(ρ̄) ̸= 0 we
have ν < 0 hence Proposition 1.1 proves the assertion.

Assume that p is of normal form up to a term O4(Σ′);

(1.2) p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +O4(Σ′)

With µ =
√
1 + θ > 0 one can rewrite

p = −(ξ0 − µϕ1)(ξ0 + µϕ1) + Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +O4(Σ′)

where denoting ϕ̃1 = µϕ1 one sees

{ξ0 − ϕ̃1, ϕj} = {ξ0 − ϕ1 + (1− µ)ϕ1, ϕj}
Σ′

= (1− µ){ϕ1, ϕj}
Σ′

= −θ/µ(1 + µ){ϕ̃1, ϕj}
Σ′

= θ̂{ϕ̃1, ϕj}, 0 ≤ j ≤ d

where we have set

(1.3) θ̂ = −θ/(
√
1 + θ + 1 + θ).

Writing µϕ1 → ϕ1 we have

p = −(ξ0 − ϕ1)(ξ0 + ϕ1) + Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +O4(Σ′).

We divide the proof of Proposition 1.1 into the case that dθ, dϕj are linearly
independent or dependent.

1.1 Case that dθ, dϕj are linearly independent

In this section, we assume that dϕj , dθ are linearly independent at ρ̄. Hence
Σ ∩ {θ = 0} is a submanifold of Σ passing through ρ̄ and that p is effectively
hyperbolic in the side where θ < 0 and noneffectively hyperbolic type I on the
other side where θ > 0. Taking (1.3) into account we can assume

(1.4) {ϕj , θ̂} = O(Σ′), 1 ≤ j ≤ r
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thanks to the extension lemma. Recall that the assumption (1.1) implies

(1.5) {ξ0 − ϕ1, θ̂}(ρ̄) = 0, {ϕj , θ̂}(ρ̄) = 0, r + 1 ≤ j ≤ d.

Choose a system of symplectic coordinates (X,Ξ) such that X0 = x0 and Ξ0 =
ξ0 − ϕ1. Writing (X,Ξ) → (x, ξ) one has

p = −ξ20 − 2ξ0ϕ1 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +O4(Σ′)

where

{ϕi, ϕj}
Σ′

= 0, 0 ≤ i ≤ d, j ≥ r + 1, {ξ0, ϕj}
Σ′

= θ̂ {ϕ1, ϕj}, 1 ≤ j ≤ d,(1.6)

{ϕ1, ϕ2}(ρ̄) ̸= 0, {ϕ2, ϕj}
Σ′

= 0, 3 ≤ j ≤ r, det({ϕi, ϕj})3≤i,j≤r ̸= 0(1.7)

and

∂kx0
θ̂(ρ̄) = 0, k = 0, 1, ∂2x0

θ̂(ρ̄) = −∂2x0
θ(ρ̄)/2 = −ν/2,

{ϕj , θ̂}(ρ̄) = 0, 1 ≤ j ≤ d.
(1.8)

Lemma 1.1. We have

{ϕ2, {ϕj , ξ0}}(ρ̄) = 0, r + 1 ≤ j ≤ d.

Proof. Note that {ξ0, {ϕ2, ϕj}}(ρ̄) = 0 for 3 ≤ j ≤ d by (1.6), (1.7) and (1.8).

Since {ϕj , {ξ0, ϕ2}}(ρ̄) = {ϕj , θ̂}(ρ̄){ϕ1, ϕ2}(ρ̄) = 0 for r + 1 ≤ j ≤ d by (1.6)
and (1.8) then Jacobi’s identity shows the assertion.

From (1.6) we see that dθ̂, dx0, dϕj , 0 ≤ j ≤ d are linearly independent at
ρ̄. Take

w = (ξ0, x0, θ̂, ϕ1, . . . , ϕd, ψ1, . . . , ψk) (d+ k = 2n− 1)

to be a system of local coordinates around ρ̄ so that w(ρ̄) = 0. Note that we can
assume that ψj are independent of x0 taking ψj(0, x

′, ξ′) as new ψj . Moreover

we can assume that {ϕi, ψj}
Σ′

= 0 for i = 1, 2 taking ψj − {ψj , ϕ2}ϕ1/{ϕ1, ϕ2} −
{ψj , ϕ1}ϕ2/{ϕ2, ϕ1} as new ψj . Thus it can be assumed that

(1.9) {ξ0, ψj} ≡ 0, {ϕi, ψj}
Σ′

= 0, i = 1, 2, 1 ≤ j ≤ k.

Let γ(s) = (x(s), ξ(s)) be a solution to the Hamilton equation

(1.10)
dx

ds
=
∂p

∂ξ
,

dξ

ds
= −∂p

∂x

and recall df(γ(s))/ds = {p, f}(γ(s)). We change the parameter from s to t:

t = s−1
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so that we have d/ds = −tD and D = t(d/dt) and hence

d

ds
(tpF ) = −tp+1(DF + pF ).

