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Abstract

1 Normal form of the principal symbol

1.1 Some notations

Assume that the set Σ = {p = 0,∇p = 0} of critical points of p = 0 is a smooth
manifold of codimension d+ 1 and that

(1.1) p vanishes exactly to second order on Σ.

From this assumption without restrictions one can assume that for any ρ ∈ Σ
there is a neighborhood of ρ where we can write

p = −ξ20 +

d∑
j=1

ϕ2j .

Here dϕj (ϕ0 = ξ0) are linearly independent at ρ and Σ is given by ϕj = 0,
0 ≤ j ≤ d. We assume that

(1.2) rankσ
∣∣
Σ
= constant

where σ =
∑n

j=0 dξj ∧ dxj is the symplectic 2-form. In [6] we find detailed
discussions on the Cauchy problem for op(p) under the assumptions (1.1), (1.2)
and SpecFp(ρ) ⊂ iR, ρ ∈ Σ assuming further that there is no spectral transition
of the Hamilton map Fp, that is

For any ρ ∈ Σ there is a conic neighborhood V of ρ such that either KerF 2
p ∩

ImF 2
p = {0} or KerF 2

p ∩ ImF 2
p ̸= {0} holds throughout V ∩ Σ.
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Our main concern in this note is to derive normal forms of p under assumptions
(1.1) and (1.2) in the presence of a spectral transition. Let us denote

W (ρ) = KerF 2
p (ρ) ∩ ImF 2

p (ρ), ρ ∈ Σ.

We sometimes denote ξ0 = ϕ0. Since

dimTρΣ+ rankσ|(TρΣ)σ = dim(TρΣ)
σ + rankσ|TρΣ

and rankσ|(TρΣ)σ = rank({ϕi, ϕj}(ρ)) we see that (1.2) is equivalent to

(1.3) rank
(
{ϕi, ϕj}

)
= constant = r (= 2d+ rankσ|TρΣ − 2n)

where
(
{ϕi, ϕj}

)
denotes the (d+1)×(d+1) matrix with (i, j)-th entry {ϕi−1, ϕj−1}.

Lemma 1.1. Assume (1.2). If the spectral transition occurs at ρ̄ then W (ρ̄) ̸=
{0}.

Proof. Assume W (ρ̄) = {0}. Thanks to [3, Theorem 1.4.6] (or [2, Theorem
21.5.3]) one can choose a symplectic basis such that

either pρ̄ = −ξ20 +Σl1
j=1µj(x

2
j + ξ2j ) + Σl2

j=l1+1ξ
2
j , µj > 0,

or pρ̄ = e(x20 − ξ20) + Σl1−1
j=1 µj(x

2
j + ξ2j ) + Σl2

j=l1+1ξ
2
j , µj > 0, e > 0

where ±e, ±iµj are non-zero eigenvalues of Fp(ρ̄). Here we note that 2l1 = r
for (1.3). From the continuity of the eigenvalues of Fp(ρ) with respect to ρ ∈ Σ,
Fp(ρ) has at least r non-zero eigenvalues near ρ̄ (with counting multiplicity).
On the other hand, if W (ρ) ̸= {0} again thanks to [3, Theorem 1.4.6] (or [2,
Theorem 21.5.3]) in a suitable symplectic basis

pρ = −ξ20 + 2ξ0ξ1 + x21 +

l′1∑
j=2

µ′
j(x

2
j + ξ2j ) +

l′2∑
j=l′1+1

ξ2j , µ′
j > 0

where l′1 = l1 because of (1.3) so that Fp(ρ) has r−2 non-zero eigenvalues (with
counting multiplicity) with a contradiction. Thus W (ρ) = {0} near ρ̄ hence no
spectral transition occurs.

In what follows we always work near ρ̄ but do not mention this and it should
be understood that Fp is defined only on Σ near ρ̄ .

1.2 A normal form

Denote
Σ′ = {ϕj = 0, 1 ≤ j ≤ d}

and

f
Σ′

= 0 ⇐⇒ f = 0 on Σ′ near ρ̄.
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Proposition 1.1. Assume (1.1), (1.2) and that the spectral transition occurs
at ρ̄ then one can write

(1.4) p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +

r∑
j=2

ϕ2j +

d∑
j=r+1

ϕ2j

with a smooth θ (positively homogeneous of degree 0) such that 1 + θ > 0 where

(1.5) {ϕi, ϕj}
Σ′

= 0, 0 ≤ i ≤ d, j ≥ r + 1, {ξ0 − ϕ1, ϕj}
Σ′

= 0, 0 ≤ j ≤ d

and

(1.6) {ϕ1, ϕ2}(ρ̄) ̸= 0, {ϕ2, ϕj}
Σ′

= 0, 3 ≤ j ≤ r, det({ϕi, ϕj}(ρ̄))3≤i,j≤r ̸= 0.

If p has the form (1.4) with (1.5) and (1.6) then θ coincides with the product of
nonzero eigenvalues of Fp(ρ) (with counting multiplicity) on Σ′ where W (ρ) =
{0}, up to a smooth multiplicative factor which is positive at ρ̄. Moreover θ(ρ) =
0 if and only if W (ρ) ̸= {0} and

θ(ρ) > 0 ⇐⇒ p is noneffectively hyperbolic at ρ with W (ρ) = {0},
θ(ρ) = 0 ⇐⇒ p is noneffectively hyperbolic at ρ with W (ρ) ̸= {0},
θ(ρ) < 0 ⇐⇒ p is effectively hyperbolic at ρ.

