Geometric results for hyperbolic operators with spectral transition of the Hamilton map (Normal form, Extension lemma)

E.Bernardi and T.Nishitani

Abstract

1 Normal form of the principal symbol

1.1 Some notations

Assume that the set $\Sigma = \{p = 0, \nabla p = 0\}$ of critical points of p = 0 is a smooth manifold of codimension d + 1 and that

(1.1) p vanishes exactly to second order on Σ .

From this assumption without restrictions one can assume that for any $\rho \in \Sigma$ there is a neighborhood of ρ where we can write

$$p = -\xi_0^2 + \sum_{j=1}^d \phi_j^2.$$

Here $d\phi_j$ ($\phi_0 = \xi_0$) are linearly independent at ρ and Σ is given by $\phi_j = 0$, $0 \le j \le d$. We assume that

(1.2)
$$\operatorname{rank} \sigma|_{\Sigma} = \operatorname{constant}$$

where $\sigma = \sum_{j=0}^{n} d\xi_j \wedge dx_j$ is the symplectic 2-form. In [6] we find detailed discussions on the Cauchy problem for op(p) under the assumptions (1.1), (1.2) and $\operatorname{Spec} F_p(\rho) \subset i\mathbb{R}, \ \rho \in \Sigma$ assuming further that there is no spectral transition of the Hamilton map F_p , that is

For any $\rho \in \Sigma$ there is a conic neighborhood V of ρ such that either Ker $F_p^2 \cap$ Im $F_p^2 = \{0\}$ or Ker $F_p^2 \cap$ Im $F_p^2 \neq \{0\}$ holds throughout $V \cap \Sigma$. Our main concern in this note is to derive normal forms of p under assumptions (1.1) and (1.2) in the presence of a spectral transition. Let us denote

$$W(\rho) = \operatorname{Ker} F_p^2(\rho) \cap \operatorname{Im} F_p^2(\rho), \quad \rho \in \Sigma$$

We sometimes denote $\xi_0 = \phi_0$. Since

$$\dim T_{\rho}\Sigma + \operatorname{rank} \sigma|_{(T_{\rho}\Sigma)^{\sigma}} = \dim (T_{\rho}\Sigma)^{\sigma} + \operatorname{rank} \sigma|_{T_{\rho}\Sigma}$$

and rank $\sigma|_{(T_{\rho}\Sigma)^{\sigma}} = \operatorname{rank}(\{\phi_i, \phi_j\}(\rho))$ we see that (1.2) is equivalent to

(1.3)
$$\operatorname{rank}(\{\phi_i, \phi_j\}) = \operatorname{constant} = r \left(= 2d + \operatorname{rank} \sigma |_{T_{\rho}\Sigma} - 2n\right)$$

where $(\{\phi_i, \phi_j\})$ denotes the $(d+1) \times (d+1)$ matrix with (i, j)-th entry $\{\phi_{i-1}, \phi_{j-1}\}$.

Lemma 1.1. Assume (1.2). If the spectral transition occurs at $\bar{\rho}$ then $W(\bar{\rho}) \neq \{0\}$.

Proof. Assume $W(\bar{\rho}) = \{0\}$. Thanks to [3, Theorem 1.4.6] (or [2, Theorem 21.5.3]) one can choose a symplectic basis such that

either
$$p_{\bar{\rho}} = -\xi_0^2 + \sum_{j=1}^{l_1} \mu_j (x_j^2 + \xi_j^2) + \sum_{j=l_1+1}^{l_2} \xi_j^2, \quad \mu_j > 0,$$

or $p_{\bar{\rho}} = e(x_0^2 - \xi_0^2) + \sum_{j=1}^{l_1-1} \mu_j (x_j^2 + \xi_j^2) + \sum_{j=l_1+1}^{l_2} \xi_j^2, \quad \mu_j > 0, \ e > 0$

where $\pm e$, $\pm i\mu_j$ are non-zero eigenvalues of $F_p(\bar{\rho})$. Here we note that $2l_1 = r$ for (1.3). From the continuity of the eigenvalues of $F_p(\rho)$ with respect to $\rho \in \Sigma$, $F_p(\rho)$ has at least r non-zero eigenvalues near $\bar{\rho}$ (with counting multiplicity). On the other hand, if $W(\rho) \neq \{0\}$ again thanks to [3, Theorem 1.4.6] (or [2, Theorem 21.5.3]) in a suitable symplectic basis

$$p_{\rho} = -\xi_0^2 + 2\xi_0\xi_1 + x_1^2 + \sum_{j=2}^{l_1'} \mu_j'(x_j^2 + \xi_j^2) + \sum_{j=l_1'+1}^{l_2'} \xi_j^2, \quad \mu_j' > 0$$

where $l'_1 = l_1$ because of (1.3) so that $F_p(\rho)$ has r-2 non-zero eigenvalues (with counting multiplicity) with a contradiction. Thus $W(\rho) = \{0\}$ near $\bar{\rho}$ hence no spectral transition occurs.

In what follows we always work near $\bar{\rho}$ but do not mention this and it should be understood that F_p is defined only on Σ near $\bar{\rho}$.

1.2 A normal form

Denote

$$\Sigma' = \{\phi_j = 0, 1 \le j \le d\}$$

and

$$f \stackrel{\Sigma'}{=} 0 \iff f = 0$$
 on Σ' near $\bar{\rho}$.

Proposition 1.1. Assume (1.1), (1.2) and that the spectral transition occurs at $\bar{\rho}$ then one can write

(1.4)
$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 + \sum_{j=2}^r \phi_j^2 + \sum_{j=r+1}^d \phi_j^2$$

with a smooth θ (positively homogeneous of degree 0) such that $1 + \theta > 0$ where

(1.5)
$$\{\phi_i, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 0 \le i \le d, \quad j \ge r+1, \quad \{\xi_0 - \phi_1, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 0 \le j \le d$$

and

(1.6)
$$\{\phi_1, \phi_2\}(\bar{\rho}) \neq 0, \ \{\phi_2, \phi_j\} \stackrel{\Sigma^*}{=} 0, \ 3 \le j \le r, \ \det(\{\phi_i, \phi_j\}(\bar{\rho}))_{3 \le i, j \le r} \neq 0.$$

If p has the form (1.4) with (1.5) and (1.6) then θ coincides with the product of nonzero eigenvalues of $F_p(\rho)$ (with counting multiplicity) on Σ' where $W(\rho) = \{0\}$, up to a smooth multiplicative factor which is positive at $\bar{\rho}$. Moreover $\theta(\rho) = 0$ if and only if $W(\rho) \neq \{0\}$ and

 $\theta(\rho) > 0 \iff p \text{ is noneffectively hyperbolic at } \rho \text{ with } W(\rho) = \{0\},\$

(1.7) $\theta(\rho) = 0 \iff p \text{ is noneffectively hyperbolic at } \rho \text{ with } W(\rho) \neq \{0\},\$ $\theta(\rho) < 0 \iff p \text{ is effectively hyperbolic at } \rho.$

This normal form is not unique. To see this we first note that

Lemma 1.2. One can rewrite

$$-(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + \hat{\theta} \tilde{\phi}_1^2$$

with $\tilde{\phi} = (1+\nu)\phi_1$ and $\hat{\theta} = (\theta - \nu^2 - 2\nu)/(1+\nu)^2$.

Proof. The proof is clear.

