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Abstract

1 Tangent bicharacteristics
Let p be of normal form
p=—(+¢1)(6 — ¢1) + 007 + X7_o07 + X9, 107

and recall that 0|y is conformally invariant. Let 6 be an extension of |5 then
we say df, d¢; are linearly independent (resp. dependent) at p if de, do; are
linearly independent (resp. dependent) at p. This is independent of the choice
of extensions of f]x. Denote

v="{% — ¢1,{& — ¢1,0}}(p), K ={{80 — b1, 02}, 9P2}(p)/{¢1,P2}(D)-

Then we have

Proposition 1.1. Assume that p is of normal form up to a term O*(X') with
0(p) =0 and

(L.1) {60 =01,0}(p) =0, {9;,0}(p) =0, r+1<j<d

If k2 — 4v > 0 there exists a bicharacteristic v of p tangent to & at p. More
precisely, parametrizing v by xo with v(0) = p we have 0(y) = O(zd) and
¢;(y) = O(xd) for j=0,...,d where limg, 0 ¢;(y) /25 #0, j =1,2.

Corollary 1.1. Assume that p is of normal form up to a term O*(X') with
0(p) = 0. If db, do; are linearly dependent at p and k* — 4v > 0 there exists a
bicharacteristic of p tangent to ¥ at p.



Proof. 1f df, d¢; are linearly dependent at p it is clear that (1.1) holds. O

Corollary 1.2. Assume that p is of normal form up to a term O*(X') with

0(p) = 0 and that 0|ss > 0 or b|s < 0 near p. If {&o — ¢1,{& — ¢1,0}}(p) =0
and {{& — ¢1, P2}, d2}(p) # 0 there exists a bicharacteristic of p tangent to &
at p.

Proof. By extension Lemma we may assume 6 > 0 or 6 < 0 in a neighborhood
of p hence we have V6(p) = 0 showing that df, d¢; are linearly dependent at p.
Thus one can apply Corollary 1.1 with v =0 and & # 0. O

Corollary 1.3. Assume that p is of normal form up to a term O*(X') with
0(p) =0 and O|x < 0 near p. Then there exists a bicharacteristic of p tangent

to X at p unless {€o — ¢1,{&o — ¢1,0}}(p) = 0 and {{{o — ¢1, P2}, d2}(p) = 0.

Proof. Note that (1.1) holds and v < 0. If {& — ¢1,{&0 — ¢1,0}}(p) # 0 we
have v < 0 hence Proposition 1.1 proves the assertion. O

Assume that p is of normal form up to a term O*(¥’);
(1.2) p=—(6+¢1)(& — ¢1) + 067 + X)_p¢? + X7, 167 + 01 ()
With = /1 + 6 > 0 one can rewrite
p=—( — nér)(& + 1) + Tj207 + D10 + O1(F)

where denoting (51 = 11 one sees

{€0— 1,0} = {&0— b1 + (1 — w1, d;} = (1 — w){d1, ;)
Z —0/p(1+ w){dr, 65} Z 0{dr.0}, 0<j<d
where we have set
(1.3) 0=—0/(V1+0+1+90).
Writing pip1 — ¢1 we have
p=—(8 —61) (&0 + ¢1) + D)) + 9,107 + O ().

We divide the proof of Proposition 1.1 into the case that df), d¢; are linearly
independent or dependent.

1.1 Case that df, d¢; are linearly independent

In this section, we assume that d¢;, df are linearly independent at p. Hence
¥ N {6 = 0} is a submanifold of ¥ passing through p and that p is effectively
hyperbolic in the side where § < 0 and noneffectively hyperbolic type I on the
other side where 6 > 0. Taking (1.3) into account we can assume

(14) {60} =0(X), 1<j<r



thanks to the extension lemma. Recall that the assumption (1.1) implies

(1.5) {6o—1.0}(p) =0, {;,0}(p) =0, r+1<j<d.