(1.7)

This normal form is not unique. To see this we first note that

Lemma 1.2. One can rewrite

−(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) + θ̂ϕ̃21

with ϕ̃ = (1 + ν)ϕ1 and θ̂ = (θ − ν2 − 2ν)/(1 + ν)2.

Proof. The proof is clear.

If ν
Σ′

= 0, it is clear that (1.5) and (1.6) hold replacing ϕ1 by ϕ̃1 such that

p = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) + θ̂ϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j

is also a normal form. In this case we have θ
Σ′

= θ̂. This is no coincidence. Let
Πλj(ρ) be the product of nonzero eigenvalues of Fp(ρ) (with counting multiplic-
ity). Note that Πλj(ρ) is real because nonzero eigenvalues of Fp(ρ) are ±iµ and
possibly ±λ with real µ, λ. From Proposition 1.1 there is a smooth f(ρ) near ρ̄
with f(ρ̄) > 0 such that

(1.8) Πλj(ρ) = f(ρ) θ(ρ), W (ρ) = {0}, ρ ∈ Σ.

Since Πλj(ρ) is invariant under changes of symplectic coordinates we could say
that θ|Σ is conformally invariant. It is also clear from (1.8) that Πλj(ρ) smoothly
extends from the set where W (ρ) = {0} to a neighborhood of ρ̄ on Σ by setting
Πλj(ρ) = 0 if W (ρ) ̸= 0, the extension is given by the right-hand side of (1.8).
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Remark 1.1. If θ = θ̃ + Σd
j=1cjϕj choosing ν such that 2ν = Σd

j=1cjϕj in
Lemma 1.2 we have

θ̂ = θ̃ + r, r = O2(Σ′).

Therefore one can write

−(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) + (θ̃ +O2(Σ′))ϕ̃21.

That is, if θ̃|Σ′ = θ|Σ′ one can replace θ by θ̃ +O2(Σ′) in the normal form.

This proposition shows that transitions may occur already in very simple
examples. For instance, consider

p = −ξ20 + (1 + θ(x))ξ21 + (x0 + x1)
2ξ2n, |θ(x)| < 1, θ(0) = 0

near (0, en), en = (0, . . . , 0, 1) with n ≥ 2. It is clear that the doubly character-
istic set is given by Σ = {ξ0 = 0, ξ1 = 0, x0 + x1 = 0}. Writing

(1.9) p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θ(x)ϕ21 + ϕ22, ϕ1 = ξ1, ϕ2 = (x0 + x1)ξn

it is also clear that (1.5) and (1.6) are satisfied. According to the choice of θ,
every type of transition occurs.

Proof of Proposition: Denote A = ({ϕi, ϕj})0≤i,j≤d (note that A is independent
of ξ0) where the rank of A(ρ) is constant r. Then there exists a smooth basis
v0, vr+1, . . . , vd, defiened on Σ′, of KerA. One can assume v0 = t(1, v′0). To check
this it suffices to prove the first entry of some v0(ρ̄), vr+1(ρ̄), . . . , vd(ρ̄) is different
form 0. Suppose the contrary. Let X ∈ Cρ̄ ∩ Tρ̄Σ where Cρ̄ is the propagation
cone. One can write X = Σd

j=0αjHϕj
(ρ̄) since Cρ̄ ⊂ ImFp(ρ̄). From X ∈ Tρ̄Σ

it follows Aα = 0 hence α0 = 0 by assumption. Writing X = (x̄, ξ̄) we have
x̄0 = 0. Recall Cρ̄ = {X;σ(X,Y ) ≤ 0, ∀Y ∈ Γρ̄}. Since for any (y, η′) there is η0
such that (y, η) ∈ Γρ̄ (because Γρ̄ = {η0 > (

∑r
j=1 dϕj(y, η

′)2)1/2}) we conclude
X = 0. This proves that Cρ̄ ∩ Tρ̄Σ = {0} hence ρ̄ is effectively hyperbolic
([3, Corollary 1.4.7], [5, Lemma 1.1.2]) so that W (ρ̄) = {0} contradicting the
assumption.

Since one can assume v0 = t(1, v′0) considering vj−(the first component of vj)v0
one may assume

vj =
t(0, v′j(ρ)), v′j(ρ) = (v′j1, . . . , v

′
jd), ρ ∈ Σ′ j = r + 1, . . . , d.

We extend v′r+1, . . . , v
′
d outside Σ′ and orthonormarize them and denote the

resulting ones by w′
j . We choose smooth w′

1, . . . , w
′
r such that w′

1, . . . , w
′
d will

be a smooth orthonormal basis of Rd. Denote

w0 = t(1, 0), wj =
t(0, w′

j), j = 1, . . . , d

then it is clear that Awj
Σ′

= 0 for j = r + 1, . . . , d and w0, w1, . . . , wd is an
orthonormal basis of Rd+1. Let ej be the unit vector in Rd+1 with j + 1 th
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component 1. Denote (e0, . . . , ed) = (w0, . . . , wd)P , P = (pij) so that P is
orthogonal matrix. It is clear that P = 1⊕ P ′. Denote

ϕ̃i =

d∑
k=0

pikϕk

then we have ϕ̃0 = ϕ0 and

p = −ξ20 +

d∑
j=1

ϕ̃2j .

