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Abstract

1 Normal form of the principal symbol

1.1 Some notations

Assume that the set ¥ = {p = 0, Vp = 0} of critical points of p = 0 is a smooth
manifold of codimension d + 1 and that

(1.1) p vanishes exactly to second order on X.

From this assumption without restrictions one can assume that for any p € ¥
there is a neighborhood of p where we can write

d
p=—&+) ¢
j=1

Here d¢; (¢o = &) are linearly independent at p and ¥ is given by ¢; = 0,
0 < j < d. We assume that

(1.2) ranka|2 = constant

where o = >77_d¢; A dx; is the symplectic 2-form. In [6] we find detailed
discussions on the Cauchy problem for op(p) under the assumptions (1.1), (1.2)
and SpecF),(p) C iR, p € ¥ assuming further that there is no spectral transition
of the Hamilton map F),, that is

For any p € X there is a conic neighborhood V' of p such that either Ker Fg N
Im F7? = {0} or Ker F7 NIm F? # {0} holds throughout V N X.



Our main concern in this note is to derive normal forms of p under assumptions
(1.1) and (1.2) in the presence of a spectral transition. Let us denote

W(p) = KeerQ(p) N ImFg(p), peEX.
We sometimes denote & = ¢g. Since
dimT,¥ + rank | (7, x)o = dim(7,%)? + rank o7, %
and rank o|(7, ). = rank({¢;, $;}(p)) we see that (1.2) is equivalent to
(1.3) rank ({¢;, ;}) = constant = r (= 2d + rank o|7,5 — 2n)

where ({¢;,®;}) denotes the (d+1)x (d+1) matrix with (i, j)-th entry {¢;_1, ¢;—1}.

Lemma 1.1. Assume (1.2). If the spectral transition occurs at p then W(p) #

(0}.

Proof. Assume W (p) = {0}. Thanks to [3, Theorem 1.4.6] (or [2, Theorem
21.5.3]) one can choose a symplectic basis such that

either p; = _fg + E?:puj(f? + fgz) + 222:11-4-15]2‘, >0,
or pp=e(@f— &)+ i@ + &)+ 52, &, >0, e>0

where +e, +ip; are non-zero eigenvalues of F,(p). Here we note that 2/; = r
for (1.3). From the continuity of the eigenvalues of F),(p) with respect to p € X,
F,(p) has at least r non-zero eigenvalues near p (with counting multiplicity).
On the other hand, if W(p) # {0} again thanks to [3, Theorem 1.4.6] (or [2,
Theorem 21.5.3]) in a suitable symplectic basis

4 1y
Pp=—E +2%& +at + > @i+ )+ Y &, p@>0
j=2 J=l+1

where I{ = l; because of (1.3) so that F},(p) has r —2 non-zero eigenvalues (with
counting multiplicity) with a contradiction. Thus W (p) = {0} near p hence no
spectral transition occurs. O

In what follows we always work near p but do not mention this and it should
be understood that Fj, is defined only on ¥ near p .

1.2 A normal form

Denote
¥ ={¢;=0,1<j<d}

and )
fZ0< f=0 on ¥ near p.



Proposition 1.1. Assume (1.1), (1.2) and that the spectral transition occurs
at p then one can write

T d
(1.4) p=—(o+1)—d)+08T+> T+ D> &

Jj=2 j=r+1

with a smooth 6 (positively homogeneous of degree 0) such that 14 6 > 0 where

and

(1.6) {¢1,92}(p) # 0, {h2,8;} Z 0, 3<j <, det({¢s,¢;}(p))s<s,j<r # 0.

If p has the form (1.4) with (1.5) and (1.6) then 0 coincides with the product of
nonzero eigenvalues of F,(p) (with counting multiplicity) on X' where W(p) =
{0}, up to a smooth multiplicative factor which is positive at p. Moreover 6(p) =
0 if and only if W(p) # {0} and

0(p) > 0 <> p is noneffectively hyperbolic at p with W (p) = {0},
(1.7) 0(p) = 0 <= p is noneffectively hyperbolic at p with W (p) # {0},
0(p) < 0 < p is effectively hyperbolic at p.