We now introduce new unknowns

(1.11)



ξ0(γ(s)) = t4Ξ0(t), x0(γ(s)) = tX0(t),

θ̂(γ(s)) = t2Θ(t),

ϕ1(γ(s)) = t2Φ1(t), ϕ2(γ(s)) = t3Φ2(t),

ϕj(γ(s)) = t4Φj , 3 ≤ j ≤ r,

ϕj(γ(s)) = t3Φj(t), r + 1 ≤ j ≤ d,

ψj(γ(s)) = t2Ψj(t), 1 ≤ j ≤ k

and write W = (Ξ0, X0,Θ,Φ1, . . . ,Φd,Ψ1, . . . ,Ψk). In what follows G(t,W ),
which may change from line to line, denotes a smooth function in (t,W ) defined
near (0, 0) such that G(t, 0) = 0. It is clear that

{O4(Σ′), ϕj}(γ) = t6G(t,W ), 0 ≤ j ≤ d.

Denote

(1.12) {ξ0, ϕj} = θ̂{ϕ1, ϕj}+
d∑

i=1

Cj
i ϕi, κj = Cj

1(ρ̄), δ = {ϕ1, ϕ2}(ρ̄) ̸= 0

then from Lemma 1.1 we get

(1.13) κj = 0, j = r + 1, . . . , d.

Here note that

(1.14) κ2 = C2
1 (ρ̄) = {{ξ0, ϕ2}, ϕ2}(ρ̄)/{ϕ1, ϕ2}(ρ̄) = κ.

It is clear that

(1.15) {ξ0, ϕj}(γ) =
(
δjΘ+ κjΦ1

)
t2 + t3G(t,W ), δj = {ϕ1, ϕj}(ρ̄).

Note that we have

{ξ0, θ̂}(γ) = −νX0t/2 + t2G(t,W ).

Indeed write θ̂(x, ξ′) = Σ2
k=0x

k
0 θ̂k(x

′, ξ′) + O(x30). Since {ξ0, θ̂}(ρ̄) = 0 one can

write θ̂1(γ) = t2G(t,W ) which proves the assertion. The Hamilton equation is
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reduced to

(1.16)



DΞ0 = −4Ξ0 + 2κ2Φ1Φ2 + 2δΘΦ2 + tG(t,W ),

DX0 = −X0 + 2Φ1 + tG(t,W ),

DΦ1 = −2Φ1 + 2δΦ2 + tG(t,W ),

DΘ = −2Θ− νX0Φ1 + tG(t,W ),

DΦ2 = −3Φ2 + 2κ2Φ
2
1 + 2δΞ0 + 2δΦ1Θ+ tG(t,W ),

tDΦj = −4tΦj + 2κjΦ
2
1 + 2δjΞ0 + 2δjΦ1Θ

−2Σr
k=3{ϕk, ϕj}(ρ̄)Φk + tG(t,W ), 3 ≤ j ≤ r

DΦj = −3Φj + tG(t,W ), r + 1 ≤ j ≤ d,

DΨj = −2Ψj − 2
∑d

k=r+1{ϕk, ψj}(ρ̄)Φk + tG(t,W ), 1 ≤ j ≤ k.

We introduce a class of formal power series in (t, log t)

E = {
∑

0≤j≤i

ti(log t)jwij | wij ∈ CN}

in which we look for a formal solution to the reduced Hamilton equation (1.16).

Lemma 1.2. There exists W = (Ξ0, X0,Θ,Φ1, . . . ,Φd,Ψ1, . . . ,Ψk) ∈ E such
that Φ1(0) ̸= 0 and X0(0) ̸= 0 satisfying (1.16) formally.

Assume that W = (Ξ0, X0,Θ,Φ1, . . . ,Φd,Ψ1, . . . ,Ψk) ∈ E satisfies (1.16)
formally. Denote

(1.17)


X0 =

∑
0≤j≤i t

i(log 1/t)jx0ij , Ξ0 =
∑

0≤j≤i t
i(log 1/t)jξ0ij

Θ =
∑

0≤j≤i t
i(log 1/t)jθij ,

Φµ =
∑

0≤j≤i t
i(log 1/t)jϕµij , Ψν =

∑
0≤j≤i t

i(log 1/t)jψν
ij

and x000 = x̄0, ξ
0
00 = ξ̄0, θ00 = θ̄, ϕµ00 = ϕ̄µ and ψν

00 = ψ̄ν . Equating the
constant terms of both sides of (1.16) one has (except for the equations for Φj

with 3 ≤ j ≤ r)

−4ξ̄0 + 2κϕ̄1ϕ̄2 + 2δθ̄ϕ̄2 = 0, −x̄0 + 2ϕ̄1 = 0, −2ϕ̄1 + 2δϕ̄2 = 0,

−2θ̄ − νx̄0ϕ̄1 = 0, −3ϕ̄2 + 2κϕ̄21 + 2δξ̄0 + 2δθ̄ϕ̄1 = 0,

−3ϕ̄j = 0, r + 1 ≤ j ≤ d, −2ψ̄j − 2Σd
k=r+1{ϕk, ψj}(ρ̄)ϕ̄k = 0.