Noting that A is skew-symmetric we see that PAP−1 Σ′

= Ã⊕Od−r where Od−r

is the zero matrix of order d − r. Since ({ϕ̃i, ϕ̃j})
Σ′

= PAP−1 we have the first

assertion of (1.5) replacing ϕ̃j by ϕj . Write ϕ̃j → ϕj and denote

Ã = ({ϕi, ϕj})0≤i,j≤r =

(
0 ta′

−a′ A1

)
, ta′ = ({ξ0, ϕ1}, . . . , {ξ0, ϕr})

where a′(ρ̄) ̸= 0 otherwise {ξ0, ϕj}(ρ̄) = 0 for j = 1, . . . , d so that Fp(ρ̄) is similar
to Fξ20

⊕ FΣd
j=1ϕ

2
j
(ρ̄) and hence W (ρ̄) = {0} contradicting with assumption. We

now show

(1.10) A1 = ({ϕi, ϕj})1≤i,j≤r is non-singular.

Since P = 1⊕P ′ there is v = t(1, v′), v′ ̸= 0 such that Ãv = 0, that is ⟨a′, v′⟩ = 0
and A1v

′ = a′. Suppose that there is 0 ̸= w′ such that A1w
′ = 0. Note that

⟨a′, w′⟩ = ⟨A1v
′, w′⟩ = −⟨v′, A1w

′⟩ = 0 for A1 is skew-symmetric. This shows
that Ãz = 0 with z = t(1, v′ + w′) which contradicts to dimKerÃ = 1 (for the
rank of Ã is r).

Define α = t(α1, . . . , αr) ̸= 0 and ψ by

A1α = a′, ψ = −
r∑

j=1

αjϕj

then since A1 is skew-symmetric it is clear that

({ϕi, ϕj})0≤i,j≤r

[
1
α

]
= Ã

[
1
α

]
= 0

that is, one has

(1.11) {ξ0 − ψ, ϕj}
Σ′

= 0, j = 0, . . . , d.

Choosing a smooth orthogonal matrix T = (tij)1≤i,j≤r with the first row −α/|α|
consider ϕ̃j =

∑r
k=1 tjkϕk so that

∑r
j=1 ϕ̃

2
j =

∑r
j=1 ϕ

2
j where

ϕ̃1 = ψ/|α|
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hence one can write

(1.12) p = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) +

r∑
j=2

ϕ̃2j +

d∑
j=r+1

ϕ2j .

Here note that

({ϕ̃i, ϕ̃j})1≤i,j≤r
Σ′

= TA1T
−1, {ξ0 − |α|ϕ̃1, ϕ̃j}

Σ′

= 0, 0 ≤ j ≤ d.

If {ϕ̃1, ϕ̃j}(ρ̄) = 0 for 2 ≤ j ≤ r then {ξ0, ϕ̃j}(ρ̄) = 0 for 1 ≤ j ≤ r from which
we haveW (ρ̄) = {0} as before contradicting with the assumption. Thus we may
assume {ϕ̃1, ϕ̃2}(ρ̄) ̸= 0. Writing ψ = |α|ϕ̃1 → ϕ1 and ϕ̃j → ϕj (2 ≤ j ≤ r) we
have

(1.13) p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +

r∑
j=2

ϕ2j +

d∑
j=r+1

ϕ2j

where

(1.14) θ = (1−|α|2)/|α|2, {ξ0−ϕ1, ϕj}
Σ′

= 0, j = 0, . . . , d, {ϕ1, ϕ2}(ρ̄) ̸= 0.

Thus we have the second assertion of (1.5) and the first assertion of (1.6). If
we replace ϕ̃1 by |α|ϕ̃1 then det({ϕ̃i, ϕ̃j})1≤i,j≤r is multiplied by |α|2 hence still
nonsingular. Therefore we have

det({ϕi, ϕj})1≤i,j≤r ̸= 0.

Consider

ϕ̃j =

r∑
k=2

tjkϕk, 2 ≤ j ≤ r

and choosing a suitable (smooth) orthogonal matrix T = (tjk)2≤j,k≤r with the
first row=normalized t({ϕ1, ϕ2}, . . . , {ϕ1, ϕr}) such that

r∑
j=2

ϕ̃2j =

r∑
j=2

ϕ2j , {ϕ1, ϕ̃j}
Σ′

=

r∑
k=2

tjk{ϕ1, ϕk}
Σ′

= 0, 3 ≤ j ≤ r

one can assume that

{ϕ1, ϕ̃2}(ρ̄) = (Σr
j=2{ϕ1, ϕj}2)1/2 ̸= 0, {ϕ1, ϕ̃j}

Σ′

= 0, 3 ≤ j ≤ r.

Since it is clear that {ξ0 − ϕ1, ϕ̃j}
Σ′

= 0, 0 ≤ j ≤ d writing ϕ̃j → ϕj we can
assume

p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j ,

{ξ0 − ϕ1, ϕj}
Σ′

= 0, 0 ≤ j ≤ r, {ϕ1, ϕj}
Σ′

= 0, 3 ≤ j ≤ r,

{ϕ1, ϕ2}(ρ̄) ̸= 0, det({ϕi, ϕj})1≤i,j≤r ̸= 0.