Choose a system of symplectic coordinates (X, E) such that Xg =z and Zg =
&0 — ¢1. Writing (X, =) — (x,&) one has

p= *fg — 2§01 + 2§:2¢>§ + E?:r+1¢? + O (%)

where

(16) {60632 0,0<i<d j2r+1, {eo.6} 2 0{on o}, 1<) <d

(L7) {61,02}() £0, {26,320, 3<j<r det({ds,d;})scijer #0

and

18) 0k0(p) =0, k=0,1, 92 6(p) = —0,6()/2 = ~v/2,
{6,,00(p) =0, 1<j<d

Lemma 1.1. We have

{¢27{¢j7£0}}(ﬁ):07 T+1§]§d

Proof. Note that {£o,{¢2,¢;}}(p) =0 for 3 < j < d by (1.6), (1.7) and (1.8).

Since {¢;,{€0,62}}(p) = {6;,0}(p){¢1,62}(p) = 0 for r +1 < j < d by (1.6)
and (1.8) then Jacobi’s identity shows the assertion. O

From (1.6) we see that df, dzg,d¢;, 0 < j < d are linearly independent at
p. Take

w:(507$05é7¢17-~-a¢d7w17~-~;wk) (d—l—k:2n—1)

to be a system of local coordinates around p so that w(p) = 0. Note that we can
assume that 1; are independent of z taking 1;(0,2’,£’) as new ;. Moreover

we can assume that {¢;,¢;} 20 fori = 1,2 taking ¥; — {4, d2}1/{d1, P2} —
{0, p1}d2/{P2, 91} as new ¢;. Thus it can be assumed that

Let v(s) = (z(s),&(s)) be a solution to the Hamilton equation

de Odp d€ dp

1.1 = = _Z

(1.10) ds 0¢’ ds oz
and recall df (v(s))/ds = {p, f}(v(s)). We change the parameter from s to :

t=s



so that we have d/ds = —tD and D = t(d/dt) and hence

d%(tf’F) = —tPTY(DF + pF).

We now introduce new unknowns

o(v(5)) = t*20(t), wo(7(s)) = tXo(t),
0(y(s)) = t2O(t),
(1.11) P1(7(s)) = 201 (t), d2(v(s)) = t3®4(2),
' ¢i(v(s)) = t'®;, 3<j<r,
¢j(v(s)) =t2®;(t), r+1<j<d,
Pi(v(s)) = 20;(t), 1<j<k

and write W = (E¢, X0,0,®1,...,P4,¥q,...,¥t). In what follows G(¢t, W),
which may change from line to line, denotes a smooth function in (¢, W) defined
near (0,0) such that G(¢,0) = 0. It is clear that
{0%(), 03} () =t°G(t,W), 0<j<d.
Denote
~ d . .
(112)  {&, 05} = 0{61,05} + > Cloi, r;=Ci(p), = {b1,02}(p) #0
i=1
then from Lemma 1.1 we get
(1.13) k=0, j=r+1,....d
Here note that
(1.14) Ko = CF(p) = {{&0, ¢2}, 92} (D) /{1, 62} (p) = k.
It is clear that
(1.15) {60, 953(7) = (6,0 + £;@1) 8 + 3G, W), 65 = {1, ¢;}(7)-
Note that we have
{€0.0}(7) = —vXot/2 + PG, W).

Indeed write f(z, &) = £3_,xk0,(2', ') + O(x3). Since {&y,0}(p) = 0 one can
write 01() = t2G(t, W) which proves the assertion. The Hamilton equation is



reduced to
D=y = —4Z) 4 2k9P1 Do + 200D, + tG(t, W),
DXy = —Xg +2®; +tG(t, W),
D®; = —28, + 26®, + tG(t, W),
DO = -20 —vX P, +tG(t, W),
(1.16) D®y = 335 + 2kP2 + 262 + 26810 + tG(t, W),
tD®; = —4td; + 2k;82 + 20,5, + 25,810
2554 {6k, @} (D)Pr + LG W), B<j<r
D®; = =38, +tG(t, W), r+1<j<d,
DW= —20; — 250 {br. 0} (D) ®r +G(E W), 1< <k

We introduce a class of formal power series in (t,logt)
E={ Z t'(log t)7w;; | wi; € CN}
0<j<i
in which we look for a formal solution to the reduced Hamilton equation (1.16).

Lemma 1.2. There exists W = (Z¢, X0,0,P1,..., P4, V1,..., V%) € &€ such
that ®1(0) # 0 and Xo(0) # 0 satisfying (1.16) formally.