From the third line one has ϕ̄j = 0, r + 1 ≤ j ≤ d and ψ̄j = 0. Setting b = ϕ̄1
we see

x̄0 = 2b, ϕ̄2 = δ−1b, θ̄ = −νb2, 2ξ̄0 = κδ−1b2 − νb3

hence the second equation on the second line becomes

(1.18) − 3δ−1b+ 3κb2 − 3νδb3 = 3b
(
− 1/δ + κb− νδb2

)
= 0.

Note that ϕ̄j , 3 ≤ j ≤ r are uniquely determined since det({ϕi, ϕj}(ρ̄))3≤i,j≤r ̸=
0. Let us study

(1.19) 1/δ − κb+ νδb2 = 0.
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Since δ ̸= 0 we see that (1.19) has a nonzero real root b = b(κ, δ) ̸= 0 if

κ2 − 4ν > 0.

Let us choose one of such b ̸= 0 when ν < 0 and if ν > 0 we choose b ̸= 0 such
that δκb is smaller. Denote

W = (ξ̄0, x̄0, θ̄, ϕ̄j , ψ̄i)

and look for a formal solution to (1.16) of the form W +W with W ∈ E# where

E# = {W =
∑

1≤i,0≤j≤i

ti(log t)jwij | wij ∈ C2n+2}.

To simplify notation we set{
W I = (X0,Φ2,Ξ0,Φ1,Θ), W II = (Φ3, . . . ,Φr)
W III = (Φr+1, . . . ,Φd), W IV = (Ψ1, . . . ,Ψk)

then W = t(W I ,W II ,W III ,W IV ) =
∑

1≤i,0≤j≤i t
i(log t)jwij satisfies

(1.20) H
(
iwij − (j + 1)wij+1

)
= Awij + δi1δj0F +Gij

with H = I⊕I⊕I⊕O where I and O is the identity and zero matrix respectively
and

(1.21) A =


AI O O O
BII AII O O
O O −3I O
O O BIII −2I

 .
Moreover, F is a constant vector and

Gij = Gij(wpq | q ≤ p ≤ i− 1), Gij = 0, i = 0, 1.

Here note that |λ−A| = |λ−AI ||λ−AII ||λ+3I||λ+2I| and all eigenvalues of
AII are pure imaginary. Making a more precise look on AI we see

(1.22) AI =


−1 0 0 2 0
0 −3 2δ 2(κb+ δ−1) 2δb
0 2δ−1 −4 2κδ−1b 2b
0 2δ 0 −2 0

−νb 0 0 −2νb −2


where we have used (1.19). To confirm that (1.20) can be solved successively
we prove the following

Lemma 1.3. Assume κ2 − 4ν > 0. Then AI has an eigenvalue 1 and the other
real eigenvalues are negative.
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Proof. Expand |λ−AI | with respect to the last row we see

|λ−AI | = (λ+ 1)(λ+ 2)

∣∣∣∣∣∣
λ+ 3 −2δ −2(κb+ δ−1)
−2δ−1 λ+ 4 −2κδ−1b
−2δ 0 λ+ 2

∣∣∣∣∣∣
−2νb(λ+ 2)

∣∣∣∣∣∣
λ+ 3 −2δ −2δb
−2δb λ+ 4 −2b
−2δ 0 0

∣∣∣∣∣∣
= (λ+ 1)(λ+ 2)(λ+ 6)(λ2 + 3λ− 4κδb) + 8νδ2b2(λ+ 2)(λ+ 6)

= (λ− 1)(λ+ 2)(λ+ 6)
(
λ2 + 5λ+ 8− 4κδb

)
where we have used νδ2b2 = κbδ − 1. Write

λ2 + 5λ+ 8− 4κδb = (λ+ 4)(λ+ 1)− 4νδ2b2.

Then it is clear that real roots of (λ+4)(λ+1) = 4νδ2b2, if exist, are less than
or equal to −1 if ν ≤ 0. Consider the case ν > 0 so that κ2− 4ν > 0 is satisfied.
Note that the roots b of (1.19) are given by

b =
κ

2νδ
±

√
κ2 − 4ν

2ν|δ|

from which we have

(λ+ 4)(λ+ 1) = 4νδ2b2 = 4κδb− 4 = 4 +

√
κ2 − 4ν (

√
κ2 − 4ν ± δκ/|δ|)
ν/2

.