(1.15)
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Write

A1 = ({ϕi, ϕj})1≤i,j≤r
Σ′

=

(
0 ta(1)

−a(1) A2

)
, a(1) = t({ϕ1, ϕ2}, 0, . . . , 0)

and show that dimKerA2 = 1. Since A2 is skew symmetric of odd order r − 1
then dimKerA2 ≥ 1 hence rankA2 ≤ r − 2. Suppose rankA2 < r − 2 then,
expanding detA1 by cofactors of the first column (or the first row), it is clear
that

detA1 = 0

hence contradiction, thus rankA2 = r − 2. This proves dimKerA2 = 1 and
KerA2 is spanned by β = t(β2, . . . , βr) ̸= 0. Note that β2 ̸= 0. Otherwise
β̃ = t(0, 0, β3, . . . , βr) ̸= 0 verifies A1β̃ = 0 which is a contradiction. Choosing
a smooth orthogonal matrix T = (tij)2≤i,j≤r with the first row β/|β| consider
ϕ̃j =

∑r
k=2 tjkϕk so that

∑r
j=2 ϕ̃

2
j =

∑r
j=2 ϕ

2
j . Then we have

{ϕ̃2, ϕ̃j}
Σ′

= 0, 2 ≤ j ≤ r.

We also note that

{ϕ1, ϕ̃2}(ρ̄) = Σr
k=2(βk/|β|){ϕ1, ϕk}(ρ̄) = (β2/|β|){ϕ1, ϕ2}(ρ̄) ̸= 0.

Since ({ϕ̃i, ϕ̃j})2≤i,j≤r = TA2T
−1 then

dimKer({ϕ̃i, ϕ̃j})2≤i,j≤r = 1.

Writing ϕ̃j → ϕj (2 ≤ j ≤ r) one can write

p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θϕ21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j ,

{ξ0 − ϕ1, ϕj}
Σ′

= 0, 0 ≤ j ≤ d,

{ϕ2, ϕj}
Σ′

= 0, 2 ≤ j ≤ r, {ϕ1, ϕ2}(ρ̄) ̸= 0.

(1.16)

Since

A2 = ({ϕi, ϕj})2≤i,j≤r
Σ′

=

(
0 0
0 A3

)
it is clear that A3 = ({ϕi, ϕj})3≤i,j≤r is nonsingular because dimKerA2 = 1.
Here note the following

Lemma 1.3. (cf.[1]) Let p have the form (1.4) with (1.5) and (1.6). Then

θ(ρ) = 0 ⇐⇒W (ρ) ̸= {0},
θ(ρ) > 0 ⇐⇒ p is non-effectively hyperbolic at ρ and W (ρ) = {0},

(−1 <) θ(ρ) < 0 ⇐⇒ p is effectively hyperbolic at ρ.

7



Proof. Write δϕ1 → ϕ1 with δ = (1 + θ)1/2 so that p = −ξ20 + Σd
j=1ϕ

2
j . If

FpX = µX with µ ̸= 0 then X ∈ ImFp and hence X = Σd
j=0ηjHϕj

. Let
ϵ0 = −1 and ϵj = 1 for 1 ≤ j ≤ d and note that

Fp(

d∑
j=0

ηjHϕj
) =

d∑
i,j=0

ϵi{ϕj , ϕi}ηjHϕi
=

d∑
i=0

ζiHϕi
,

ζ = Aη, A = (ϵi{ϕj , ϕi})0≤i,j≤d.

(1.17)

Consider

A = A′ ⊕Od−r, A′ =

(
0 ta
a M

)
.

Note that M is nonsingular provided δ ̸= 0. From (1.17) a non-zero eigenvalue
of Fp(ρ) is also an eigenvalue of A′. Let a = Mα. Since M is skew-symmetric
we see that

(1.18) A′
(

1
−α

)
= 0, Mα = a = t({ξ0, ϕ1}, . . . , {ξ0, ϕr}).

Note that (
1 tα
0 1d

)(
µ t(Mα)
Mα µ+M

)
=

(
µ µtα
Mα µ+M

)
for tM = −M and that(

µ µtα
Mα µ+M

)(
1 0
−α 1d

)
=

(
µ− µ|α|2 µtα

−µα µ+M

)
.

Hence

det(µ+A′) = det

(
µ− µ|α|2 µtα

−µα µ+M

)
= µ det

(
1− |α|2 µtα
−α µ+M

)
.

Therefore we have

(1.19) det(µ+A′) = µG(µ), G(0) = (1− |α|2)detM

where detM > 0 because M is non-singular skew-symmetric. Assume W (ρ) =
{0}. Thanks to [3, Lemma 1.4.4 ], non-zero eigenvalues of Fp(ρ) are semisimple
(algebraic multiplicity=geometric multiplicity), denoted λ1, . . . , λr with (count-
ing multiplicity) linearly independent eigenvectors vi = Σd

j=0ηijHϕj
∈ ImFp,

these λ1, . . . , λr are also semisimple eigenvalues of A′ with linearly independent
eigenvectors ηi =

t(ηi0, . . . , ηid). Since G(µ) is a monic polynomial of order r
we must have G(µ) = Πr

j=1(µ− λj). In particluar this proves |α(ρ)| ̸= 1 and

(1.20) (1− |α(ρ)|2)detM = Πr
j=1λj(ρ), ρ ∈ Σ, W (ρ) = {0}.