If $\nu \stackrel{\Sigma'}{=} 0$, it is clear that (1.5) and (1.6) hold replacing ϕ_1 by $\tilde{\phi}_1$ such that

$$p = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + \hat{\theta}\phi_1^2 + \Sigma_{j=2}^r \phi_j^2 + \Sigma_{j=r+1}^d \phi_j^2$$

is also a normal form. In this case we have $\theta \stackrel{\Sigma'}{=} \hat{\theta}$. This is no coincidence. Let $\Pi\lambda_j(\rho)$ be the product of nonzero eigenvalues of $F_p(\rho)$ (with counting multiplicity). Note that $\Pi\lambda_j(\rho)$ is real because nonzero eigenvalues of $F_p(\rho)$ are $\pm i\mu$ and possibly $\pm\lambda$ with real μ, λ . From Proposition 1.1 there is a smooth $f(\rho)$ near $\bar{\rho}$ with $f(\bar{\rho}) > 0$ such that

(1.8)
$$\Pi\lambda_j(\rho) = f(\rho)\,\theta(\rho), \quad W(\rho) = \{0\}, \ \rho \in \Sigma.$$

Since $\Pi \lambda_j(\rho)$ is invariant under changes of symplectic coordinates we could say that $\theta|_{\Sigma}$ is conformally invariant. It is also clear from (1.8) that $\Pi \lambda_j(\rho)$ smoothly extends from the set where $W(\rho) = \{0\}$ to a neighborhood of $\bar{\rho}$ on Σ by setting $\Pi \lambda_j(\rho) = 0$ if $W(\rho) \neq 0$, the extension is given by the right-hand side of (1.8).

Remark 1.1. If $\theta = \tilde{\theta} + \sum_{j=1}^{d} c_j \phi_j$ choosing ν such that $2\nu = \sum_{j=1}^{d} c_j \phi_j$ in Lemma 1.2 we have

$$\hat{\theta} = \tilde{\theta} + r, \quad r = O^2(\Sigma').$$

Therefore one can write

$$-(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + (\tilde{\theta} + O^2(\Sigma'))\tilde{\phi}_1^2.$$

That is, if $\tilde{\theta}|_{\Sigma'} = \theta|_{\Sigma'}$ one can replace θ by $\tilde{\theta} + O^2(\Sigma')$ in the normal form.

This proposition shows that transitions may occur already in very simple examples. For instance, consider

$$p = -\xi_0^2 + (1 + \theta(x))\xi_1^2 + (x_0 + x_1)^2\xi_n^2, \quad |\theta(x)| < 1, \ \theta(0) = 0$$

near $(0, e_n)$, $e_n = (0, \ldots, 0, 1)$ with $n \ge 2$. It is clear that the doubly characteristic set is given by $\Sigma = \{\xi_0 = 0, \xi_1 = 0, x_0 + x_1 = 0\}$. Writing

(1.9)
$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta(x)\phi_1^2 + \phi_2^2, \quad \phi_1 = \xi_1, \quad \phi_2 = (x_0 + x_1)\xi_n$$

it is also clear that (1.5) and (1.6) are satisfied. According to the choice of θ , every type of transition occurs.

Proof of Proposition: Denote $A = (\{\phi_i, \phi_j\})_{0 \le i,j \le d}$ (note that A is independent of ξ_0) where the rank of $A(\rho)$ is constant r. Then there exists a smooth basis $v_0, v_{r+1}, \ldots, v_d$, defined on Σ' , of KerA. One can assume $v_0 = {}^t(1, v'_0)$. To check this it suffices to prove the first entry of some $v_0(\bar{\rho}), v_{r+1}(\bar{\rho}), \ldots, v_d(\bar{\rho})$ is different form 0. Suppose the contrary. Let $X \in C_{\bar{\rho}} \cap T_{\bar{\rho}}\Sigma$ where $C_{\bar{\rho}}$ is the propagation cone. One can write $X = \Sigma_{j=0}^d \alpha_j H_{\phi_j}(\bar{\rho})$ since $C_{\bar{\rho}} \subset \mathrm{Im}F_p(\bar{\rho})$. From $X \in T_{\bar{\rho}}\Sigma$ it follows $A\alpha = 0$ hence $\alpha_0 = 0$ by assumption. Writing $X = (\bar{x}, \bar{\xi})$ we have $\bar{x}_0 = 0$. Recall $C_{\bar{\rho}} = \{X; \sigma(X, Y) \le 0, \forall Y \in \Gamma_{\bar{\rho}}\}$. Since for any (y, η') there is η_0 such that $(y, \eta) \in \Gamma_{\bar{\rho}}$ (because $\Gamma_{\bar{\rho}} = \{\eta_0 > (\sum_{j=1}^r d\phi_j(y, \eta')^2)^{1/2}\}$) we conclude X = 0. This proves that $C_{\bar{\rho}} \cap T_{\bar{\rho}}\Sigma = \{0\}$ hence $\bar{\rho}$ is effectively hyperbolic ([3, Corollary 1.4.7], [5, Lemma 1.1.2]) so that $W(\bar{\rho}) = \{0\}$ contradicting the assumption.

Since one can assume $v_0 = {}^t(1, v'_0)$ considering $v_j - (\text{the first component of } v_j)v_0$ one may assume

$$v_j = {}^t(0, v'_j(\rho)), \ v'_j(\rho) = (v'_{j1}, \dots, v'_{jd}), \ \rho \in \Sigma' \quad j = r+1, \dots, d.$$

We extend v'_{r+1}, \ldots, v'_d outside Σ' and orthonormarize them and denote the resulting ones by w'_j . We choose smooth w'_1, \ldots, w'_r such that w'_1, \ldots, w'_d will be a smooth orthonormal basis of \mathbb{R}^d . Denote

$$w_0 = {}^t(1,0), \ w_j = {}^t(0,w'_j), \ j = 1,\dots,d$$

then it is clear that $Aw_j \stackrel{\Sigma'}{=} 0$ for $j = r + 1, \ldots, d$ and w_0, w_1, \ldots, w_d is an orthonormal basis of \mathbb{R}^{d+1} . Let e_j be the unit vector in \mathbb{R}^{d+1} with j + 1 th

component 1. Denote $(e_0, \ldots, e_d) = (w_0, \ldots, w_d)P$, $P = (p_{ij})$ so that P is orthogonal matrix. It is clear that $P = 1 \oplus P'$. Denote

$$\tilde{\phi}_i = \sum_{k=0}^d p_{ik} \phi_k$$

then we have $\tilde{\phi}_0 = \phi_0$ and

$$p = -\xi_0^2 + \sum_{j=1}^d \tilde{\phi}_j^2.$$

Noting that A is skew-symmetric we see that $PAP^{-1} \stackrel{\Sigma'}{=} \tilde{A} \oplus O_{d-r}$ where O_{d-r} is the zero matrix of order d-r. Since $(\{\tilde{\phi}_i, \tilde{\phi}_j\}) \stackrel{\Sigma'}{=} PAP^{-1}$ we have the first assertion of (1.5) replacing $\tilde{\phi}_j$ by ϕ_j . Write $\tilde{\phi}_j \to \phi_j$ and denote

$$\tilde{A} = (\{\phi_i, \phi_j\})_{0 \le i, j \le r} = \begin{pmatrix} 0 & {}^t a' \\ -a' & A_1 \end{pmatrix}, \quad {}^t a' = (\{\xi_0, \phi_1\}, \dots, \{\xi_0, \phi_r\})$$

where $a'(\bar{\rho}) \neq 0$ otherwise $\{\xi_0, \phi_j\}(\bar{\rho}) = 0$ for $j = 1, \ldots, d$ so that $F_p(\bar{\rho})$ is similar to $F_{\xi_0^2} \oplus F_{\Sigma_{j=1}^d \phi_j^2}(\bar{\rho})$ and hence $W(\bar{\rho}) = \{0\}$ contradicting with assumption. We now show