By our choice of b the right-hand side is less than 4. This proves the assertion
in the case ν > 0.

The rest of the proof of Proposition 1.1 is just the repetition of the arguments
in [9, Sections 3.3 and 3.4].

Remark 1.1. Assume ν = {ξ0, {ξ0, θ}}(ρ̄) = 0, κ ̸= 0 and that

θ ≥ Σl
i=1k

2
i or − θ ≥ Σl

i=1k
2
i

where dϕj , dki are linearly independent at ρ̄. Since {ξ0, {ξ0,±θ−Σl
i=1k

2
i }}(ρ̄) ≥

0 it follows that {ξ0, ki}(ρ̄) = 0, 1 ≤ i ≤ l. From this we see easily that

dki(γ(t))/dt = −{p, ki}(γ(t))/t2 = O(t), t→ 0

which proves that ki(γ(x0)) = O(x20). Therefore the bicharacteristic γ(x0) is
tangent to the manifold Σ0 = Σ ∩ {ki = 0, i = 1, . . . , l} ⊃ Σ ∩ {θ = 0}.

Remark 1.2. Assume θ|Σ ≥ 0 or θ|Σ ≤ 0 near ρ̄ and ν = {ξ0, {ξ0, θ}}(ρ̄) ̸= 0.
After extending θ thanks to Malgrange preparation theorem one can write

θ = e
(
(x0 − ψ(x′, ξ′))2 + h(x′, ξ′)

)
, h(x′, ξ′) ≥ 0, e(ρ̄) ̸= 0.
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With f = x0 − ψ(x′, ξ′) it is clear that {θ = 0} ⊂ {f = 0}. Note that df , dϕj
are linearly independent at ρ̄ because {ξ0, f} ̸= 0. Assume κ2 − 4ν > 0 hence
there is a bicharacteristic γ tangent to Σ by Proposition 1.1. Note that

df(γ(t))/dt = −{p, f}(γ(t))/t2 → 2Φ1(0){ξ0, f}(ρ̄), t→ 0

which proves that

lim
x0→0

df(γ(x0))/dx0 = lim
t→0

(
df(γ(t))/dt

)(
dt/dx0

)
= 2Φ1(0){ξ0, f}(ρ̄)/X0(0) = {ξ0, f}(ρ̄) = 1.

Thus the bicharacterisitic γ(x0) is transversal to the manifold Σ ∩ {f = 0}.

1.2 Case that dθ, dϕj are linearly dependent

We first note that dθ, dϕj are linearly dependent at ρ̄ then

(1.23) {ξ0 − ϕ1, θ}(ρ̄) = 0, {ϕj , θ}(ρ̄) = 0, r + 1 ≤ j ≤ d.

Repeat the same arguments as in Section 1.1. Choose a system of symplectic
coordinates (X,Ξ) such that X0 = x0 and Ξ0 = ξ0−ϕ1. Writing (X,Ξ) → (x, ξ)
one has

p = −ξ20 − 2ξ0ϕ1 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +O4(Σ′)

where (1.6), (1.7) and (1.8) hold. From (1.6) we see that dx0, dϕj , 0 ≤ j ≤ d
are linearly independent at ρ̄. Take

w = (ξ0, x0, ϕ1, . . . , ϕd, ψ1, . . . , ψk) (d+ k = 2n)

to be a system of local coordinates around ρ̄ so that w(ρ̄) = 0. Recall that
we can assume that (1.9) holds. Let γ(s) = (x(s), ξ(s)) be a solution to the
Hamilton equation as before. We change the parameter from s to t = s−1 and
introduce new unknowns

(1.24)



ξ0(γ(s)) = t4Ξ0(t), x0(γ(s)) = tX0(t),

ϕ1(γ(s)) = t2Φ1(t), ϕ2(γ(s)) = t3Φ2(t),

ϕj(γ(s)) = t4Φj , 3 ≤ j ≤ r,

ϕj(γ(s)) = t3Φj(t), r + 1 ≤ j ≤ d,

ψj(γ(s)) = t2Ψj(t), 1 ≤ j ≤ k

and write W = (Ξ0, X0,Φ1, . . . ,Φd,Ψ1, . . . ,Ψk) and G(t,W ) being as before.