AssumeW (ρ) ̸= {0} then Fp(ρ) has r−2 nonzero semi-simple eigenvalues (with
counting multiplicity). Suppose |α(ρ)| ̸= 1 so that A′ has r nonzero eigenvalues.
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It is clear that not all are semi-simple. So assume λj ̸= 0 is not a semi-simple
eigenvalue of A′ so that there is 0 ̸= η = t(η0, . . . , ηr) such that (A′ − λj)η ̸= 0
and (A′ − λj)

kη = 0 with some k ≥ 2. With v = Σr
j=0ηjHϕj

(ρ) we have

(Fp(ρ)− λj)v ̸= 0 while (Fp(ρ)− λj)
kv = 0 which shows that λj is nonzero and

non semi-simple eigenvalue of Fp. This contradiction proves that |α(ρ)| = 1.
Thus

(1.21) |α(ρ)| = 1 ⇐⇒W (ρ) ̸= {0}.

Thanks to [3, Theorem] we have either Fp(ρ) = {0,±iµj(ρ), 1 ≤ j ≤ r/2} or
Fp(ρ) = {0,±e(ρ),±iµj(ρ), 1 ≤ j ≤ r/2 − 1} if W (ρ) = {0} where e(ρ) >
0, µj(ρ) > 0. The former case we have

Πr
j=1λj = Π

r/2
j=1(iµj)(−iµj) = Π

r/2
j=1µ

2
j > 0

hence |α(ρ)| < 1 and vise versa. In the latter case we have

Πr
j=1λj = Π

r/2−1
j=1 e(−e)(iµj)(−iµj) = −e2Πr/2−1

j=1 µ2
j < 0

hence |α(ρ)| > 1 and vice versa. Therefore we have

|α(ρ)| < 1 ⇐⇒ p is non-effectively hyperbolic at ρ and W (ρ) = {0},
|α(ρ)| > 1 ⇐⇒ p is effectively hyperbolic at ρ.

In view of (1.5) one has

({ϕi, ϕj})0≤i,j≤rv
Σ′

= 0, v = t(1,−1/δ, 0, . . . , 0).

On the other hand since dimKerA′ = 1 it follows from (1.18) that α = t(−1/δ, 0, . . . , 0)
so that δ|α| = 1, that is

1 + θ = 1/|α|2 > 0.

This proves the assertion.
Thus applying this lemma one can prove (1.7). From θ = (1 − |α|2)/|α|2 it

follows from (1.20) that

(1.22) Πr
j=1λj(ρ) = (|α(ρ)|2detM(ρ))θ(ρ), ρ ∈ Σ′, W (ρ) = {0}

where |α(ρ)|2detM(ρ) is positive and smooth near ρ̄.

Remark 1.2. Let q = Σr
j=1ϕ

2
j where dϕj are linearly independent at ρ̄. Then

(1.23) Tr+A(ρ) = Tr+Fp(ρ), A = ({ϕi, ϕj})1≤i,j≤r.

At the end of this section, we will provide a slightly more general example
than (1.9). Consider

p = −ξ20 + ξ21 + (x0 + x1 − x0h(x2))
2ξ2n + ξ22 , |x0|, |x1|, |h(x2)| ≪ 1
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near (0, en) where n ≥ 3. It is clear that with ψ = x0+x1−x0h(x2) the doubly
characteristic set is given by Σ = {ξ0 = ξ1 = ξ2 = 0, ψ = 0}. One can write

p = −ξ20 +
(
ρ(ξ1 − x0h

′ξ2)
)2

+ ψ2ξ2n +
(
ρ(x0h

′ξ1 + ξ2)
)2

= −ξ20 + ϕ̃21 + ϕ̃22 + ϕ̃23

where h′ = ∂x2
h and

ρ = 1/
√
1 + x20(h

′)2, ϕ̃1 = ρ(ξ1 − x0h
′ξ2), ϕ̃2 = ψξn, ϕ̃3 = ρ(x0h

′ξ1 + ξ2).

Here note that {ϕ̃3, ϕ̃j}
Σ′

= 0 for j = 0, 1, 2. Next, we rewrite

p = −
(
ξ0 + (h− 1)ρ2(ξ1 − x0h

′ξ2)
)(
ξ0 − (h− 1)ρ2(ξ1 − x0h

′ξ2)
)

+θ
(
(h− 1)ρ2(ξ1 − x0h

′ξ2)
)2

+ ϕ̃22 + ϕ̃23, θ =
2h+ x20(h

′)2 − h2

(1− h)2
.

Then denoting

φ1 = (1− h)ρ2(ξ1 − x0h
′ξ2), φ2 = ψξn, φ3 = ρ(x0h

′ξ1 + ξ2)

we arrive at a normal form

p = −(ξ0 − φ1)(ξ0 + φ1) + θφ2
1 + φ2

2 + φ2
3,

{ξ0 − φ1, φ2} ≡ 0, {ξ0 − φ1, ξ0}
Σ′

= 0, {φ3, φj}
Σ′

= 0, j = 0, 1, 2.

2 Extension lemma

As mentioned in Remark 1.1, if θ̃|Σ′ = θ|Σ′ we can write

p = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) + (θ̃ +O2(Σ′))ϕ̃21 +Σr
j=2ϕ

2
j +Σd

j=r+1ϕ
2
j

which is still a normal form. Therefore the extension of θ|Σ′ to a full neighbor-
hood of ρ̄ becomes an important isuue.