(1.10)
$$A_1 = (\{\phi_i, \phi_j\})_{1 \le i, j \le r} \text{ is non-singular.}$$

Since $P = 1 \oplus P'$ there is $v = {}^{t}(1, v'), v' \neq 0$ such that $\tilde{A}v = 0$, that is $\langle a', v' \rangle = 0$ and $A_1v' = a'$. Suppose that there is $0 \neq w'$ such that $A_1w' = 0$. Note that $\langle a', w' \rangle = \langle A_1v', w' \rangle = -\langle v', A_1w' \rangle = 0$ for A_1 is skew-symmetric. This shows that $\tilde{A}z = 0$ with $z = {}^{t}(1, v' + w')$ which contradicts to dim Ker $\tilde{A} = 1$ (for the rank of \tilde{A} is r).

Define $\alpha = {}^{t}(\alpha_1, \ldots, \alpha_r) \neq 0$ and ψ by

$$A_1 \alpha = a', \quad \psi = -\sum_{j=1}^r \alpha_j \phi_j$$

then since A_1 is skew-symmetric it is clear that

$$(\{\phi_i, \phi_j\})_{0 \le i,j \le r} \begin{bmatrix} 1\\ \alpha \end{bmatrix} = \tilde{A} \begin{bmatrix} 1\\ \alpha \end{bmatrix} = 0$$

that is, one has

(1.11)
$$\{\xi_0 - \psi, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad j = 0, \dots, d$$

Choosing a smooth orthogonal matrix $T = (t_{ij})_{1 \le i,j \le r}$ with the first row $-\alpha/|\alpha|$ consider $\tilde{\phi}_j = \sum_{k=1}^r t_{jk} \phi_k$ so that $\sum_{j=1}^r \tilde{\phi}_j^2 = \sum_{j=1}^r \phi_j^2$ where

$$\tilde{\phi}_1 = \psi/|\alpha|$$

hence one can write

(1.12)
$$p = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + \sum_{j=2}^r \tilde{\phi}_j^2 + \sum_{j=r+1}^d \phi_j^2.$$

Here note that

$$(\{\tilde{\phi}_i, \tilde{\phi}_j\})_{1 \le i, j \le r} \stackrel{\Sigma'}{=} TA_1T^{-1}, \quad \{\xi_0 - |\alpha|\tilde{\phi}_1, \tilde{\phi}_j\} \stackrel{\Sigma'}{=} 0, \quad 0 \le j \le d.$$

If $\{\tilde{\phi}_1, \tilde{\phi}_j\}(\bar{\rho}) = 0$ for $2 \leq j \leq r$ then $\{\xi_0, \tilde{\phi}_j\}(\bar{\rho}) = 0$ for $1 \leq j \leq r$ from which we have $W(\bar{\rho}) = \{0\}$ as before contradicting with the assumption. Thus we may assume $\{\tilde{\phi}_1, \tilde{\phi}_2\}(\bar{\rho}) \neq 0$. Writing $\psi = |\alpha|\tilde{\phi}_1 \rightarrow \phi_1$ and $\tilde{\phi}_j \rightarrow \phi_j$ $(2 \leq j \leq r)$ we have

(1.13)
$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 + \sum_{j=2}^r \phi_j^2 + \sum_{j=r+1}^d \phi_j^2$$

where

(1.14)
$$\theta = (1 - |\alpha|^2) / |\alpha|^2$$
, $\{\xi_0 - \phi_1, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad j = 0, \dots, d, \quad \{\phi_1, \phi_2\} (\bar{\rho}) \neq 0.$

Thus we have the second assertion of (1.5) and the first assertion of (1.6). If we replace $\tilde{\phi}_1$ by $|\alpha|\tilde{\phi}_1$ then $\det(\{\tilde{\phi}_i, \tilde{\phi}_j\})_{1 \leq i,j \leq r}$ is multiplied by $|\alpha|^2$ hence still nonsingular. Therefore we have

$$\det(\{\phi_i, \phi_j\})_{1 \le i, j \le r} \neq 0.$$

Consider

$$\tilde{\phi}_j = \sum_{k=2}^r t_{jk} \phi_k, \quad 2 \le j \le r$$

and choosing a suitable (smooth) orthogonal matrix $T = (t_{jk})_{2 \le j,k \le r}$ with the first row=normalized ${}^t(\{\phi_1,\phi_2\},\ldots,\{\phi_1,\phi_r\})$ such that

$$\sum_{j=2}^{r} \tilde{\phi}_{j}^{2} = \sum_{j=2}^{r} \phi_{j}^{2}, \quad \{\phi_{1}, \tilde{\phi}_{j}\} \stackrel{\Sigma'}{=} \sum_{k=2}^{r} t_{jk} \{\phi_{1}, \phi_{k}\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le r$$

one can assume that

$$\{\phi_1, \tilde{\phi}_2\}(\bar{\rho}) = (\Sigma_{j=2}^r \{\phi_1, \phi_j\}^2)^{1/2} \neq 0, \quad \{\phi_1, \tilde{\phi}_j\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le r.$$

Since it is clear that $\{\xi_0 - \phi_1, \tilde{\phi}_j\} \stackrel{\Sigma'}{=} 0, \ 0 \le j \le d$ writing $\tilde{\phi}_j \to \phi_j$ we can assume

(1.15)
$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 + \sum_{j=2}^r \phi_j^2 + \sum_{j=r+1}^d \phi_j^2,$$
$$\{\xi_0 - \phi_1, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 0 \le j \le r, \quad \{\phi_1, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le r,$$
$$\{\phi_1, \phi_2\}(\bar{\rho}) \ne 0, \quad \det(\{\phi_i, \phi_j\})_{1 \le i, j \le r} \ne 0.$$

Write

$$A_1 = (\{\phi_i, \phi_j\})_{1 \le i, j \le r} \stackrel{\Sigma'}{=} \begin{pmatrix} 0 & {}^t a^{(1)} \\ -a^{(1)} & A_2 \end{pmatrix}, \quad a^{(1)} = {}^t (\{\phi_1, \phi_2\}, 0, \dots, 0)$$

and show that dimKer $A_2 = 1$. Since A_2 is skew symmetric of odd order r-1 then dimKer $A_2 \ge 1$ hence rank $A_2 \le r-2$. Suppose rank $A_2 < r-2$ then, expanding det A_1 by cofactors of the first column (or the first row), it is clear that

$$\det A_1 = 0$$

hence contradiction, thus rank $A_2 = r - 2$. This proves dimKer $A_2 = 1$ and Ker A_2 is spanned by $\beta = {}^t(\beta_2, \ldots, \beta_r) \neq 0$. Note that $\beta_2 \neq 0$. Otherwise $\tilde{\beta} = {}^t(0, 0, \beta_3, \ldots, \beta_r) \neq 0$ verifies $A_1 \tilde{\beta} = 0$ which is a contradiction. Choosing a smooth orthogonal matrix $T = (t_{ij})_{2 \leq i,j \leq r}$ with the first row $\beta/|\beta|$ consider $\tilde{\phi}_j = \sum_{k=2}^r t_{jk} \phi_k$ so that $\sum_{j=2}^r \tilde{\phi}_j^2 = \sum_{j=2}^r \phi_j^2$. Then we have

$$\{\tilde{\phi}_2, \tilde{\phi}_j\} \stackrel{\Sigma'}{=} 0, \quad 2 \le j \le r.$$