This normal form is not unique. To see this we first note that

Lemma 1.2. One can rewrite
—(&0+ 61)(€0 — d1) + 067 = —(&o + 61)(€0 — 61) + 063
with ¢ = (1+ v)py and 6 = (0 — v* — 2v) /(1 + v)2.
Proof. The proof is clear. 0

ity 2 0, it is clear that (1.5) and (1.6) hold replacing ¢; by $1 such that
p=—(+61)(& — d1) + 007 + o0 + 57, 1167

is also a normal form. In this case we have 6 = . This is no coincidence. Let
ITA;(p) be the product of nonzero eigenvalues of F,(p) (with counting multiplic-
ity). Note that ITA;(p) is real because nonzero eigenvalues of F),(p) are iy and
possibly +A with real u, A. From Proposition 1.1 there is a smooth f(p) near p
with f(p) > 0 such that

(1.8) I\ (p) = f(p) O(p), W(p) ={0}, pE€X.

Since ITA;(p) is invariant under changes of symplectic coordinates we could say
that 6|y, is conformally invariant. It is also clear from (1.8) that II\;(p) smoothly
extends from the set where W (p) = {0} to a neighborhood of p on X by setting
ITA;(p) = 0 if W (p) # 0, the extension is given by the right-hand side of (1.8).



Remark 1.1. If § = 6 + Z?zlchbj choosing v such that 2v = E‘j:lchﬁj in
Lemma 1.2 we have o
0=0+r r=0*%).

Therefore one can write

— (&0 + d1) (6o — 61) + 007 = — (&0 + ¢1) (6o — d1) + (0 + O* ()47
That is, if O]z = 6| one can replace 6 by § + O%(X') in the normal form.

This proposition shows that transitions may occur already in very simple
examples. For instance, consider

p ==&+ (1 +0(@)& + (z0 +1)°€,  |0(2)] <1, 6(0)=0

near (0,e,), e, = (0,...,0,1) with n > 2. Tt is clear that the doubly character-
istic set is given by ¥ = {{y = 0,&1 = 0,20 + 21 = 0}. Writing

(19) p=—(&o+¢1)(& — ¢1) +0(x)dT + 63, ¢ =&1, b2 = (w0 + 21)én

it is also clear that (1.5) and (1.6) are satisfied. According to the choice of 6,
every type of transition occurs.

Proof of Proposition: Denote A = ({¢s, $;})o<i,j<a (note that A is independent
of &y) where the rank of A(p) is constant r. Then there exists a smooth basis
V0, Vp 41, - - -, Va, defiened on 3/, of KerA. One can assume vy = (1, v()). To check
this it suffices to prove the first entry of some vo(p), vry1(p), . .., va(p) is different
form 0. Suppose the contrary. Let X € C; NT% where Cj is the propagation
cone. One can write X = X9_a;Hy, (p) since C; C ImF,(p). From X € T;%
it follows Aa = 0 hence oy = 0 by assumption. Writing X = (Z,£) we have
Zo =0. Recall C; = {X;0(X,Y) <0, VY € I';}. Since for any (y,n’) thereis 7
such that (y,7) € T5 (because T = {no > (3_7_; de;(y,n')*)*/?}) we conclude
X = 0. This proves that C; N T;X = {0} hence p is effectively hyperbolic
([3, Corollary 1.4.7], [5, Lemma 1.1.2]) so that W(p) = {0} contradicting the
assumption.
Since one can assume vy = *(1, v()) considering v;—(the first component of v;)vg

one may assume
v; ="(0,05(p), vj(p) = Wj,...,vjy), pEX j=r+1,....d

We extend v]4,...,v) outside ¥’ and orthonormarize them and denote the
resulting ones by w}. We choose smooth w,...,w; such that wi,...,w} will

be a smooth orthonormal basis of R%. Denote

wozt(1,0)7 w; Zt(O,w;), j=1,...,d

then it is clear that Aw; Z 0 for j=r+1,...,d and wp,wq,...,wq is an
orthonormal basis of R¥1. Let e; be the unit vector in R with j + 1 th



component 1. Denote (eq,...,eq) = (wo,...,wq)P, P = (p;;) so that P is
orthogonal matrix. It is clear that P =1 & P’. Denote

d
¢ =Y pirdr
k=0
then we have (50 = ¢ and

d
p=—+> .
j=1

Noting that A is skew-symmetric we see that PAP~! Z A ® O4_, where Og_,

is the zero matrix of order d — r. Since ({¢;,;}) Z pAP! we have the first
assertion of (1.5) replacing ¢; by ¢;. Write ¢; — ¢; and denote

~ t 7
A= ({(j)lv ¢j})0Si7j§T = <_0 ’ Zl) ) ta’l = ({607 d)l}v ey {'503 ¢T})

a

where a'(p) # 0 otherwise {£o, ¢;}(p) = 0for j =1,...,dso that Fj,(p) is similar
to Fez © Fya_ 2 (p) and hence W(p) = {0} contradicting with assumption. We
now show

(1.10) A1 = ({¢i,9j})1<ij<r 1s non-singular.