Lemma 1.4. One can write

θ̂(x, ξ′) = ℓ(ϕ2, . . . , ϕd)− νx20/4 + θ2(w
′) + θ3(w

′)

where ℓ is a linear form in (ϕ2, . . . , ϕd) and θ2 is a quadratic form in w′ =
(x0, ϕ1, . . . , ϕd, ψ1, . . . , ψk) containing no such term c x20 (c ∈ R) and θ3(w

′) =
O(|w′|3).
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Proof. Since θ̂(ρ̄) = 0 the Taylor formula gives θ̂(x, ξ′) = θ̂1(w
′) + θ̂2(w

′) +

O(|w′|3) where θ̂1 is a linear form in (ϕ1, . . . , ϕd) and θ̂2 is a quadratic form in

w′ since dθ̂ and dϕj are lineraly dependent. Since {ϕ2, θ̂}(ρ̄) = 0 we see that θ̂1
is independent of ϕ1. The rest of the proof is clear.

Thanks to this lemma one has

(1.25) θ̂(γ) = −νX2
0 t

2/4 + t3G(t,W ), θ̂(γ) = t2G(t,W ).

Taking (1.12) into account one has

(1.26) {ξ0, ϕj}(γ) = (−νX2
0δj/4 + κjΦ1)t

2 + t3G(t,W )

where δj = {ϕ1, ϕj}(ρ̄). Hence by (1.6) and (1.13) we have

(1.27) {ϕj , ξ0}(γ) = t3G(t,W ), r + 1 ≤ j ≤ d.

Thanks to (1.25), (1.26) and (1.27) the Hamilton equation is reduced to

(1.28)



DΞ0 = −4Ξ0 + 2κΦ1Φ2 − (νδ/2)X2
0Φ2 + tG(t,W ),

DX0 = −X0 + 2Φ1 + tG(t,W ),

DΦ1 = −2Φ1 + 2δΦ2 + tG(t,W ),

DΦ2 = −3Φ2 + 2κΦ2
1 + 2δΞ0 − (νδ/2)X2

0Φ1

+tG(t,W ),

tDΦj = −4tΦj + 2κjΦ
2
1 + 2δjΞ0 − (νδj/2)X

2
0Φ1

−2Σr
k=3{ϕk, ϕj}(ρ̄)Φk + tG(t,W ), 3 ≤ j ≤ r

DΦj = −3Φj + tG(t,W ), r + 1 ≤ j ≤ d,

DΨj = −2Ψj − 2
∑d

k=r+1{ϕk, ψj}(ρ̄)Φk + tG(t,W ), 1 ≤ j ≤ k

(which is obtained from (1.16) by replacing Θ by −νX2
0/4). We look for a formal

solution to the reduced Hamilton equation (1.28).

Lemma 1.5. There exists a formal solution W ∈ E satisfying (1.28) with
Φ1(0) ̸= 0, X0(0) ̸= 0.

Assume that W = (Ξ0, X0,Φ1, . . . ,Φd,Ψ1, . . . ,Ψk) ∈ E satisfies (1.28) for-
mally. Denote X0, Ξ0, Φj , Ψj as (1.17) and x000 = x̄0, ξ

0
00 = ξ̄0, ϕ

µ
00 = ϕ̄µ and

ψν
00 = ψ̄ν . Equating the constant terms of both sides of (1.28) one has

−4ξ̄0 + 2κϕ̄1ϕ̄2 − νδx̄20ϕ̄2/2 = 0, −x̄0 + 2ϕ̄1 = 0,

−2ϕ̄1 + 2δϕ̄2 = 0, −3ϕ̄2 + 2κϕ̄21 + 2δξ̄0 − νδx̄20ϕ̄1/2 = 0,

−3ϕ̄j = 0, r + 1 ≤ j ≤ d, −2ψ̄j − 2Σd
k=r+1{ϕk, ψj}(ρ̄)ϕ̄k = 0.

From the third line one has ϕ̄j = 0, r + 1 ≤ j ≤ d and ψ̄j = 0. Setting b = ϕ̄1
as before we see x̄0 = 2b, ϕ̄2 = δ−1b and 2ξ̄0 = κδ−1b2 − νb3 hence the second
equation on the second line becomes

−3δ−1b+ 3κb2 − 3νδb3 = 3b
(
− 1/δ + κb− νδb2

)
= 0

9



which is the same as (1.18). We choose the same b ̸= 0 as in Section 1.1. Denote

W = (ξ̄0, x̄0, ϕ̄j , ψ̄i)

and look for a formal solution to (1.28) of the form W +W with W ∈ E#. To
simplify notation we set{

W I = (X0,Φ2,Ξ0,Φ1), W II = (Φ3, . . . ,Φr)
W III = (Φr+1, . . . ,Φd), W IV = (Φ3, . . . ,Φr)

then W = t(W I ,W II ,W III ,W IV ) =
∑

1≤i,0≤j≤i t
i(log t)jwij satisfies (1.20)

with A of the same form as (1.21) where AI is replaced by

(1.29) AI =


−1 0 0 2

−2νδb2 −3 2δ 2(κb+ δ−1)
−2νb2 2δ−1 −4 2κδ−1b

0 2δ 0 −2


where we have used (1.19). To confirm that (1.20) can be solved successively
we prove the following

Lemma 1.6. Assume κ2 − 4ν > 0. Then AI has an eigenvalue 1 and the other
real eigenvalues are negative.