We also note that

$$\{\phi_1, \tilde{\phi}_2\}(\bar{\rho}) = \sum_{k=2}^r (\beta_k/|\beta|) \{\phi_1, \phi_k\}(\bar{\rho}) = (\beta_2/|\beta|) \{\phi_1, \phi_2\}(\bar{\rho}) \neq 0.$$

Since $(\{\tilde{\phi}_i, \tilde{\phi}_j\})_{2 \leq i,j \leq r} = TA_2T^{-1}$ then

$$\dim \operatorname{Ker}(\{\tilde{\phi}_i, \tilde{\phi}_j\})_{2 \le i,j \le r} = 1.$$

Writing $\tilde{\phi}_j \to \phi_j \ (2 \le j \le r)$ one can write

(1.16)

$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta \phi_1^2 + \sum_{j=2}^r \phi_j^2 + \sum_{j=r+1}^d \phi_j^2,$$

$$\{\xi_0 - \phi_1, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 0 \le j \le d,$$

$$\{\phi_2, \phi_j\} \stackrel{\Sigma'}{=} 0, \quad 2 \le j \le r, \quad \{\phi_1, \phi_2\}(\bar{\rho}) \ne 0.$$

Since

$$A_2 = (\{\phi_i, \phi_j\})_{2 \le i, j \le r} \stackrel{\Sigma'}{=} \begin{pmatrix} 0 & 0\\ 0 & A_3 \end{pmatrix}$$

it is clear that $A_3 = (\{\phi_i, \phi_j\})_{3 \le i,j \le r}$ is nonsingular because dimKer $A_2 = 1$. Here note the following

Lemma 1.3. (cf.[1]) Let p have the form (1.4) with (1.5) and (1.6). Then

$$\begin{split} \theta(\rho) &= 0 \Longleftrightarrow W(\rho) \neq \{0\},\\ \theta(\rho) &> 0 \Longleftrightarrow p \text{ is non-effectively hyperbolic at } \rho \text{ and } W(\rho) = \{0\},\\ (-1 <) \ \theta(\rho) < 0 \Longleftrightarrow p \text{ is effectively hyperbolic at } \rho. \end{split}$$

Proof. Write $\delta\phi_1 \to \phi_1$ with $\delta = (1+\theta)^{1/2}$ so that $p = -\xi_0^2 + \sum_{j=1}^d \phi_j^2$. If $F_p X = \mu X$ with $\mu \neq 0$ then $X \in \operatorname{Im} F_p$ and hence $X = \sum_{j=0}^d \eta_j H_{\phi_j}$. Let $\epsilon_0 = -1$ and $\epsilon_j = 1$ for $1 \leq j \leq d$ and note that

(1.17)
$$F_p(\sum_{j=0}^d \eta_j H_{\phi_j}) = \sum_{i,j=0}^d \epsilon_i \{\phi_j, \phi_i\} \eta_j H_{\phi_i} = \sum_{i=0}^d \zeta_i H_{\phi_i},$$
$$\zeta = A\eta, \quad A = (\epsilon_i \{\phi_j, \phi_i\})_{0 \le i,j \le d}.$$

Consider

$$A = A' \oplus O_{d-r}, \quad A' = \begin{pmatrix} 0 & {}^t a \\ a & M \end{pmatrix}$$

Note that M is nonsingular provided $\delta \neq 0$. From (1.17) a non-zero eigenvalue of $F_p(\rho)$ is also an eigenvalue of A'. Let $a = M\alpha$. Since M is skew-symmetric we see that

(1.18)
$$A' \begin{pmatrix} 1 \\ -\alpha \end{pmatrix} = 0, \quad M\alpha = a = {}^{t}(\{\xi_0, \phi_1\}, \dots, \{\xi_0, \phi_r\}).$$

Note that

$$\begin{pmatrix} 1 & {}^{t}\alpha \\ 0 & 1_d \end{pmatrix} \begin{pmatrix} \mu & {}^{t}(M\alpha) \\ M\alpha & \mu + M \end{pmatrix} = \begin{pmatrix} \mu & \mu^{t}\alpha \\ M\alpha & \mu + M \end{pmatrix}$$

for ${}^{t}M = -M$ and that

$$\begin{pmatrix} \mu & \mu^t \alpha \\ M\alpha & \mu + M \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\alpha & 1_d \end{pmatrix} = \begin{pmatrix} \mu - \mu |\alpha|^2 & \mu^t \alpha \\ -\mu\alpha & \mu + M \end{pmatrix}$$

Hence

$$\det(\mu + A') = \det \begin{pmatrix} \mu - \mu |\alpha|^2 & \mu^t \alpha \\ -\mu \alpha & \mu + M \end{pmatrix} = \mu \det \begin{pmatrix} 1 - |\alpha|^2 & \mu^t \alpha \\ -\alpha & \mu + M \end{pmatrix}.$$

Therefore we have

(1.19)
$$\det(\mu + A') = \mu G(\mu), \quad G(0) = (1 - |\alpha|^2) \det M$$

where det M > 0 because M is non-singular skew-symmetric. Assume $W(\rho) = \{0\}$. Thanks to [3, Lemma 1.4.4], non-zero eigenvalues of $F_p(\rho)$ are semisimple (algebraic multiplicity=geometric multiplicity), denoted $\lambda_1, \ldots, \lambda_r$ with (counting multiplicity) linearly independent eigenvectors $v_i = \sum_{j=0}^{d} \eta_{ij} H_{\phi_j} \in \text{Im} F_p$, these $\lambda_1, \ldots, \lambda_r$ are also semisimple eigenvalues of A' with linearly independent eigenvectors $\eta_i = {}^t(\eta_{i0}, \ldots, \eta_{id})$. Since $G(\mu)$ is a monic polynomial of order r we must have $G(\mu) = \prod_{j=1}^r (\mu - \lambda_j)$. In particular this proves $|\alpha(\rho)| \neq 1$ and

(1.20)
$$(1 - |\alpha(\rho)|^2) \det M = \prod_{j=1}^r \lambda_j(\rho), \quad \rho \in \Sigma, \quad W(\rho) = \{0\}.$$

Assume $W(\rho) \neq \{0\}$ then $F_p(\rho)$ has r-2 nonzero semi-simple eigenvalues (with counting multiplicity). Suppose $|\alpha(\rho)| \neq 1$ so that A' has r nonzero eigenvalues.