Assume that W = (Z¢, X0,0,P1,...,Pq, Uq,..., V) € & satisfies (1.16)
formally. Denote
Xo =2 0<j<i ﬁ(log 1/15)3‘;10%7 Ho = Zogjéiti(log l/t)j§?j
(1.17) O =2 o<j<it'(log 1/t)70;, ‘ ‘
¢, = Zogjgi t*(log 1/t)]¢f~37 v, = Zogjgi t*(log 1/t)J¢;jj
and 20y = Zo, & = &o, boo = 0, by = ¢, and ¥§, = 1. Equating the
constant terms of both sides of (1.16) one has (except for the equations for ®;
with 3 <j <r)
—4&0 + 26192 + 200h2 =0, —To +2¢1 =0, —2¢;1 + 25¢ =0,
—20 — vEgpy =0, —3pa + 2kT + 20& + 260¢; = 0,
33 =0, T4 1< <d 20— 25, {00 U D)k = 0.
From the third line one has q_ﬁj =0,r4+1<j<dand 1/_)j = 0. Setting b = ¢;

we see

To=2b, ¢a=061b, 0=—vb? 2§ =k 1b? — b3
hence the second equation on the second line becomes
(1.18) — 307+ 3kb% — 3vdb> = 3b( — 1/6 + kb — v5b*) = 0.

Note that ¢;, 3 < j < r are uniquely determined since det({¢;, $; }(p))s<i j<r #
0. Let us study

(1.19) 1/6 — kb + vib* = 0.



Since ¢ # 0 we see that (1.19) has a nonzero real root b = b(k,J) # 0 if
K% —4v > 0.

Let us choose one of such b # 0 when v < 0 and if ¥ > 0 we choose b # 0 such
that Jkb is smaller. Denote

W = (507 j07 §7 &]a 1;1)
and look for a formal solution to (1.16) of the form W + W with W € £# where

g# = {W = Z ti(log t)jwij ‘ W;j € (CQn+2}.
1<i,0<5<i
To simplify notation we set

Wl = (X, 02,50, 01,0), W = (ds,...,0,)
WL = (D,,1,...,84), WIV =(Uy,...,Ty)

then W = (W1 Wil Wil WiV = Elgi,ogjgiti(logt)jwij satisfies
(1.20) H(iwij — (] + l)wij+1) = Awij + (Sil(Sj()F + Gij
with H = I®IHTIPHO where I and O is the identity and zero matrix respectively

and

Aj O 0] 0]

Bir A O 0
0] O =3I O
@) O B =21

(1.21) A=

Moreover, F' is a constant vector and
Gij = Gij(wpg g <p<i-1), Gy =0, i=0,1

Here note that |\ — A| = |\ — Ag||A — Arr||A+ 3I||A + 21| and all eigenvalues of
Ay are pure imaginary. Making a more precise look on A; we see

-1 0 0 2 0
0 -3 25 2(kb+d671) 20b
(1.22) Ar=1| 0 257' —4  2k57'b 2b
0 25 0 -2 0
-vb 0 0 —2ub -2

where we have used (1.19). To confirm that (1.20) can be solved successively
we prove the following

Lemma 1.3. Assume k?> —4v > 0. Then A; has an eigenvalue 1 and the other
real eigenvalues are negative.



Proof. Expand |\ — Aj| with respect to the last row we see

A+3 -2 —2(kb+d71)
A=Al =A+1)(A+2)| =267 A+4  —2k6 1D
—20 0 A+2

A+3 =25 —26b
—2ub(A+2)| —26b A+4 —2b
25 0 0

= A+ DA +2)(A+6) (A% + 3\ — 4k6b) + 8v62b* (A + 2) (A + 6)
=(A=1)(A+2)(A+6)(A\* + 5 + 8 — 4kéb)

where we have used v§2b? = kbd — 1. Write
AN 4 BN+ 8 —4kdb = (A +4)(\ + 1) — 4v5%b?.

Then it is clear that real roots of (A +4)(A+ 1) = 4v§2b?, if exist, are less than
or equal to —1 if ¥ < 0. Consider the case v > 0 so that k2 —4v > 0 is satisfied.
Note that the roots b of (1.19) are given by

b_ii\/.‘@—élu
200 2v|0]

from which we have

VK2 — v (VK2 — dv £ 0K/]0])
v/2

A+ 4N+ 1) = 4v6%b? = kb — 4 = 4 +

By our choice of b the right-hand side is less than 4. This proves the assertion
in the case v > 0. O

The rest of the proof of Proposition 1.1 is just the repetition of the arguments
in [9, Sections 3.3 and 3.4].