2.1 Extension of C∞(Σ′)

Lemma 2.1. Assume that Σ is given by ϕj = 0 (0 ≤ j ≤ d) satisfying (1.5)
and (1.6). There are neighborhoods Vi of ρ̄ in Rn+1 × (Rn \ 0) verifying the
followings: for any θ(x, ξ′) ∈ C∞(Σ′∩V1) there exists an extension θ̃ ∈ C∞(V2)
such that

(2.1) {ϕ1, θ̃} = c1ϕ1 + c2ϕ2, {ϕ2, θ̃} = c3ϕ2 in V2

with smooth ci and

(2.2) {ϕj , θ̃}
Σ′

= 0, 3 ≤ j ≤ r.

Moreover we can take infΣ′∩V1
θ ≤ θ̃ ≤ supΣ′∩V1

θ in V2.
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Proof. Note that (1.5) and (1.6) imply {ξ0, ϕ2}(ρ̄) ̸= 0 hence ∂x0ϕ2(ρ̄) ̸= 0 then
one can write

ϕ2 = e2(x0 − ψ(x′, ξ′)), e2 ≠ 0, x′ = (x1, . . . , xn), ξ′ = (ξ1, . . . , ξn).

In view of (1.6) it follows that dψ(ρ̄) ̸= 0 because ϕ1 is independent of ξ0.
Therefore take Ξ0 = ξ0, X0 = x0 and X1 = ψ(x′, ξ′) which satisfy the commu-
tation relations and dΞ0, dX0, dX1, Σ

n
j=0ξjdxj are linearly independent at ρ̄

hence extend to a full homogeneous symplectic coordinates system (X,Ξ) ([2,
Theorem 21.1.9]). Changing (X,Ξ) → (x, ξ) one can assume that

ϕ2 = e2(x0 − x1).

Since (1.6) implies that ∂ξ1ϕ1(ρ̄) ̸= 0 one can write

ϕ1 = e1(ξ1 − ψ(x, ξ′′)), e1 ̸= 0, ξ′′ = (ξ2, . . . , ξn).

Now investigate Σ′ which is given by Σ′ = {ϕj = 0, j = 1, . . . , d} which is also
given by

{ϕ1 = ϕ2 = 0, ϕj + βjϕ2 = 0, 3 ≤ j ≤ r, ϕr+1 = · · · = ϕd = 0}

where smooth βj are free. Choosing βk = {ϕ1, ϕk}/{ϕ2, ϕ1} we have

(2.3) {ϕj , ϕk + βkϕ2}
Σ′

= 0, 3 ≤ k ≤ r, j = 0, 1, 2.

In fact, if j = 2 this is clear from (1.6). If j = 1 it is clear from the choice of βk.
The case j = 0 is reduced to the case j = 1 by (1.5). Writing ϕk + βkϕ2 → φk

(3 ≤ k ≤ r) and ϕj → φj (r + 1 ≤ j ≤ d) the manifold Σ′ is given by

Σ′ = {x0 − x1 = 0, ξ1 − ψ̃(x′, ξ′′) = 0, φ̃j(x
′, ξ′) = 0, 3 ≤ j ≤ d}

where

ψ̃(x′, ξ′′) = ψ(x1, x1, x
′′, ξ′′), φ̃j(x

′, ξ′) = φj(x1, x1, x
′′, ξ′).

Write ξ1 − ψ̃(x′, ξ′′) = e−1
1 ϕ1(x, ξ

′) + (x0 − x1)f and φ̃j = φj + (x0 − x1)fj .

From {ξ0, φj}
Σ′

= 0 (j ≥ 3) by (2.3) one has fj
Σ′

= 0 (j ≥ 3). Then we have

(2.4) {ξ1 − ψ̃, φ̃j}
Σ′

= 0, 3 ≤ j ≤ d

for {ϕ1, φj}
Σ′

= 0 and {x0 − x1, φj}
Σ′

= 0. It is also clear that

{φ̃i, φ̃j}
Σ′

= {φi, φj}, 3 ≤ i, j ≤ d

hence

(2.5) {φ̃i, φ̃j}
Σ′

= 0, 3 ≤ i ≤ d, r + 1 ≤ j ≤ d.
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Set Ξ0 = ξ0, X0 = x0, X1 = x1 and Ξ1 = ξ1 − ψ̃(x′, ξ′′) which satisfy the com-
mutation relations and dΞ0, dX0, dX1, dΞ1, Σ

n
j=0ξjdxj are linearly independent

at ρ̄ hence extends to a homogeneous symplectic coordinates system (X,Ξ) ([2,
Theorem 21.1.9]). Since {ξ0, φ̃j} = 0 and {x0, φ̃j} = 0 writing Φ̃j = φ̃j for

3 ≤ j ≤ d we have {Ξ0, Φ̃j} = 0 and {X0, Φ̃j} = 0 so that Φ̃j = Φ̃j(X
′,Ξ′).

Now Σ′ is given by

Σ′ = {X0 −X1 = 0,Ξ1 = 0, Φ̂j(X
′,Ξ′′) = 0, 3 ≤ j ≤ d},

Φ̂j(X
′,Ξ′′) = Φ̃j(X

′, 0,Ξ′′).

Denote Σ′′ = {Φ̂j(X
′,Ξ′′) = 0, 3 ≤ j ≤ d} and show that Σ′′ is cylindrical in

the X1 direction. Write

(2.6) Φ̃j(X
′,Ξ′) = Φ̂j(X

′,Ξ′′) + Ξ1f

then we have

∂X1
Φ̂j(X

′,Ξ′′) = {Ξ1, Φ̂j} = {Ξ1, Φ̃j − Ξ1f}
Σ′

= 0

because of (2.4) and hence

∂X1
Φ̂j(X

′,Ξ′′)
Σ′′

= Ξ1h1 + (X0 −X1)h2.