It is clear that not all are semi-simple. So assume $\lambda_j \neq 0$ is not a semi-simple eigenvalue of A' so that there is $0 \neq \eta = {}^t(\eta_0, \ldots, \eta_r)$ such that $(A' - \lambda_j)\eta \neq 0$ and $(A' - \lambda_j)^k \eta = 0$ with some $k \geq 2$. With $v = \sum_{j=0}^r \eta_j H_{\phi_j}(\rho)$ we have $(F_p(\rho) - \lambda_j)v \neq 0$ while $(F_p(\rho) - \lambda_j)^k v = 0$ which shows that λ_j is nonzero and non semi-simple eigenvalue of F_p . This contradiction proves that $|\alpha(\rho)| = 1$. Thus

(1.21)
$$|\alpha(\rho)| = 1 \Longleftrightarrow W(\rho) \neq \{0\}.$$

Thanks to [3, Theorem] we have either $F_p(\rho) = \{0, \pm i\mu_j(\rho), 1 \le j \le r/2\}$ or $F_p(\rho) = \{0, \pm e(\rho), \pm i\mu_j(\rho), 1 \le j \le r/2 - 1\}$ if $W(\rho) = \{0\}$ where $e(\rho) > 0, \mu_j(\rho) > 0$. The former case we have

$$\Pi_{j=1}^r \lambda_j = \Pi_{j=1}^{r/2} (i\mu_j)(-i\mu_j) = \Pi_{j=1}^{r/2} \mu_j^2 > 0$$

hence $|\alpha(\rho)| < 1$ and vise versa. In the latter case we have

$$\Pi_{j=1}^r \lambda_j = \Pi_{j=1}^{r/2-1} e(-e)(i\mu_j)(-i\mu_j) = -e^2 \Pi_{j=1}^{r/2-1} \mu_j^2 < 0$$

hence $|\alpha(\rho)| > 1$ and vice versa. Therefore we have

 $\begin{aligned} |\alpha(\rho)| < 1 &\iff p \text{ is non-effectively hyperbolic at } \rho \text{ and } W(\rho) = \{0\}, \\ |\alpha(\rho)| > 1 &\iff p \text{ is effectively hyperbolic at } \rho. \end{aligned}$

In view of (1.5) one has

$$(\{\phi_i, \phi_j\})_{0 \le i, j \le r} v \stackrel{\Sigma'}{=} 0, \quad v = {}^t (1, -1/\delta, 0, \dots, 0).$$

On the other hand since dimKer A' = 1 it follows from (1.18) that $\alpha = {}^t(-1/\delta, 0, ..., 0)$ so that $\delta |\alpha| = 1$, that is

$$1 + \theta = 1/|\alpha|^2 > 0.$$

This proves the assertion.

Thus applying this lemma one can prove (1.7). From $\theta = (1 - |\alpha|^2)/|\alpha|^2$ it follows from (1.20) that

(1.22)
$$\Pi_{j=1}^r \lambda_j(\rho) = (|\alpha(\rho)|^2 \det M(\rho))\theta(\rho), \quad \rho \in \Sigma', \quad W(\rho) = \{0\}$$

where $|\alpha(\rho)|^2 \det M(\rho)$ is positive and smooth near $\bar{\rho}$.

Remark 1.2. Let $q = \sum_{j=1}^{r} \phi_j^2$ where $d\phi_j$ are linearly independent at $\bar{\rho}$. Then

(1.23)
$$\operatorname{Tr}^{+} A(\rho) = \operatorname{Tr}^{+} F_{p}(\rho), \quad A = (\{\phi_{i}, \phi_{j}\})_{1 \le i, j \le r}.$$

At the end of this section, we will provide a slightly more general example than (1.9). Consider

$$p = -\xi_0^2 + \xi_1^2 + (x_0 + x_1 - x_0 h(x_2))^2 \xi_n^2 + \xi_2^2, \quad |x_0|, \ |x_1|, \ |h(x_2)| \ll 1$$

near $(0, e_n)$ where $n \ge 3$. It is clear that with $\psi = x_0 + x_1 - x_0 h(x_2)$ the doubly characteristic set is given by $\Sigma = \{\xi_0 = \xi_1 = \xi_2 = 0, \psi = 0\}$. One can write

$$p = -\xi_0^2 + \left(\rho(\xi_1 - x_0 h'\xi_2)\right)^2 + \psi^2 \xi_n^2 + \left(\rho(x_0 h'\xi_1 + \xi_2)\right)^2$$
$$= -\xi_0^2 + \tilde{\phi}_1^2 + \tilde{\phi}_2^2 + \tilde{\phi}_3^2$$

where $h' = \partial_{x_2} h$ and

$$\rho = 1/\sqrt{1 + x_0^2(h')^2}, \quad \tilde{\phi}_1 = \rho(\xi_1 - x_0 h' \xi_2), \quad \tilde{\phi}_2 = \psi \xi_n, \quad \tilde{\phi}_3 = \rho(x_0 h' \xi_1 + \xi_2).$$

Here note that $\{\tilde{\phi}_3, \tilde{\phi}_j\} \stackrel{\Sigma'}{=} 0$ for j = 0, 1, 2. Next, we rewrite

$$p = -(\xi_0 + (h-1)\rho^2(\xi_1 - x_0h'\xi_2))(\xi_0 - (h-1)\rho^2(\xi_1 - x_0h'\xi_2)) +\theta((h-1)\rho^2(\xi_1 - x_0h'\xi_2))^2 + \tilde{\phi}_2^2 + \tilde{\phi}_3^2, \quad \theta = \frac{2h + x_0^2(h')^2 - h^2}{(1-h)^2}.$$

Then denoting

$$\varphi_1 = (1-h)\rho^2(\xi_1 - x_0h'\xi_2), \quad \varphi_2 = \psi\xi_n, \quad \varphi_3 = \rho(x_0h'\xi_1 + \xi_2)$$

we arrive at a normal form

$$p = -(\xi_0 - \varphi_1)(\xi_0 + \varphi_1) + \theta \varphi_1^2 + \varphi_2^2 + \varphi_3^2,$$

$$\{\xi_0 - \varphi_1, \varphi_2\} \equiv 0, \quad \{\xi_0 - \varphi_1, \xi_0\} \stackrel{\Sigma'}{=} 0, \quad \{\varphi_3, \varphi_j\} \stackrel{\Sigma'}{=} 0, \quad j = 0, 1, 2.$$

2 Extension lemma

As mentioned in Remark 1.1, if $\tilde{\theta}|_{\Sigma'} = \theta|_{\Sigma'}$ we can write

$$p = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + (\tilde{\theta} + O^2(\Sigma'))\tilde{\phi}_1^2 + \Sigma_{j=2}^r \phi_j^2 + \Sigma_{j=r+1}^d \phi_j^2$$

which is still a normal form. Therefore the extension of $\theta|_{\Sigma'}$ to a full neighborhood of $\bar{\rho}$ becomes an important issue.

2.1 Extension of $C^{\infty}(\Sigma')$

Lemma 2.1. Assume that Σ is given by $\phi_j = 0$ $(0 \le j \le d)$ satisfying (1.5) and (1.6). There are neighborhoods V_i of $\bar{\rho}$ in $\mathbb{R}^{n+1} \times (\mathbb{R}^n \setminus 0)$ verifying the followings: for any $\theta(x, \xi') \in C^{\infty}(\Sigma' \cap V_1)$ there exists an extension $\tilde{\theta} \in C^{\infty}(V_2)$ such that

(2.1)
$$\{\phi_1, \hat{\theta}\} = c_1\phi_1 + c_2\phi_2, \quad \{\phi_2, \hat{\theta}\} = c_3\phi_2 \quad in \ V_2$$

with smooth c_i and

(2.2)
$$\{\phi_j, \tilde{\theta}\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le r.$$

Moreover we can take $\inf_{\Sigma' \cap V_1} \theta \leq \tilde{\theta} \leq \sup_{\Sigma' \cap V_1} \theta$ in V_2 .