Remark 1.1. Assume v = {&, {£0,0}}(p) =0, k # 0 and that
6>%l_ k2 or —9>%l_ k2

where d¢;, dk; are linearly independent at p. Since {&o, {&o, £0—X!_1k2}}(p) >
0 it follows that {&y, k;}(p) =0, 1 <4 <. From this we see easily that

dki(y(t))/dt = —{p. ki}(v(1))/t* = O(t), t—0

which proves that k;(y(zo)) = O(x3). Therefore the bicharacteristic v(z¢) is
tangent to the manifold Xg =X N{k; =0,i=1,...,l1} DX N {0 =0}

Remark 1.2. Assume 6|z > 0 or 0|y, < 0 near p and v = {&, {&o,0}}(p) # 0.
After extending 0 thanks to Malgrange preparation theorem one can write

0 =e((xo—¥(2',€)* + h(z',€)), h(a',€) =0, e(p)#0.



With f = zg —¢(2',&') it is clear that {# = 0} C {f = 0}. Note that df, d¢;
are linearly independent at p because {&, f} # 0. Assume k? — 4v > 0 hence
there is a bicharacteristic v tangent to 3 by Proposition 1.1. Note that

df (v(t))/dt = —{p, F}(v(£))/t* = 2®@1(0){é0, f}(p), t—0
which proves that

zloigo df (v(xo))/dxo = lim (df (v(t))/dt) (dt/dx)

=221 (0){&0. f}(P)/X0(0) = {&0, f}(p) = 1.
Thus the bicharacterisitic y(x) is transversal to the manifold ¥ N {f = 0}.

1.2 Case that df), d¢; are linearly dependent
We first note that dfl, d¢; are linearly dependent at p then

(1.23) {60 —¢1,0}(p) =0, {9;,0}(p) =0, r+1<j<d

Repeat the same arguments as in Section 1.1. Choose a system of symplectic
coordinates (X, Z) such that Xg = xg and Zg = £y —¢1. Writing (X, =) — (z,£)
one has

p= *fg — 2§01 + 2§:2¢>§ + E?:r+1¢? + O (%)

where (1.6), (1.7) and (1.8) hold. From (1.6) we see that dzg,d¢;, 0 < j < d
are linearly independent at p. Take

w:(§O7x07¢17'"7¢d7¢17"'7wk) (d+k=2n)

to be a system of local coordinates around p so that w(p) = 0. Recall that
we can assume that (1.9) holds. Let v(s) = (x(s),&(s)) be a solution to the
Hamilton equation as before. We change the parameter from s to ¢t = s~! and
introduce new unknowns

P1(7(s)) = 2@ (t), d2((s)) = Py (t),
(1.24) ¢i(v(s)) = t*®;, 3<j<r,

¢i(v(s)) = 3®;(t), r+1<j<d,

Vi(v(s) = t20;(t), 1<j<k

and write W = (Zg, Xo, ®1,...,Pq, ¥1,..., ;) and G(t,W) being as before.

Lemma 1.4. One can write

O0(x,&) = Uda, ..., ¢a) — vad/d+ ba(w') + O3(w')

where £ is a linear form in (da,...,¢q) and 03 is a quadratic form in w' =
(X0, @1y -+ s Pas V1, - - -, k) containing no such term cai (c € R) and 03(w') =
O(Jw'[).



Proof. Since 0(p) = 0 the Taylor formula gives 0(z, &) = 61 (w') + O2(w') +

O(Jw'|3) where 6, is a linear form in (¢, ..., ¢q) and 0y is a quadratic form in
w' since df and d¢; are lineraly dependent. Since {¢2,0}(5) = 0 we see that 6,
is independent of ¢;. The rest of the proof is clear. O