Proof. Expanding |λ−AI | with respect to the first row we see

|λ−AI | = (λ+ 1)

∣∣∣∣∣∣
λ+ 3 −2δ −2(κb+ δ−1)
−2δ−1 λ+ 4 −2κδ−1b
−2δ 0 λ+ 2

∣∣∣∣∣∣
+2νb

∣∣∣∣∣∣
2δb λ+ 3 −2δ
2b −2δ−1 λ+ 4
0 −2δ 0

∣∣∣∣∣∣
= (λ+ 1)(λ+ 6)(λ2 + 3λ− 4κδb) + 8νδ2b2(λ+ 6)

= (λ− 1)(λ+ 6)
(
λ2 + 5λ+ 8− 4κδb

)
the rest of the proof is just a repetition of the proof of Lemma 1.3.

At the end of the section, we give a simple example. Consider

(1.30) p = −ξ20 + (ξ1 + x0ξn)
2 + x21(1 + xk1 + εxl2)ξ

2
n, |x1|, |x2| ≪ 1

near (0, en), en = (0, . . . , 0, 1) with n ≥ 3, k, l ∈ N where ε = ±1. It is clear
that

Σ = {ξ0 = ξ1 + x0ξn = 0, x1 = 0}.
Denote

φ1 = −x1(1 + xk1 + εxl2)ξn/(1 + (1 + k/2)xk1 + εxl2)

= −x1
[
1− kxk1/2

1 + (1 + k/2)xk1 + εxl2

]
ξn
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then one can write

p = −(ξ0 + φ1)(ξ0 − φ1) + x21(1 + x1 + εxl2)ξ
2
n − φ2

1 + (ξ1 + x0ξn)
2

= −(ξ0 + φ1)(ξ0 − φ1) + θφ2
1 + φ2

2

(1.31)

where

(1.32) φ2 = ξ1 + x0ξn, θ = (1 + k)xk1 + εxl2 + k2x2k1 (1 + xk1 + εxl2)
−1/4.

which is a normal form. Indeed we see

{ξ0 − φ1, φ2} = O(xk1)
Σ′

= 0

and it is clear that {ξ0 − φ1, ξ0} = {ξ0 − φ1, φ1} = 0. Note that

θ|Σ = εxl2, {ξ0 − φ1, θ} ≡ 0.

According to ε = ±1 and the parity of l every type of transition occurs. If k = 1
we have

{{ξ0 − φ1, φ2}, φ2}(0, en) = 1

hence one can apply Proposition 1.1 to conclude the existence of a tangent
bicharacteristic. Some remarks on the case k ≥ 2 will be given at the end of the
next section.

2 Elementary factorization

2.1 Elementary factorization

Consider the principal symbol

(2.1) p(x, ξ) = −ξ20 +A1(x, ξ
′)ξ0 +A2(x, ξ

′)

where Aj(x, ξ
′) ∈ Sj

1,0 depending smoothly in x0. We start with the following
definition.

Definition 2.1. We say that p(x, ξ) admits a local elementary factorization if
there exist real valued λ(x, ξ′), µ(x, ξ′) ∈ S1

1,0 and 0 ≤ Q(x, ξ′) ∈ S2
1,0 such that

p(x, ξ) = −Λ(x, ξ)M(x, ξ) +Q(x, ξ′)

with Λ(x, ξ) = ξ0 − λ(x, ξ′) and M(x, ξ) = ξ0 − µ(x, ξ′) verifying with some
C > 0

|{Λ(x, ξ), Q(x, ξ′)}| ≤ CQ(x, ξ′),(2.2)

|{Λ(x, ξ),M(x, ξ)}| ≤ C
(√

Q(x, ξ′) + |Λ(x, ξ′)−M(x, ξ′)|
)
.(2.3)

If we can find such symbols defined in a conic neighborhood of ρ we say that
p(x, ξ) admits a microlocal elementary factorization at ρ.
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Of course, elementary factorization is closely related to the classical deriva-
tion of energy estimates. To see this note that

−ΛM = −(ξ0 − λ+ ic)#(ξ0 − µ− ic)− i{Λ,M}/2− ic(Λ−M) + S0
1,0

= −Λ̃#M̃ − i({Λ,M}/2− c(Λ−M)) + S0
1,0

where c ∈ S0
1,0 and Λ̃ = ξ0 − λ+ ic, M̃ = ξ0 − µ− ic. We also note

2Im(op(p)v, op(Λ̃)v) =
d

dx0

(
∥op(Λ̃)v∥2 + (op(Q)v, v)

)
−2Re(op(Λ̃)v, op({Λ,M}/2 + c(Λ−M))v)− Re(op({Λ̃, Q})v, v)/2

modulo C(∥op(Λ̃)v∥2 + ∥v∥2). Assuming that one can find c ∈ S0
1,0 such that

|{Λ,M}/2+ c(Λ−M)| ≲
√
Q and taking |{Λ̃, Q}− {Λ, Q}| ≲

√
Q into account

we will obtain energy estimates.