Since P = 1® P’ there is v = *(1,v'), v’ # 0 such that Av = 0, that is (a’,v') = 0
and A;v' = a’. Suppose that there is 0 # w’ such that A;w’ = 0. Note that
(@ w')y = (A, w') = = (v, Ajw’) = 0 for A; is skew-symmetric. This shows

that Az = 0 with z = *(1,v' + w’) which contradicts to dim KerA = 1 (for the
rank of A is r).
Define o = *(avy, ..., a4.) # 0 and 9 by

Aa=d, p==) a;¢
=1

then since A; is skew-symmetric it is clear that
1 <1
({bi, 65 o<ij<r || =A|,| =0
that is, one has

(1.11) {€o—v,0;} 20, j=0,....d

Choosing a smooth orthogonal matrix T' = (;;)1<s j<, with the first row —a/|c]
i 5. — T T g2 T 42
consider ¢; = >°; _, tju¢x so that Y., ¢7 = >0 ¢7 where

b1 =¥/ |



hence one can write
r d
(1.12) p=—(o+d)(&—d)+> 7+ >
=2 j=r+1

Here note that
(i, &5 Di<ij<r ZTAT Y, {&0 — |1, 5} 20, 0<j<d

If {$1,¢;}(p) = 0 for 2 < j < r then {£,¢;}(p) =0 for 1 < j < r from which
we have W(p) = {0} as before contradicting with the assumption. Thus we may
assume {¢1, P2 }(p) # 0. Writing ¢ = |a|¢p1 — ¢1 and ¢; — ¢; (2 <j <7) we
have

r d
(1.13) p=—(G+d)(E—¢1)+0F+> 2+ Y ¢
3=2 j=r+1

where

(1.14) 0= (1=]a)/la, {G—01,¢;3 20, j=0,....d, {b1,62}(p) #0.

Thus we have the second assertion of (1.5) and the first assertion of (1.6). If
we replace ¢1 by |a|é1 then det({¢i, ¢;})1<i j<r is multiplied by |a|? hence still
nonsingular. Therefore we have

det({¢i, #;})1<ij<r # 0.
Consider

s
Gj =Y tikdr, 2<j<r
k=2

and choosing a suitable (smooth) orthogonal matrix T' = (t;x)2<; k<, With the
first row=normalized *({$1, p2}, ..., {¢1, ¢}) such that

=2 i=2 P

one can assume that
{61.02}(9) = (S5{01,0,))Y2 #0, {p1.6,} 20, 3<j<r

Since it is clear that {& — ¢1,q~5j} z 0, 0 < j < d writing qNSj — ¢; we can
assume

p=—(b+ 1) — b1) +00F + X7_y07 + 20,107,

(L15) g —g1,63 20, 0<j<r {on4} 20, 3<j<r,
{61,02}(p) # 0, det({¢i, ¢ Hr<ij<r # 0.



Write

/ to (1)
Al = ({¢'Lv¢j})1§l,]§’r 2: (C?(l) ?42 ) 3 a(l) = t({¢17¢2}a07 .. 70)

and show that dimKerA; = 1. Since A, is skew symmetric of odd order r — 1
then dimKerAs > 1 hence rank As < r — 2. Suppose rank As < r — 2 then,
expanding detA; by cofactors of the first column (or the first row), it is clear
that

detA1 =0

hence contradiction, thus rank Ao = r — 2. This proves dimKerAs = 1 and
KerAj is spanned by 8 = ¥(fs,...,3,) # 0. Note that 8, # 0. Otherwise
B = (0,0, 8s,...,05) # 0 verifies A3 = 0 which is a contradiction. Choosing
a smooth orthogonal matrix T = (¢;;)2<s,j<r with the first row §/|5| consider

G = Y pea Ljktr so that 327_, ¢ =377, ¢2. Then we have
{620,320, 2<j<r
We also note that
{61, 02}(P) = Shea(Br/ B {61, 01} (P) = (B2/18){¢1, p2}(p) # 0.
Since ({¢i, dj})a<ij<r = TAST! then
dimKer({¢s, $;})2<ij<r = 1.
Writing ¢; — ¢; (2 < j <) one can write
p=—(+ 1) (& — 1) + 007 + X507 + 27,107,