Thanks to this lemma one has
(1.25) 0(7) = —vX22 /A + 3G, W), () = 2G(t,W).
Taking (1.12) into account one has
(1.26) {60, 053(7) = (—vX30;/4+ k;01)E% + £2G(t, W)
where ¢; = {¢1, ¢;}(p). Hence by (1.6) and (1.13) we have
(1.27) {¢j:6}(0) =GE,W), r+1<j<d
Thanks to (1.25), (1.26) and (1.27) the Hamilton equation is reduced to
D=y = —4=9 + 26D 1Dy — (1/6/2)ng)2 + tG(t, W)7
DXy =—-Xo+ 2P, +tG(t, W),
D®, = —28; + 200, + LG (t, W),
DOy = —3Dy + 2kd2 + 255 — (v5/2) X2P,
(1.28) +tG(t, W),
tD(D] = 74t(I)j + QI{jq)% + 25jE.0 — (1/5]/2)X§<I>1
=255 _3{on, ¢;}(P)Pr +1G(t, W), 3<j<r
Dq)j = —Sq)j +tG(t,W), r+1<j5<d,
D\I’j = *2\113' - 222:7-+1{¢k7wj}(ﬁ)¢k + tG(t7 W)a 1< ] <k

(which is obtained from (1.16) by replacing © by —vX#/4). We look for a formal
solution to the reduced Hamilton equation (1.28).

Lemma 1.5. There exists a formal solution W € & satisfying (1.28) with
D1(0) # 0, Xo(0) #0.

Assume that W = (Z¢, Xo, @1, ..., Pq, ¥1,..., V) € £ satisfies (1.28) for-
mally. Denote Xo, Zo, ®;, ¥; as (1.17) and xg, = To, &)y = o, dhy = ¢ and
Yo = ¥v. Equating the constant terms of both sides of (1.28) one has

—4&o + 2612 — VOTFP2/2 =10, —To+ 241 =0,

—2¢1 +25¢2 =0, —3¢o + 2k¢; + 26&) — vdTHH1/2 = 0,

_3¢j = 07 r+1< j < d, _21/}j - 22%:r+1{¢k7¢j}(ﬁ)¢k = 0.
From the third line one has ¢; =0, r +1 < j < d and v; = 0. Setting b = ¢

as before we see Tg = 2b, ¢y = 6~ b and 2&y = k6~ 'b? — vb® hence the second
equation on the second line becomes

—367'b + 3kb* — 3v6b® = 3b( — 1/6 + kb — v6b*) =0



which is the same as (1.18). We choose the same b # 0 as in Section 1.1. Denote
W = (507 jOv d_)jv 1/_}1)
and look for a formal solution to (1.28) of the form W + W with W € £#. To

simplify notation we set

WI = (X07¢27507(I)1)7 WII = (@37 .. '7¢)7‘)
WIII = ((p7’+1a"'7(1)d)7 WIV = ((1)37...,(b7«)

then W = "W/ wH W wiV) = 37, i, t'(logt)w;; satisfies (1.20)
with A of the same form as (1.21) where A is replaced by

-1 0 0 2
—2u6b?> -3 25 2(kb+671)
—2vb? 2571 —4 25~ b

0 20 0 -2

(1.29) Ar =

where we have used (1.19). To confirm that (1.20) can be solved successively
we prove the following

Lemma 1.6. Assume k?> —4v > 0. Then A; has an eigenvalue 1 and the other
real eigenvalues are negative.

Proof. Expanding |A — A;| with respect to the first row we see

A+3 =25 —2(kb+d71)
AN=Afl=(A+1)| —=2071 A+4  —2k0"1D
—26 0 A+2

206 A+3 26
+2ub| 20 2071 A+4
0 —24 0

= A+ 1) (A +6)(\? 4 3\ — 4K8b) + Sv5%b*(\ + 6)
=(A=1)(A+6)(A\* + 5\ + 8 — 4kéb)
the rest of the proof is just a repetition of the proof of Lemma 1.3. O
At the end of the section, we give a simple example. Consider
(130)  p=—&+ (& +206n)? + 231 + 2k +eah)€2, |, Jwa] < 1

near (0,e,), e, = (0,...,0,1) with n > 3, k,I € N where ¢ = £1. Tt is clear
that
¥ ={& =& +20&n = 0,21 = 0}.

Denote
o1 = —a1(1+af +exb)& /(1 + (1 + k/2)zf + exb)

k¥ /2 ¢
14+ (1+k/2)2h +eab ™"

= —I |:1 —

10



then one can write

p=—(%+¢1)(& —p1) + 231+ m1 +exh)&l — oF + (&1 + z0bn)?