Proof. Note that (1.5) and (1.6) imply $\{\xi_0, \phi_2\}(\bar{\rho}) \neq 0$ hence $\partial_{x_0}\phi_2(\bar{\rho}) \neq 0$ then one can write

$$\phi_2 = e_2(x_0 - \psi(x', \xi')), \quad e_2 \neq 0, \quad x' = (x_1, \dots, x_n), \quad \xi' = (\xi_1, \dots, \xi_n).$$

In view of (1.6) it follows that $d\psi(\bar{\rho}) \neq 0$ because ϕ_1 is independent of ξ_0 . Therefore take $\Xi_0 = \xi_0$, $X_0 = x_0$ and $X_1 = \psi(x', \xi')$ which satisfy the commutation relations and $d\Xi_0$, dX_0 , dX_1 , $\sum_{j=0}^n \xi_j dx_j$ are linearly independent at $\bar{\rho}$ hence extend to a full homogeneous symplectic coordinates system (X, Ξ) ([2, Theorem 21.1.9]). Changing $(X, \Xi) \to (x, \xi)$ one can assume that

$$\phi_2 = e_2(x_0 - x_1).$$

Since (1.6) implies that $\partial_{\xi_1} \phi_1(\bar{\rho}) \neq 0$ one can write

$$\phi_1 = e_1(\xi_1 - \psi(x, \xi'')), \quad e_1 \neq 0, \quad \xi'' = (\xi_2, \dots, \xi_n).$$

Now investigate Σ' which is given by $\Sigma' = \{\phi_j = 0, j = 1, ..., d\}$ which is also given by

$$\{\phi_1 = \phi_2 = 0, \phi_j + \beta_j \phi_2 = 0, 3 \le j \le r, \phi_{r+1} = \dots = \phi_d = 0\}$$

where smooth β_j are free. Choosing $\beta_k = \{\phi_1, \phi_k\}/\{\phi_2, \phi_1\}$ we have

(2.3)
$$\{\phi_j, \phi_k + \beta_k \phi_2\} \stackrel{\Sigma'}{=} 0, \quad 3 \le k \le r, \ j = 0, 1, 2.$$

In fact, if j = 2 this is clear from (1.6). If j = 1 it is clear from the choice of β_k . The case j = 0 is reduced to the case j = 1 by (1.5). Writing $\phi_k + \beta_k \phi_2 \rightarrow \varphi_k$ $(3 \le k \le r)$ and $\phi_j \rightarrow \varphi_j$ $(r+1 \le j \le d)$ the manifold Σ' is given by

$$\Sigma' = \{x_0 - x_1 = 0, \xi_1 - \tilde{\psi}(x', \xi'') = 0, \tilde{\varphi}_j(x', \xi') = 0, 3 \le j \le d\}$$

where

$$\tilde{\psi}(x',\xi'') = \psi(x_1,x_1,x'',\xi''), \quad \tilde{\varphi}_j(x',\xi') = \varphi_j(x_1,x_1,x'',\xi')$$

Write $\xi_1 - \tilde{\psi}(x', \xi'') = e_1^{-1} \phi_1(x, \xi') + (x_0 - x_1) f$ and $\tilde{\varphi}_j = \varphi_j + (x_0 - x_1) f_j$. From $\{\xi_0, \varphi_j\} \stackrel{\Sigma'}{=} 0$ $(j \ge 3)$ by (2.3) one has $f_j \stackrel{\Sigma'}{=} 0$ $(j \ge 3)$. Then we have

(2.4)
$$\{\xi_1 - \tilde{\psi}, \tilde{\varphi}_j\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le d$$

for $\{\phi_1, \varphi_j\} \stackrel{\Sigma'}{=} 0$ and $\{x_0 - x_1, \varphi_j\} \stackrel{\Sigma'}{=} 0$. It is also clear that

$$\{\tilde{\varphi}_i, \tilde{\varphi}_j\} \stackrel{\Sigma'}{=} \{\varphi_i, \varphi_j\}, \quad 3 \le i, j \le d$$

hence

(2.5)
$$\{\tilde{\varphi}_i, \tilde{\varphi}_j\} \stackrel{\Sigma'}{=} 0, \quad 3 \le i \le d, \ r+1 \le j \le d.$$

Set $\Xi_0 = \xi_0$, $X_0 = x_0$, $X_1 = x_1$ and $\Xi_1 = \xi_1 - \tilde{\psi}(x', \xi'')$ which satisfy the commutation relations and $d\Xi_0$, dX_0 , dX_1 , $d\Xi_1$, $\sum_{j=0}^n \xi_j dx_j$ are linearly independent at $\bar{\rho}$ hence extends to a homogeneous symplectic coordinates system (X, Ξ) ([2, Theorem 21.1.9]). Since $\{\xi_0, \tilde{\varphi}_j\} = 0$ and $\{x_0, \tilde{\varphi}_j\} = 0$ writing $\tilde{\Phi}_j = \tilde{\varphi}_j$ for $3 \leq j \leq d$ we have $\{\Xi_0, \tilde{\Phi}_j\} = 0$ and $\{X_0, \tilde{\Phi}_j\} = 0$ so that $\tilde{\Phi}_j = \tilde{\Phi}_j(X', \Xi')$. Now Σ' is given by

$$\Sigma' = \{X_0 - X_1 = 0, \Xi_1 = 0, \hat{\Phi}_j(X', \Xi'') = 0, 3 \le j \le d\}, \\ \hat{\Phi}_j(X', \Xi'') = \tilde{\Phi}_j(X', 0, \Xi'').$$

Denote $\Sigma'' = \{\hat{\Phi}_j(X',\Xi'') = 0, 3 \le j \le d\}$ and show that Σ'' is cylindrical in the X_1 direction. Write

(2.6)
$$\tilde{\Phi}_j(X',\Xi') = \hat{\Phi}_j(X',\Xi'') + \Xi_1 f$$

then we have

$$\partial_{X_1}\hat{\Phi}_j(X',\Xi'') = \{\Xi_1,\hat{\Phi}_j\} = \{\Xi_1,\tilde{\Phi}_j - \Xi_1f\} \stackrel{\Sigma'}{=} 0$$

because of (2.4) and hence

$$\partial_{X_1}\hat{\Phi}_j(X',\Xi'') \stackrel{\Sigma''}{=} \Xi_1 h_1 + (X_0 - X_1)h_2.$$