(1.16) {&o— 01,6, 20, 0<j<d,

{02,6,120, 2<j<r {b1.62}(p) £0.
Since

A= ({00 sise 2 () 1)

it is clear that As = ({¢ia¢j })SSMST is nonsingular because dimKerAy, = 1.
Here note the following

Lemma 1.3. (cf.[1]) Let p have the form (1.4) with (1.5) and (1.6). Then
0(p) = 0 <= W (p) # {0},

0(p) > 0 < p is non-effectively hyperbolic at p and W (p) = {0},
(=1 <) 8(p) < 0 < p is effectively hyperbolic at p.



Proof. Write 6¢1 — ¢1 with § = (1 + 0)'/2 so that p = —&F + 9_,¢2. If
F, X = pX with o # 0 then X € ImF, and hence X = Z;lzonjH(bj. Let
€g =—1and ¢; =1 for 1 < j < d and note that

d d d
Fy(Y niHy,) = Y el ditniHs, = > CGiHy,,
(1'17) 7=0 =0

i,j=0
C=An, A= (e{d;,di})o<ij<d-
Consider
A=A a0 A= (0 fa
= d—rs - a M)/

Note that M is nonsingular provided ¢ # 0. From (1.17) a non-zero eigenvalue
of F,(p) is also an eigenvalue of A’. Let a = Ma. Since M is skew-symmetric
we see that

L te\ (p "(Ma)\ _(n  pa
0 1) \ Ma p+M) \Ma p+M

for tM = —M and that

po pla L 0Y _ (p—plef pa
Mo p+M)\-—a 14 —po w+M)"

iy (L) =0 Ma=a="(eohe G0 or))

Note that

Hence
" _ p—pla  pta ) 1—|a*  pla
det(,u—&-A)—det( o pt M =pdet |~ _ pt M)
Therefore we have
(1.19) det(u+ A = uG(p), G(0) = (1 — |a|*)detM

where detM > 0 because M is non-singular skew-symmetric. Assume W (p) =
{0}. Thanks to [3, Lemma 1.4.4 ], non-zero eigenvalues of F,(p) are semisimple
(algebraic multiplicity=geometric multiplicity), denoted Ay, ..., A, with (count-
ing multiplicity) linearly independent eigenvectors v; = E?:(]ninqu € ImF),
these A1,..., A\, are also semisimple eigenvalues of A’ with linearly independent
eigenvectors 7; = *(10,...,m:a). Since G(u) is a monic polynomial of order r
we must have G(p) = I1j_; (1 — A;). In particluar this proves [a(p)| # 1 and

(1.20) (1= la(p)[*)det M =115_, X;(p), peX, W(p)={0}.

Assume W (p) # {0} then F,(p) has r — 2 nonzero semi-simple eigenvalues (with
counting multiplicity). Suppose |a(p)| # 1 so that A’ has r nonzero eigenvalues.



It is clear that not all are semi-simple. So assume \; # 0 is not a semi-simple
eigenvalue of A’ so that there is 0 # n = (1o, ...,n,) such that (A" — \;)n #0
and (A" — Xj)Fn = 0 with some k > 2. With v = ¥7_qn;Hy, (p) we have
(Fy(p) — Aj)v # 0 while (F,(p) — A\;)*v = 0 which shows that A; is nonzero and

non semi-simple eigenvalue of F,,. This contradiction proves that |a(p)| = 1.
Thus
(1.21) a(p)l =1 == W(p) # {0}

Thanks to [3, Theorem| we have either F,(p) = {0, %iu;(p),1 < j < r/2} or
Fy(p) = {0,xe(p), xip;(p), 1 < j < r/2 =1} if W(p) = {0} where e(p) >
0, ;(p) > 0. The former case we have

r/2 ,. . r/2
I_, Ay = 102 (i) (—ipag) = T2 2 > 0

hence |a(p)| < 1 and vise versa. In the latter case we have

- r/2—1 . . r/2—1
M5_ Ay = T e(—e) (i) (—ipy) = =T 2 < 0
hence |a(p)| > 1 and vice versa. Therefore we have

la(p)| < 1 <= p is non-effectively hyperbolic at p and W(p) = {0},
|a(p)| > 1 <> p is effectively hyperbolic at p.