1.31
(13D = —(& +¢1)(& — 1) + 003 + 03

where
(1.32)  wa=¢& +x0&n, 0=(1+ k)x]f + 5xl2 + ka%k(l + x’f + Emlz)_l/él.

which is a normal form. Indeed we see

E/
{€0— p1,92} = O(ah) =0
and it is clear that {{o — ¢1,&} = {& — ¥1,¢1} = 0. Note that
Oz =cexh, {& — 1,0} =0.

According to ¢ = +1 and the parity of [ every type of transition occurs. If k =1
we have

{{& — @1, P2}, 02}(0,e,) =1

hence one can apply Proposition 1.1 to conclude the existence of a tangent
bicharacteristic. Some remarks on the case k > 2 will be given at the end of the
next section.

2 Elementary factorization

2.1 Elementary factorization

Consider the principal symbol

(2.1) p(x,8) = =& + Ar(x, )& + Az(x, ')

where A;(z,¢') € S{,o depending smoothly in zy. We start with the following
definition.

Definition 2.1. We say that p(z,£) admits a local elementary factorization if
there exist real valued X(z,&’), pu(z,€&') € Sty and 0 < Q(x,&') € 57 such that

p(x,ﬁ) = —A(.’E,f)M(l’,f) + Q(‘T7€/)

with A(z,€) = & — Mx,&') and M(x,&) = & — p(z, &) verifying with some
C>0

(2.2) {A(2,€), Q(z, &)} < CQ(x,£),
(23)  {A@€),M(z,8} < C(VQ(x.&) + Az, &) — M(x,¢)]).

If we can find such symbols defined in a conic neighborhood of p we say that
p(z, &) admits a microlocal elementary factorization at p.

11



Of course, elementary factorization is closely related to the classical deriva-
tion of energy estimates. To see this note that

—AM = —(& — A +ic)# (& — p —ic) — i{ A, M}/2 —ic(A — M) + 57
= —A#M —i({A, M}/2 — (A — M)) + S,
where ¢ € SRO and A =& — A +ic, M = & — p — ic. We also note

2im(op(p)e. 0p()e) = - (lop(A)elf + (0p(@)e.v)

—2Re(op(A)v, op({A, M}/2 + c(A — M))v) — Re(op({A, Q})v,v) /2

modulo C(|jop(A)v||? + ||v]|?). Assuming that one can find ¢ € 57 such that
{A, M}/2+ (A — M)| < /Q and taking [{A, Q} — {A, Q}| < v/@ into account

we will obtain energy estimates.

Lemma 2.1 ([4]). If p admits a microlocal elementary factorization at p there
s mo bichracteristic tangent to X at p.

In this section, we restrict ourselves to the case
SpecF,(p) CiR (<= M\;(p) > 0<=0|x >0) pe .

Applying the extension lemma to 9‘2 one can assume from the beginning that

—(&0 +61)(60 — 61) + 001 + Tj_»0] + X118 + R
where R = O(|¢|*(€);?) = O*(X') with ¢ = (¢1,...,¢q) and that

(2.4) 6>0, {6,020, j=1,...r

Proposition 2.1. Assume that p is of normal form up to term O*(X') and
satisfies O|s, > 0 near p. If

{0 — 1.0} < C(VO+ [on] + V19])%,
{0 — d1, 02}, 92} < C(VO+ 61| + V]]), ¢ = (b2, ..., ba)

holds then p admits a microlocal elementary factorization at p.

Corollary 2.1. Assume that p is of normal form up to term O*(X') and

satisfies 0| > 0 near p and {& — ¢1,0} . If {{& — ¢1, 02}, P2} 2
then p admits a microlocal elementary factorization at p while p does not if

{{50 - ¢17 ¢2}7 ¢2}(ﬁ) 7é 0
Proof. Without restrictions we may assume 6 > 0 near p. From the assumption

one can write {&y — ¢1,0} = S¢_, cadi. Note that {& — ¢1, {¢2,0}} 2 0 and
16, {€ — ¢1, d2}}| < V0 for > 0. Tt follows from Jacobi’s identity we have