Noting that the left-hand side contains neither Ξ_1 nor X_0 we conclude that

$$\partial_{X_1} \hat{\Phi}_j(X', \Xi'') \stackrel{\Sigma''}{=} 0, \quad 3 \le j \le d$$

which proves that Σ'' is cylindrical in the X_1 direction and hence

$$\Sigma'' = \{ \hat{\Phi}_j(0, X'', \Xi'') = 0, 3 \le j \le d \}.$$

Denote $\tilde{\Sigma} = \{\hat{\Phi}_j(0, X'', \Xi'') = 0, 3 \leq j \leq r\}$. Since the restriction of the symplectic form to $\tilde{\Sigma}$ has constant rank r-2 in a neighborhood of $\bar{\rho}$. Indeed

$$\det(\{\tilde{\varphi}_i, \tilde{\varphi}_j\})_{3 \le i,j \le r}(\bar{\rho}) = \det(\{\phi_i, \phi_j\})_{3 \le i,j \le r}(\bar{\rho}) \neq 0$$

implies rank $(\{\tilde{\varphi}_i, \tilde{\varphi}_j\})_{3 \leq i,j \leq r}(\bar{\rho}) = r - 2$ on $\tilde{\Sigma}$. Thanks to [2, Theorem 21.2.4], there are homogeneous symplectic coordinates X'', Ξ'' such that, denoting $\hat{\Phi}_j(0, X'', \Xi'')$ by $\psi_j(X'', \Xi''), 3 \leq j \leq d$ in these new symplectic coordinates (X'', Ξ'') , we have

$$\tilde{\Sigma} = \{\psi_j = 0, 3 \le j \le r\} = \{X_2 = \dots = X_l = \Xi_2 = \dots = \Xi_l = 0\}, \quad r = 2l$$

so that Σ' is given by

$$\{X_0 - X_1 = 0, \Xi_1 = 0, X_2 = \dots = X_l = \Xi_2 = \dots = \Xi_l = 0, \psi_j(0, \tilde{X}, 0, \tilde{\Xi}) \\ = 0, r+1 \le j \le d\}, \quad \tilde{X} = (X_{l+1}, \dots, X_n), \ \tilde{\Xi} = (\Xi_{l+1}, \dots, \Xi_n).$$

Here we note that

(2.7)
$$\{X_i, \psi_j\} \stackrel{\Sigma'}{=} 0, \quad \{\Xi_i, \psi_j\} \stackrel{\Sigma'}{=} 0, \quad 2 \le i \le l, \ r+1 \le j \le d.$$

To prove this we first show

(2.8)
$$\{\psi_i, \psi_j\} \stackrel{\Sigma}{=} 0, \quad 3 \le i \le d, \ r+1 \le j \le d.$$

Note that $\partial_{X_1} \tilde{\Phi}_j(X', \Xi') \stackrel{\Sigma'}{=} 0$ for $3 \leq j \leq d$ because $\hat{\Phi}_j(X', \Xi'') = 0$ on Σ'' hence are linear combinations of $\hat{\Phi}_j(0, X'', \Xi'')$, $3 \leq j \leq d$ and (2.6). Therefore we have

(2.9)
$$\{\hat{\Phi}_i, \hat{\Phi}_j\} = \{\tilde{\Phi}_i + \Xi_1 f_i, \tilde{\Phi}_j + \Xi_1 f_j\} \stackrel{\Sigma'}{=} 0, \quad 3 \le i \le d, \ r+1 \le j \le d$$

for $\{\tilde{\Phi}_i, \tilde{\Phi}_j\} \stackrel{\Sigma'}{=} 0$ by (2.5). Since

$$\{\hat{\Phi}_{i}(0, X'', \Xi''), \hat{\Phi}_{j}(0, X'', \Xi'')\} \stackrel{\Sigma'}{=} \{\hat{\Phi}_{i} + X_{1}g_{i}, \hat{\Phi}_{j} + X_{1}g_{j}\} \stackrel{\Sigma'}{=} \{\hat{\Phi}_{i}, \hat{\Phi}_{j}\}$$

we get (2.8). Since X_i , Ξ_i , $2 \le i \le l$ are linear combinations of $\psi_j(X'', \Xi'')$, $3 \le j \le r$ we get the assertion.

Denote $\tilde{\Sigma'} = \{\tilde{\psi}_j(\tilde{X}, \tilde{\Xi}) = \psi_j(0, \tilde{X}, 0, \tilde{\Xi}) = 0, r+1 \le j \le d\}$. Write

$$\psi_j = \tilde{\psi}_j(\tilde{X}, \tilde{\Xi}) + \sum_{k=2}^l c_{jk} X_k + \sum_{k=2}^l c'_{jk} \Xi_k, \quad r+1 \le j \le d.$$

It follows from (2.7) that $c_{jk} \stackrel{\Sigma'}{=} 0$ and $c'_{jk} \stackrel{\Sigma'}{=} 0$ hence we have

$$\tilde{\psi}_j = \psi_j + O^2(\Sigma'), \quad r+1 \le j \le d$$

which proves that $\{\tilde{\psi}_i, \tilde{\psi}_j\} \stackrel{\Sigma'}{=} 0$, $r+1 \leq i, j \leq d$. Since $\tilde{\psi}_j, r+1 \leq j \leq d$ contains no X_0, X_1, \ldots, X_l and Ξ_1, \ldots, Ξ_l we conclude that

$$\{\tilde{\psi}_i, \tilde{\psi}_j\} \stackrel{\Sigma'}{=} 0, \quad r+1 \le i, j \le d.$$

Since the restriction of the symplectic form to $\tilde{\Sigma}'$ has rank 0 there are homogeneous symplectic coordinates $\tilde{X}, \tilde{\Xi}$ such that $\tilde{\Sigma}'$ is given by (thanks to [2, Theorem 21.2.4])

$$\Xi_{l+1} = \cdots = \Xi_{d-l} = 0.$$

So there exist homogeneous symplectic coordinates (X, Ξ) leaving X_0, Ξ_0 unchanged such that Σ' is given by

$$\{X_0 - X_1 = 0, \Xi_1 = 0, X_2 = \dots = X_l = \Xi_2 = \dots = \Xi_l = 0, \Xi_{l+1} = \dots = \Xi_{d-l} = 0\}$$

Let $\theta(x,\xi') \in C^{\infty}(\Sigma')$. Write $\theta(x,\xi') = \Theta(X,\Xi')$. Define the extension $\tilde{\Theta}(X,\Xi')$ of $\Theta(X,\Xi')$ outside Σ' to a neighborhood of $\bar{\varrho}$ ($\bar{\rho} \leftrightarrow \bar{\varrho}$) by

$$\hat{\Theta}(X,\Xi') = \Theta(X_0, X_0, 0, \dots, 0, X_{l+1}, \dots, X_n, 0, \dots, 0, \Xi_{d-l+1}, \dots, \Xi_n).$$

It is clear that $\inf_{\Sigma'} \Theta \leq \tilde{\Theta} \leq \sup_{\Sigma'} \Theta$. Define the extension $\tilde{\theta}(x,\xi')$ of $\theta(x,\xi')$ outside Σ' by

$$\tilde{\theta}(x,\xi') = \tilde{\Theta}(X,\Xi').$$

Since $\{\phi_2, \tilde{\theta}\} = \{\tilde{e}_2(X_0 - X_1), \tilde{\Theta}\} = c_3(X_0 - X_1)$ for $\{X_0 - X_1, \tilde{\Theta}\} = \partial_{\Xi_1}\tilde{\Theta} = 0$ thus we have

$$\{\phi_2,\theta\}=c\,\phi_2.$$

Note that ϕ_1 is given by $\tilde{e}_1 \Xi_1 + \tilde{f}_1 (X_0 - X_1)$ then

$$\{\phi_1, \tilde{\theta}\} = \{\tilde{e}_1 \Xi_1 + \tilde{f}_1 (X_0 - X_1), \tilde{\Theta}\} = \tilde{c}_1 \Xi_1 + \tilde{c}_2 (X_0 - X_1) = c_1 \phi_1 + c_2 \phi_2$$