In view of (1.5) one has

({61, 6; o<ijerv 2 0, v ="(1,-1/5,0,...,0).

On the other hand since dimKer A" = 1 it follows from (1.18) that o = *(—1/4,0, ...

so that d|a| = 1, that is
14+6=1/]a)* > 0.

This proves the assertion.
Thus applying this lemma one can prove (1.7). From 0 = (1 — |a|?)/|a|? it
follows from (1.20) that

(1.22) I_17i(p) = (lalp) PdetM (p))0(p). p €X', W(p) = {0}

where |a(p)|2det M (p) is positive and smooth near p. O
Remark 1.2. Let g = E;zlqbf where dg; are linearly independent at p. Then
(1.23) Trt A(p) = e Fy(p), A= ({bidj})1<ij<r

At the end of this section, we will provide a slightly more general example
than (1.9). Consider

p=—E +& + (w0 + 21 — woh(22))?E + &5, |wol, ||, [h(z2)| < 1



near (0,e,) where n > 3. It is clear that with ¢ = xo+x1 — zoh(z2) the doubly
characteristic set is given by ¥ = {&y = & = & = 0,9 = 0}. One can write
2 2
p=—E& + (p(&1 — 2ol &))" + ¥2E + (p(aoh'&s + &2))
= —E + &1 + 65 + 93
where b/ = 9,,h and

p=1/\/1+2%()2, ¢ =p(& — 20l'&), do =&, ¢3=plzoh'&L + &)
Here note that {953, gZN)J} z 0 for j = 0,1,2. Next, we rewrite
p=—(% + (h—1)p*(&1 — 2oh'&)) (S0 — (h — 1)p* (& — ol &2))

} ~ 2(1\2 _ 12
FO((h— 126 — wol'€))’ + G+ 5, 6= +(§0£hh)>2 =

Then denoting
p1= (1= h)p* (€& — 20h'E2), p2 =V, 3= plzoh'€s + &)
we arrive at a normal form
p=—(6 — 1) (&0 + ¥1) + 09% + ¢5 + ¥3,
{0~ o192} =0, {&—91.&)} 20, {ps,03 20, j=0,1,2

2 Extension lemma

As mentioned in Remark 1.1, if |ss = 6|5 we can write
p=—(&+d1)(& — 1)+ (0+0° (X))} + Tj_o¢) + X7, 1167

which is still a normal form. Therefore the extension of 8|y to a full neighbor-
hood of p becomes an important isuue.

2.1 Extension of C*>(¥)

Lemma 2.1. Assume that ¥ is given by ¢; = 0 (0 < j < d) satisfying (1.5)
and (1.6). There are neighborhoods V; of p in R™ 1 x (R™ \ 0) wverifying the
followings: for any 0(z, &) € C>°(X' NV} there exists an extension § € C®(Va)
such that

(2.1) {¢1,0} = c1¢1 + cagpa,  {¢2,0} = cas in Vi

with smooth ¢; and
(2.2) {¢;,0y 20, 3<j<r

Moreover we can take infsyqy, 0 < ] < supsiny, 0 in Va.

10



Proof. Note that (1.5) and (1.6) imply {&o, ¢2}(p) # 0 hence 0,,$2(p) # 0 then

one can write

¢2=€2(330_¢(9U/,f/))a 62#0, Z‘/:(Z’l,...7$n), g/z(gla”-agn)'

In view of (1.6) it follows that di(p) # 0 because ¢; is independent of &.
Therefore take =g = &, Xo = zp and X; = (2, &) which satisfy the commu-
tation relations and d=o, dXo, dX1, Xj_(§;dz; are linearly independent at p
hence extend to a full homogeneous symplectic coordinates system (X,ZE) ([2,
Theorem 21.1.9]). Changing (X, E) — (z,£) one can assume that

¢2 = ea(xo — 71).
Since (1.6) implies that J¢, ¢1(p) # 0 one can write

d)l - 61(51 - 1/’(%5”))7 €1 7é 07 5// = (52, e agn)

Now investigate ¥/ which is given by ¥’ = {¢; = 0,j = 1,...,d} which is also
given by

{p1=02=0,0; + Bjp2=0,3 < j <7, ¢pp1 =" = g =0}
where smooth §; are free. Choosing S = {¢1, ¢r}/{P2, 91} we have
(23) {¢ja¢k+ﬂk¢2}g0a 3§k§7’, ]:Oal,Q
In fact, if j = 2 this is clear from (1.6). If j = 1 it is clear from the choice of 3.