Noting that the left-hand side contains neither Ξ1 nor X0 we conclude that

∂X1Φ̂j(X
′,Ξ′′)

Σ′′

= 0, 3 ≤ j ≤ d

which proves that Σ′′ is cylindrical in the X1 direction and hence

Σ′′ = {Φ̂j(0, X
′′,Ξ′′) = 0, 3 ≤ j ≤ d}.

Denote Σ̃ = {Φ̂j(0, X
′′,Ξ′′) = 0, 3 ≤ j ≤ r}. Since the restriction of the

symplectic form to Σ̃ has constant rank r − 2 in a neighborhood of ρ̄. Indeed

det({φ̃i, φ̃j})3≤i,j≤r(ρ̄) = det({ϕi, ϕj})3≤i,j≤r(ρ̄) ̸= 0

implies rank({φ̃i, φ̃j})3≤i,j≤r(ρ̄) = r − 2 on Σ̃. Thanks to [2, Theorem 21.2.4],

there are homogeneous symplectic coordinatesX ′′,Ξ′′ such that, denoting Φ̂j(0, X
′′,Ξ′′)

by ψj(X
′′,Ξ′′), 3 ≤ j ≤ d in these new symplectic cordinates (X ′′,Ξ′′), we have

Σ̃ = {ψj = 0, 3 ≤ j ≤ r} = {X2 = · · · = Xl = Ξ2 = · · · = Ξl = 0}, r = 2l

so that Σ′ is given by

{X0 −X1 = 0,Ξ1 = 0, X2 = · · · = Xl = Ξ2 = · · · = Ξl = 0, ψj(0, X̃, 0, Ξ̃)

= 0, r + 1 ≤ j ≤ d}, X̃ = (Xl+1, . . . , Xn), Ξ̃ = (Ξl+1, . . . ,Ξn).
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Here we note that

(2.7) {Xi, ψj}
Σ′

= 0, {Ξi, ψj}
Σ′

= 0, 2 ≤ i ≤ l, r + 1 ≤ j ≤ d.

To prove this we first show

(2.8) {ψi, ψj}
Σ′

= 0, 3 ≤ i ≤ d, r + 1 ≤ j ≤ d.

Note that ∂X1Φ̃j(X
′,Ξ′)

Σ′

= 0 for 3 ≤ j ≤ d because Φ̂j(X
′,Ξ′′) = 0 on Σ′′ hence

are linear combinations of Φ̂j(0, X
′′,Ξ′′), 3 ≤ j ≤ d and (2.6). Therefore we

have

(2.9) {Φ̂i, Φ̂j} = {Φ̃i + Ξ1fi, Φ̃j + Ξ1fj}
Σ′

= 0, 3 ≤ i ≤ d, r + 1 ≤ j ≤ d

for {Φ̃i, Φ̃j}
Σ′

= 0 by (2.5). Since

{Φ̂i(0, X
′′,Ξ′′), Φ̂j(0, X

′′,Ξ′′)} Σ′

= {Φ̂i +X1gi, Φ̂j +X1gj}
Σ′

= {Φ̂i, Φ̂j}

we get (2.8). Since Xi, Ξi, 2 ≤ i ≤ l are linear combinations of ψj(X
′′,Ξ′′),

3 ≤ j ≤ r we get the assertion.
Denote Σ̃′ = {ψ̃j(X̃, Ξ̃) = ψj(0, X̃, 0, Ξ̃) = 0, r + 1 ≤ j ≤ d}. Write

ψj = ψ̃j(X̃, Ξ̃) + Σl
k=2cjkXk +Σl

k=2c
′
jkΞk, r + 1 ≤ j ≤ d.

It follows from (2.7) that cjk
Σ′

= 0 and c′jk
Σ′

= 0 hence we have

ψ̃j = ψj +O2(Σ′), r + 1 ≤ j ≤ d

which proves that {ψ̃i, ψ̃j}
Σ′

= 0, r + 1 ≤ i, j ≤ d. Since ψ̃j , r + 1 ≤ j ≤ d
contains no X0, X1, . . . , Xl and Ξ1, . . . ,Ξl we conclude that

{ψ̃i, ψ̃j}
Σ̃′

=0, r + 1 ≤ i, j ≤ d.

Since the restriction of the symplectic form to Σ̃′ has rank 0 there are homo-
geneous symplectic coordinates X̃, Ξ̃ such that Σ̃′ is given by (thanks to [2,
Theorem 21.2.4])

Ξl+1 = · · · = Ξd−l = 0.

So there exist homogeneous symplectic coordinates (X,Ξ) leaving X0,Ξ0 un-
changed such that Σ′ is given by

{X0−X1 = 0,Ξ1 = 0, X2 = · · · = Xl = Ξ2 = · · · = Ξl = 0,Ξl+1 = · · · = Ξd−l = 0}.

Let θ(x, ξ′) ∈ C∞(Σ′). Write θ(x, ξ′) = Θ(X,Ξ′). Define the extension Θ̃(X,Ξ′)
of Θ(X,Ξ′) outside Σ′ to a neighborhood of ϱ̄ (ρ̄↔ ϱ̄) by

Θ̃(X,Ξ′) = Θ(X0, X0, 0, . . . , 0, Xl+1, . . . , Xn, 0, . . . , 0,Ξd−l+1, . . . ,Ξn).
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It is clear that infΣ′ Θ ≤ Θ̃ ≤ supΣ′ Θ. Define the extension θ̃(x, ξ′) of θ(x, ξ′)
outside Σ′ by

θ̃(x, ξ′) = Θ̃(X,Ξ′).