Lemma 2.1 ([4]). If p admits a microlocal elementary factorization at ρ there
is no bichracteristic tangent to Σ at ρ.

In this section, we restrict ourselves to the case

SpecFp(ρ) ⊂ iR
(
⇐⇒ Πλj(ρ) ≥ 0 ⇐⇒ θ|Σ ≥ 0

)
ρ ∈ Σ.

Applying the extension lemma to θ
∣∣
Σ
one can assume from the beginning that

p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j +R

where R = O(|ϕ|4⟨ξ⟩−2
γ ) = O4(Σ′) with ϕ = (ϕ1, . . . , ϕd) and that

(2.4) θ ≥ 0, {ϕj , θ}
Σ′

= 0, j = 1, . . . , r.

Proposition 2.1. Assume that p is of normal form up to term O4(Σ′) and
satisfies θ|Σ ≥ 0 near ρ̄. If

|{ξ0 − ϕ1, θ}| ≤ C(
√
θ + |ϕ1|+

√
|ϕ′|)2,

|{{ξ0 − ϕ1, ϕ2}, ϕ2}| ≤ C(
√
θ + |ϕ1|+

√
|ϕ′|), ϕ′ = (ϕ2, . . . , ϕd)

holds then p admits a microlocal elementary factorization at ρ̄.

Corollary 2.1. Assume that p is of normal form up to term O4(Σ′) and

satisfies θ|Σ ≥ 0 near ρ̄ and {ξ0 − ϕ1, θ}
Σ′

= 0. If {{ξ0 − ϕ1, ϕ2}, ϕ2}
Σ′

= 0
then p admits a microlocal elementary factorization at ρ̄ while p does not if
{{ξ0 − ϕ1, ϕ2}, ϕ2}(ρ̄) ̸= 0.

Proof. Without restrictions we may assume θ ≥ 0 near ρ̄. From the assumption

one can write {ξ0 − ϕ1, θ} = Σd
k=1cdϕk. Note that {ξ0 − ϕ1, {ϕ2, θ}}

Σ′

= 0 and

|{θ, {ξ0 − ϕ1, ϕ2}}| ≲
√
θ for θ ≥ 0. It follows from Jacobi’s identity we have

|{ϕ2, {ξ0 − ϕ1, θ}}| ≲ |ϕ|+
√
θ, ϕ = (ϕ1, . . . , ϕd).
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This shows that |{ξ0 −ϕ1, θ}| ≲ (|ϕ|+
√
θ)|ϕ1|+ |ϕ′| hence the first condition is

satisfied. The second condition is obviously satisfied and the assertion follows

from Proposition 2.1. Since {ξ0 − ϕ1, {ξ0 − ϕ1, θ}}
Σ′

= 0 for {ξ0 − ϕ1, θ}
Σ′

= 0
if {{ξ0 − ϕ1, ϕ2}, ϕ2}(ρ̄) ̸= 0 there is a bicharacteristic tangent to Σ at ρ̄ by
Corollary 1.2 hence Lemma 2.1 proves the last assertion.

Let

Λ = ϕ1 + ℓ(ϕ′′)ϕ1 − λϕ31⟨ξ⟩−2
γ , ℓ(ϕ′′) = Σr

j=3βjϕj , ϕ′′ = (ϕ3, . . . , ϕr)

where λ > 0 is a parameter and βj are smooth which are determined later.
Write

p = −(ξ0 + Λ)(ξ0 − Λ) +Q

where Q = θϕ21 + Q̃ with

Q̃ = Σd
j=2ϕ

2
j − 2ℓϕ21(1 + ℓ/2) + 2λϕ41⟨ξ⟩−2

γ (1 + ℓ− λϕ21⟨ξ⟩−2
γ /2) +R.

Taking λ > 0 large (since we are working in a neighborhood or ρ̄ it can be
assumed that |ϕ|⟨ξ⟩−1

γ is arbitrarily small) it is clear that there is c > 0 such
that

Q ≥ c (|ϕ′|2 + θϕ21 + ϕ41⟨ξ⟩−2
γ ), ϕ′ = (ϕ2, . . . , ϕd).

Note that

{ξ0 − Λ, Q̃} = {ξ0 − ϕ1, |ϕ′|2 − 2ℓ(ϕ′′)ϕ21(1 + ℓ(ϕ′′)/2)}
−{ℓ(ϕ′′)ϕ1, |ϕ′|2}+O(Q).