The case j = 0 is reduced to the case j = 1 by (1.5). Writing ¢x + Brp2 — vk
(3<k<r)and ¢; = ¢; (r+1<j <d) the manifold ¥’ is given by

Y = {zg— 21 =0,& — (2, &) =0,5;(2',¢) =0,3 < j < d}
where

1;(35/,5//> = w(xl»flax”»f”)» @j(xlvé-/) = Soj(xlvxlaxuagl)'

Write & — @(m',&”) = e i (x, &) + (zo — x1)f and @ = pj + (o — x1)fj-
From {&o, ¢;} Z0 (7 > 3) by (2.3) one has f; Z0 (j > 3). Then we have

AN .
(24) {51*%%}10, 3§]§d
for {¢1,¢;} £ 0 and {zo —z1,0,} £ 0. It is also clear that
I 4 o
hence

(2.5) (0,320, 3<i<d r+1<j<d

11



Set E¢ = &0, Xo = 20, X1 = x1 and Zy = & — (2’ &”) which satisfy the com-
mutation relations and d=o, dXo, dX1, dE;, X7_o§;dz; are linearly independent
at p hence extends to a homogeneous symplectic coordinates system (X, E) ([2,
Theorem 21.1.9]). Since {&,%;} = 0 and {zo,$;} = 0 writing &; = ¢, for
3 < j < d we have {Z,®;} = 0 and {X,, ®;} = 0 so that &; = &,;(X’,Z’).
Now ¥ is given by

Denote ¥ = {®;(X',E") = 0,3 < j < d} and show that ¥” is cylindrical in
the X7 direction. Write

(2.6) Qi (X E)=3,;(X"E")+Ef
then we have

Ox, (X" Z") = (21.9,) = (21,8, - Euf} 20
because of (2.4) and hence

Ox, (X' 2") = E1hy + (Xo — X1)hs.

Noting that the left-hand side contains neither Z; nor Xy we conclude that

)Z0, 3<j<d

dx, @ (X', ="
which proves that X" is cylindrical in the X; direction and hence

E” — {(i)j(O,XH,E”) _ 073 S] S d}.

Denote ¥ = {@j(O,X”,E”) = 0,3 < j < r}. Since the restriction of the
symplectic form to X has constant rank r — 2 in a neighborhood of p. Indeed

det({ps, @5 })3<ij<r(p) = det({os, d5})3<ij<r(p) # 0

implies rank({@;, ¢, })3<ij<r() = r — 2 on X. Thanks to [2, Theorem 21.2.4],

=74

there are homogeneous symplectic coordinates X", 2" such that, denoting <i>j(07 X" ="
by ¥;(X"”,E"), 3 < j < d in these new symplectic cordinates (X", ="), we have

Y={4;=03<j<r}={Xp=- =X, =Fy=---=5,=0}, r=2I
so that ¥/ is given by

(Xo-X1=0,2,=0,Xp=---=X; =55 =--- =5 = 0,7(0, X,0,5)
=0,r+1<j<d}, X=(Xpg1,....Xn), E=(Eig1,..., ).

12



Here we note that
(2.7) (X3 20, (S0 20, 2<i<l, r+1<j<d.
To prove this we first show
(2.8) (Wit} 20, 3<i<d r+l1<j<d
Note that dx, ®,(X’, =) 20 for 3 < j < d because &;(X’,Z") = 0 on %" hence
are linear combinations of ®;(0, X"”,2"), 3 < j < d and (2.6). Therefore we
have
(29)  {bi, &} ={®;+Z1f;, &+ 21/} 20, 3<i<d, r+1<j<d
for {&;,®;} £ 0 by (2.5). Since
{®:(0,X",E"),®;(0,X",E")} et {®: + X19i, @5 + X19;} Z {®i, ;1

we get (2.8). Since X;, E;, 2 < i < [ are linear combinations of ¢, (X", E"),
3<j<r we get tl}e aissgrtion. ~ R

Denote ¥/ = {¢;(X, =) = ¢;(0,X,0,2) =0,r +1 < j < d}. Write

;= (X, E) + Dhoocin Xp + ShooljpZh, r+1<j < d.