Since {ϕ2, θ̃} = {ẽ2(X0 −X1), Θ̃} = c3(X0 −X1) for {X0 −X1, Θ̃} = ∂Ξ1Θ̃ = 0
thus we have

{ϕ2, θ̃} = c ϕ2.

Note that ϕ1 is given by ẽ1Ξ1 + f̃1(X0 −X1) then

{ϕ1, θ̃} = {ẽ1Ξ1 + f̃1(X0 −X1), Θ̃} = c̃1Ξ1 + c̃2(X0 −X1) = c1ϕ1 + c2ϕ2

because {Ξ1, Θ̃} = 0 which proves the assertion.
Since {Ξj , Θ̃} = 0 (1 ≤ j ≤ l) and {Xj , Θ̃} = 0 (0 ≤ j ≤ d− l) and

Φ̂j(0, X
′′,Ξ′′) = Σl

k=2ajkΞk +Σl
k=2bjkXk, 3 ≤ j ≤ r

and Φ̂j = Φ̂j(0, X
′′,Ξ′′) + X1gj then noting d − l ≥ l we have {Φ̂j , Θ̃} Σ′

= 0,

3 ≤ j ≤ r. Recalling Φ̃j(X
′,Ξ′) = Φ̂j(X

′,Ξ′′) + Ξ1fj we have {Φ̃j , Θ̃} Σ′

= 0,
3 ≤ j ≤ r. Therefore we have

{φ̃j , θ̃}
Σ′

= 0, 3 ≤ j ≤ r.

Since ϕj = φ̃j + (x0 − x1)gj , 3 ≤ j ≤ r we conclude that {ϕj , θ̃}
Σ′

= 0 for
3 ≤ j ≤ r.

At the end of this section, we reconsider the example (1.9);

p = −(ξ0 + ϕ1)(ξ0 − ϕ1) + θ(x)ϕ21 + ϕ22, ϕ1 = ξ1, ϕ2 = (x0 + x1)ξn.

Denoting
θ̃(x0, x

′′) = θ(x0,−x0, x′′), x′′ = (x2, . . . , xn)

one can write θ(x) = θ̃(x0, x
′′) + (x0 + x1)α(x). Applying Lemma 1.2 we can

write with ϕ̃1 = (1 + ν)ϕ1

p = −(ξ0 + ϕ̃1)(ξ0 − ϕ̃1) + θ̂ϕ̃21 + ϕ22, θ̂ = (θ − ν2 − 2ν)/(1 + ν)2.

Choosing 2ν = (x0 + x1)α(x) hence θ̂ = θ̃+ r, r = O((x0 + x1)
2) it is clear that

{ϕ̃1, θ̂} = O((x0 + x1)), {ϕ2, θ̂} = 0.

2.2 More about the extension

Denote by θ̃ the extension of θ given by Lemma 2.1 then we see that

(2.10) θ1 = θ2 =⇒ θ̃1 = θ̃2, θ̃1 + θ2 = θ̃1 + θ̃2, θ̃1θ2 = θ̃1θ̃2.
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Let θ ∈ C∞(Σ′). Taking that Hξ0−ϕ1 is tangent to Σ′ into account assume

(2.11) θ(ρ̄) = 0, {ξ0 − ϕ1, θ}(ρ̄) = 0, {ξ0 − ϕ1, {ξ0 − ϕ1, θ}} ̸= 0 at ρ̄.

Denote by θ̃ the extension of θ. Choosing a symplectic coordinates system
such that Ξ0 = ξ0 − ϕ1, X0 = x0 and denoting Θ(X,Ξ′) = θ̃(x, ξ′) we have
∂kX0

Θ(ϱ̄) = 0, k = 0, 1 and ∂2X0
Θ(ϱ̄) ̸= 0 then thanks to Malgrange preparation

theorem one can write

Θ(X,Ξ′) = E
(
(X0 −Ψ(X ′,Ξ′))2 +G(X ′,Ξ′)

)
= E(F 2 +G), E ̸= 0, G ≥ 0

where ∂X0
F = {Ξ0, F} = 1, ∂X0

G = {Ξ0, G} = 0 and ∂X0
Ψ = {Ξ0,Ψ} = 0.

Turning back to the coordinates (x, ξ) we have

θ̃ = e(f(x, ξ′)2 + g(x, ξ′)), f(x, ξ′) = x0 − ψ(x, ξ′),

{ξ0 − ϕ1, f} = 1, {ξ0 − ϕ1, g} = 0.

Denoting by ẽ, f̃, g̃ the extensions of e|Σ′ , f |Σ′ , g|Σ′ respectively we have by (2.10)

θ̃ = ẽ(f̃2 + g̃)

where ẽ, f̃ and g̃ verify (2.1) and (2.2) and that

f̃ = x0 − ψ̃, ∂x0
ψ̃(ρ̄) = 0, {ξ0, g̃}

Σ′

= 0, g̃ ≥ 0, ẽ ̸= 0

since {ξ0 − ϕ1, f̃} = 1 and {f̃, ϕ1}
Σ′

= 0.
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