{62, {&0 — 01,03} S 6| + VO, ¢ = (¢1,....0a).
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This shows that [{£&y — é1, 0} < (|é] + V0)|¢1] + |¢'| hence the first condition is
satisfied. The second condition is obviously satisfied and the assertion follows

from Proposition 2.1. Since {&y — ¢1,{&0 — ¢1,0}} 20 for {& — ¢1,0} 2o
if {{& — ¢1,02}, 2} (p) # 0 there is a bicharacteristic tangent to ¥ at p by
Corollary 1.2 hence Lemma 2.1 proves the last assertion. O

Let
A= Qsl + e((b”)d)l - )‘¢§<§>'}T2a E(d)”) = E§:3ﬁj¢]7 ¢” = (¢3) ey ¢T)

where A > 0 is a parameter and 3; are smooth which are determined later.
Write

p=—(So+M)(6—A)+Q
where Q = 0¢? + Q with
Q = Sf_007 — 2007 (14 £/2) +201(€), *(1+ £ = Ad7(€);%/2) + R.

Taking A > 0 large (since we are working in a neighborhood or p it can be
assumed that |¢[(€);! is arbitrarily small) it is clear that there is ¢ > 0 such
that

Q= c(Id')? + 07 +61(6);2), ¢ = (¢2,..., ba).
Note that

{60 — A, Q) = {& — o1, ¢']> —20(6")pT (1 + £(¢")/2)}
—{lUe")1, 16"} + O(Q).

Recall that one can write
{&o— 1,05} = SF _ajper, 1<j<d

Moreover since {¢2, {0 — ¢1,¢;}} 20 for r+ 1 < j < d which follows from
Jacobi’s identity, one has

aﬂE:O, T+1§]§d

Therefore we have

d d T d
{0—MQY=2> ;> ajudr =261 > B > audu(1+(6")/2)

j=2 k=1 j=3 k=1
d r

201> ¢ > Br{on, 65} +O(Q).
Jj=2 k=3

Note that

d T d
G > b =0(Q), r+1<j<d, 7Y B Y aprdrl(d”) =0(Q),
k=1 j=3 k=1

616> Bi{dr 0} =0(Q), r+1<j<d

k=3
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we have

r d i d
{€o—0,QY=2) ;Y audr —201) B; > oo
k=1 k=1

j=2 = j=3 =

261 6, > Bi{on. 6,1 +0(Q)

j=2 k=3
=201 and; — 260> Biaji—261 Y 6 Y Bi{dr, 0} + 0(Q)
=2 =3 =3 k=3

=201 05 (a1 = {0k 0518k) + 20216162 — 201 Y Bz +0(Q)

Jj=3 k=3 ji=3

because {¢x, P2} 20 for k > 3. Choose f3; such that

> {bk 03B =, 3<j<r
k=3

Since ({¢r, ®;})3<k, j<r is skew symmetric and nonsingular we have

Z BjOtjl =0.
j=3
Therefore we conclude

{& — A, Q} = 20216162 + O(Q).

Since a1 Z {{€ — b1, do}, o}/ {61, b2} we have
[{{&0 — 1,02}, 02} < C(VO + [61] + V]¢/]) = {& — A, Q} = O(Q).
It remains to study {&, — A, 0¢?}. Taking (2.4) into account we have

{€ — A, 067} = {&0 — 61,007} + O(Q)
=2001{& — d1. d1} + ¢ {& — 01,0} + O(Q) = ¢1{& — ¢1,0} + O(Q).

Therefore we conclude that
[{€0 — 01,0} < C(0 + VOln | + |6')) = {& — A, 097} = O(Q).
Consider {&y — A, & + A} = 2{&, A} which is

>/

2{&0, &1+ £(¢")d1 = ABT(E), 7} =0
for {&o, &1} 0. Since |¢'| < /Q and |¢1] < |A] we have
{& = A&+ A} S VQ +IA]
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which completes the proof. O

Retake the example (7?). If h(xy) = cxb with ¢ > 0 and even [ > 2 so that
Ol > 0. It is easy to check that

|{€U - 30179}| S 0

hence in view of Proposition 2.1 p admits a microlocal elementary factorization
at p. Nxet, reconsider p in (1.31) with even [ and € = 1 so that 0|y > 0. If
k > 2 it is easy to see that

{{& — 1,02}, 02} X::/ 0

then it follows from Corollary 2.1 that p admits a microlocal elementary factor-
ization at p. In particular, there is no tangent bicharacteristic.
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