It follows from (2.7) that ¢ £ 0 and i Z 0 hence we have

i =¢; +0XY), r+1<j<d

which proves that {%/;z',zzj} Z:/ 0, r+1<i,57<d. Since J;j, r+1<j<d
contains no Xy, X1,...,X; and =y, ...,Z; we conclude that
(i, 1,120, r+1<ij<d

Since the restriction of the symplectic form to i}i has rank O there are homo-
geneous symplectic coordinates X, = such that X’ is given by (thanks to [2,
Theorem 21.2.4])

So there exist homogeneous symplectic coordinates (X, Z) leaving Xy, Zg un-
changed such that Y’ is given by

{Xo—X1=0,21=0,Xo0=--=X;=E3=---=5,=0,Z41=--- =23 =0}

Let 6(z,&") € C°°(X'). Write 0(z, ') = ©(X,E"). Define the extension ©(X, ')
of ©(X,Z’) outside ¥’ to a neighborhood of g (5 ++ 9) by

O(X,Z') = (X0, X0,0, ..., 0, X141, s Xy 0,0, 0, S 141, Zn).
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It is clear that infsy © < © < supy, ©. Define the extension 0(z, &) of 0(x, &)
outside ¥’ by . 3
(. €) = B(X,=).

Since {¢2,0} = {€2(Xo — X1),0} = e3(Xo — X1) for {Xg— X1,0}=02,0=0
thus we have

{¢2,0} = co.
Note that ¢y is given by é1Z1 + fl (Xo — X4) then

{¢1,0} = {6151 + fL(Xo — X1), 0} = 151 + &2(Xo — X1) = 161 + C2¢h2

because {Z, (:)~} = 0 which proves the assertion.
Since {Z;,0} =0 (1<j<l)and {X;,0} =0(0<j5<d-—1)and

$;(0, X", Z") =%l _aZk + 2 _objp Xy, 3<ji<r

and ®; = ;(0, X", E") + X1g; then noting d — [ > [ we have {®;, 0} =,
J

< j < 7. Recalling ®;(X',Z') = &;(X',Z") + =1 f; we have {®;, 0} =0,
< j < r. Therefore we have

(.00 20, 3<j<r

Since ¢; = @; + (xo — z1)g;, 3 < j < r we conclude that {¢j79~} = 0 for
3<j<r. O
At the end of this section, we reconsider the example (1.9);

p=—(&+ )& — ¢1) +0(2)d7 + ¢35, d1=E&, ¢2= (zo+z1)&n.

Denoting
0(zo,2") = O(xg, —wo, "), " = (22,...,2,)

0(z0,z") + (zo + x1)a(z). Applying Lemma 1.2 we can

(
one can write (x) =
14+ v)¢,

write with ¢; =
p=—(o+ 1) (& — 1)+ 082 + 02, 6=(0—1>—20)/(1+ 1)
Choosing 2v = (¢ 4 z1)a(z) hence § = 6+, r = O((zo + z1)?) it is clear that

{d1,0} = O((zo + 1)), {¢2.0} =0.

2.2 More about the extension

Denote by 0 the extension of § given by Lemma 2.1 then we see that

(210) 01 =6y — él = 52, 0?:—_62 = 91 + ég, 01/\9/2 = élég.
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Let 0 € C*°(X'). Taking that He,_4, is tangent to X’ into account assume
(211)  0(p) =0, {& —¢1,0}(p) =0, {& — o1, {¢0 — ¢1,0}} #0 at p.

Denote by 6 the extension of §. Choosing a symplectic coordinates system
such that Zg = & — ¢1, Xo = zp and denoting O(X, =) = 0(z,£’) we have
9% ©(2) =0, k= 0,1 and 8%, 0©(0) # 0 then thanks to Malgrange preparation
theorem one can write

0X,Z)=E((Xo - V(X" Z))?*+GX,Z)=EF*+G), E#0,G>0

where 8X0F = {E(hF} = 1, 8X0G == {Eo,G} = 0 and aXO\I/ = {Eo,\If} = 0.
Turning back to the coordinates (z, &) we have

0=e(f(z,6)+9(z,¢)), f(z,&)=n—1(z,&),
{6o =01, f1 =1, {& — ¢1,9} =0.

Denoting by ¢, f, j the extensions of e|s, f|s/, g|x: respectively we have by (2.10)
0=e(f*+9)
where €, f and § verify (2.1) and (2.2) and that

F=z0—1, Oa0(p)=0, {€nd}20, §>0, é#£0

since {€ — é1, f} = 1 and {f, 1} Z 0.
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