Recall that one can write

{ξ0 − ϕ1, ϕj} = Σd
k=1αjkϕk, 1 ≤ j ≤ d.

Moreover since {ϕ2, {ξ0 − ϕ1, ϕj}}
Σ′

= 0 for r + 1 ≤ j ≤ d which follows from
Jacobi’s identity, one has

αj1
Σ′

= 0, r + 1 ≤ j ≤ d.

Therefore we have

{ξ0 − Λ, Q̃} = 2

d∑
j=2

ϕj

d∑
k=1

αjkϕk − 2ϕ21

r∑
j=3

βj

d∑
k=1

αjkϕk(1 + ℓ(ϕ′′)/2)

−2ϕ1

d∑
j=2

ϕj

r∑
k=3

βk{ϕk, ϕj}+O(Q).

Note that

ϕj

d∑
k=1

αjkϕk = O(Q), r + 1 ≤ j ≤ d, ϕ21

r∑
j=3

βj

d∑
k=1

αjkϕkℓ(ϕ
′′) = O(Q),

ϕ1ϕj

r∑
k=3

βk{ϕk, ϕj} = O(Q), r + 1 ≤ j ≤ d
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we have

{ξ0 − Λ, Q̃} = 2

r∑
j=2

ϕj

d∑
k=1

αjkϕk − 2ϕ21

r∑
j=3

βj

d∑
k=1

αjkϕk

−2ϕ1

r∑
j=2

ϕj

r∑
k=3

βk{ϕk, ϕj}+O(Q)

= 2ϕ1

r∑
j=2

αj1ϕj − 2ϕ31

r∑
j=3

βjαj1 − 2ϕ1

r∑
j=3

ϕj

r∑
k=3

βk{ϕk, ϕj}+O(Q)

= 2ϕ1

r∑
j=3

ϕj

(
αj1 −

r∑
k=3

{ϕk, ϕj}βk
)
+ 2α21ϕ1ϕ2 − 2ϕ31

r∑
j=3

βjαj1 +O(Q)

because {ϕk, ϕ2}
Σ′

= 0 for k ≥ 3. Choose βk such that

r∑
k=3

{ϕk, ϕj}βk = αj1, 3 ≤ j ≤ r.

Since ({ϕk, ϕj})3≤k,j≤r is skew symmetric and nonsingular we have

r∑
j=3

βjαj1 = 0.

Therefore we conclude

{ξ0 − Λ, Q̃} = 2α21ϕ1ϕ2 +O(Q).

Since α21
Σ′

= {{ξ0 − ϕ1, ϕ2}, ϕ2}/{ϕ1, ϕ2} we have

|{{ξ0 − ϕ1, ϕ2}, ϕ2}| ≤ C(
√
θ + |ϕ1|+

√
|ϕ′|) =⇒ {ξ0 − Λ, Q̃} = O(Q).

It remains to study {ξ0 − Λ, θϕ21}. Taking (2.4) into account we have

{ξ0 − Λ, θϕ21} = {ξ0 − ϕ1, θϕ
2
1}+O(Q)

= 2θϕ1{ξ0 − ϕ1, ϕ1}+ ϕ21{ξ0 − ϕ1, θ}+O(Q) = ϕ21{ξ0 − ϕ1, θ}+O(Q).

Therefore we conclude that

|{ξ0 − ϕ1, θ}| ≤ C(θ +
√
θ|ϕ1|+ |ϕ′|) =⇒ {ξ0 − Λ, θϕ21} = O(Q).

Consider {ξ0 − Λ, ξ0 + Λ} = 2{ξ0,Λ} which is

2{ξ0, ϕ1 + ℓ(ϕ′′)ϕ1 − λϕ31⟨ξ⟩−2
γ } Σ′

= 0

for {ξ0, ϕ1}
Σ′

= 0. Since |ϕ′| ≲
√
Q and |ϕ1| ≲ |Λ| we have

|{ξ0 − Λ, ξ0 + Λ}| ≲
√
Q+ |Λ|
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which completes the proof.

Retake the example (??). If h(x2) = c xl2 with c > 0 and even l ≥ 2 so that
θ|Σ ≥ 0. It is easy to check that

|{ξ0 − φ1, θ}| ≲ θ

hence in view of Proposition 2.1 p admits a microlocal elementary factorization
at ρ̄. Nxet, reconsider p in (1.31) with even l and ε = 1 so that θ|Σ ≥ 0. If
k ≥ 2 it is easy to see that

{{ξ0 − φ1, φ2}, φ2}
Σ′

= 0

then it follows from Corollary 2.1 that p admits a microlocal elementary factor-
ization at ρ̄. In particular, there is no tangent bicharacteristic.
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