because $\{\Xi_1, \tilde{\Theta}\} = 0$ which proves the assertion. Since $\{\Xi_j, \tilde{\Theta}\} = 0$ $(1 \le j \le l)$ and $\{X_j, \tilde{\Theta}\} = 0$ $(0 \le j \le d - l)$ and

$$\hat{\Phi}_j(0, X'', \Xi'') = \Sigma_{k=2}^l a_{jk} \Xi_k + \Sigma_{k=2}^l b_{jk} X_k, \quad 3 \le j \le r$$

and $\hat{\Phi}_j = \hat{\Phi}_j(0, X'', \Xi'') + X_1 g_j$ then noting $d - l \ge l$ we have $\{\hat{\Phi}_j, \tilde{\Theta}\} \stackrel{\Sigma'}{=} 0$, $3 \leq j \leq r$. Recalling $\tilde{\Phi}_j(X', \Xi') = \hat{\Phi}_j(X', \Xi'') + \Xi_1 f_j$ we have $\{\tilde{\Phi}_j, \tilde{\Theta}\} \stackrel{\Sigma'}{=} 0$, $3 \leq j \leq r$. Therefore we have

$$\{\tilde{\varphi}_j, \tilde{\theta}\} \stackrel{\Sigma'}{=} 0, \quad 3 \le j \le r.$$

Since $\phi_j = \tilde{\varphi}_j + (x_0 - x_1)g_j$, $3 \le j \le r$ we conclude that $\{\phi_j, \tilde{\theta}\} \stackrel{\Sigma'}{=} 0$ for $3 \leq j \leq r$.

At the end of this section, we reconsider the example (1.9);

$$p = -(\xi_0 + \phi_1)(\xi_0 - \phi_1) + \theta(x)\phi_1^2 + \phi_2^2, \quad \phi_1 = \xi_1, \quad \phi_2 = (x_0 + x_1)\xi_n.$$

Denoting

$$\tilde{\theta}(x_0, x'') = \theta(x_0, -x_0, x''), \quad x'' = (x_2, \dots, x_n)$$

one can write $\theta(x) = \tilde{\theta}(x_0, x'') + (x_0 + x_1)\alpha(x)$. Applying Lemma 1.2 we can write with $\tilde{\phi}_1 = (1+\nu)\phi_1$

$$p = -(\xi_0 + \tilde{\phi}_1)(\xi_0 - \tilde{\phi}_1) + \hat{\theta}\tilde{\phi}_1^2 + \phi_2^2, \quad \hat{\theta} = (\theta - \nu^2 - 2\nu)/(1 + \nu)^2$$

Choosing $2\nu = (x_0 + x_1)\alpha(x)$ hence $\hat{\theta} = \tilde{\theta} + r$, $r = O((x_0 + x_1)^2)$ it is clear that

$$\{\tilde{\phi}_1, \hat{\theta}\} = O((x_0 + x_1)), \quad \{\phi_2, \hat{\theta}\} = 0.$$

2.2More about the extension

Denote by $\tilde{\theta}$ the extension of θ given by Lemma 2.1 then we see that

_

(2.10)
$$\theta_1 = \theta_2 \Longrightarrow \tilde{\theta}_1 = \tilde{\theta}_2, \quad \tilde{\theta_1} + \tilde{\theta}_2 = \tilde{\theta}_1 + \tilde{\theta}_2, \quad \tilde{\theta_1} \tilde{\theta}_2 = \tilde{\theta}_1 \tilde{\theta}_2.$$

Let $\theta \in C^{\infty}(\Sigma')$. Taking that $H_{\xi_0-\phi_1}$ is tangent to Σ' into account assume

(2.11)
$$\theta(\bar{\rho}) = 0, \quad \{\xi_0 - \phi_1, \theta\}(\bar{\rho}) = 0, \quad \{\xi_0 - \phi_1, \{\xi_0 - \phi_1, \theta\}\} \neq 0 \text{ at } \bar{\rho}.$$

Denote by $\tilde{\theta}$ the extension of θ . Choosing a symplectic coordinates system such that $\Xi_0 = \xi_0 - \phi_1$, $X_0 = x_0$ and denoting $\Theta(X, \Xi') = \tilde{\theta}(x, \xi')$ we have $\partial_{X_0}^k \Theta(\bar{\varrho}) = 0$, k = 0, 1 and $\partial_{X_0}^2 \Theta(\bar{\varrho}) \neq 0$ then thanks to Malgrange preparation theorem one can write

$$\Theta(X,\Xi') = E((X_0 - \Psi(X',\Xi'))^2 + G(X',\Xi')) = E(F^2 + G), \quad E \neq 0, \ G \ge 0$$

where $\partial_{X_0}F = \{\Xi_0, F\} = 1$, $\partial_{X_0}G = \{\Xi_0, G\} = 0$ and $\partial_{X_0}\Psi = \{\Xi_0, \Psi\} = 0$. Turning back to the coordinates (x, ξ) we have

$$\theta = e(f(x,\xi')^2 + g(x,\xi')), \quad f(x,\xi') = x_0 - \psi(x,\xi'),$$

$$\{\xi_0 - \phi_1, f\} = 1, \quad \{\xi_0 - \phi_1, g\} = 0.$$

Denoting by $\tilde{e}, \tilde{f}, \tilde{g}$ the extensions of $e|_{\Sigma'}, f|_{\Sigma'}, g|_{\Sigma'}$ respectively we have by (2.10)

$$\theta = \tilde{e}(f^2 + \tilde{g})$$

where \tilde{e}, \tilde{f} and \tilde{g} verify (2.1) and (2.2) and that

$$\tilde{f} = x_0 - \tilde{\psi}, \quad \partial_{x_0} \tilde{\psi}(\bar{\rho}) = 0, \quad \{\xi_0, \tilde{g}\} \stackrel{\Sigma^*}{=} 0, \quad \tilde{g} \ge 0, \quad \tilde{e} \neq 0$$

since $\{\xi_0 - \phi_1, \tilde{f}\} = 1$ and $\{\tilde{f}, \phi_1\} \stackrel{\Sigma'}{=} 0$.

References

- E.Bernardi, C.Parenti, A.Parmeggianni; The Cauchy problem for hyperbolic operators with double characteristics in presence of transition, Commun. Partial Differ. Equ. 37 (2012), 1315-1356.
- [2] L.Hörmander, The analysis of linear partial differential operators. III. Pseudodifferential operators, Springer-Verlag, Berlin, 1985.
- [3] L.Hörmander; The Cauchy problem for differential equations with double characteristics, J. Analyse Math. 32 (1977), 118-196.
- [4] T.Nishitani, On the Cauchy problem for noneffectively hyperbolic operators, s transition case, : in Studies in Phase Space Analysis with Applications to PDEs. ed. by M.Cicognani, F.Colombini, D.Del Santo (Birkhäuser, Basel, 2013), pp.259-290.
- [5] T.Nishitani, The effectively hyperbolic Cauchy problem, In: The Hyperbolic Cauchy Problem, Lecture Notes in Math. 1505, Springer-Verlag (1991), pp. 71-167.
- [6] T.Nishitani, Cauchy Problem for Differential Operators with Double Characteristics, Lecture Notes in Math. 2202, Springer-Verlag, 2017.